JPH0866922A - Fiber reinforced plastic rod material and manufacture thereof - Google Patents
Fiber reinforced plastic rod material and manufacture thereofInfo
- Publication number
- JPH0866922A JPH0866922A JP6205802A JP20580294A JPH0866922A JP H0866922 A JPH0866922 A JP H0866922A JP 6205802 A JP6205802 A JP 6205802A JP 20580294 A JP20580294 A JP 20580294A JP H0866922 A JPH0866922 A JP H0866922A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforced plastic
- resin
- heat
- matrix resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B5/00—Making ropes or cables from special materials or of particular form
- D07B5/005—Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2015—Construction industries
- D07B2501/2023—Concrete enforcements
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化プラスチック
製棒材及びその製造方法に係り、更に詳しくは、該棒材
がその製造時に用いた被覆繊維の熱収縮率の差により凹
凸を有し、周辺材質との接着性が向上し、コスト的にも
安価な繊維強化プラスチック製棒材及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced plastic rod and a method for producing the same, and more specifically, the rod has irregularities due to the difference in heat shrinkage ratio of the coated fibers used in the production thereof. The present invention relates to a bar material made of fiber-reinforced plastic, which has improved adhesiveness with peripheral materials and is inexpensive, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】一般に、セメントやプラスチックの構造
用棒材としては金属製の鉄筋やPC緊張材が用いられて
いるが、これら鉄筋やPC緊張材は、長期の使用の間に
発錆し、これが原因して強度の低下やセメント等の周辺
材料との間の接着性や密着性の低下が起こり、強度の耐
久性不足や解離性という問題があるほか、セメント等の
周辺材料に比べてその熱膨脹率が高く、その熱膨脹によ
って周辺材料に割れが発生するという問題もあり、更
に、金属はその比重が大きく、体積の割に重量が嵩んで
運搬等に特別な装置を要し、その作業性が悪いほか、コ
スト高になるという問題もある。2. Description of the Related Art Generally, metal reinforcing bars and PC tension members are used as structural rods for cement or plastic, but these reinforcing bars and PC tension members rust during long-term use. This causes a decrease in strength and a decrease in adhesiveness and adhesion with peripheral materials such as cement, and there are problems of insufficient durability and dissociation of strength. The coefficient of thermal expansion is high, and there is also the problem that the thermal expansion causes cracks in the surrounding materials.Furthermore, metal has a large specific gravity, and its weight is large relative to its volume, so special equipment is required for transportation, etc. However, there is also the problem of high costs.
【0003】そこで、このような問題点を解決するため
に、軽量で高強度、しかも錆びない棒材が求められるよ
うになっており、現在、高強度、高弾性の有機繊維ある
いは無機繊維にマトリックス樹脂を含浸させ、この繊維
を複数本束ねて所定の太さにした後に加熱処理すること
により形成される繊維強化プラスチック製の棒材が数多
く創案され提出されている。これら繊維強化プラスチッ
ク製の棒材は、金属に比べて比重が小さく発錆もないう
えに強度も金属以上であるため、現在その実用化のため
の開発が進められており、多種類の繊維強化プラスチッ
ク製棒材が提案されている。Therefore, in order to solve such a problem, a lightweight and high-strength rod which does not rust has been demanded. At present, a matrix of organic or inorganic fiber having high strength and high elasticity is required. Many bar materials made of fiber-reinforced plastic have been created and submitted by impregnating a resin, bundling a plurality of these fibers to obtain a predetermined thickness, and then heat-treating them. These bar rods made of fiber reinforced plastic have a specific gravity smaller than metal and are free from rusting and have strength higher than that of metal. Therefore, development for practical application is currently underway, and many types of fiber reinforced Plastic bars have been proposed.
【0004】ところが、繊維強化プラスチック製棒材を
用いた鉄筋やPC緊張材等には、金属製の棒材のように
表面にローレット加工やネジ切り加工をしたり、あるい
は、くさび形等の異形状に加工することができないた
め、セメント等の周辺材料との間の接着性が悪いという
問題がある。これは、繊維強化プラスチック製棒材の材
質が繊維強化しているため、棒材の表面にローレット加
工やネジ切り加工等を施すと繊維が切断されて本来の強
度を発揮することができないからであり、また、くさび
形等の異形状にする加工処理は、成形方法が複雑でコス
ト高になるため一般に行われないからである。However, a reinforcing bar or a PC tension member made of a fiber reinforced plastic rod is knurled or threaded on the surface like a metal rod, or is formed into a wedge shape or the like. Since it cannot be processed into a shape, there is a problem that the adhesiveness with peripheral materials such as cement is poor. This is because the bar material made of fiber reinforced plastic is fiber reinforced, so if the surface of the bar material is knurled or threaded, the fiber will be cut and the original strength cannot be exhibited. This is because the processing for forming a different shape such as a wedge shape is not generally performed because the molding method is complicated and the cost is high.
【0005】また、通常、ストランドを収束しただけの
ものは、未硬化状態では該ストランドがバラバラになり
形状の保持ができず、また、該ストランド束を硬化させ
るには外圧が必要であるため、圧力がない場合にはボイ
ドが発生したり、硬化時にはマトリックス樹脂がたれた
りして到底棒材として使用に耐え得ない。そのため、ス
トランドは一般にその外周部を何らかの方法で、例えば
ブレードといわれる織布で被覆する。その結果、棒材の
表面にわずかな凹凸ができるのだが周辺材料に対しアン
カー効果をもたらすほどの凹凸は得られない。Further, in the case where the strands are simply converged, usually, the strands are disjointed in the uncured state and the shape cannot be maintained, and external pressure is required to cure the strand bundles. If there is no pressure, voids will be generated, and the matrix resin will sag during curing, making it unusable as a bar material. Therefore, the strands are generally coated on their outer circumference in some way, for example with a woven fabric called a blade. As a result, slight irregularities are formed on the surface of the bar, but the irregularities that provide an anchor effect to the peripheral material are not obtained.
【0006】このため、繊維束片を端部遊離状態で巻付
ける方法(実開平1−96925号公報)が知られてい
るが、連続的に巻付けることができないため生産性が悪
く、また、その補強作業の工程が増えてコスト高とな
り、十分とは言えない。また、長繊維の複数本を集束し
た集合体に未硬化の結合材を含浸せしめ、該結合剤が硬
化する前に該集合体に粒子物例えば砂を付着させ、アン
カー効果をもたらす方法(特開昭64−29560号公
報)も知られているが、付着物が粒子であるため連続的
な結合がされておらず、衝撃により粒子がはずれたり輸
送中剥離したり、また補強作業の工程が増えてコスト高
となるため、これも前述の課題を解決するには至ってい
ない。For this reason, a method of winding a fiber bundle piece in a free end state is known (Japanese Utility Model Laid-Open No. 1-96925), but since it cannot be wound continuously, productivity is poor, and This is not sufficient because the number of steps for the reinforcing work increases and the cost increases. In addition, a method in which an aggregate obtained by bundling a plurality of long fibers is impregnated with an uncured binder, and particles such as sand are attached to the aggregate before the binder hardens to provide an anchor effect (JP Japanese Laid-Open Patent Publication No. 64-29560) is also known, but since the adhered matter is particles, continuous bonding is not performed, and particles are detached by impact or peeled during transportation, and the number of steps for reinforcement work is increased. As a result, the cost becomes high, and this has not yet solved the above-mentioned problems.
【0007】[0007]
【発明が解決しようとする課題】そこで、本発明者ら
は、かかる問題点を解決すべく鋭意研究を重ねた結果、
未硬化繊維強化プラスチック製棒素材の周囲に互いに熱
収縮率の異なる2種以上の被覆繊維を被服して繊維強化
プラスチック製棒材を成形すると、加熱硬化させた際
に、上記各被覆繊維に熱収縮率の差が生じて表面に凹凸
が形成され、周辺材料との接着性が向上でき、しかも、
棒材製造工程も増えず、安価に製造できることを見出
し、本発明を完成した。Therefore, as a result of earnest studies to solve such problems, the present inventors have found that
When two or more kinds of coated fibers having different heat shrinkage ratios are coated around the uncured fiber-reinforced plastic rod material to form a fiber-reinforced plastic rod material, the above-mentioned coated fibers are heated to heat when cured. Differences in shrinkage occur and irregularities are formed on the surface, improving the adhesiveness with peripheral materials.
The inventors have completed the present invention by finding that the number of manufacturing steps for rods does not increase and the manufacturing cost is low.
【0008】従って、本発明の目的は、棒材表面に特別
の処理をせず凹凸を発生させることにより、周辺材料と
の接着性も向上し、棒材製造工程が増えずにコスト的に
も安価に繊維強化プラスチック製棒材を提供することで
ある。Therefore, the object of the present invention is to improve the adhesiveness to the peripheral material by generating irregularities on the surface of the bar material without any special treatment, and to increase the number of manufacturing steps of the bar material and also in terms of cost. It is to provide a bar material made of fiber reinforced plastic at a low cost.
【0009】[0009]
【課題を解決するための手段】すなわち、本発明はマト
リックス樹脂を含浸した強化繊維のストランドを1本又
は複数本束ねて未硬化繊維強化プラスチック製棒素材を
形成し、その周囲に互いに熱収縮率の異なる2種以上の
被覆繊維を被覆せしめ、上記マトリックス樹脂を加熱硬
化させる際に発生する上記各被覆繊維の熱収縮率の差に
より表面に凹凸を形成せしめたことを特徴とする繊維強
化プラスチック製棒材である。That is, according to the present invention, one or a plurality of reinforcing fiber strands impregnated with a matrix resin are bundled to form an uncured fiber reinforced plastic rod material, and the heat shrinkage ratios around each other are formed around the rod material. Made of fiber-reinforced plastic, which is formed by coating two or more kinds of coated fibers having different types, and forming unevenness on the surface by the difference in heat shrinkage ratio of the coated fibers generated when the matrix resin is heat-cured. It is a bar.
【0010】また、本発明は、高強度、高弾性を有する
強化繊維のストランドにマトリックス樹脂を含浸させ、
このストランドを1本又は複数本束ねて構成した未硬化
繊維強化プラスチック製棒素材の周囲に互いに熱収縮率
の異なる2種以上の被覆繊維を被覆せしめ、次いでこの
棒素材のマトリックス樹脂を加熱硬化させ、この加熱硬
化時に上記各被覆繊維の熱収縮率の差により表面に凹凸
を形成せしめたことを特徴とする繊維強化プラスチック
製棒材の製造方法である。Further, according to the present invention, a strand of reinforcing fiber having high strength and high elasticity is impregnated with a matrix resin,
An uncured fiber-reinforced plastic rod material constituted by bundling one or more of these strands is coated with two or more kinds of coated fibers having different heat shrinkage rates, and then the matrix resin of the rod material is heat-cured. The method for producing a fiber-reinforced plastic rod is characterized in that unevenness is formed on the surface due to the difference in the heat shrinkage rate of the coated fibers during the heat curing.
【0011】以下、本発明を詳細に説明する。本発明に
おける未硬化繊維強化プラスチック製棒素材を構成する
ストランドは、強度を保持する繊維であり、高強度高弾
性の無機繊維又は有機繊維のいずれでもよく、無機繊維
としては炭素繊維、ガラス繊維、炭素ケイ素繊維、ステ
ンレス繊維等が使用でき、また、有機繊維としては、ア
ラミド繊維、ビニロン繊維、高強度ポリエチレン繊維等
が使用できる。これらのストランドは通常数10フィラ
メントから数10万フィラメントの範囲で収束した繊維
束から構成されており、一般的にストランドと総称され
ている。該ストランドをさらに数本から数10本収束し
ていわゆる素線状態にし、棒材として使用する場合に
は、その素線状態の束を単一であるいは複数本用いて構
成する。単一形態のものは通常直線状であり、複数形態
のものはより線状あるいは編み状がある。The present invention will be described in detail below. Strands constituting the uncured fiber-reinforced plastic rod material in the present invention is a fiber that retains strength, may be either high-strength and high-elasticity inorganic fiber or organic fiber, as the inorganic fiber carbon fiber, glass fiber, Carbon silicon fiber, stainless fiber, etc. can be used, and as the organic fiber, aramid fiber, vinylon fiber, high strength polyethylene fiber, etc. can be used. These strands are usually composed of fiber bundles that are bundled in the range of several tens of filaments to several hundreds of thousands of filaments, and are generally referred to as strands. When several to several tens of the strands are further converged into a so-called strand state and used as a bar, the bundle in the strand state is used alone or in plural. The single form is usually linear, and the plural forms are twisted or knitted.
【0012】また、本発明で用いる樹脂としては、熱可
塑性樹脂あるいは熱硬化性樹脂のいずれでもよいが、好
ましくは熱硬化性樹脂であり、エポキシ樹脂、ウレタン
アクリレート樹脂、ビニルエステル樹脂、ポリエステル
樹脂、フェノール樹脂、ポリイミド樹脂等を用いること
ができる。また、熱可塑性樹脂としては、ナイロン、ポ
リプロピレン、PEEK(ポリエーテルエーテルケト
ン)、PES等を用いることができる。The resin used in the present invention may be either a thermoplastic resin or a thermosetting resin, but is preferably a thermosetting resin, such as epoxy resin, urethane acrylate resin, vinyl ester resin, polyester resin, Phenol resin, polyimide resin or the like can be used. Further, as the thermoplastic resin, nylon, polypropylene, PEEK (polyether ether ketone), PES or the like can be used.
【0013】また、これらの樹脂をストランドに含浸さ
せる際の樹脂の含有量は、20〜50重量%が好まし
い。この樹脂の含有量が20重量%より少ないと素線内
のフィラメント間の接着が不十分であり、加圧加熱硬化
した該棒材内にボイドが発生して該棒材自体の強度が低
下する。また、樹脂の含有量が50%より多くなると、
硬化時に樹脂が表面層ににじみ出し硬化物の表面樹脂が
多くなり凹凸が生じにくくなる。When the strand is impregnated with these resins, the content of the resin is preferably 20 to 50% by weight. When the content of this resin is less than 20% by weight, the adhesion between filaments in the wire is insufficient, and voids are generated in the pressure-heat-cured bar material to lower the strength of the bar material itself. . Also, when the resin content exceeds 50%,
At the time of curing, the resin oozes out to the surface layer, and the surface resin of the cured product increases, so that unevenness hardly occurs.
【0014】本発明において適用できる被覆用の熱収縮
性繊維としては、ポリエステル繊維、アクリル繊維、P
PS繊維、アラミド繊維、ポリプロピレン繊維、ビニロ
ン繊維、TPX繊維等を挙げることができ、これらの繊
維を2種以上使用して未硬化状態の棒素材に被覆する。
被覆された該棒素材の表面状態は、組ひも状、テープ
状、クロス状、螺旋状、スパイラル状等となる。As the heat-shrinkable fiber for coating which can be applied in the present invention, polyester fiber, acrylic fiber, P
Examples thereof include PS fiber, aramid fiber, polypropylene fiber, vinylon fiber, TPX fiber and the like, and two or more kinds of these fibers are used to coat an uncured bar material.
The surface condition of the coated bar material is a braided shape, a tape shape, a cloth shape, a spiral shape, a spiral shape, or the like.
【0015】また、この被覆繊維は、フィラメント糸又
は紡績糸のいずれでもよいが、一般に、フィラメント糸
の場合は、マトリックス樹脂の含浸性が良好なため、ス
トランドの樹脂含有率が20〜30重量%が好ましく、
また、紡績糸の場合は、マトリックス樹脂の含浸性が悪
いため、ストランドの樹脂含有率が30〜50%が好ま
しい。The coated fiber may be either filament yarn or spun yarn. Generally, in the case of filament yarn, the resin content of the strand is 20 to 30% by weight because the matrix resin has a good impregnation property. Is preferred,
In the case of spun yarn, the resin content of the strand is preferably 30 to 50% because the impregnating property of the matrix resin is poor.
【0016】なお、この被覆繊維の強度はほとんど該棒
材には寄与されないため、高強度、高弾性の繊維を使用
する必要はない。これは、上記の被覆された棒素材の表
面状態のいずれの場合も、被覆角が、棒素材の長手方向
を0°とすると、10°以上となってしまい、10°以
下とすることは製造上無理であることから判断される。
通常、被覆角が10°以上となると繊維自体の引っ張り
強度が著しく低下するからである。Since the strength of the coated fiber hardly contributes to the rod material, it is not necessary to use a fiber having high strength and high elasticity. This means that in any of the above-mentioned surface states of the coated rod material, the coating angle is 10 ° or more when the longitudinal direction of the rod material is 0 ° and is 10 ° or less in the production. It is judged because it is impossible.
This is because the tensile strength of the fiber itself is usually significantly reduced when the coating angle is 10 ° or more.
【0017】本発明における被覆繊維の熱収縮率は、マ
トリックス樹脂の硬化温度付近の値であり、被覆繊維の
熱収縮率の最大値と最小値の比が1〜70%のとき棒素
材の表面の凹凸が良好な状態となる。この被覆繊維の熱
収縮率の比が1%より小さくなると、該棒素材が硬化し
た際に表面の凹凸が認められず周辺材料との接着力が十
分得られない。また、70%より大きくなると、熱収縮
率の小さい被覆繊維が熱収縮率の大きい繊維に比べて収
縮が進まず、熱収縮率の小さい繊維にマトリックス樹脂
が十分含浸されない状態、いわゆる未含浸状態となるた
め樹脂複合体にならず、接着力が十分発揮できない。The heat shrinkage of the coated fiber in the present invention is a value near the curing temperature of the matrix resin, and when the ratio of the maximum and the minimum heat shrinkage of the coated fiber is 1 to 70%, the surface of the bar material. The unevenness of is in a good state. When the heat shrinkage ratio of the coated fiber is less than 1%, surface irregularities are not recognized when the rod material is cured, and sufficient adhesive force with peripheral materials cannot be obtained. On the other hand, when it is more than 70%, the coated fiber having a small heat shrinkage does not shrink more than the fiber having a large heat shrinkage, and the fiber having a small heat shrinkage is not sufficiently impregnated with the matrix resin, that is, a so-called unimpregnated state. Therefore, it does not form a resin composite and the adhesive strength cannot be sufficiently exhibited.
【0018】また、被覆繊維の太さは100〜1,00
0デニールが好ましく、この被覆繊維の太さが1,00
0デニールを越えるとマトリックス樹脂が十分に含浸さ
れず、特に表層部が未含浸状態となる。また、100デ
ニール未満であると、マトリックス樹脂が表面層をおお
うため棒素材の表面に凹凸が発生しなくなる。The thickness of the coated fiber is 100 to 1,000.
0 denier is preferable, and the thickness of the coated fiber is 100
When it exceeds 0 denier, the matrix resin is not sufficiently impregnated, and especially the surface layer portion is not impregnated. On the other hand, when it is less than 100 denier, the matrix resin covers the surface layer, so that the surface of the bar material does not become uneven.
【0019】更に、上記の被覆繊維の熱収縮率の比及び
被覆繊維の太さは、周辺材料の材質によって適した範囲
が異なり、周辺材料のが比較的粘度の低い樹脂系の場合
には、棒材の表面の凹凸を小さくするため、被覆繊維の
熱収縮率の比は1〜40%、また、被覆繊維の太さは1
00〜500デニールが好ましい。一方、周辺材料の材
質がフィラー等が混入されているセメント等の場合に
は、棒材の表面の凹凸を大きくするため、被覆繊維の熱
収縮率の比は40〜70%、また、被覆繊維の太さは5
00〜1,000デニールが好ましい。Further, the ratio of the heat shrinkage ratio of the coated fiber and the thickness of the coated fiber are different depending on the material of the peripheral material, and when the peripheral material is a resin system having a relatively low viscosity, In order to reduce the unevenness of the surface of the bar, the ratio of the heat shrinkage ratio of the coated fiber is 1 to 40%, and the thickness of the coated fiber is 1
Preferred is from 00 to 500 denier. On the other hand, when the peripheral material is cement in which a filler or the like is mixed, the ratio of the heat shrinkage ratio of the coated fiber is 40 to 70% in order to increase the unevenness of the surface of the rod material. Thickness is 5
00 to 1,000 denier is preferred.
【0020】また、棒材の表面層を構成する被覆繊維の
層はできるだけ薄い方が好ましい。被覆繊維の層が厚く
なると、該棒材の見かけ断面積が大きくなり、相対的に
高強度高弾性の部分の占める割合が小さくなるため、単
位断面積の強度が低下してしまい好ましくない。Further, it is preferable that the coating fiber layer constituting the surface layer of the rod is as thin as possible. If the layer of the coated fiber becomes thick, the apparent cross-sectional area of the rod material becomes large, and the proportion of the relatively high-strength and high-elasticity portion becomes small.
【0021】[0021]
【作用】本発明における繊維強化プラスチック製棒材
は、マトリックス樹脂を含浸した強化繊維により形成さ
れたストランドが互いに熱収縮率の異なる2種以上の被
覆繊維により被覆されており、マトリックス樹脂を加熱
硬化させる際に発生する各被覆繊維の熱収縮率の差によ
って棒材の表面に凹凸が形成される。そのため、棒材と
周辺材質とは凹凸部の界面による接着性の向上作用によ
り固着強度を上げ、高い引抜き抗力を発揮する。従っ
て、この棒材は特別にアンカー効果をもたらすような、
例えば棒材に粒子を付けたり、突き部をもうけたりする
ことなくアンカー効果を発揮することができる。更に、
凹凸部を設けるような工程も得に必要とせず、価格の低
減も期待することが可能となる。In the rod material made of fiber reinforced plastic according to the present invention, the strand formed by the reinforcing fiber impregnated with the matrix resin is coated with two or more kinds of coating fibers having different heat shrinkage rates, and the matrix resin is heat-cured. Irregularities are formed on the surface of the bar due to the difference in the heat shrinkage rate of each coated fiber that occurs when the rod is made. Therefore, the sticking strength of the bar material and the surrounding material is increased by the effect of improving the adhesiveness due to the interface of the concave and convex portions, and a high pulling resistance is exerted. Therefore, this bar has a special anchor effect,
For example, the anchor effect can be exerted without attaching particles to the bar material or providing a protrusion. Furthermore,
It is possible to expect a reduction in price without requiring a step of providing the uneven portion.
【0022】[0022]
【実施例】以下、本発明の繊維強化プラスチック製棒材
及びその製造方法を実施例にって具体的に説明する。EXAMPLES The fiber-reinforced plastic rod and the method for producing the same according to the present invention will be specifically described below with reference to examples.
【0023】実施例1 ビスフェノールA型エポキシ(エピコート1001油化
シェル社製)60重量部及びフェノールノボラック型エ
ポキシ(EPN−1138チバガイギ社製)40重量部
を主剤としてなるマトリックス樹脂に、硬化剤としてジ
シアンジアミド6重量部及び硬化促進剤として、4重量
部の1−ジメチル尿素からなる樹脂組成物を調整した。
このエポキシ樹脂組成物をメチルセルソルブで希釈し、
その希釈液に6000フィラメントの炭素繊維(エスカ
イノスNT−35)を含浸させ、その後、熱風乾燥機で
希釈剤であるメチルセルソルブを蒸発させてストランド
とした。このストランドの樹脂付着量は32重量%であ
った。Example 1 A matrix resin containing 60 parts by weight of bisphenol A type epoxy (Epicote 1001 manufactured by Yuka Shell Co., Ltd.) and 40 parts by weight of phenol novolac type epoxy (EPN-1138 Ciba-Geigy Co.) as a main component, and dicyandiamide as a curing agent. A resin composition containing 6 parts by weight and 4 parts by weight of 1-dimethylurea as a curing accelerator was prepared.
This epoxy resin composition is diluted with methyl cellosolve,
The diluted solution was impregnated with 6000 filaments of carbon fiber (ESKYNOS NT-35), and then methylcellosolve, which is a diluent, was evaporated with a hot air dryer to form a strand. The resin adhesion amount of this strand was 32% by weight.
【0024】次いで、このストランドを20本収束させ
てストランド束とし、このストランド束を1本(図1
(a)及び図2(a))あるいは7本束ねたもの(図1
(b)及び図2(b))を用い、その表面に熱収縮率が
1.75(10-4/℃)である450デニールのビニロ
ン(フィラメント糸・図2の被覆繊維3)と、熱収縮率
が92(10-4/℃)である600デニールのポリプロ
ピレン(フィラメント糸・図2の被覆繊維2)とを、1
対1の割合で編角45°となるように組ひも状(平織、
朱子織等)に巻き付け、繊維強化プラスチック製棒素材
を得た。Then, 20 strands are converged to form a strand bundle, and this strand bundle is
(A) and FIG. 2 (a)) or a bundle of seven (FIG. 1)
(B) and FIG. 2 (b)), the surface of which has a heat shrinkage of 1.75 (10 −4 / ° C.) of 450 denier vinylon (filament yarn, coated fiber 3 in FIG. 2), and heat A shrinkage factor of 92 (10 -4 / ° C.) and 600 denier polypropylene (filament yarn, coated fiber 2 in FIG. 2)
A braided shape (plain weave, so that the braid angle is 45 ° at a ratio of 1 to
It was wrapped around a satin weave) to obtain a rod material made of fiber reinforced plastic.
【0025】この炭素繊維強化プラスチック製棒素材を
140℃で60分間常気圧下で加圧熱硬化させた。かく
して、図1、図2及び図3に示すような外径4.4mm
φで表面に凹凸のある繊維強化プラスチック製棒材を得
た。なお、図1中、符号Bは凹凸部であり、図2及び図
3中、符号1は繊維強化プラスチック部であり、また、
符号2及び3は被覆繊維である。ここで、被覆繊維2の
熱収縮率は、被覆繊維3の熱収縮率よりも大きい値をと
る。なお、上記の図2は本発明の繊維強化プラスチック
製棒素材の代表的な構成を示すものであって、この構成
については、本発明の範囲内で如何様にも変わり得る。The carbon fiber reinforced plastic rod material was heat-cured under pressure at 140 ° C. for 60 minutes under atmospheric pressure. Thus, an outer diameter of 4.4 mm as shown in FIGS. 1, 2 and 3.
A fiber reinforced plastic bar material having an uneven surface on φ was obtained. In addition, in FIG. 1, reference numeral B is an uneven portion, and in FIGS. 2 and 3, reference numeral 1 is a fiber reinforced plastic portion, and
Reference numerals 2 and 3 are coated fibers. Here, the heat shrinkage rate of the coated fiber 2 is larger than the heat shrinkage rate of the coated fiber 3. The above-mentioned FIG. 2 shows a typical constitution of the fiber-reinforced plastic rod material of the present invention, and this constitution can be changed within the scope of the present invention.
【0026】上記の、ストランド束1本から形成された
繊維強化プラスチック製棒材(図1(a)及び図2
(a))を、図4に示すようにアンカー体の周辺材料に
埋め込み定着せしめ、コンクリート中における引抜強度
を測定した。なお、図4中、符号1は繊維強化プラスチ
ック部であり、符号2及び3は被覆繊維であり、また、
符号4は周辺材料である。引抜強度の測定結果を表1に
示す。Fiber-reinforced plastic rods (FIGS. 1 (a) and 2) formed from one strand bundle as described above.
As shown in FIG. 4, (a) was embedded and fixed in the peripheral material of the anchor body, and the pull-out strength in concrete was measured. In FIG. 4, reference numeral 1 is a fiber reinforced plastic portion, reference numerals 2 and 3 are coated fibers, and
Reference numeral 4 is a peripheral material. Table 1 shows the measurement results of the pulling strength.
【0027】実施例2 含浸させる炭素繊維を12,000フィラメントのトレ
カT−700とした以外は実施例1と同様の方法でスト
ランドを作成した。このストランドの樹脂付着量は30
重量%であった。Example 2 A strand was prepared in the same manner as in Example 1 except that the carbon fiber to be impregnated was Torayca T-700 having 12,000 filaments. The amount of resin attached to this strand is 30
% By weight.
【0028】次いで、このストランドを27本収束させ
てストランド束とし、このストランド束を1本(図5
(c)及び図6(c))あるいは7本束ねたもの(図5
(d)及び図6(d))を用い、その表面に熱収縮率が
1.00(10-4/℃)である500デニールのポリエ
ステル(フィラメント糸・図2の被覆繊維3))と、熱
収縮率が3.25(10-4/℃)である450デニール
のアクリル(紡績糸・図2の被覆繊維2)とを、巻角8
0°となるようにスパイラル状(テープ、糸等)に巻き
付け、繊維強化プラスチック製棒素材を得た。Next, 27 strands are converged into a bundle of strands, and one strand bundle (FIG. 5) is formed.
(C) and FIG. 6 (c)) or a bundle of seven (FIG. 5)
(D) and FIG. 6 (d)), and 500 denier polyester (filament yarn, coated fiber 3 in FIG. 2) having a heat shrinkage of 1.00 (10 −4 / ° C.) on its surface, A 450 denier acrylic (spun yarn, coated fiber 2 in FIG. 2) having a heat shrinkage of 3.25 (10 −4 / ° C.) and a winding angle of 8
The rod material made of fiber-reinforced plastic was obtained by winding it in a spiral shape (tape, thread, etc.) so as to be 0 °.
【0029】この炭素繊維強化プラスチック製棒素材を
120℃で20分間、更に、150℃で40分間常気圧
下で加圧熱硬化させた。かくして、図5、図6及び図7
に示すような外径5.0mmφで表面に凹凸のある繊維
強化プラスチック製棒材を得た。なお、図5中、符号B
は凹凸部であり、図6及び図7中、符号1は繊維強化プ
ラスチック部であり、また、符号2及び3は被覆繊維で
ある。ここで、被覆繊維2の熱収縮率は、被覆繊維3の
熱収縮率よりも大きい値をとる。なお、上記の図6は本
発明の繊維強化プラスチック製棒素材の代表的な構成を
示すものであって、この構成については、本発明の範囲
内で如何様にも変わり得る。This carbon fiber reinforced plastic rod material was heated and cured under pressure at 120 ° C. for 20 minutes and at 150 ° C. for 40 minutes under atmospheric pressure. Thus, FIGS. 5, 6 and 7
A fiber reinforced plastic rod having an outer diameter of 5.0 mmφ and a surface having irregularities was obtained as shown in (4). In FIG. 5, reference numeral B
6 and 7, reference numeral 1 is a fiber reinforced plastic portion, and reference numerals 2 and 3 are coated fibers. Here, the heat shrinkage rate of the coated fiber 2 is larger than the heat shrinkage rate of the coated fiber 3. The above-mentioned FIG. 6 shows a typical constitution of the fiber-reinforced plastic rod material of the present invention, and this constitution can be changed within the scope of the present invention.
【0030】上記の、ストランド束1本から形成された
繊維強化プラスチック製棒材(図5(c)及び図6
(c))を、実施例1と同様にアンカー体の周辺材料に
埋め込み、コンクリート中における引抜強度を測定し
た。引抜強度の測定結果を表1に示す。A fiber reinforced plastic rod formed from one strand bundle (see FIGS. 5 (c) and 6).
(C) was embedded in the peripheral material of the anchor body in the same manner as in Example 1, and the pull-out strength in concrete was measured. Table 1 shows the measurement results of the pulling strength.
【0031】比較例1 含浸させる炭素繊維を3000フィラメントとした以外
は実施例1と同様の方法でストランドを作成した。この
ストランドの樹脂付着量は62重量%であった。Comparative Example 1 A strand was prepared in the same manner as in Example 1 except that the carbon fiber to be impregnated was 3000 filaments. The resin adhesion amount of this strand was 62% by weight.
【0032】次いで、このストランドを36本収束させ
てストランド束とし、このストランド束の表面に熱収縮
率が1.75(10-4/℃)である600デニールのビ
ニロン(フィラメント糸)と、熱収縮率が92(10-4
/℃)である600デニールのポリプロピレン(紡績
糸)とを、編角45°となるように組ひも状に巻き付
け、繊維強化プラスチック製棒素材を得た。Then, 36 strands of this strand are converged into a strand bundle, and 600 denier vinylon (filament yarn) having a heat shrinkage of 1.75 (10 −4 / ° C.) is heat-treated on the surface of the strand bundle. Shrinkage rate is 92 (10 -4
/ ° C) and 600 denier polypropylene (spun yarn) were wound into a braid at a braiding angle of 45 ° to obtain a fiber-reinforced plastic rod material.
【0033】この炭素繊維強化プラスチック製棒素材を
140℃で60分間常気圧下で加圧熱硬化させた。この
ようにして得られた繊維強化プラスチック製棒材を、実
施例1と同様にアンカー体の周辺材料に埋め込み、コン
クリート中における引抜強度を測定した。この結果、得
られた繊維強化プラスチック製棒材は、外径4.7mm
φで表面に凹凸がなくマトリックス樹脂が表面に多量に
にじんでおり、コンクリート中においては実施例1と同
様の結果が得られずアンカー効果が認められなかった。
引抜強度の測定結果を表1に示す。The carbon fiber reinforced plastic rod material was heat-cured under pressure at 140 ° C. for 60 minutes under atmospheric pressure. The fiber-reinforced plastic rod thus obtained was embedded in the peripheral material of the anchor body in the same manner as in Example 1, and the pull-out strength in concrete was measured. As a result, the obtained fiber reinforced plastic rod has an outer diameter of 4.7 mm.
At φ, there was no unevenness on the surface and the matrix resin oozes on the surface in a large amount. In concrete, the same results as in Example 1 were not obtained and the anchor effect was not recognized.
Table 1 shows the measurement results of the pulling strength.
【0034】比較例2 実施例2と同様の方法でストランドを作成した。このス
トランドの樹脂付着量は30重量%であった。Comparative Example 2 A strand was prepared in the same manner as in Example 2. The amount of resin attached to this strand was 30% by weight.
【0035】次いで、このストランドを27本収束させ
てストランド束とし、このストランド束の表面に熱収縮
率が1.75(10-4/℃)である450デニールのビ
ニロン(フィラメント糸)を巻角80°となるようにス
パイラル状に巻き付け、繊維強化プラスチック製棒素材
を得た。Then, 27 strands are converged to form a strand bundle, and 450 denier vinylon (filament yarn) having a heat shrinkage of 1.75 (10 −4 / ° C.) is wound on the surface of the strand bundle. A rod material made of fiber-reinforced plastic was obtained by spirally winding it at an angle of 80 °.
【0036】この炭素繊維強化プラスチック製棒素材を
140℃で60分間常気圧で加圧熱硬化させた。このよ
うにして得られた繊維強化プラスチック製棒材を、実施
例2と同様ににアンカー体の周辺材料に埋め込み、コン
クリート中における引抜強度を測定した。この結果、得
られた繊維強化プラスチック製棒材は、外径5.0mm
φで表面に凹凸がなくマトリックス樹脂が表面に一様に
にじんでおり、樹脂中においては実施例2と同様の結果
が得られずアンカー効果が認められなかった。引抜強度
の測定結果を表1に示す。The carbon fiber reinforced plastic rod material was heat-cured under pressure at 140 ° C. for 60 minutes under atmospheric pressure. The fiber-reinforced plastic rod thus obtained was embedded in the peripheral material of the anchor body in the same manner as in Example 2, and the pull-out strength in concrete was measured. As a result, the fiber reinforced plastic rod obtained had an outer diameter of 5.0 mm.
At φ, there was no unevenness on the surface and the matrix resin was uniformly blotted on the surface. In the resin, the same results as in Example 2 were not obtained and the anchor effect was not recognized. Table 1 shows the measurement results of the pulling strength.
【0037】[0037]
【表1】 [Table 1]
【0038】[0038]
【発明の効果】本発明によって得られる繊維強化プラス
チック製棒材は、そのストランドの表面が互いに熱収縮
率の異なる2種以上の被覆繊維により被覆されており、
従来のようにアンカー効果をもたらすために構成された
棒材とは異なり特別な工程を必要としないため、コスト
的にも安価な優れた繊維強化プラスチック製棒材が得ら
れる。また、該棒材は、被覆繊維の種類を種々変えるこ
とによって、周辺材料の各々の用途に合った適切な凹凸
を表面に発生させることが可能であり、更に、該繊維が
硬化時に熱収縮するため繊維強化プラスチック製棒材内
にボイドが発生することなく強厚的にも高いものが得ら
れるので実用上の効果は極めて顕著なものである。The fiber reinforced plastic rod obtained by the present invention has the surface of its strand covered with two or more kinds of coated fibers having different heat shrinkage rates.
Unlike the conventional bar material configured to provide the anchor effect, no special process is required, so that an excellent fiber-reinforced plastic bar material can be obtained at low cost. In addition, the rod material can generate appropriate irregularities on the surface according to each use of the peripheral material by changing the type of the coated fiber, and further, the fiber is thermally shrunk during curing. For this reason, the fiber-reinforced plastic bar material does not generate voids, and a high strength bar can be obtained. Therefore, the practical effect is extremely remarkable.
【図1】 図1は、本発明の繊維強化プラスチック製棒
材を模式的に示す外観図であり、(a)は、1本のスト
ランド束から成る単線の直線状棒材で被覆繊維は組ひも
状(平織)に編まれた棒材であり、また、(b)は、7
本のストランド束から成る複線のより線状あるいは編み
状棒状で被覆繊維は組ひも状(平織)に編まれた棒材で
ある。FIG. 1 is an external view schematically showing a fiber-reinforced plastic rod material according to the present invention. FIG. 1 (a) is a single-wire linear rod material composed of a single strand bundle and covered fibers are assembled. It is a bar woven into a string (plain weave), and (b) is 7
It is a double-strand twisted rod or knitted rod-shaped rod made of a bundle of strands, and the coated fibers are rods knitted in a braided (plain weave) shape.
【図2】 図2は、本発明の図1の横断面図である。FIG. 2 is a cross-sectional view of FIG. 1 of the present invention.
【図3】 図3は、本発明の図1A部の拡大図である。FIG. 3 is an enlarged view of part A of FIG. 1 of the present invention.
【図4】 図4は、本発明の繊維強化プラスチック製棒
材をアンカー体の棒材(緊張材)として用いた場合の概
略図であり、(e)は縦断面図であり、また、(f)は
横断面図である。FIG. 4 is a schematic view when the fiber-reinforced plastic rod of the present invention is used as a rod (tensile) of an anchor body, (e) is a vertical cross-sectional view, and ( f) is a cross-sectional view.
【図5】 図5は、本発明の繊維強化プラスチック製棒
材を模式的に示す外観図であり、(c)は、1本のスト
ランド束から成る単線の直線状棒材で被覆繊維はスパイ
ラル状(糸状)に編まれた棒材であり、また、(d)
は、7本のストランド束から成る複線のより線状あるい
は編み状棒材で被覆繊維はスパイラル状(糸状)に編ま
れた棒材である。FIG. 5 is an external view schematically showing the fiber-reinforced plastic rod material of the present invention, and FIG. 5 (c) is a single-line linear rod material composed of one strand bundle and the coated fiber is spiral. It is a bar material knitted into a filament (thread), and (d)
Is a multi-strand twisted or knitted rod material composed of a bundle of seven strands, and the coated fiber is a rod material knitted in a spiral shape (thread shape).
【図6】 図6は、本発明の図5の横断面図である。6 is a cross-sectional view of FIG. 5 of the present invention.
【図7】 図7は、本発明の図5C部の拡大図である。FIG. 7 is an enlarged view of a portion of FIG. 5C of the present invention.
【符号の説明】 B…凹凸部、1…繊維強化プラスチック部、2,3…被
覆繊維、4…周辺材料。[Explanation of reference numerals] B ... uneven portion, 1 ... fiber reinforced plastic portion, 2, 3 ... coated fiber, 4 ... peripheral material.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:06 (72)発明者 内野 洋之 千葉県千葉市花見川区花園2丁目7番3号 シャルム検見川304号 (72)発明者 永田 保雄 千葉県木更津市清見台南4−12 T2棟 (72)発明者 森井 惇雄 千葉県習志野市東習志野7丁目5番1号 鈴木金属工業株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B29L 31:06 (72) Inventor Hiroyuki Uchino 2-3-7 Hanazono, Hanamigawa-ku, Chiba, Chiba Prefecture Sharm Kamigawa 304 (72) Inventor Yasuo Nagata 4-12 T2 Building Kiyomi Tainan, Kisarazu City, Chiba Prefecture (72) Ino Morii Atsushi 7-5-1, Higashi Narashino, Narashino City, Chiba Prefecture Suzuki Metal Industry Co., Ltd.
Claims (4)
ストランドを1本又は複数本束ねて未硬化繊維強化プラ
スチック製棒素材を形成し、その周囲に互いに熱収縮率
の異なる2種以上の被覆繊維を被覆せしめ、上記マトリ
ックス樹脂を加熱硬化させる際に発生する上記各被覆繊
維の熱収縮率の差により表面に凹凸を形成せしめたこと
を特徴とする繊維強化プラスチック製棒材。1. A rod material made of uncured fiber-reinforced plastic is formed by bundling one or more strands of reinforcing fiber impregnated with a matrix resin, and two or more kinds of coated fibers having different heat shrinkage rates are formed around the rod material. A fiber-reinforced plastic bar material, characterized in that the surface is made uneven by the difference in the heat shrinkage ratio of the respective coated fibers generated when the matrix resin is heat-cured.
重量%である請求項1記載の繊維強化プラスチック製棒
材。2. The amount of resin adhered to the strand is 20 to 50.
The fiber reinforced plastic rod according to claim 1, which is in weight%.
値と最小値との比t〔但し、t=(a2 /a1 )×10
0、a1 :熱収縮率最大値、a2 :熱収縮率最小値〕が
1〜70%である請求項1記載の繊維強化プラスチック
製棒材。3. A ratio t between the maximum value and the minimum value of the heat shrinkage rate in a plurality of coated fibers, where t = (a 2 / a 1 ) × 10.
0, a 1: thermal shrinkage maximum, a 2: fiber-reinforced plastic bar according to claim 1, wherein the thermal shrinkage minimum] is 1 to 70%.
ランドにマトリックス樹脂を含浸させ、このストランド
を1本又は複数本束ねて構成した未硬化繊維強化プラス
チック製棒素材の周囲に互いに熱収縮率の異なる2種以
上の被覆繊維を被覆せしめ、次いでこの棒素材のマトリ
ックス樹脂を加熱硬化させ、この加熱硬化時に上記各被
覆繊維の熱収縮率の差により表面に凹凸を形成せしめた
ことを特徴とする繊維強化プラスチック製棒材の製造方
法。4. A heat-shrinkage ratio between the uncured fiber-reinforced plastic rod material formed by impregnating a matrix resin into a strand of reinforcing fiber having high strength and elasticity and bundling one or a plurality of this strand. Characterized in that two or more kinds of different coated fibers are coated, then the matrix resin of the rod material is heat-cured, and unevenness is formed on the surface due to the difference in the heat shrinkage ratio of each coated fiber at the time of this heat-curing. A method of manufacturing a rod made of fiber reinforced plastic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6205802A JPH0866922A (en) | 1994-08-30 | 1994-08-30 | Fiber reinforced plastic rod material and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6205802A JPH0866922A (en) | 1994-08-30 | 1994-08-30 | Fiber reinforced plastic rod material and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0866922A true JPH0866922A (en) | 1996-03-12 |
Family
ID=16512931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6205802A Withdrawn JPH0866922A (en) | 1994-08-30 | 1994-08-30 | Fiber reinforced plastic rod material and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0866922A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2451136A (en) * | 2007-07-20 | 2009-01-21 | Advanced Composites Group Ltd | Thermoset resin fibres used in composite materials |
EP3967799A1 (en) * | 2020-09-10 | 2022-03-16 | Teufelberger Fiber Rope GmbH | Textile fibre rope comprising a plied yarn or core-sheath yarn and method of manufacturung such a yarn |
-
1994
- 1994-08-30 JP JP6205802A patent/JPH0866922A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2451136A (en) * | 2007-07-20 | 2009-01-21 | Advanced Composites Group Ltd | Thermoset resin fibres used in composite materials |
US8084126B2 (en) | 2007-07-20 | 2011-12-27 | Advanced Composites Group Limited | Thermoset resin fibres |
GB2451136B (en) * | 2007-07-20 | 2012-11-28 | Umeco Structural Materials Derby Ltd | Thermoset resin fibres |
US8883305B2 (en) | 2007-07-20 | 2014-11-11 | Umeco Structual Materials (Derby) Limited | Thermoset resin fibres |
EP3967799A1 (en) * | 2020-09-10 | 2022-03-16 | Teufelberger Fiber Rope GmbH | Textile fibre rope comprising a plied yarn or core-sheath yarn and method of manufacturung such a yarn |
US11802372B2 (en) | 2020-09-10 | 2023-10-31 | Teufelberger Fiber Rope Gmbh | Rope made of textile fiber material, comprising a twine of excess length |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5727357A (en) | Composite reinforcement | |
US5077113A (en) | Filament-reinforced resinous structural rod | |
KR100766954B1 (en) | Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same | |
JPH0686718B2 (en) | Method for manufacturing composite twisted filament | |
KR101043809B1 (en) | Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same | |
US5749211A (en) | Fiber-reinforced plastic bar and production method thereof | |
JPH05148780A (en) | Production of rope composed of fiber-reinforced composite material | |
CA2127266C (en) | Fiber-reinforced plastic bar and production method thereof | |
CA2596911A1 (en) | Fiber-reinforced plastic bar | |
JP5624871B2 (en) | Method for producing flat fiber reinforced plastic wire sheet | |
JPH0533278A (en) | Rope comprising carbon fiber-reinforced composite material and production thereof | |
JPH0866922A (en) | Fiber reinforced plastic rod material and manufacture thereof | |
JP3088061B2 (en) | Fiber reinforced resin composite reinforced material and method for producing the same | |
JPH0615078Y2 (en) | Reinforcing material for concrete | |
JP2612773B2 (en) | Concrete reinforcing member and method of manufacturing the same | |
JP4110621B2 (en) | Composite striatum | |
WO1995033109A1 (en) | Fibre reinforced resin composite reinforcing material and method for producing the same | |
JPH09267401A (en) | Frp pipe and its production | |
JPH0735948Y2 (en) | Reinforcing material for concrete | |
JP2002248693A (en) | Frp long molded object and method for manufacturing the same | |
JPH05212715A (en) | Reinforcing component | |
JP3421956B2 (en) | Method for producing flexible structural material | |
JPH07286408A (en) | Reinforcing material made of fiber-reinforced resin | |
JP2516710B2 (en) | Composite twist type tensile strength body | |
JPH0428082Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011106 |