JPH07286408A - Reinforcing material made of fiber-reinforced resin - Google Patents

Reinforcing material made of fiber-reinforced resin

Info

Publication number
JPH07286408A
JPH07286408A JP10163794A JP10163794A JPH07286408A JP H07286408 A JPH07286408 A JP H07286408A JP 10163794 A JP10163794 A JP 10163794A JP 10163794 A JP10163794 A JP 10163794A JP H07286408 A JPH07286408 A JP H07286408A
Authority
JP
Japan
Prior art keywords
fiber
resin
fiber bundle
reinforced resin
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10163794A
Other languages
Japanese (ja)
Inventor
Teruo Iwashita
輝雄 岩下
Kanji Yamada
寛次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP10163794A priority Critical patent/JPH07286408A/en
Publication of JPH07286408A publication Critical patent/JPH07286408A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To secure tensile strength and bond strength to concrete reinforced by reinforcing material made of a fiber-reinforced resin by covering the surface of a wire body, made of a fiber-reinforced resin, with organic fiber bundles by braiding, and setting a specific surface anchor coefficient. CONSTITUTION:A wire body l is formed fiber-reinforced resin constituted of continuous fiber and base material resin, and surface material 2 is formed around the wire body 1 to obtain a reinforcing material made of fiber-reinforced resin. Carbon fiber is used as high strength fiber because of having high alkali resistance and heightening the modulus of elasticity, while thermosetting resin with low alkali resistance such as epoxy resin is used as base material resin, and a surface anchor coefficient is set to 0. 4 to 1.0, that is, SC=T/Y=(h/D)/(YCXYL), where SC: a surface anchor coefficient, T: a protrusion ratio, Y: the covering rate of organic fiber bundle, h: the top part average height of organic fiber bundle, D: the corresponding diameter of the filament body, YC: the ratio of fiber bundle contact length to the cross-sectional peripheral length of the filament body, and YL: the ratio of contact length of the fiber bundle to the longitudinal section extension of the filament body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンクリート等の強化
に用いられる繊維強化樹脂製の筋材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin reinforcing material used for reinforcing concrete or the like.

【0002】[0002]

【従来の技術】セメント、モルタル、コンクリート等
(以下コンクリート等)の強化用筋材としては、従来よ
り鉄筋が広く用いられているが、近年、軽量化や耐腐食
性などの要求から各種の繊維強化樹脂(FRP)製筋材
が開発されている。
2. Description of the Related Art Reinforcing bars have been widely used as a reinforcing reinforcing material for cement, mortar, concrete, etc. (hereinafter, concrete, etc.), but in recent years, various fibers have been demanded due to requirements such as weight reduction and corrosion resistance. Reinforcement resin (FRP) reinforcements have been developed.

【0003】これらは、炭素繊維、アラミド繊維、ガラ
ス繊維、ビニロン繊維などの強化繊維を、エポキシ樹脂
や不飽和ポリエステル樹脂などの熱硬化性樹脂やポリフ
ェニレンサルファイド(PPS)などの熱可塑性樹脂を
母材として固めたものである。
These include reinforcing fibers such as carbon fibers, aramid fibers, glass fibers and vinylon fibers, thermosetting resins such as epoxy resins and unsaturated polyester resins, and thermoplastic resins such as polyphenylene sulfide (PPS) as base materials. It was hardened as.

【0004】これらの繊維強化樹脂製筋材によりコンク
リート等を強化するためには、筋材とコンクリート等と
の付着強度が良好であることが必要である。
In order to reinforce concrete or the like with these fiber-reinforced resin reinforcements, it is necessary that the adhesion strength between the reinforcement and the concrete or the like is good.

【0005】そのためには筋材に凹凸を付して機械的結
合力を向上させることが通常行なわれる。
For that purpose, it is usual to improve the mechanical coupling force by providing unevenness to the reinforcing material.

【0006】その方法として樹脂製筋材自体に凹凸を付
ける方法と、樹脂製筋材の表面に表面材を付して凹凸を
設ける方法がある。
As a method therefor, there are a method of making unevenness on the resin-made reinforcing material itself, and a method of providing a surface material on the surface of the resin-made reinforcing material to make unevenness.

【0007】樹脂製筋材自体に凹凸を付ける方法として
は、特開昭63―206548号公報に開示されている
ような樹脂製筋材の一部を扁平化する方法や、特開平2
―92624号公報、特開平2―92626号公報に開
示されているような樹脂製筋材に凸部を設ける方法、特
開平1―192946号公報に開示されているような真
円以外の断面形状を有するロッドに捩りを施す方法、特
開平2―105830号公報などに開示されているよう
な組紐を用いる方法など、様々な方法が提案されてい
る。
As a method of making unevenness on the resin-made reinforcing material itself, a method of flattening a part of the resin-made reinforcing material as disclosed in JP-A-63-206548, or JP-A-2 / 1999.
-92624 and Japanese Patent Application Laid-Open No. 2-92626, a method of providing a convex portion on a resin reinforcing material, and a cross-sectional shape other than a perfect circle as disclosed in Japanese Patent Application Laid-Open No. 1-192946. Various methods have been proposed, such as a method of twisting a rod having a rod and a method of using a braid as disclosed in JP-A-2-105830.

【0008】しかしながら前記の各方法は、製造工程が
余計に必要になり、製造が困難になる上、強化繊維がう
ねるなどして強化方向に配向されないため、樹脂製筋材
自体の強度低下を起すという大きな欠点がある。
However, in each of the above-mentioned methods, an additional manufacturing step is required, manufacturing becomes difficult, and the reinforcing fibers are not oriented in a strengthening direction due to waviness and the like, so that the strength of the resin-made reinforcing material itself is lowered. There is a big drawback.

【0009】従って繊維強化樹脂製筋材強度の面から
は、FRP表面に表面材を付す方法が優れており、その
具体的な方法としては、特開昭60―203761号公
報、特開平01―174533号公報に開示されている
ような無機質粉粒体を被着形成させる方法や、筋材表面
に粒状物を付着する方法が提案されている。
Therefore, from the viewpoint of the strength of the fiber-reinforced resin reinforcing material, the method of attaching the surface material to the surface of the FRP is excellent, and specific methods thereof are disclosed in JP-A-60-203761 and JP-A-01- A method of depositing an inorganic powder or granular material as disclosed in Japanese Patent No. 174533 and a method of adhering particles to the surface of a muscular material have been proposed.

【0010】しかしながら前記の方法は筋材の強化繊維
に直接、硬い粒子が付着しているため筋材の運搬、施工
時に筋材同士の接触により強化繊維そのものを傷つけた
り、粒子自体が剥落してコンクリートとの付着性が低下
するなど欠点がある。
However, in the above method, since the hard particles are directly attached to the reinforcing fibers of the muscle material, the reinforcing fibers themselves may be damaged by the contact between the muscle materials during transportation or construction of the muscle material, or the particles themselves may be peeled off. There are drawbacks such as reduced adhesion to concrete.

【0011】特開平02―127583号公報に開示さ
れているようなポリエステル系の有機繊維や有機繊維織
布を表面にスパイラル状に巻つける方法が提案されてい
る。
There has been proposed a method of spirally winding a polyester organic fiber or organic fiber woven cloth on the surface as disclosed in JP-A-02-127583.

【0012】しかしながら前記の方法は、巻つけた繊維
や織布間に交絡がないため、高い付着強度は発揮でき
ず、一部分の繊維や織布の剥落がすぐ全体の繊維や織布
の剥落につながり好ましくない。
However, in the above method, since there is no entanglement between the wound fibers or the woven cloth, high adhesive strength cannot be exhibited, and a part of the fibers or the woven cloth is immediately peeled off, so that the whole fibers or the woven cloth is peeled off. Connection is not preferable.

【0013】特開昭63―75194号公報、特開平0
2―104786号公報に開示されているような有機繊
維を筋材表面にブレード(braid,編み組)する方
法が提案されている。
JP-A-63-75194, JP-A-0
A method of braiding organic fibers on the surface of a reinforcing material as disclosed in Japanese Patent Laid-Open No. 2-104786 has been proposed.

【0014】しかしながら前記の各方法は、編み組に用
いる繊維を熱収縮率の異なる繊維を用いるため収縮作用
のない被覆繊維が筋材表面から浮いてしまい付着が不十
分となりコンクリートとの高い付着強度が得られない。
However, in each of the above-mentioned methods, the fibers used in the braid have different heat shrinkage rates, so that the coated fibers having no shrinkage effect float from the surface of the muscular material, resulting in insufficient adhesion and high adhesion strength with concrete. Can't get

【0015】また有機繊維による編み組密度が高すぎて
筋材表面が全体に平面的になるためコンクリートとのア
ンカー効果が小さいという問題点がある。
Further, there is a problem in that the braiding density of the organic fibers is too high and the surface of the reinforcing material is entirely flat, so that the anchor effect with concrete is small.

【0016】[0016]

【発明が解決しようとする課題】本発明は、良好な引張
り強度を有し、且つ繊維強化樹脂製筋材で強化したコン
クリート等との付着強度に優れる繊維強化樹脂製筋材の
提供を目的とするものである。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a fiber-reinforced resin reinforcement having good tensile strength and excellent adhesion strength to concrete or the like reinforced with the fiber-reinforced resin reinforcement. To do.

【0017】[0017]

【課題を解決するための手段】本発明は、繊維強化樹脂
によって構成される線条体とその表面を有機繊維束から
なる表面材で編組み被覆してある筋材において、(1)
式によって表わされる表面アンカー係数が0.4以上
1.0以下である繊維強化樹脂製筋材。
DISCLOSURE OF THE INVENTION The present invention relates to a linear member made of fiber reinforced resin and a braided material having a surface braided with a surface material made of an organic fiber bundle.
A fiber-reinforced resin reinforcing material having a surface anchor coefficient represented by a formula of 0.4 or more and 1.0 or less.

【0018】[0018]

【数2】 SC=T/Y=(h/D)/(YC×YL) ・・・(1)## EQU2 ## SC = T / Y = (h / D) / (YC × YL) (1)

【0019】ただし、 SC:表面アンカー係数 T:突起比 Y:線条体表面に対する表面材である有機繊維束の被覆
率 h:線条体表面を編組み被覆した表面材である有機繊維
束の頂部の平均高さ D:線条体の相当直径(例えば、周長をπで除した値) YC:線条体横断面周長に対する繊維束の接触長さの比 YL:線条体縦断面延長に対する繊維束の接触長さの比
However, SC: surface anchor coefficient T: protrusion ratio Y: coverage of the organic fiber bundle which is the surface material on the surface of the filaments h: organic fiber bundle which is the surface material braided on the surface of the filaments Average height of the top D: Equivalent diameter of the filament (for example, the value obtained by dividing the circumferential length by π) YC: Ratio of the contact length of the fiber bundle to the transverse cross section of the filament YL: Longitudinal section of the filament Ratio of contact length of fiber bundle to extension

【0020】以下、図面を用いて、本発明の内容を詳細
に説明する。図1は、本発明の繊維強化樹脂製筋材の横
断面図であり、図2は、本発明の繊維強化樹脂製筋材の
側面図である。
The contents of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of the fiber-reinforced resin reinforced material of the present invention, and FIG. 2 is a side view of the fiber-reinforced resin reinforced material of the present invention.

【0021】図1、2において、線条体1は、連続繊維
と母材樹脂より構成されたFRPであり、この線条体1
の周囲に、表面材2が形成されて繊維強化樹脂製筋材と
なる。
1 and 2, a filament 1 is an FRP composed of continuous fibers and a matrix resin.
The surface material 2 is formed around and becomes a fiber-reinforced resin reinforced material.

【0022】線条体1を構成する高強度連続繊維はコン
クリート等の強化材として用いられるのに必要な強度を
有するものであり、引張強度で50kgf/mm2以上
を有することが好ましい。
The high-strength continuous fibers constituting the filament 1 have a strength necessary for being used as a reinforcing material for concrete or the like, and preferably have a tensile strength of 50 kgf / mm 2 or more.

【0023】そのような高強度連続繊維として炭素繊
維、アラミド繊維、ガラス繊維、ポリアリレート繊維な
どが挙げられる。
Examples of such high-strength continuous fibers include carbon fibers, aramid fibers, glass fibers and polyarylate fibers.

【0024】この中でポリアリレート繊維は、液晶性の
芳香族ポリエステル繊維であり、クラレ社のベクトラン
(商品名)などが相当する。
Among these, the polyarylate fiber is a liquid crystalline aromatic polyester fiber, and corresponds to Vectran (trade name) manufactured by Kuraray Co., Ltd.

【0025】この場合、前記繊維の中の1種類の繊維を
用いても、複数種類の繊維を使用してもよい。
In this case, one kind of the above fibers or a plurality of kinds of fibers may be used.

【0026】前記繊維の中で炭素繊維は、耐アルカリ性
が高く、且つ弾性率の高いものを製造することができる
ため、特に好ましいものである。
Among the above-mentioned fibers, carbon fiber is particularly preferable because it can be manufactured to have a high alkali resistance and a high elastic modulus.

【0027】母材樹脂には、熱硬化性樹脂が使用され
る。母材樹脂に用いられる熱硬化性樹脂としては、エポ
キシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、
ビスマレイミド・トリアジン樹脂などがある。この他の
ものでも、FRPに用いられるものであれば、使用可能
である。
A thermosetting resin is used as the base material resin. As the thermosetting resin used as the base material resin, epoxy resin, unsaturated polyester resin, polyimide resin,
Examples include bismaleimide / triazine resins. Other materials can be used as long as they are used for FRP.

【0028】母材に用いられる樹脂は、エポキシ樹脂な
ど、耐アルカリ性の高いものは特に好ましい。
The resin used as the base material is particularly preferably one having high alkali resistance such as epoxy resin.

【0029】繊維強化樹脂製筋材を構成する線条体のV
f(繊維の体積含有率)は、40%以上75%以下であ
ることが好ましい。すなわち40%未満では筋材として
用いるのに性能が低く、75%を超えるものでは製造が
困難である。
V of the linear body which constitutes the fiber-reinforced resin reinforcement
It is preferable that f (volume content of fiber) is 40% or more and 75% or less. That is, if it is less than 40%, the performance is low for use as a reinforcing material, and if it exceeds 75%, it is difficult to manufacture.

【0030】また、繊維強化樹脂製筋材の大きさには特
に制限がないが、実用上は、例えば円形断面の場合、直
径で1mm以上50mm以下程度のものが用いられる。
The size of the fiber-reinforced resin reinforcing material is not particularly limited, but in practice, for example, in the case of a circular cross section, a diameter of 1 mm or more and 50 mm or less is used.

【0031】線条体1の表面には、表面材2が編組み法
で被覆されている。表面材2にはポリプロピレン繊維、
ポリエステル繊維、アラミド繊維、アクリル繊維などの
有機繊維束が用いられる。有機繊維束はフィラメント
糸、紡績糸いずれの形態でも用いることができる。
The surface material 2 is coated on the surface of the filament 1 by a braiding method. The surface material 2 is polypropylene fiber,
Organic fiber bundles such as polyester fibers, aramid fibers, and acrylic fibers are used. The organic fiber bundle can be used in the form of either filament yarn or spun yarn.

【0032】有機繊維束は、樹脂の熱処理条件や、機械
的強度、価格などの面を勘案して選択すればよい。この
中で、紡績糸を用いた場合、コンクリート等との付着強
度が高いため、好ましいものである。
The organic fiber bundle may be selected in consideration of heat treatment conditions of the resin, mechanical strength, price and the like. Among them, spun yarn is preferable because it has high adhesion strength with concrete or the like.

【0033】その詳細な理由は明かではないが、紡績糸
を用いた場合の筋材表面性状が、特に付着強度向上に好
ましい結果を与えるものと考えられる。
Although the detailed reason for this is not clear, it is considered that the surface properties of the reinforced material when spun yarn is used give particularly favorable results for improving the bond strength.

【0034】線条体の表面被覆に用いられる有機繊維束
は、樹脂の硬化熱処理条件で5%以上の熱収縮率をもつ
ことが好ましい。
It is preferable that the organic fiber bundle used for coating the surface of the filament has a heat shrinkage rate of 5% or more under the curing heat treatment condition of the resin.

【0035】即ち、5%以上の熱収縮率をもつ有機繊維
束を用いることにより、線条体中樹脂の熱硬化処理時に
有機繊維束が熱収縮し、線条体に圧力をかけて線条体中
繊維束を緊密にすると同時に、線条体表面に樹脂をしみ
ださせて表面材2と線条体1を一体化することができ
る。
That is, by using an organic fiber bundle having a heat shrinkage ratio of 5% or more, the organic fiber bundle undergoes heat shrinkage during thermosetting of the resin in the filamentous body, and pressure is applied to the filamentous body. At the same time as making the fiber bundles in the body tight, the surface material 2 and the filamentous body 1 can be integrated by allowing resin to exude onto the surface of the filamentous body.

【0036】有機繊維束の繊度や繊維径、繊維束径、繊
維束数は特に規定されるものではなく、繊維強化樹脂製
筋材の表面アンカー係数を満足するように線条体相当直
径(D)に応じた突起比(T=(h/D))、線条体表
面に対する表面材である有機繊維束の被覆率(Y)を決
定すれば良い。
The fineness, the fiber diameter, the fiber bundle diameter, and the number of fiber bundles of the organic fiber bundle are not particularly specified, and the diameter equivalent to the linear body (D) is satisfied so as to satisfy the surface anchor coefficient of the fiber-reinforced resin reinforcing material. ), The projection ratio (T = (h / D)), and the coverage (Y) of the organic fiber bundle as the surface material on the surface of the filamentous body may be determined.

【0037】被覆率(Y)は、線条体の周囲面を有機繊
維束が被覆している割合を示すものであり、図1及び図
2に示した例を用いて説明すれば線条体の周長は(π
D)で表わされ、有機繊維束の一つの幅は(Lc)で表
わされ、その断面で接している束の数をnで表わせば、
(Lc×n/πD)で表わされる比(Yc)が求められ
る。
The coverage (Y) indicates the ratio of the organic fiber bundles covering the peripheral surface of the filamentous body, and the filamentous body can be described by using the examples shown in FIGS. 1 and 2. The circumference of is (π
D), one width of the organic fiber bundle is represented by (Lc), and if the number of bundles in contact with the cross section is represented by n,
The ratio (Yc) represented by (Lc × n / πD) is obtained.

【0038】筋材の縦断面の線条体長は(Attl)、
これに接する有機繊維束の幅は(Abl)で表わされ、
その束の数をnとすれば(Abl×n/Attl)で表
わされる比(YL)が求められる。
The striation length of the longitudinal section of the muscle is (Attl),
The width of the organic fiber bundle in contact with this is represented by (Abl),
If the number of bundles is n, the ratio (YL) represented by (Abl × n / Attl) can be obtained.

【0039】被覆率(Y)は、この二つの比(Yc=
(Lc×n/πD))と(YL=(Abl×n/Att
l))を掛けた値である。
The coverage (Y) is the ratio of these two (Yc =
(Lc × n / πD)) and (YL = (Abl × n / Att)
l)).

【0040】表面アンカー係数は、突起比(h/D)を
線条体表面に対する表面材である有機繊維束の被覆率
(Y)で除した数値であるが、見方を変えると表面アン
カー係数は、線条体表面を被覆する表面材で構成される
谷部分の面積を間接的に数値化したものである。
The surface anchor coefficient is a value obtained by dividing the projection ratio (h / D) by the coverage rate (Y) of the organic fiber bundle as the surface material on the surface of the filamentous body. The area of the valley portion formed by the surface material covering the surface of the filament is indirectly quantified.

【0041】ここで繊維強化樹脂製筋材の表面アンカー
係数とコンクリートとの付着強度の関係について説明す
る。
Here, the relationship between the surface anchor coefficient of the fiber-reinforced resin reinforcing material and the bond strength with concrete will be described.

【0042】コンクリート中に埋設された筋材の付着強
度は、筋材表面に形成された凹凸部分に接するコンクリ
ートを剪断するアンカー効果による応力が支配的であ
る。
The adhesive strength of the reinforcing material embedded in the concrete is dominated by the stress due to the anchor effect of shearing the concrete in contact with the uneven portion formed on the surface of the reinforcing material.

【0043】勿論、筋材とコンクリート界面の化学的結
合による付着強度も認められるが、それらはアンカー効
果による応力と比べるとかなり小さいことを実験的に確
認した。
Of course, the adhesive strength due to the chemical bond between the interface between the reinforcing material and the concrete is also recognized, but it was experimentally confirmed that they are considerably smaller than the stress due to the anchor effect.

【0044】そこで筋材表面にどのような形態の凹凸を
形成させるのがコンクリートとの付着強度向上に有効か
について鋭意検討した結果、表面アンカー係数が0.4
以上1.0以下であると高い付着強度が得られることを
確認し本発明に至った。
Then, as a result of diligent study on what kind of unevenness is formed on the surface of the reinforcing material is effective for improving the adhesion strength with concrete, the surface anchor coefficient is 0.4.
It was confirmed that a high adhesive strength was obtained when the ratio was 1.0 or less, and the present invention was accomplished.

【0045】表面アンカー係数が0.4未満では、突起
比が小さすぎる、または被覆密度が高くなりすぎ、筋材
は、平坦な表面となり十分なアンカー効果が期待できな
い。
If the surface anchoring coefficient is less than 0.4, the protrusion ratio is too small or the covering density is too high, and the reinforcing material has a flat surface, and a sufficient anchoring effect cannot be expected.

【0046】また表面アンカー係数が1.0を超えると
突起比が大きすぎて筋材の製造が困難となり、または被
覆密度が低くなりすぎてコンクリートとの剪断負荷に表
面材が耐えられず損傷してしまうためアンカー効果は期
待できない。
If the surface anchoring coefficient exceeds 1.0, the projection ratio is too large, which makes it difficult to manufacture the reinforcing material, or the covering density is too low, and the surface material cannot withstand the shear load with the concrete and is damaged. The anchor effect cannot be expected because it will occur.

【0047】表面材の被覆方法は、編組(ブレード)法
がコンクリートとの高い付着強度を得やすく好ましい。
As a method of coating the surface material, a braid method is preferable because it can easily obtain high adhesion strength with concrete.

【0048】編組法の場合、線条体を被覆する各繊維束
が平織の形式で交差し、かつ袋織りになっており、コン
クリートとの剪断作用を受けた際に表面材が部分的な損
傷を受けた場合でも全面には及びにくいという効果と考
えられる。
In the case of the braiding method, the fiber bundles covering the filaments intersect in the form of plain weave and are woven, and the surface material is partially damaged when subjected to shearing action with concrete. It is considered that the effect is that it is difficult to reach the entire surface even when receiving

【0049】線条体を被覆する各繊維束間に交差部分の
ない被覆法、例えばスパイラル巻法では被覆繊維束がコ
ンクリートとの剪断作用で剥離しやすく、しかも被覆層
の部分的な損傷が、すぐ被覆層全体剥離につながる傾向
があり好ましくない。
In a coating method in which there is no intersection between the fiber bundles for coating the filamentous body, for example, in the spiral winding method, the coated fiber bundles are easily peeled off due to the shearing action with concrete, and the partial damage of the coating layer is caused. This is not preferable because it tends to lead to peeling of the entire coating layer immediately.

【0050】このような本発明の繊維強化樹脂製筋材
は、例えば以下のような方法により製造される。
Such a fiber-reinforced resin reinforcing material of the present invention is manufactured, for example, by the following method.

【0051】炭素繊維、アラミド繊維、ポリアリレート
繊維の少なくとも一種類よりなる高強度連続繊維束に、
未硬化の熱硬化性樹脂を含浸、乾燥した後、ダイス、ロ
ール等で集束した複数本の該繊維束の集合体よりなる線
状体の表面に、有機繊維束を編組(ブレード)法で被覆
し、前記熱硬化性樹脂の硬化熱処理を施すことにより製
造することができる。
A high-strength continuous fiber bundle made of at least one kind of carbon fiber, aramid fiber and polyarylate fiber,
After impregnating an uncured thermosetting resin and drying, the surface of a linear body composed of an assembly of a plurality of the fiber bundles, which are bundled with a die, roll, etc., is covered with an organic fiber bundle by a braiding method. Then, it can be manufactured by subjecting the thermosetting resin to a curing heat treatment.

【0052】ここで用いられる高強度連続繊維束は、単
繊維を数千乃至数十万本集束したものである。
The high-strength continuous fiber bundle used here is a bundle of thousands to hundreds of thousands of single fibers.

【0053】高強度連続繊維束に樹脂を含浸すること
は、常法により、例えば溶剤で希釈した樹脂液に、連続
的に連続繊維束を通して樹脂を含浸した後、乾燥炉で連
続的に溶剤を揮発させる方法などで行なわれる。
For impregnating the high-strength continuous fiber bundle with a resin, for example, a resin solution diluted with a solvent is continuously impregnated with the resin through a continuous fiber bundle, and then the solvent is continuously impregnated in a drying furnace. It is carried out by a method of volatilizing.

【0054】樹脂が含浸された前記連続繊維束は、通常
複数本を集束して用いられる。使用される繊維束の本数
は、製造される線状体の断面積と、繊維束の断面積から
求められる。
The continuous fiber bundle impregnated with the resin is usually used by bundling a plurality of fibers. The number of fiber bundles used is determined from the cross-sectional area of the manufactured linear body and the cross-sectional area of the fiber bundle.

【0055】複数本の連続繊維束を集束して用いる場合
は、同一種類の連続繊維束である必要はなく、必要であ
れば異なる種類の連続繊維束を集束して用いてもよい。
When a plurality of continuous fiber bundles are collected and used, the continuous fiber bundles of the same kind do not have to be used, and if necessary, different kinds of continuous fiber bundles may be collected and used.

【0056】前記連続繊維束の集束は、ダイスやロール
を通過させる方法や、連続繊維束を撚る方法などにより
行なうことができる。また、表面材の被覆処理により集
束処理を兼ねることもできる。
The continuous fiber bundle can be bundled by passing it through a die or roll, twisting the continuous fiber bundle, or the like. Further, the surface material may be coated to serve as a focusing process.

【0057】未硬化の熱硬化性樹脂を含浸、乾燥後、集
束された複数の高強度連続繊維束の集合体である線条体
は、有機繊維束を表面被覆した後、使用した熱硬化性樹
脂の熱処理条件で熱処理することにより、樹脂を硬化し
繊維強化樹脂製筋材を得ることができる。
After impregnation with an uncured thermosetting resin and drying, the filamentous body which is an assembly of a plurality of bundles of high-strength continuous fiber bundles is formed by coating the surface of an organic fiber bundle with the thermosetting resin used. By heat-treating the resin under the heat-treatment conditions, the resin can be cured to obtain a fiber-reinforced resin reinforcing material.

【0058】熱処理は連続的に炉内を通す方式であって
も、バッチ式に炉内で加熱する方式であってもよい。
The heat treatment may be carried out either continuously in the furnace or batchwise in the furnace.

【0059】[0059]

【作用】本発明の高強度連続繊維束の集合体である線条
体表面に有機繊維束を表面材として編組み被覆した繊維
強化樹脂製筋材を用いることにより、筋材との付着強度
の高い強化コンクリートを得ることができる。
By using a fiber-reinforced resin reinforced material which is braided with an organic fiber bundle as a surface material on the surface of a filament body, which is an assembly of high-strength continuous fiber bundles of the present invention, High reinforced concrete can be obtained.

【0060】つまり筋材とコンクリートの付着挙動が筋
材表面の凹凸とコンクリートとの剪断作用が支配的であ
ることを明らかにし、この凹凸の高さ、密度の関係を表
面アンカー係数に置き換え、付着強度が良好な範囲を特
定したことである。
That is, it was clarified that the adhesion behavior of the reinforcing material and the concrete was dominated by the unevenness of the surface of the reinforcing material and the shearing action of the concrete, and the relationship between the height and the density of the unevenness was replaced with the surface anchor coefficient to make the adhesion. That is, the range in which the strength is good is specified.

【0061】さらに表面材が、線条体と一体化させるた
めに5%以上の収縮率を有する有機繊維束を用いること
とこれら有機繊維束がコンクリート養生に耐える耐アル
カリ性を有することも重要である。
Further, it is important that the surface material is made of an organic fiber bundle having a shrinkage ratio of 5% or more so as to be integrated with the filamentous body, and that the organic fiber bundle has an alkali resistance to withstand concrete curing. .

【0062】[0062]

【実施例】【Example】

【0063】[0063]

【実施例1】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Example 1 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0064】この、エポキシ樹脂を含浸させた繊維束2
0本を集束し、3mmΦの線条体を得た。この線条体の
表面に編組法で有機繊維束を被覆した。
This fiber bundle 2 impregnated with epoxy resin
0 pieces were focused to obtain a linear body of 3 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0065】使用した有機繊維束は、ポリプロピレン繊
維の紡績糸束であり、繊度が663デニール、収縮率
は、140℃で10%である。ポリプロピレン繊維の紡
績糸束をインナー、アウターキャリヤーに各8ボビン設
置し編組みした。
The organic fiber bundle used is a spun yarn bundle of polypropylene fibers, having a fineness of 663 denier and a shrinkage ratio of 10% at 140 ° C. A spun yarn bundle of polypropylene fibers was braided by installing 8 bobbins on the inner and outer carriers, respectively.

【0066】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。
Further, the epoxy resin was cured by continuously heating it in a heating furnace at 140 ° C. for a residence time of 1 hour to obtain a fiber-reinforced resin reinforcing material.

【0067】得られた筋材は、いずれもポリプロピレン
繊維中に良好に樹脂がしみこんでおり、線条体と一体化
していた。
In all of the obtained braids, the polypropylene fiber was satisfactorily impregnated with the resin and was integrated with the filament.

【0068】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.166、0.403、
0.412であった。
The protrusion ratio, coverage, and surface anchorage coefficient of the fiber-reinforced resin reinforcement are 0.166, 0.403, and
It was 0.412.

【0069】コンクリートとの付着強度試験は、日本コ
ンクリート工学協会の規格(JCI―SF8)に準じて
行なったもので、ブリケット型試験片のモルタル中に筋
材を一本埋め込み、1日湿空養生後、160℃で10時
間オートクレーブ養生を行い、モルタルの圧縮強度が5
50kgf/cm2の供試体について、引張り試験を行
なった結果の最大荷重を、埋め込み面積で除した値であ
る。
The adhesion strength test with concrete was carried out in accordance with the standards of the Japan Concrete Institute (JCI-SF8). One bridging material was embedded in the mortar of the briquette type test piece, and one day wet air curing was carried out. Then, the autoclave was cured at 160 ° C for 10 hours, and the compressive strength of the mortar was 5
This is a value obtained by dividing the maximum load, which is the result of the tensile test of the test piece of 50 kgf / cm 2 , by the embedding area.

【0070】尚、値は、5回試験した平均値である。表
面アンカー係数が0.412である繊維強化樹脂製筋材
の付着強度は145kgf/cm2であった。
The values are average values of 5 tests. The adhesive strength of the fiber-reinforced resin reinforcing material having a surface anchor coefficient of 0.412 was 145 kgf / cm 2 .

【0071】[0071]

【実施例2】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Example 2 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0072】この、エポキシ樹脂を含浸させた繊維束4
0本を集束し、4.4mmΦの線条体を得た。この線条
体の表面に編組法で有機繊維束を被覆した。
This fiber bundle 4 impregnated with epoxy resin
0 pieces were converged to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0073】使用した有機繊維束は、ポリプロピレン繊
維の紡績糸束であり、繊度が1326デニール、収縮率
は、140℃で10%である。
The organic fiber bundle used is a spun yarn bundle of polypropylene fibers, having a fineness of 1326 denier and a shrinkage ratio of 10% at 140 ° C.

【0074】ポリプロピレン繊維の紡績糸束をインナ
ー、アウターキャリヤーに各6ボビン設置し編組みし
た。
A spun yarn bundle of polypropylene fibers was braided by placing 6 bobbins on the inner and outer carriers, respectively.

【0075】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。
Further, the epoxy resin was cured by continuously heating it in a heating furnace at 140 ° C. for a residence time of 1 hour to obtain a fiber-reinforced resin reinforcing material.

【0076】得られた筋材は、いずれもポリプロピレン
繊維中に良好に樹脂がしみこんでおり、線条体と一体化
していた。
In all of the obtained braids, the polypropylene fiber was satisfactorily impregnated with resin and was integrated with the filament.

【0077】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.140、0.340、
0.412であった。
The fiber-reinforced resin reinforcement has a projection ratio, a coverage and a surface anchoring coefficient of 0.140, 0.340, respectively.
It was 0.412.

【0078】コンクリートとの付着強度試験、モルタル
養生条件は、実施例1に準じて行った。表面アンカー係
数が0.412である繊維強化樹脂製筋材の付着強度は
153kgf/cm2であった。
The adhesion strength test with concrete and the mortar curing conditions were carried out according to Example 1. The adhesive strength of the fiber-reinforced resin reinforcement having a surface anchor coefficient of 0.412 was 153 kgf / cm 2 .

【0079】[0079]

【実施例3】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Example 3 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0080】この、エポキシ樹脂を含浸させた繊維束4
0本を集束し、4.4mmΦの線条体を得た。この線条
体の表面に編組法で有機繊維束を被覆した。
This fiber bundle 4 impregnated with epoxy resin
0 pieces were converged to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0081】使用した有機繊維束は、ポリプロピレン繊
維の紡績糸束であり、繊度が1989デニール、収縮率
は、140℃で10%である。
The organic fiber bundle used is a spun yarn bundle of polypropylene fibers, having a fineness of 1989 denier and a shrinkage of 10% at 140 ° C.

【0082】ポリプロピレン繊維の紡績糸束をインナ
ー、アウターキャリヤーに各4ボビン設置し編組みし
た。
A spun yarn bundle of polypropylene fibers was braided by placing 4 bobbins on the inner and outer carriers, respectively.

【0083】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。得られた筋材は、いずれもポリプロピ
レン繊維中に良好に樹脂がしみこんでおり、線条体と一
体化していた。
Further, the epoxy resin was continuously heated in a heating furnace having a residence time of 1 hour at 140 ° C. to cure the epoxy resin to obtain a fiber-reinforced resin reinforcing material. In each of the obtained braids, the resin was satisfactorily impregnated in the polypropylene fiber and was integrated with the filament.

【0084】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.203、0.258、
0.788であった。
The protrusion ratio, coverage, and surface anchorage coefficient of the fiber-reinforced resin reinforcement are 0.203, 0.258, and
It was 0.788.

【0085】コンクリートとの付着強度試験、モルタル
養生条件は、実施例1に準じて行った。表面アンカー係
数が0.788である繊維強化樹脂製筋材の付着強度は
163kgf/cm2であった。
The adhesion strength test with concrete and the mortar curing conditions were carried out according to Example 1. The adhesive strength of the fiber-reinforced resin reinforcement having a surface anchor coefficient of 0.788 was 163 kgf / cm 2 .

【0086】[0086]

【実施例4】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Example 4 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0087】この、エポキシ樹脂を含浸させた繊維束4
0本を集束し、4.4mmΦの線条体を得た。この線条
体の表面に編組法で有機繊維束を被覆した。
This fiber bundle 4 impregnated with epoxy resin
0 pieces were converged to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0088】使用した有機繊維束は、ポリエステル繊維
の連続糸束であり、繊度が1000デニール、収縮率
は、120℃で10%である。
The organic fiber bundle used is a continuous yarn bundle of polyester fibers, having a fineness of 1000 denier and a shrinkage ratio of 10% at 120 ° C.

【0089】ポリエステル繊維の連続糸束をインナー、
アウターキャリヤーに各6ボビン設置し編組みした。
A continuous yarn bundle of polyester fibers is used as an inner
6 bobbins were installed on the outer carrier and braided.

【0090】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。
Further, the epoxy resin was cured by continuous heating in a heating furnace at 140 ° C. for a residence time of 1 hour to obtain a fiber-reinforced resin reinforcing material.

【0091】得られた筋材は、いずれもポリエステル繊
維中に良好に樹脂がしみこんでおり、線条体と一体化し
ていた。
In all of the obtained braids, the resin was satisfactorily impregnated in the polyester fiber and was integrated with the filament.

【0092】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.152、0.335、
0.454であった。
The protrusion ratio, coverage, and surface anchorage coefficient of the fiber-reinforced resin reinforcing bar were 0.152, 0.335, and
It was 0.454.

【0093】モルタル養生条件は、水中養生30日と
し、モルタルの圧縮強度は520kgf/cm2であっ
た。コンクリートとの付着強度試験は実施例1に準じて
行った。
The mortar curing conditions were 30 days of underwater curing, and the mortar had a compressive strength of 520 kgf / cm 2 . The adhesion strength test with concrete was performed according to Example 1.

【0094】表面アンカー係数が0.454である繊維
強化樹脂製筋材の付着強度は136kgf/cm2であ
った。
The adhesive strength of the fiber-reinforced resin reinforcing material having a surface anchor coefficient of 0.454 was 136 kgf / cm 2 .

【0095】[0095]

【比較例1】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Comparative Example 1 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0096】この、エポキシ樹脂を含浸させた繊維束4
0本を集束し、4.4mmΦの線条体を得た。この線条
体の表面に編組法で有機繊維束を被覆した。
This fiber bundle 4 impregnated with epoxy resin
0 pieces were converged to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0097】使用した有機繊維束は、ポリプロピレン繊
維の連続糸束であり、繊度が680デニール、収縮率
は、140℃で15%である。
The organic fiber bundle used is a continuous yarn bundle of polypropylene fibers, having a fineness of 680 denier and a shrinkage ratio of 15% at 140 ° C.

【0098】ポリプロピレン繊維の連続糸束をインナ
ー、アウターキャリヤーに各11ボビン設置し編組みし
た。
A continuous yarn bundle of polypropylene fibers was placed on each of an inner carrier and an outer carrier, and 11 bobbins were set and braided.

【0099】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。得られた筋材は、いずれもポリプロピ
レン繊維中に良好に樹脂がしみこんでおり、線条体と一
体化していた。
Further, the epoxy resin was continuously heated in a heating furnace having a residence time of 1 hour at 140 ° C. to harden the epoxy resin to obtain a fiber-reinforced resin reinforcing material. In all of the obtained braids, the resin was satisfactorily impregnated in the polypropylene fiber and was integrated with the filament.

【0100】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.136、0.527、
0.258であった。
The fiber reinforced resin reinforcement has a projection ratio, a coverage and a surface anchoring coefficient of 0.136, 0.527, respectively.
It was 0.258.

【0101】コンクリートとの付着強度試験、モルタル
養生条件は、実施例1に準じて行った。表面アンカー係
数が0.258である繊維強化樹脂製筋材の付着強度は
77kgf/cm2であった。
The adhesion strength test with concrete and the mortar curing conditions were carried out according to Example 1. The adhesive strength of the fiber-reinforced resin reinforcing material having a surface anchor coefficient of 0.258 was 77 kgf / cm 2 .

【0102】[0102]

【比較例2】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
[Comparative Example 2] A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0103】この、エポキシ樹脂を含浸させた繊維束4
0本を集束し、4.4mmΦの線条体を得た。この線条
体の表面に編組法で有機繊維束を被覆した。
This fiber bundle 4 impregnated with epoxy resin
0 pieces were converged to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a braiding method.

【0104】使用した有機繊維束は、ポリプロピレン繊
維の紡績糸束であり、繊度が1326デニール、収縮率
は、140℃で10%である。
The organic fiber bundle used is a spun yarn bundle of polypropylene fibers, having a fineness of 1326 denier and a shrinkage ratio of 10% at 140 ° C.

【0105】ポリプロピレン繊維の紡績糸束をインナ
ー、アウターキャリヤーに各2ボビン設置し編組みし
た。
A spun yarn bundle of polypropylene fibers was braided by installing two bobbins for each of the inner and outer carriers.

【0106】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。得られた筋材は、いずれもポリプロピ
レン繊維中にわずかに樹脂がしみこんでおり、線条体と
部分的に分離していた。
Further, the epoxy resin was cured by continuous heating in a heating furnace at 140 ° C. for a residence time of 1 hour to obtain a fiber-reinforced resin reinforcing material. In each of the obtained braids, the resin was slightly impregnated in the polypropylene fiber and was partially separated from the striatum.

【0107】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.140、0.120、
1.166であった。
The fiber-reinforced resin reinforcement has a projection ratio, a coverage and a surface anchoring coefficient of 0.140, 0.120, respectively.
It was 1.166.

【0108】コンクリートとの付着強度試験、モルタル
養生条件は、実施例1に準じて行った。
The adhesion strength test with concrete and the mortar curing conditions were the same as in Example 1.

【0109】表面アンカー係数が1.166である繊維
強化樹脂製筋材の付着強度は58kgf/cm2であっ
た。
The fiber-reinforced resin reinforcing material having a surface anchor coefficient of 1.166 had an adhesive strength of 58 kgf / cm 2 .

【0110】[0110]

【比較例3】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Comparative Example 3 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnating with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0111】このエポキシ樹脂を含浸させた繊維束40
本を集束し、4.4mmΦの線条体を得た。この線条体
の表面にスパイラル巻法で有機繊維束を被覆した。
Fiber bundle 40 impregnated with this epoxy resin
The books were focused to obtain a linear body of 4.4 mmΦ. The surface of this filament was covered with an organic fiber bundle by a spiral winding method.

【0112】使用した有機繊維束は、ポリプロピレン繊
維の紡績糸束であり、繊度が1326デニール、収縮率
は、140℃で10%である。
The organic fiber bundle used is a spun yarn bundle of polypropylene fibers, having a fineness of 1326 denier and a shrinkage of 10% at 140 ° C.

【0113】ポリプロピレン繊維の紡績糸束をアウター
キャリヤーのみに12ボビン設置しスパイラル巻した。
A spun yarn bundle of polypropylene fibers was spirally wound with 12 bobbins set only on the outer carrier.

【0114】更に、140℃、滞留時間1時間の加熱炉
で連続的に加熱し、エポキシ樹脂を硬化して繊維強化樹
脂製筋材を得た。得られた筋材は、いずれもポリプロピ
レン繊維中に良好に樹脂がしみこんでおり、線条体と一
体化していた。
Further, the epoxy resin was cured by continuously heating in a heating furnace at 140 ° C. and a residence time of 1 hour to obtain a fiber-reinforced resin reinforcing material. In each of the obtained braids, the resin was satisfactorily impregnated in the polypropylene fiber and was integrated with the filament.

【0115】繊維強化樹脂製筋材の突起比、被覆率、表
面アンカー係数はそれぞれ0.140、0.330、
0.424であった。
The fiber-reinforced resin reinforcement has a projection ratio, a coverage, and a surface anchor coefficient of 0.140, 0.330, and
It was 0.424.

【0116】コンクリートとの付着強度試験、モルタル
養生条件は、実施例1に準じて行った。
The adhesion strength test with concrete and the mortar curing conditions were the same as in Example 1.

【0117】スパイラル巻法で表面被覆した表面アンカ
ー係数が0.424である繊維強化樹脂製筋材の付着強
度は65kgf/cm2であり、編組法に比べ低い付着
強度である。
The adhesive strength of the fiber-reinforced resin reinforced material having the surface anchor coefficient of 0.424 coated by the spiral winding method is 65 kgf / cm 2, which is lower than that of the braiding method.

【0118】[0118]

【比較例4】引張り強度350kgf/mm2、引張り
弾性率35tonf/mm2の炭素繊維3000本を集
束した繊維束に、メチルエチルケトンで溶解させた、1
40℃1時間で硬化するタイプのエポキシ樹脂を含浸し
た後、連続的に90℃、滞留時間6分の加熱炉で加熱し
て溶媒のメチルエチルケトンを留去した。
Comparative Example 4 A fiber bundle in which 3000 carbon fibers having a tensile strength of 350 kgf / mm 2 and a tensile elastic modulus of 35 tonf / mm 2 were bundled was dissolved with methyl ethyl ketone, and 1
After impregnation with an epoxy resin of a type that cures at 40 ° C. for 1 hour, it was continuously heated in a heating furnace at 90 ° C. for a residence time of 6 minutes to distill off the solvent methyl ethyl ketone.

【0119】このエポキシ樹脂を含浸させた繊維束40
本を集束し、4.4mmΦの線条体を得た。
Fiber bundle 40 impregnated with this epoxy resin
The books were focused to obtain a linear body of 4.4 mmΦ.

【0120】この線条体は表面被覆をせずに、140
℃、滞留時間1時間の加熱炉で連続的に加熱し、エポキ
シ樹脂を硬化して線条体を得た。
This filament was not coated with a surface,
The epoxy resin was cured by continuously heating it in a heating furnace at a temperature of 1 ° C. for a residence time of 1 hour to obtain a filament.

【0121】表面アンカー係数は0.0である。コンク
リートとの付着強度試験、モルタル養生条件は、実施例
1に準じて行った。
The surface anchor factor is 0.0. The adhesion strength test with concrete and the mortar curing conditions were carried out according to Example 1.

【0122】表面アンカー係数が0.0である線条体の
付着強度は7.3kgf/cm2であった。
The adhesive strength of the filament having a surface anchor coefficient of 0.0 was 7.3 kgf / cm 2 .

【0123】[0123]

【発明の効果】本発明の繊維強化樹脂製筋材を用いるこ
とにより、コンクリートとの付着特性が良好なFRP製
筋材で強化したモルタル、コンクリートを得ることがで
きる。
EFFECT OF THE INVENTION By using the fiber-reinforced resin reinforcing material of the present invention, it is possible to obtain mortar and concrete reinforced with FRP reinforcing material having good adhesion properties to concrete.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の繊維強化樹脂製筋材の横断面図。FIG. 1 is a cross-sectional view of a fiber-reinforced resin reinforcing material of the present invention.

【図2】本発明の繊維強化樹脂製筋材の側面図。FIG. 2 is a side view of the fiber-reinforced resin reinforcing material of the present invention.

【符号の説明】[Explanation of symbols]

1 線条体 2 表面材 1 Striatum 2 Surface material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化樹脂によって構成される線条体
とその表面を有機繊維束からなる表面材で編組み被覆し
てある筋材において、(1)式によって表わされる表面
アンカー係数が0.4以上1.0以下である繊維強化樹
脂製筋材。 【数1】 SC=T/Y=(h/D)/(YC×YL) ・・・(1) ただし、 SC:表面アンカー係数 T:突起比 Y:線条体表面に対する表面材である有機繊維束の被覆
率 h:線条体表面を編組み被覆した表面材である有機繊維
束の頂部の平均高さ D:線条体の相当直径 YC:線条体横断面周長に対する繊維束の接触長さの比 YL:線条体縦断面延長に対する繊維束の接触長さの比
1. A filament made of fiber-reinforced resin and a braided material whose surface is braided with a surface material made of an organic fiber bundle have a surface anchoring coefficient of 0.1. A fiber-reinforced resin reinforced material that is 4 or more and 1.0 or less. [Equation 1] SC = T / Y = (h / D) / (YC × YL) (1) where SC: surface anchor coefficient T: protrusion ratio Y: organic that is a surface material for the surface of the striatum Coverage rate of fiber bundle h: Average height of top of organic fiber bundle which is a surface material braided on the surface of filamentous body D: Equivalent diameter of filamentary body YC: Fiber bundle to cross-section perimeter of filamentous body Ratio of contact length YL: Ratio of contact length of fiber bundle to longitudinal extension of filament
JP10163794A 1994-04-15 1994-04-15 Reinforcing material made of fiber-reinforced resin Withdrawn JPH07286408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163794A JPH07286408A (en) 1994-04-15 1994-04-15 Reinforcing material made of fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163794A JPH07286408A (en) 1994-04-15 1994-04-15 Reinforcing material made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPH07286408A true JPH07286408A (en) 1995-10-31

Family

ID=14305912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163794A Withdrawn JPH07286408A (en) 1994-04-15 1994-04-15 Reinforcing material made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPH07286408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528962A (en) * 2009-06-03 2012-11-15 ランデル ブランドストロム, Fiber reinforced steel bars in the form of coils for transportation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528962A (en) * 2009-06-03 2012-11-15 ランデル ブランドストロム, Fiber reinforced steel bars in the form of coils for transportation

Similar Documents

Publication Publication Date Title
US5077113A (en) Filament-reinforced resinous structural rod
JPS61274036A (en) Structural rod and reinforced structural member
US5749211A (en) Fiber-reinforced plastic bar and production method thereof
EP0628674B1 (en) Fiber-reinforced plastic rod and method of manufacturing the same
WO1998031891A1 (en) Improvements relating to reinforcing bars
CN111535178A (en) Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof
JP3679590B2 (en) Method for reinforcing concrete structures
JPH07286408A (en) Reinforcing material made of fiber-reinforced resin
JPH0615078Y2 (en) Reinforcing material for concrete
JP2869130B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPH0489346A (en) Concrete reinforcing member and its production
JPH02216270A (en) Structural material and production thereof
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
JPH04224154A (en) Production of reinforcing member for concrete
JPH11320696A (en) Reinforcing-fiber reinforcing bar and its manufacture
JP3130648B2 (en) Method of manufacturing concrete reinforcement
JPH09267401A (en) Frp pipe and its production
JPH0866922A (en) Fiber reinforced plastic rod material and manufacture thereof
JPH08303018A (en) Concrete structure reinforcing material and concrete structure reinforcing method using the material
JPH0735948Y2 (en) Reinforcing material for concrete
JP7423870B2 (en) Fiber-reinforced resin rod and method for manufacturing fiber-reinforced resin rod
JP2002248693A (en) Frp long molded object and method for manufacturing the same
JPH01249326A (en) Manufacture of fiber-reinforced resin spring
JP3672684B2 (en) Continuous rod-shaped molded product intermediate, method for producing the same, molded product and molded method thereof
JP2001011199A (en) Closed-form reinforcing material of fiber reinforced resin and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703