JPH0533278A - Rope comprising carbon fiber-reinforced composite material and production thereof - Google Patents

Rope comprising carbon fiber-reinforced composite material and production thereof

Info

Publication number
JPH0533278A
JPH0533278A JP17946091A JP17946091A JPH0533278A JP H0533278 A JPH0533278 A JP H0533278A JP 17946091 A JP17946091 A JP 17946091A JP 17946091 A JP17946091 A JP 17946091A JP H0533278 A JPH0533278 A JP H0533278A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced composite
rope
composite material
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17946091A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
角田  敦
Akira Nishimura
明 西村
Toshio Muraki
俊夫 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17946091A priority Critical patent/JPH0533278A/en
Publication of JPH0533278A publication Critical patent/JPH0533278A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the subject rope useful for building materials, construction materials and having light weight, excellent shape retainability and good workability by twisting plural carbon fiber-reinforced composite materials impregnated with a thermoplastic resin so as to specify the content of the fibers. CONSTITUTION:Plural carbon fiber-reinforced composite materials each having a diameter of 1-5mm and produced by impregnating a carbon fiber bundle with a thermoplastic resin (preferably nylon) so as to give a fiber content of 40-70wt.% are twisted and subsequently subjected to a thermal treatment [at a temperature of the melting point -(5 to 20 deg.C)] to provide the objective rope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素繊維強化複合材料か
らなるロープおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rope made of carbon fiber reinforced composite material and a method for producing the rope.

【0002】[0002]

【従来の技術】建材・土木用途に高強度で低伸度のロー
プとしてワイヤーロープが多量に使用されてきた。これ
は引張強度が高く、伸びの少ない鋼線を撚合せて作られ
たものである。このロ−プは加重負荷時にマニラ麻・サ
イザル麻などの天然繊維やナイロン・ポリエステルなど
の合成繊維で作られたロープ比較して伸びが少ないとい
う利点を有している。
2. Description of the Related Art A large amount of wire rope has been used as a high-strength, low-extension rope for building materials and civil engineering applications. This is made by twisting steel wires with high tensile strength and low elongation. This rope has the advantage that it has less elongation than a rope made of natural fibers such as Manila hemp and sisal or synthetic fibers such as nylon and polyester when loaded.

【0003】しかし、鋼線を撚合せて作ったロープは鉄
の比重が大きいことに起因する重さ、海砂の利用・ウオ
ーターフロント開発時などに起こる腐食などの問題が提
起されている。
However, ropes made by twisting steel wires have problems such as weight due to the large specific gravity of iron, corrosion caused by the use of sea sand and waterfront development.

【0004】これに対して、特公昭62−18679号
公報にはこれらの問題点を解消するために炭素繊維・ガ
ラス繊維・アラミド繊維などの高強度低伸度繊維束に熱
硬化性樹脂を含浸し、粉末剤をまぶした後樹脂の漏れだ
しを防止するために合成繊維から成る編組で包み、硬化
させる技術が開示されている。また、このようにして得
たワイヤ−状炭素繊維束を撚りあわせさらに編組で包
み、完全硬化させて炭素繊維束から成る撚線を得る方法
が提案されている。
On the other hand, Japanese Patent Publication No. 62-18679 discloses a high strength, low elongation fiber bundle such as carbon fiber, glass fiber or aramid fiber impregnated with a thermosetting resin in order to solve these problems. In order to prevent the resin from leaking after being sprinkled with the powder, a technique of wrapping it in a braid made of synthetic fibers and curing it is disclosed. Further, a method has been proposed in which the wire-like carbon fiber bundle thus obtained is twisted, wrapped with a braid, and completely cured to obtain a stranded wire made of the carbon fiber bundle.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、当該方
式では撚線が熱硬化性樹脂でできているために曲率を小
さくして曲げることが困難であり、例えば撚線を粗線に
分解して曲げやすくして端部の定着を行っている。また
上記方式では加工工程が繁雑であるので、加工費が高く
つき建材・土木用途に対して経済的に合致させることが
困難である。
However, in this method, it is difficult to bend the stranded wire with a small curvature because the stranded wire is made of a thermosetting resin. It makes it easier to fix the edges. Further, since the above-mentioned method requires complicated processing steps, the processing cost is high, and it is difficult to economically match the construction material and civil engineering applications.

【0006】かかる従来技術の問題点を解決し、建材・
土木用途に軽量で形状保持性・作業性が良好な炭素繊維
強化複合材料からなるロープおよびその製造方法を提供
することが本発明の課題である。
By solving the problems of the prior art,
It is an object of the present invention to provide a rope made of a carbon fiber reinforced composite material which is lightweight and has good shape retention and workability for civil engineering applications, and a method for producing the rope.

【0007】[0007]

【課題を解決するための手段】本発明の炭素繊維強化複
合材料からなるロープは上記課題を解決するために次の
構成を有する。すなわち、繊維含有率が40〜70wt
%になるように熱可塑性樹脂を含浸した直径1〜5mm
の炭素繊維強化複合材料を複数本撚合せてなることを特
徴とする炭素繊維強化複合材料からなるロ−プである。
The rope made of the carbon fiber reinforced composite material of the present invention has the following constitution in order to solve the above problems. That is, the fiber content is 40 to 70 wt.
1-5 mm diameter impregnated with thermoplastic resin so that
Is a carbon fiber reinforced composite material obtained by twisting a plurality of carbon fiber reinforced composite materials.

【0008】また、本発明の炭素繊維強化複合材料から
なるロープの製造方法は上記課題を解決するために次の
構成を有する。すなわち、炭素繊維束に繊維含有率が4
0〜70wt%になるように熱可塑性樹脂を含浸し、直
径1〜5mmの炭素繊維強化複合材料を複数本撚合わ
せ、当該炭素繊維強化複合材料を加熱処理することによ
り、含浸炭素繊維強化複合材料の形状を保持させること
を特徴とする炭素繊維強化複合材料からなるロープの製
造方法である。
Further, the method for manufacturing a rope made of the carbon fiber reinforced composite material of the present invention has the following constitution in order to solve the above problems. That is, the carbon fiber bundle has a fiber content of 4
The impregnated carbon fiber reinforced composite material is obtained by impregnating a thermoplastic resin to 0 to 70 wt%, twisting a plurality of carbon fiber reinforced composite materials having a diameter of 1 to 5 mm, and heat-treating the carbon fiber reinforced composite material. The method for producing a rope made of a carbon fiber reinforced composite material, characterized in that the shape of the rope is retained.

【0009】以下、本発明を詳細に説明する。本発明の
炭素繊維強化複合材料からなるロープには、マトリック
ス樹脂として熱可塑性樹脂を用いるものである。熱可塑
性樹脂の場合には含浸後に炭素繊維束から樹脂の漏れだ
しがないので、繊維束を編組で包む必要が無く加工工程
を簡略化できる。また得られた撚線は加熱することによ
り容易に曲げることができる。熱硬化性樹脂ではかかる
利点がない。
The present invention will be described in detail below. The rope made of the carbon fiber reinforced composite material of the present invention uses a thermoplastic resin as a matrix resin. In the case of a thermoplastic resin, the resin does not leak from the carbon fiber bundle after the impregnation, so that it is not necessary to wrap the fiber bundle with a braid, and the processing process can be simplified. The obtained stranded wire can be easily bent by heating. Thermosetting resins do not have this advantage.

【0010】一般に、熱可塑性樹脂の溶融粘度は含浸時
の熱硬化樹脂より高いので、炭素繊維束内に均一に樹脂
を含浸することが難しいのであるが、例えば、図1に示
したように、熱可塑性樹脂をエクストルーダー1で一定
量の割合で吐出し、樹脂含浸部2で炭素繊維束を開繊し
ながら加圧下で樹脂を含浸し、ダイス3で繊維束を円形
に整形し巻き取り装置4で巻き取り、得られた炭素繊維
樹脂含浸線状束を引き揃え、撚りをかけた後加熱処理し
て形状固定すれば炭素繊維強化複合材料を得ることがで
きる。
Generally, since the melt viscosity of the thermoplastic resin is higher than that of the thermosetting resin at the time of impregnation, it is difficult to uniformly impregnate the carbon fiber bundle with the resin. For example, as shown in FIG. A thermoplastic resin is discharged from the extruder 1 at a constant rate, the resin impregnation unit 2 opens the carbon fiber bundle to impregnate the resin under pressure, and the die 3 shapes the fiber bundle into a circular shape and a winding device. The carbon fiber resin-impregnated linear bundle obtained by winding in 4 is aligned, twisted, and heat-treated to fix the shape, whereby a carbon fiber-reinforced composite material can be obtained.

【0011】この炭素繊維強化複合材料は熱可塑性樹脂
をマトリックス樹脂としているので、樹脂の溶融温度以
上に加熱すれば容易に曲げることができ、工事現場での
施工が容易である。
Since this carbon fiber reinforced composite material uses a thermoplastic resin as a matrix resin, it can be bent easily by heating it to a temperature higher than the melting temperature of the resin, and the construction at the construction site is easy.

【0012】本発明に適用可能な熱可塑性樹脂として、
比較的低温で溶融し、溶融粘度が低い樹脂が好ましく、
ナイロン、ポリエステル、ポリエチレン、塩化ビニル樹
脂などがあげられる。炭素繊維による補強効果の大きさ
から、熱可塑性樹脂としてナイロンが好ましい。
As the thermoplastic resin applicable to the present invention,
A resin that melts at a relatively low temperature and has a low melt viscosity is preferable,
Examples include nylon, polyester, polyethylene and vinyl chloride resin. Nylon is preferred as the thermoplastic resin because of the large reinforcing effect of the carbon fibers.

【0013】炭素繊維強化複合材料の繊維含有率は40
〜70wt%とするものである。繊維含有率が40wt
%に満たないと断面積当りの強度が低下したりコスト面
で不利となる。一方、繊維含有率が70wt%を越える
ならば均一含浸が困難となる。
The carbon fiber reinforced composite material has a fiber content of 40.
˜70 wt%. Fiber content is 40wt
If it is less than%, the strength per cross-sectional area is reduced and it is disadvantageous in terms of cost. On the other hand, if the fiber content exceeds 70 wt%, uniform impregnation becomes difficult.

【0014】炭素繊維強化複合材料の直径は1〜5mm
とするものである。この直径が5mmを越えるならばマ
トリックス樹脂の均一含浸が困難となり、含浸後の炭素
繊維束を巻きとることが不可能となる。逆に1mmに満
たない場合には撚りあわせ工程が繁雑化する。
The carbon fiber reinforced composite material has a diameter of 1 to 5 mm.
It is what If this diameter exceeds 5 mm, it becomes difficult to uniformly impregnate the matrix resin, and it becomes impossible to wind the carbon fiber bundle after impregnation. On the other hand, if it is less than 1 mm, the twisting process becomes complicated.

【0015】なお、炭素繊維強化複合材料を撚りあわせ
たロープの直径としては建築・土木用途においてワイヤ
ーロープの代替として用いる観点からは3〜50mmの
範囲が好ましい。また、形態保持性を良好なものとし、
ロープの巻きあげを容易とし、一方、炭素繊維が引張方
向から外れてロ−プの強度が低下することのないように
する観点から、ロ−プ撚り数は、1〜10ターン/mの
範囲が好ましい。
The diameter of the rope in which the carbon fiber reinforced composite materials are twisted together is preferably in the range of 3 to 50 mm from the viewpoint of using it as a substitute for the wire rope in construction and civil engineering applications. In addition, the shape retention is improved,
From the viewpoint of facilitating the winding of the rope and preventing the carbon fiber from deviating from the tensile direction and decreasing the strength of the rope, the number of rope twists is in the range of 1 to 10 turns / m. Is preferred.

【0016】本発明の炭素繊維強化複合材料からなるロ
ープの製造方法において、炭素繊維強化複合材料を加熱
する際の加熱温度は、素線が融着しロープの巻き取りが
困難となるこのないよう、一方、素線間の反発力が大き
くロープの形態保持性が悪くなることのないようにする
観点からは、溶融温度から5〜20℃下の範囲が好まし
い。
In the method for manufacturing a rope made of the carbon fiber reinforced composite material of the present invention, the heating temperature for heating the carbon fiber reinforced composite material is such that the wires are fused and it becomes difficult to wind the rope. On the other hand, from the viewpoint that the repulsive force between the strands is large and the shape retention of the rope is not deteriorated, the range of 5 to 20 ° C. below the melting temperature is preferable.

【0017】加熱処理の具体的手段としては、熱風によ
る方法、ダイスによる方法などがあげられる。
Specific examples of the heat treatment include a hot air method and a die method.

【0018】以下の実施例において適用した撚線状ロ−
プの強度・弾性係数の測定方法は次の通りである。ロー
プの外径より10mm大きい肉厚5mmの長さ200m
mの両面にネジを切った炭素鋼パイプで長さ1000m
mのロ−プの両端を小野田セメント(株)製膨張セメン
ト(ブライスター100)で定着した。外ネジを使って
引張試験機(50トン−インストロン)で破断強度を測
定した。同時にロ−プに歪ゲージを取付け変位を実測し
て弾性係数を測定した。
A twisted wire-shaped roller applied in the following examples.
The method for measuring the strength and elastic modulus of the slab is as follows. 200m length 5mm thick 10mm larger than the outer diameter of the rope
The length is 1000m with carbon steel pipe with thread on both sides of m
Both ends of the m-shaped rope were fixed with expanded cement (Bryster 100) manufactured by Onoda Cement Co., Ltd. The breaking strength was measured with a tensile tester (50 tons-Instron) using an external screw. At the same time, a strain gauge was attached to the rope and the displacement was measured to measure the elastic modulus.

【0019】以下に本発明を実施例によりさらに具体的
に説明する。
The present invention will be described in more detail below with reference to examples.

【0020】[0020]

【実施例】【Example】

(実施例1〜3、比較例1〜4)東レ(株)製炭素繊維
“トレカ”T300−12K解撚糸の本数をかえて引き
揃え、1m/分の速度で図1の含浸装置に導き、ナイロ
ン6樹脂を260℃で含浸した。ナイロン樹脂の供給速
度は10g/分とし、ダイスの直径を2.5mmとし、
余分の樹脂を除去し、繊維含有率が40〜70wt%に
なるように調節した。得られた樹脂含浸炭素繊維複合材
料の断面を研摩し顕微鏡で観察し空洞(ボイド)の有無
を確認した。
(Examples 1 to 3 and Comparative Examples 1 to 4) Toray Co., Ltd. carbon fiber “Torayca” T300-12K The number of untwisted yarns was changed and aligned, and led to the impregnating apparatus of FIG. 1 at a speed of 1 m / min. Nylon 6 resin was impregnated at 260 ° C. Nylon resin feed rate is 10g / min, the diameter of die is 2.5mm,
Excess resin was removed and the fiber content was adjusted to 40 to 70 wt%. The cross section of the obtained resin-impregnated carbon fiber composite material was polished and observed with a microscope to confirm the presence or absence of voids.

【0021】結果を表1に示した。The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例4〜8、比較例5)実施例1〜3
と同じ条件でT300−12Kの本数およびダイスの直
径を変えて繊維含有率を一定にしながら太さの異なる素
線を得た。結果を表2に示した。直径が5mm以下では
巻き取ることが加工で、ボイドの少ない破断強度の高い
素線を得ることができた。
(Examples 4 to 8 and Comparative Example 5) Examples 1 to 3
Under the same conditions as those described above, the number of T300-12K and the diameter of the die were changed to obtain the strands having different thickness while keeping the fiber content constant. The results are shown in Table 2. When the diameter is 5 mm or less, winding is a process that can be performed to obtain a wire with few voids and high breaking strength.

【0024】[0024]

【表2】 [Table 2]

【0025】(実施例9〜13)実施例2で得た、繊維
含有率が57wt%の炭素繊維束を本数を変えて引き揃
え、2ターン/mの撚りを付与した後、210℃で熱処
理し、さらにナイロン6でできた編組でカバーしてロー
プを形成し直径1mのドラムに巻きとった。巻取は容易
であった。このロープをナイロン6の溶融温度(215
〜220℃)より高い240℃に加熱すると容易に曲げ
ることができた。
(Examples 9 to 13) The carbon fiber bundles having a fiber content of 57 wt% obtained in Example 2 were aligned by changing the number of fibers and twisted at 2 turns / m, and then heat-treated at 210 ° C. Then, the rope was covered with a braid made of nylon 6 and wound on a drum having a diameter of 1 m. Winding up was easy. This rope is used to melt nylon 6 (215
It could be bent easily when heated to 240 ° C., which is higher than ˜220 ° C.).

【0026】このロープの両末端を内径がロープの外径
より10mm大きく、肉厚が5mmで長さが200mm
の炭素鋼にさし込み、水を適量加えた(株)小野田製の
膨張セメントを流しこみ2日間常温で硬化させた。50
トンの容量のインストロンで破断強度を測定した。測定
結果を表3にまとめた。ロープの直径が小さいほど破断
強度が高く、素線ベースの強度利用率も高い。
At both ends of this rope, the inner diameter is 10 mm larger than the outer diameter of the rope, the wall thickness is 5 mm, and the length is 200 mm.
Of the carbon steel, and an appropriate amount of water was added to the expanded cement manufactured by Onoda Co., Ltd., and the mixture was cured at room temperature for 2 days. Fifty
Breaking strength was measured with an Instron with a capacity of tonnes. The measurement results are summarized in Table 3. The smaller the diameter of the rope, the higher the breaking strength and the higher the utilization factor of the wire base.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】建材・土木用途に軽量で形状保持性・作
業性が良好な炭素繊維強化複合材料からなるロープおよ
びその製造方法を提供することができる。
EFFECTS OF THE INVENTION It is possible to provide a rope made of a carbon fiber reinforced composite material which is lightweight and has good shape retention and workability for building materials and civil engineering applications, and a method for producing the rope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭素繊維強化複合材料からなるロープ
を製造する方法の一例を示す概要図である。
FIG. 1 is a schematic view showing an example of a method for producing a rope made of a carbon fiber reinforced composite material of the present invention.

【符号の説明】[Explanation of symbols]

1:エクストルーダー 2:樹脂含浸部 3:ダイス 4:巻き取り装置 5:ドライブステーション 6:炭素繊維 1: Extruder 2: Resin impregnation part 3: Dice 4: Winding device 5: Drive station 6: Carbon fiber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】繊維含有率が40〜70wt%になるよう
に熱可塑性樹脂を含浸した直径1〜5mmの炭素繊維強
化複合材料を複数本撚合せてなることを特徴とする炭素
繊維強化複合材料からなるロープ。
1. A carbon fiber reinforced composite material comprising a plurality of twisted carbon fiber reinforced composite materials having a diameter of 1 to 5 mm, which are impregnated with a thermoplastic resin so as to have a fiber content of 40 to 70 wt%. Made of rope.
【請求項2】熱可塑性樹脂がナイロンであることを特徴
とする請求項1の炭素繊維強化複合材料からなるロー
プ。
2. A rope made of a carbon fiber reinforced composite material according to claim 1, wherein the thermoplastic resin is nylon.
【請求項3】炭素繊維束に繊維含有率が40〜70wt
%になるように熱可塑性樹脂を含浸し、直径1〜5mm
の炭素繊維強化複合材料を複数本撚合わせ、当該炭素繊
維強化複合材料を加熱処理することにより含浸炭素繊維
強化複合材料の形状を保持させることを特徴とする炭素
繊維強化複合材料からなるロープの製造方法。
3. A carbon fiber bundle having a fiber content of 40 to 70 wt.
% To 5% by impregnation with thermoplastic resin
Of a carbon fiber reinforced composite material, characterized in that the carbon fiber reinforced composite material is twisted, and the carbon fiber reinforced composite material is heat-treated to maintain the shape of the impregnated carbon fiber reinforced composite material. Method.
【請求項4】熱可塑性樹脂がナイロンであることを特徴
とする請求項3の炭素繊維強化複合材料からなるロープ
の製造方法。
4. The method for producing a rope made of a carbon fiber reinforced composite material according to claim 3, wherein the thermoplastic resin is nylon.
JP17946091A 1991-07-19 1991-07-19 Rope comprising carbon fiber-reinforced composite material and production thereof Pending JPH0533278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17946091A JPH0533278A (en) 1991-07-19 1991-07-19 Rope comprising carbon fiber-reinforced composite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17946091A JPH0533278A (en) 1991-07-19 1991-07-19 Rope comprising carbon fiber-reinforced composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH0533278A true JPH0533278A (en) 1993-02-09

Family

ID=16066242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17946091A Pending JPH0533278A (en) 1991-07-19 1991-07-19 Rope comprising carbon fiber-reinforced composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH0533278A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102760A1 (en) * 2011-04-12 2014-04-17 Ticona Llc Composite Core for Electrical Transmission Cables
US9346222B2 (en) 2011-04-12 2016-05-24 Ticona Llc Die and method for impregnating fiber rovings
US9410644B2 (en) 2012-06-15 2016-08-09 Ticona Llc Subsea pipe section with reinforcement layer
US9623437B2 (en) 2011-04-29 2017-04-18 Ticona Llc Die with flow diffusing gate passage and method for impregnating same fiber rovings
US9624350B2 (en) 2011-12-09 2017-04-18 Ticona Llc Asymmetric fiber reinforced polymer tape
US9685257B2 (en) 2011-04-12 2017-06-20 Southwire Company, Llc Electrical transmission cables with composite cores
US9757874B2 (en) 2011-04-29 2017-09-12 Ticona Llc Die and method for impregnating fiber rovings
EP2123701A4 (en) * 2007-03-12 2017-10-11 Nippon Steel Composite Co., Ltd. Round fiber-reinforced plastic wire, process for producing the same, and fiber-reinforced sheet
US10022919B2 (en) 2011-12-09 2018-07-17 Ticona Llc Method for impregnating fiber rovings
US10336016B2 (en) 2011-07-22 2019-07-02 Ticona Llc Extruder and method for producing high fiber density resin structures
US11118292B2 (en) 2011-04-12 2021-09-14 Ticona Llc Impregnation section of die and method for impregnating fiber rovings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123701A4 (en) * 2007-03-12 2017-10-11 Nippon Steel Composite Co., Ltd. Round fiber-reinforced plastic wire, process for producing the same, and fiber-reinforced sheet
US9659680B2 (en) 2011-04-12 2017-05-23 Ticona Llc Composite core for electrical transmission cables
US9346222B2 (en) 2011-04-12 2016-05-24 Ticona Llc Die and method for impregnating fiber rovings
US20140102760A1 (en) * 2011-04-12 2014-04-17 Ticona Llc Composite Core for Electrical Transmission Cables
US9685257B2 (en) 2011-04-12 2017-06-20 Southwire Company, Llc Electrical transmission cables with composite cores
US9190184B2 (en) * 2011-04-12 2015-11-17 Ticona Llc Composite core for electrical transmission cables
US11118292B2 (en) 2011-04-12 2021-09-14 Ticona Llc Impregnation section of die and method for impregnating fiber rovings
US9623437B2 (en) 2011-04-29 2017-04-18 Ticona Llc Die with flow diffusing gate passage and method for impregnating same fiber rovings
US9757874B2 (en) 2011-04-29 2017-09-12 Ticona Llc Die and method for impregnating fiber rovings
US10336016B2 (en) 2011-07-22 2019-07-02 Ticona Llc Extruder and method for producing high fiber density resin structures
US9624350B2 (en) 2011-12-09 2017-04-18 Ticona Llc Asymmetric fiber reinforced polymer tape
US10022919B2 (en) 2011-12-09 2018-07-17 Ticona Llc Method for impregnating fiber rovings
US9410644B2 (en) 2012-06-15 2016-08-09 Ticona Llc Subsea pipe section with reinforcement layer

Similar Documents

Publication Publication Date Title
KR920003384B1 (en) Production of multitwisted-type tensile form and manufacturing method for the same
JP5059604B2 (en) cable
JPH0718206B2 (en) Method of manufacturing structural rod
WO2008111679A1 (en) Round fiber-reinforced plastic wire, process for producing the same, and fiber-reinforced sheet
JPH05148780A (en) Production of rope composed of fiber-reinforced composite material
KR20100042247A (en) Composite rope structures and systems and methods for making composite rope structures
US5047104A (en) Profiles of composite fibrous materials
JPH0533278A (en) Rope comprising carbon fiber-reinforced composite material and production thereof
RU2482247C2 (en) Method to manufacture non-metal reinforcement element with periodic surface and reinforcement element with periodic surface
EP0149336B1 (en) Flexible tension members
WO1993016866A1 (en) Electric hardening material, uses of the same and method of practically using the same
JP3967957B2 (en) Manufacturing method of fiber reinforced resin strands
WO1994015015A1 (en) Complex fiber string and method of manufacturing the same
JPH0693579A (en) Composite material and its production
JP4336432B2 (en) Production method of thermoplastic resin-coated FRP bar for shear reinforcement and thermoplastic resin-coated FRP bar for shear reinforcement
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
JPH0333285A (en) Cable-like composite material and production thereof
JP2516710B2 (en) Composite twist type tensile strength body
WO2023067996A1 (en) Concrete reinforcing composite material and concrete reinforcing bar
JP3669938B2 (en) Manufacturing method of width stop material made of thermoplastic resin-coated FRP
JP3421956B2 (en) Method for producing flexible structural material
JP2516714B2 (en) Method for manufacturing composite twisted strength member
CN204029406U (en) Fiber composite type twisted cable
CN112064383A (en) Improved composite material rope structure