WO1995033109A1 - Fibre reinforced resin composite reinforcing material and method for producing the same - Google Patents

Fibre reinforced resin composite reinforcing material and method for producing the same Download PDF

Info

Publication number
WO1995033109A1
WO1995033109A1 PCT/JP1995/001029 JP9501029W WO9533109A1 WO 1995033109 A1 WO1995033109 A1 WO 1995033109A1 JP 9501029 W JP9501029 W JP 9501029W WO 9533109 A1 WO9533109 A1 WO 9533109A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
reinforcing
resin composite
reinforced
Prior art date
Application number
PCT/JP1995/001029
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Takeda
Masaki Shimada
Yoichi Kitagawa
Yoshikazu Izumihara
Masato Miyake
Masayuki Andoh
Toshiaki Seki
Shuuji Takiyama
Kohji Ogata
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6115001A external-priority patent/JP3064179B2/en
Priority claimed from JP06115002A external-priority patent/JP3088061B2/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CA002191241A priority Critical patent/CA2191241A1/en
Publication of WO1995033109A1 publication Critical patent/WO1995033109A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration

Definitions

  • the present invention relates to a fiber-reinforced resin composite reinforcing material used as a reinforcing bar when embedded in a concrete product such as a building or structure made of the concrete and used as a reinforcing bar. It relates to a manufacturing method. Background art
  • fiber-reinforced resin composite reinforcing bars have been proposed as substitutes for reinforcing bars or PC steel wires.
  • This fiber reinforced resin composite reinforced material is formed by impregnating a high elasticity, high strength continuous fiber such as carbon fiber or aramide fiber with a thermosetting epoxy resin and curing it. It is known as a lightweight, high-strength, high-corrosion-resistant reinforcement.
  • Such a fiber-reinforced resin composite rebar has many characteristics such as light weight, high strength and high corrosion resistance, and can be cut with a woodworking saw and has excellent cutting properties. Therefore, it is expected that its use as reinforcing bars embedded in various concrete products will be expanded in the future.
  • the first problem is that the fiber-reinforced resin composite reinforced material has a low surface adhesion and therefore has a poor transmission of tensile force due to its smooth surface.
  • the second problem is that it is difficult to increase productivity, and in view of the strength of the reinforcing fiber used, its guaranteed strength is only at a very low level, in fact less than half. Is not expressed That is it.
  • the first method is to form a convex portion by winding a plurality of reinforcing woven bundles around a core portion, as proposed in Japanese Patent Application Laid-Open No. 61-274036, and to adhere to the concrete. How to ensure.
  • the second method is a method in which a granular material (Japanese Patent Application Laid-Open No. 4-363454) and a short-woven fiber (Japanese Patent Application Laid-Open No. 2-248559) are adhered to the surface.
  • the third method is to increase the adhesive force by directly providing a mechanical recess in the core as proposed in JP-A-63-206548 and JP-A-63-219746. .
  • the core fiber undulates or the core fiber is mechanically damaged, so that the adhesion to the concrete increases, but the core strength is increased. This is unsuitable from the viewpoint of producing a high-strength fiber-reinforced resin composite reinforcing bar.
  • it is disadvantageous in terms of cost because it is necessary to increase the amount of fiber to satisfy the required strength.
  • the second method is to use small granular materials and short fibers that are not continuous.
  • the resin is only adhered to the surface of the core with the adhesive force of the resin, and sufficient adhesive force with the concrete cannot be secured.
  • the first method can be said to be the most excellent in that it can be manufactured without reducing the fiber strength of the core portion.
  • the adhesion to the concrete can be improved without impairing the high fiber strength of the core. It is difficult to increase it to a level comparable to that of steel, and up to now, there is no known fiber-reinforced resin composite reinforcing material with a level of strength that exceeds or exceeds that of rebar.
  • an object of the present invention is to provide a fiber-reinforced resin composite reinforced material capable of exhibiting an adhesion to a concrete that is equal to or greater than that of a metal reinforcing bar without deterioration in core strength. Is to do.
  • Another object of the present invention is to make it possible to bring out the strength of the reinforcing fiber itself, thereby reducing the amount of reinforcing fiber and thereby reducing the product cost.
  • Another object of the present invention is to provide a fiber-reinforced composite reinforcing material having a high guaranteed strength.
  • Still another object of the present invention is to provide a fiber-reinforced resin composite reinforcing material having a high dimensional accuracy by bending at a predetermined radius of curvature and having high strength.
  • Another object of the present invention is to provide a method for easily producing a fiber-reinforced resin composite rebar having high dimensional accuracy and high strength, which is curved at a predetermined radius of curvature, without deteriorating its strength. Is to provide. Disclosure of the invention
  • the present inventors have conducted intensive research to solve the above problems, and as a result, regarding the first problem,
  • the reinforcing fiber bundle constituting the convex portion on the surface is twisted to reduce the strength of the core without deteriorating the strength of the core portion. It has been found that the adhesion can be significantly improved.
  • the core part and the convex part are sequentially formed, and the obtained molded body is heat-cured while applying a tensile force in the axial direction (the direction of the reinforcing fiber bundle), thereby forming a peripheral part.
  • tensile stress to the resin (resin is easily broken by tensile stress, so that compressive stress is applied)
  • aligning the fiber direction and applying tensile stress the high strength of the reinforcing fiber itself and It has been found that a high elasticity can be obtained, and thus, a fiber-reinforced composite reinforcing material having high production efficiency and high guaranteed strength can be manufactured.
  • the present invention relates to a core and a crimped portion made of a thermosetting composition comprising a thermosetting resin and a reinforcing fiber bundle (the crimped portion forms a convex portion on the surface of the core portion).
  • this composite rebar for example, a filament winding device is used, jigs having a plurality of pins are attached to both end chuck portions of the device, and heat is applied between the pins of the pair of jigs.
  • a reinforcing fiber impregnated with a thermosetting resin is impregnated with a fiber bundle for impregnating the thermosetting resin on the surface of the core by wrapping the reinforcing fiber bundle impregnated with the curable resin and forming the core by the filament winding method.
  • the convex is formed by tightening, and the obtained molded body is subjected to a thermosetting treatment while applying a tensile force in the axial direction.
  • a predetermined twist is applied to the reinforcing woven bundle that forms the convex portion.
  • the composite reinforcing material of the present invention has a high tensile strength that exhibits the original strength of the reinforcing fiber, and significantly improves the adhesion to the concrete while preventing fiber damage.
  • the present invention provides a core formed from a reinforcing woven fiber bundle impregnated with a thermosetting resin and having a predetermined twist, and a reinforcing fiber bundle impregnated with the thermosetting resin wound around the core.
  • a curved fiber-reinforced resin composite reinforced material having a convex portion formed as a whole and having a predetermined radius of curvature.
  • this composite rebar In order to manufacture this composite rebar, the core is first formed and then After the core is twisted, at least one reinforced fiber bundle impregnated with a thermosetting resin is used to form a convex portion, and the obtained core member with a convex portion, that is, the molded body is bent at a predetermined radius of curvature.
  • the thermosetting resin impregnated in the reinforcing fiber bundle is heat-set while applying a certain tensile stress to the core while fixing the core in a curved shape.
  • a convex portion is formed on the molded core portion by using a reinforcing woven fiber bundle impregnated with at least one thermosetting resin, and twisting is performed in the same direction as the formed convex portion.
  • the core member with a convex portion that is, the molded body is fixed in a curved mold having a predetermined radius of curvature, and a thermosetting resin is impregnated into the reinforcing fiber bundle while applying a constant tensile stress to the thermosetting resin.
  • the curved fiber-reinforced resin composite bar thus manufactured is extremely preferable as a reinforcing bar used for excavating a pit for sewerage works, subway works and the like.
  • FIG. 1 is a partially sectional front view of a jig used in the filament winding method.
  • FIG. 2 is a conceptual explanatory diagram of the filament winding method.
  • FIG. 3 is a partial perspective view of a metal fixed type.
  • FIG. 4 is a partial front view showing a fiber-reinforced resin composite reinforced material according to one embodiment of the present invention.
  • FIG. 5 is a partial front view showing the fiber-reinforced resin composite reinforcing bar of Comparative Example 1.
  • FIG. 6 is a partial cross-sectional front view showing the fiber-reinforced resin composite reinforced material of Comparative Example 3.
  • FIG. 7 is a partially sectional front view showing a test method of a tensile test.
  • No. 813 ⁇ 4 is the average bond stress and slip amount obtained from the tensile test.
  • FIG. 6 is a graph showing the relationship between
  • FIG. 9 is a partial cross-sectional perspective view showing a pad-like specimen used in a tensile test in the present invention example and the comparative example.
  • FIG. 10 is a partial perspective view showing a state in which a curved fiber reinforced resin composite reinforced material according to another embodiment of the present invention is formed.
  • FIG. 11 is a partial perspective view showing a curved fiber reinforced resin composite reinforced material according to another embodiment of the present invention.
  • the reinforcing fibers for forming the reinforcing fiber bundle are conventionally known as long as the fibers are continuous from the starting end to the end of the composite reinforcing bar to be manufactured.
  • the thermosetting resin (reinforced resin) to be impregnated into the reinforcing fiber bundle conventionally known ones can be appropriately used, and examples thereof include an epoxy resin, a phenol resin, and a polyamide resin. be able to.
  • reinforcing fibers and thermosetting resins can be appropriately selected depending on the use of the composite reinforcing material to be produced, but from the viewpoints of heat resistance, corrosion resistance, etc., the reinforcing fibers are preferably made of carbon. It is a fiber, and the thermosetting resin is preferably an epoxy resin.
  • the molding of the core portion may be performed, for example, from the viewpoint of simply improving the adhesiveness of the concrete, by, for example, using a carbon woven yarn impregnated with a thermosetting resin as a core and surrounding the core with a thermosetting resin impregnated.
  • the following method is used.
  • a jig having a plurality of pins is attached to both ends of a filament winding device (hereinafter abbreviated as “FW device J”), and thermosetting is performed between the pins of the pair of jigs.
  • a reinforcing fiber bundle impregnated with a conductive resin is wrapped around the core, and a core is formed by a filament winding method (hereinafter abbreviated as “FW method J”).
  • FW method J This is a method in which a convex portion is formed by winding a reinforcing fiber bundle impregnated with resin to form a convex portion, and the obtained molded product is thermally cured while applying a tensile force in the axial direction. This method is specifically described below. I do.
  • a grip portion 2 is provided on the base end side and a plurality of (2 to 10) pins 3 are provided on the distal end side.
  • a pair of metal jigs 1 each having a fixing portion 4 composed of a male screw 5 and a nut 6 are prepared. Attach it to the chuck section 8 at both ends of the twisting device 7.
  • thermosetting resin impregnated with the thermosetting resin impregnated with the thermosetting resin is traversed by the traverser 11 until the diameter of the woven bundle reaches a required value between the plurality of pins 3 provided on the pair of jigs 1.
  • a plurality of thermosetting resin impregnated reinforcing fiber bundles are arranged in the axial direction to form a core.
  • the core formed in this manner is included in the reinforcing fiber bundle.
  • the soaked thermosetting resin must be in a completely uncured state until the next time a convex is formed on the surface and it is thermoset, but even if it is completely uncured, Further, it may be in a semi-cured state called B stage.
  • the fiber volume content of the core is preferably 40 to 0%, more preferably 50 to 60%. When the fiber volume content is lower than 40%, the resin is excessive and the resin is hardened at the time of curing. There is a risk that sagging will occur, and if it is greater than 70%, there is a risk that poor adhesion between the core and the protrusion may occur due to insufficient resin.
  • At least one reinforcing fiber bundle impregnated with a thermosetting resin is wound around the surface to form a convex portion, and the core and the surface are formed on the core.
  • the molded body has a convex portion.
  • the impregnation of the reinforcing fiber bundle with the thermosetting resin and the winding around the core may be continuously performed using a FW device at the time of molding the core. It may be carried out by bringing in a reinforcing fiber bundle impregnated with a thermosetting resin in advance.
  • thermosetting resin impregnated in the reinforcing fiber bundle to form the convex portion and the fiber volume content thereof may be the same as in the case of the core portion.
  • the reinforcing fiber bundle impregnated with a thermosetting resin to be wound around the surface of the core is preferably 10 to 10 m / m per reinforcing fiber bundle in order to improve the adhesion to the concrete. Twisting the core 50 times and winding it around the core should be done at an angle of 65 to 85 ° to the axial direction.
  • the twist given to the reinforcing woven fiber bundle constituting the convex portion is less than 10 times per 1 m, the adhesion to the concrete is not significantly improved, and if it exceeds 50 times, fiber damage and damage may occur. A decrease in adhesion to the core occurs.
  • the angle at which the twisted reinforcing fiber bundle is wrapped is smaller than 65 ° with respect to the axial direction of the core, there is a problem that the adhesive strength of the concrete decreases. On the other hand, even if the angle is larger than 85 °, the problem of a decrease in concrete adhesion occurs.
  • the molded body in which the protrusions are formed by winding the fiber bundle for impregnating and reinforcing the thermosetting resin on the surface of the core portion is used in order to sufficiently exhibit the strength of the reinforcing fiber used.
  • the molded body is thermoset while applying a tensile force in the axial direction (that is, a tensile force on the axial fibers constituting the core).
  • both ends of the molded body are fixed to a metal with a pair of jigs. It is fixed to both ends of the mold, and the whole is heated as it is with the metal fixed mold, and the thermosetting resin impregnated in the reinforcing woven fiber bundle is thermoset, and due to the thermal expansion of the metal fixed mold at this time,
  • This is a method of applying a tensile force to a molded body.
  • the molded body 12 formed as described above and having the uncured core 13 and the uncured protrusion 14 is removed together with the pair of jigs 1 from the both-ends chuck 8 of the FW device 7.
  • a metal material having a thermal expansion coefficient at least larger than the thermal expansion coefficient of the reinforcing fiber bundle is utilized by using the male screw 5 and the nut 6 of the pair of jigs 1 located at both ends thereof.
  • thermosetting resin impregnated in the reinforcing woven fiber bundle of the molded body 12 is fixed on both ends of the fixed mold 15, 50 in this state at a temperature of about 1 10 to 200 DEG e C Heat treatment is performed for 120 minutes to thermally cure the thermosetting resin impregnated in the reinforcing woven fiber bundle of the molded body 12, thereby forming the reinforcing fiber bundle in the reinforcing fiber bundle as shown in FIG.
  • a fiber-reinforced resin composite reinforced material 16 having a core portion 17 and a convex portion 18 in which the thermosetting resin impregnated into the resin is cured is obtained.
  • the tensile force applied at the time of this heat curing is preferably from 500 to 3,000 a / m, preferably from 800 to 2,000 ⁇ m in terms of strain. If the amount of strain due to the tensile force applied during this thermosetting is less than 500 ⁇ m, it is not possible to develop high strength enough to overcome the thermosetting resin existing around the reinforcing fibers, and the orientation of the reinforcing fibers The strength of the reinforcing fiber is reduced, and the original strength of the reinforcing fiber cannot be exhibited. As a result, if external stress is actually applied, excessive stress is applied to the resin, and the composite reinforcing material is broken. On the other hand, if it exceeds 3,000 mm Zm, the reinforcing fabric will be damaged, and the strength will be reduced.
  • the tensile force exists as a residual stress even at room temperature, and therefore, the amount of strain due to the tensile force remains at room temperature.
  • a compact was set at a room temperature of 20 in an iron metal fixed mold 15 having an expansion coefficient of 1 ⁇ 10 5 (1Z.C), and a thermosetting treatment was performed under the following conditions.
  • Male reinforcing fibers have a very low coefficient of thermal expansion as compared to iron, so 1 10.
  • C a tensile stress of about 800 / Zm by performing a heat hardening treatment for 60 minutes, and 220.
  • a tensile stress of about 2,000 Zm could be developed. This range of tensile stress is particularly preferred.
  • the composite reinforcing material uses the same reinforcing fibers and thermosetting resin (reinforced resin) as in the case of the linear composite reinforcing material.
  • a FW device in order to manufacture a molded body of the curved composite reinforcing bar.
  • one of a pair of jigs 1 (see FIGS. 1 and 2) used in the above method is fixed, and the other is rotated to apply a predetermined twist to the core of the molded body.
  • the twist applied to the core should be 0.5 to 1 rotation per meter. If the core is not twisted, or if the twist is less than 0.5 rotations per lm, it may cause local buckling of the compact when the compact is maintained in a curved shape. If the rotation exceeds 1 rotation per lm, the torsion may return after curing due to the rigidity of the reinforcing fiber.
  • the core is twisted, and at least one reinforcing fiber bundle impregnated with a thermosetting resin is wound around the surface thereof. Protrusions may be formed.
  • the impregnation of the thermosetting resin into the reinforcing woven fiber bundle and the winding around the core may be performed continuously using a FW device during molding of the core.
  • the method may be carried out by bringing in a reinforcing fiber bundle impregnated with a thermosetting resin in advance.
  • thermosetting resin impregnated in the reinforcing fiber bundle of the molded body manufactured in this way needs to be in a state where it is not completely cured until it is thermally cured in the next step, but it is not completely cured. It may be in a cured state or in a semi-cured state called a B stage.
  • the fiber volume content of the core is preferably 40 to 0%, more preferably 50 to 60%. If the fiber volume content is lower than 40%, the resin is excessive. However, there is a problem that resin dripping occurs at the time of curing, and if it exceeds 70%, there is a problem that insufficient resin causes poor adhesion between the core portion and the convex portion.
  • the molded body is removed together with the pair of jigs 1 from both end chuck portions 8 of the FW device 7 shown in FIG. 1, and then, as shown in FIG. Using a male screw 5 and a nut 6 of a fixing portion 4 provided on the jig, a curved portion having a receiving portion 13 having a predetermined radius of curvature and jig stoppers 14 provided at both ends thereof. Mounted on mold 12. In this state, the molded body is heated at about 110 to 200'C for 50 to 120 minutes while applying a tensile force using a mechanical method or the thermal expansion of a metal mold, and the core is formed.
  • thermosetting resin impregnated in the reinforcing woven fiber bundles constituting the convex portions and the convex portions is thermoset, and the convex portions 17 are wrapped around the core 16 as shown in Fig. 1.
  • the curved male fiber reinforced resin composite reinforcing material 15 is manufactured.
  • the tensile force in this case is also applied to the formed body so as to impart a strain of 500 to 3000 Zm to the composite reinforcing bar.
  • the radius of curvature of the curved fiber reinforced resin composite reinforcing material is not particularly limited.
  • a composite reinforcing material used for excavating a pit for sewerage works is about 6 to 10 m, and electric underground wiring is used.
  • a predetermined twist is applied to the reinforcing fiber bundle that forms the convex portion on the surface of the core portion, thereby increasing the peak height of the convex portion.
  • thermosetting is performed while applying tensile force to the axial textile of the obtained molded body.
  • thermosetting is performed while applying tensile force to the axial textile of the obtained molded body.
  • the reinforcing fibers constituting the obtained curved composite reinforcing material do not undergo local buckling or deterioration in strength, and the manufactured reinforcing material is reheated. This eliminates the need for time-consuming operations such as bending and bending, thus greatly facilitating the manufacturing process of the curved fiber-reinforced resin composite rebar.
  • Epoxy resin is impregnated into a carbon fiber having an elastic modulus of 3.4 xl 0 5 MPa, and a core having a diameter of 200 in which the carbon fiber is axially oriented at a volume ratio of 55% is used. Twenty twisted winding fibers impregnated with epoxy resin are twisted 20 times per meter into 8 bundles of carbon fiber bundles, and coiled at an angle of 80 ° with respect to the axial direction of the core. The molded body is formed by winding, and the thermosetting resin impregnated in the carbon fiber bundle forming the core portion and the convex portion of the molded body is cured, and as shown in FIG. 4, the core portion and the surface thereof are formed.
  • a fiber-reinforced resin composite bar of a product in which a thermosetting resin impregnated in a carbon woven fiber bundle is cured and has a convex portion 18 formed of a winding carbon fiber bundle twisted into Material 16 was produced.
  • the surface of the core 17 is twisted in the axial direction with a bundle of carbon fibers for tightening, which is turned into a coil form at an angle of 80 °, Except for forming the convex part 18 oriented in the cloth, A fiber-reinforced resin composite reinforcing material 16 was produced in the same manner as in Example 1, and this was used as Comparative Example 1.
  • a surface layer 19 (composed of fiber and impregnated resin) having a wavy height of about 3 mm is formed on the surface of the core 17 without performing the tightening.
  • a fiber-reinforced resin composite reinforced material 16 was produced in the same manner as in Example 1 except that the projections were formed on the surface of the core 17.
  • the results are shown in FIG.
  • the amount of slip on the horizontal axis in this figure represents the numerical value of the displacement meter 20, and indicates the amount of pullout of the composite bar from the concrete.
  • the fiber-reinforced resin composite reinforced material of Example 1 exhibited an adhesive force equal to or higher than that of the iron reinforced material of Comparative Example 4.
  • the fiber-reinforced resin composite reinforced material of Comparative Example 1 had a high initial strength, but then suddenly showed a decrease in strength. In Comparative Example 2 where no twist was applied, the adhesive strength was Less than half.
  • Epoxy resin is impregnated into a carbon fiber having an elastic modulus of 3.4 xl 0 5 MPa, and a core having a diameter of 200 in which the carbon fiber is axially oriented at a volume ratio of 55% is used. Twenty twisted weaves, impregnated with epoxy resin, are twisted 20 times per meter into eight bundles of Z bundles of carbon fibers, and 80 with respect to the axial direction of the core. The formed body was wound in a coil shape at an angle of, and formed using a filament winding apparatus.
  • the obtained molded body together with the jigs attached to both ends thereof were removed from the filament winding device, and as shown in FIG. and fixed to the fixed mold, the epoxy resin impregnated into the carbon fiber bundle that form a molded body is heat cured in a heating treatment of 0.99 e C, 60 min, manufactured of woven fiber-reinforced resin composite muscle material example 2 did.
  • the tensile force acting on the fiber-reinforced composite fiber due to the thermal expansion force of the fixed type was as shown in Table 1.
  • a molded article was obtained in the same manner as in Example 2 except that the epoxy resin impregnated with the carbon fiber bundle of the molded article was heat-treated at 60 for 90 minutes when thermally cured.
  • a fiber reinforced resin composite reinforced material was produced in the same manner as in Example 2 except that no axial tensile force was applied to the core by the jig during the molding of the molded body.
  • the heat curing treatment conditions at this time were the same as those in Example 2 at 150 eC for 60 minutes.
  • Comparative Example 5 showed a larger breaking load than Comparative Example 6, but the amount of strain was out of the range of the present invention.
  • the strength of the composite bar deteriorated.
  • Example 2 exhibited a larger breaking load than Comparative Example 5.
  • the obtained molded body was subjected to a tensile test in the same manner as in Example 2 and Comparative Examples 5 and 6 above.
  • the breaking load was 4.85 ⁇ 10 5 N, which was a remarkably high value as compared with the above-mentioned comparative example 6 having no load.
  • Example 4 The elastic modulus is 3.4 x i0 5 MPa ⁇ , ( ⁇ (! Using a bundle of 6 carbon fibers and epoxy resin, it takes 30 times using a FW device (manufactured by B0LENZ & SCHAFER, Germany). FW method, formed about 3 m of core of about 020 with a fiber volume content of 55%, twisted 2.4 times (0.8 turns Zm), and then 12,000 carbon bundles of Z bundle The core was wound up with a bundle of four fibers.
  • the obtained core with protrusions is fixed in a metal bending mold with a bending radius of 15 m, and is heat-cured at 150 ° C for 1 hour.A hip with a bending radius of 15 m and a strain of 12000 / Zm due to tensile force A curved carbon fiber reinforced resin composite reinforced material was obtained.
  • the fiber reinforced resin composite reinforcing material of the present invention can exhibit excellent concrete adhesion without deteriorating the strength of the core, and has many characteristics such as light weight, high corrosion resistance, and good machinability. It has both.
  • a high-strength fiber-reinforced composite bar having a high guaranteed strength can be easily produced with extremely high productivity, and the original strength of the reinforcing fiber can be efficiently exhibited.
  • the required strength can be developed with a smaller amount of fiber, the economical efficiency is excellent, and a large amount can be supplied to the market, and the spread thereof can be promoted.
  • a bent high-strength fiber-reinforced resin composite reinforced material with high dimensional accuracy can be easily manufactured without deterioration in strength, and a curved radius of curvature of 2 m or more can be obtained.
  • a high-strength fiber-reinforced resin composite reinforced material with high dimensional accuracy can be provided.
  • fiber-reinforced resin composites whose demand is expanding as a substitute for rebar or PC steel wire, can be provided at low cost, and their use can be expanded over a wider range. Things.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A curved fibre reinforced resin composite reinforcing material is produced by forming a formed body by in turn winding a bundle of the thermosetting resin impregnated reinforcing fibres which is twisted to a predetermined extent around the surface of a core portion of a bundle of thermosetting resin impregnated reinforcing fibres and applying a thermosetting process to the formed body while subjected to a tension to produce a distortion amount of 500-3000 ν/m in an axial direction thereof, or by fixing the formed body formed by winding a bundle of thermosetting resin impregnated reinforcing fibres around the twisted core portion in a curved mold curved at a predetermined radius of curvature and subjecting the formed body to thermosetting processing, whereby a fibre reinforced resin composite material having a high strength is provided at low costs which is useful as a substitution material for an iron rod or PC steel wire.

Description

明 細 書 繊維強化樹脂複合筋材及びその製造方法 技術分野  Description Fiber reinforced resin composite reinforced material and method for producing the same
この発明は、 コンク リー ト製の建造物や構造物等のコンク リー ト 製品を製造する際にこのコンク リー ト製品内に埋設させて補強筋と して使用する繊維強化樹脂複合筋材及びその製造方法に関する。 背景技術  The present invention relates to a fiber-reinforced resin composite reinforcing material used as a reinforcing bar when embedded in a concrete product such as a building or structure made of the concrete and used as a reinforcing bar. It relates to a manufacturing method. Background art
従来より、 鉄筋あるいは PC鋼線の代替材として繊維強化樹脂複合 筋材が提案されている。 この織維強化樹脂複合筋材は、 炭素織維や ァラ ミ ド繊維等の高弾性、 高強度の連続織維に熱硬化性のエポキシ 樹脂等を含浸させ、 これを硬化させて形成されており、 軽量で高強 度及び高耐蝕性の補強筋として知られている。 このような繊維強化 樹脂複合筋材は、 それが軽量で高強度及び高耐蝕性であり、 しかも 、 木工用鋸で切断可能であって切削性に優れている等の多くの特性 を備えているため、 今後、 種々のコンク リー ト製品内に埋設する補 強筋としてその用途が拡大していく ものと期待されている。  Hitherto, fiber-reinforced resin composite reinforcing bars have been proposed as substitutes for reinforcing bars or PC steel wires. This fiber reinforced resin composite reinforced material is formed by impregnating a high elasticity, high strength continuous fiber such as carbon fiber or aramide fiber with a thermosetting epoxy resin and curing it. It is known as a lightweight, high-strength, high-corrosion-resistant reinforcement. Such a fiber-reinforced resin composite rebar has many characteristics such as light weight, high strength and high corrosion resistance, and can be cut with a woodworking saw and has excellent cutting properties. Therefore, it is expected that its use as reinforcing bars embedded in various concrete products will be expanded in the future.
ところで、 このような従来の繊維強化樹脂複合筋材においては、 以下に示すような 2つの大きな問題点が存在する。  By the way, such a conventional fiber-reinforced resin composite bar has two major problems as described below.
すなわち、 第一の問題は、 繊維強化樹脂複合筋材はその表面が平 滑であるためにコンク リー トとの付着性が低く、 引張力の伝達性に 劣るという ことである。  That is, the first problem is that the fiber-reinforced resin composite reinforced material has a low surface adhesion and therefore has a poor transmission of tensile force due to its smooth surface.
また、 第二の問題は、 生産性を高めることが困難であるほか、 使 用している強化用繊維の強度から考えて、 非常に低いレベル、 実際 には半分以下のレベルでしかその保証強度が発現されていないとい う こ とである。 The second problem is that it is difficult to increase productivity, and in view of the strength of the reinforcing fiber used, its guaranteed strength is only at a very low level, in fact less than half. Is not expressed That is it.
先ず、 第一の問題については、 この問題を解決するために、 従来 においても種々の方法が提案されており、 例えば以下の 5つの方法 が知られている。  First, regarding the first problem, various methods have been proposed in the past to solve this problem. For example, the following five methods are known.
すなわち、 第一の方法は、 特開昭 61— 274036号公報に提案されて いるように、 芯部に複数の強化用織維束を巻き付けて凸部を形成し 、 コンク リー トとの付着力を確保する方法である。  That is, the first method is to form a convex portion by winding a plurality of reinforcing woven bundles around a core portion, as proposed in Japanese Patent Application Laid-Open No. 61-274036, and to adhere to the concrete. How to ensure.
第二の方法は、 粒状物 (特開平 4一 363454号公報) や短織維 (特 開平 2 — 248559号公報) を表面に付着させる方法である。  The second method is a method in which a granular material (Japanese Patent Application Laid-Open No. 4-363454) and a short-woven fiber (Japanese Patent Application Laid-Open No. 2-248559) are adhered to the surface.
第三の方法は、 特開昭 63 - 206548号公報や特開昭 63 - 219746号公 報に提案されているように、 芯部に機械的な凹みを直接設けて付着 力を上げる方法である。  The third method is to increase the adhesive force by directly providing a mechanical recess in the core as proposed in JP-A-63-206548 and JP-A-63-219746. .
第四の方法としては、 特開平 3 — 151444号公報に提案されている ように、 複数のロッ ドを湾曲させて構造的に係止させる方法や、 特 開平 2 — 248559号公報に提案されているように、 凹凸状の内面を有 するダイでロッ ド芯部の表面繊維に波を打たせて凹凸を形成する方 法である。  As a fourth method, as disclosed in Japanese Patent Application Laid-Open No. 3-151444, a method in which a plurality of rods are curved and structurally locked, and a method proposed in Japanese Patent Application Publication No. Hei. In this method, the surface fibers of the core of the rod are made to undulate with a die having an uneven inner surface to form the unevenness.
最後に、 第五の方法としては、 特開平 4一 363454号公報に提案さ れているように、 軸方向の繊維を組紐にして表面に凹凸を形成し、 コンク リー トとの付着力を確保する方法である。  Finally, as a fifth method, as proposed in Japanese Patent Application Laid-Open No. Hei 4-1363454, the fibers in the axial direction are braided to form irregularities on the surface to secure the adhesive force with the concrete. How to
ところが、 第三から第五の方法は、 芯部の繊維が波打ったり、 芯 部の繊維に機械的にダメージが与えられるため、 コンク リー トとの 付着力は増加するものの、 芯部の強度が低下してしまい、 高強度の 繊維強化樹脂複合筋材を製造するという観点からは不適である。 ま た、 必要強度を満足するには、 繊維量を多くする必要があるため、 コス ト的にも不利である。  However, in the third to fifth methods, the core fiber undulates or the core fiber is mechanically damaged, so that the adhesion to the concrete increases, but the core strength is increased. This is unsuitable from the viewpoint of producing a high-strength fiber-reinforced resin composite reinforcing bar. In addition, it is disadvantageous in terms of cost because it is necessary to increase the amount of fiber to satisfy the required strength.
また、 第二の方法は、 所詮連続していない小さな粒状物や短織維 を芯部の表面に樹脂の付着力だけで付着させているだけであり、 十 分なコンク リー ト との付着力を確保できない。 The second method is to use small granular materials and short fibers that are not continuous. The resin is only adhered to the surface of the core with the adhesive force of the resin, and sufficient adhesive force with the concrete cannot be secured.
更に、 上記第一の方法は、 芯部の織維強度を低下させずに製造す ることができるという点で最も優れているといえるが、 コンク リー トとの付着力に関しては上記第三から第五のものに比べて劣ってい このように、 これら第一ないし第五の方法では、 何れにしても、 芯部の高い織維強度を損なわずにコンク リー トとの付着性を従来の 鉄筋に匹敵するレベルにまで高めることは困難であり、 現在までの ところでは繊維強化樹脂複合筋材で鉄筋に匹敵するレベルの強度あ るいはこれを越えるものは知られていない。  Furthermore, the first method can be said to be the most excellent in that it can be manufactured without reducing the fiber strength of the core portion. As described above, in any of these first to fifth methods, in any case, the adhesion to the concrete can be improved without impairing the high fiber strength of the core. It is difficult to increase it to a level comparable to that of steel, and up to now, there is no known fiber-reinforced resin composite reinforcing material with a level of strength that exceeds or exceeds that of rebar.
また、 本発明者らは、 上記第二の問題について検討した結果、 織 維強化樹脂複合筋材の代表的な製造方法であるとして提案されてい る引抜き法 (例えば、 特開昭 61 - 274036号公報ゃ特開平 2 - 248559 号公報) では、 その引抜きを行うための条件により引抜き速度が决 定され、 このためにその生産性に限界があるほか、 引抜き力を大き くすると、 繊維をつかむ部分においてその破壊が起こり、 必要とさ れる張力を強化用繊維束に与えることができなかった。  In addition, the present inventors have studied the second problem, and as a result, have found that a drawing method proposed as a typical method for producing a fiber-reinforced resin composite reinforcing bar (for example, Japanese Patent Application Laid-Open No. 61-274036). In Japanese Patent Application Laid-Open No. 2-248559, the drawing speed is determined by the conditions for performing the drawing. For this reason, the productivity is limited. At the same time, the required tension could not be applied to the reinforcing fiber bundle.
一方、 このような繊維強化樹脂複合材の市場を拡大するにつれて 、 単に直線棒状の筋材だけでなく、 用途に応じて所定の曲率半径で 彎曲した筋材の開発が要望されている。 例えば現在、 繊維強化複合 材の切削性の良さが注目されており、 地下トンネル掘削時等におけ る竪穴掘削方法の 1つであるケーソン工法においてその穴開口部の 鉄筋代替として使用する計画がなされているが、 これには彎曲した 筋材の使用が不可欠である。  On the other hand, as the market for such fiber-reinforced resin composite materials has been expanded, there has been a demand for the development of not only straight bars but also bars having a predetermined radius of curvature depending on the application. For example, fiber-reinforced composites are currently attracting attention for their good machinability, and plans have been made to use the caisson method, one of the methods for excavating pits when excavating underground tunnels, as a substitute for reinforcing steel at the opening of the hole. However, this requires the use of curved muscle.
しかるに、 今のところ、 繊維強化樹脂複合筋材としては直線棒状 のものが知られているだけであり、 彎曲した筋材を得るには、 この 直線棒状の筋材を機械的に強制曲げ加工を行うほかはなかった。 しかしながら、 この織維強化樹脂複合材は、 金属とは異なって塑 性変形を起こさない脆性材料であり、 しかも、 強化用繊維の伸び率 がせいぜい 1 〜 2 %程度と極めて小さいため、 このような機械的な 強制曲げ加工を実施すると一部の織維が破断する等、 強化用繊維に ダメージを与える結果になり、 その曲げ半径が小さいと繊維強化樹 脂複合筋材本来の高強度が失われ、 また、 たとえ曲げ半径が大き く ても曲げにより応力が発生して筋材の使用可能強度の低下が避けら れず、 何れにしても筋材本来の高強度が損なわれてしまうという問 題があった。 However, at present, only fiber-reinforced resin composite bars having a straight rod shape are known. The only option was to mechanically bend the straight bar. However, this fiber-reinforced resin composite material is a brittle material that does not undergo plastic deformation unlike metal, and the elongation of the reinforcing fibers is extremely small, at most about 1 to 2%. If mechanical bending is performed, the reinforcing fibers will be damaged, such as breakage of some fibers.If the bending radius is small, the original high strength of fiber-reinforced resin composite muscle will be lost. In addition, even if the bending radius is large, a stress is generated due to bending, and a reduction in the usable strength of the reinforcement is inevitable. In any case, the original high strength of the reinforcement is impaired. there were.
ところで、 一般に、 樹脂系複合材についてその硬化後にこれを彎 曲させよう とすると、 不可避的に強制曲げ加工を実施することにな り、 上述したような問題が発生し、 また、 直線棒状に製造された筋 材を再度 120 で以上の温度に加熱し、 強化用繊維束内に含浸された 樹脂を軟化させて曲げ加工を行う方法も考えられるが、 この曲げ加 ェが高温下での作業であるという点で非常に手間のかかる作業にな るほか、 この方法においても強化用織維に不可避的に局部座屈や強 度劣化が発生し、 織維強化樹脂複合筋材本来の機能を発揮させるこ とはできない。  By the way, in general, if a resin-based composite material is to be bent after being cured, forced bending is inevitably performed, which causes the above-described problem. It is also conceivable to re-bent the reinforcing material to a temperature of 120 ° C or higher and soften the resin impregnated in the reinforcing fiber bundles to perform bending.However, this bending is difficult when working at high temperatures. In addition to this, the work becomes extremely time-consuming, and even in this method, local buckling and strength deterioration inevitably occur in the reinforcing fiber, and the original function of the fiber-reinforced resin composite reinforcement is exhibited. It cannot be done.
従って、 本発明の目的は、 芯部の強度劣下がなく、 金属製の補強 筋と同等あるいはそれ以上のコンク リー トとの付着力を発揮するこ とができる繊維強化樹脂複合筋材を提供することにある。  Accordingly, an object of the present invention is to provide a fiber-reinforced resin composite reinforced material capable of exhibiting an adhesion to a concrete that is equal to or greater than that of a metal reinforcing bar without deterioration in core strength. Is to do.
また、 本発明の他の目的は、 強化用織維それ自体が有する強度を 引き出すことができ、 これによつて強化用繊維量を削減して製品コ ス トの低減を図るこ とのできるほか、 保証強度の高い繊維強化複合 筋材を提供することにある。  Another object of the present invention is to make it possible to bring out the strength of the reinforcing fiber itself, thereby reducing the amount of reinforcing fiber and thereby reducing the product cost. Another object of the present invention is to provide a fiber-reinforced composite reinforcing material having a high guaranteed strength.
また、 本発明の他の目的は、 このようにコンク リー ト付着性に優 れ、 また、 保証強度の高い織維強化樹脂複合筋材を生産性良く、 し かも、 安価に製造することができる繊維強化複合筋材の製造方法を 提供することにある。 Further, another object of the present invention is to provide excellent concrete adhesion. Another object of the present invention is to provide a method for producing a fiber reinforced composite reinforced material capable of producing a fiber reinforced resin composite reinforced material having a high guaranteed strength with good productivity and at a low cost.
更に、 本発明の他の目的は、 所定の曲率半径で彎曲して寸法精度 が高く、 かつ、 高強度の繊維強化樹脂複合筋材を提供することにあ る。  Still another object of the present invention is to provide a fiber-reinforced resin composite reinforcing material having a high dimensional accuracy by bending at a predetermined radius of curvature and having high strength.
また、 本発明の他の目的は、 所定の曲率半径で彎曲していて寸法 精度の高く、 かつ、 高強度の織維強化樹脂複合筋材をその強度劣化 無しに、 しかも、 容易に製造できる方法を提供することにある。 発明の開示  Another object of the present invention is to provide a method for easily producing a fiber-reinforced resin composite rebar having high dimensional accuracy and high strength, which is curved at a predetermined radius of curvature, without deteriorating its strength. Is to provide. Disclosure of the invention
本発明者らは上記諸問題を解決するため鋭意研究を重ねた結果、 上記第一の問題点について、  The present inventors have conducted intensive research to solve the above problems, and as a result, regarding the first problem,
芯部とその表面に凸部とを有する繊維強化樹脂複合筋材において 、 表面の凸部を構成する強化用繊維束に捩れを入れることにより、 芯部の強度を劣化させることなく コンク リー トに対する付着力を顕 著に改善できることを見出した。  In a fiber-reinforced resin composite reinforced material having a core portion and a convex portion on the surface thereof, the reinforcing fiber bundle constituting the convex portion on the surface is twisted to reduce the strength of the core without deteriorating the strength of the core portion. It has been found that the adhesion can be significantly improved.
また、 第二の問題点について、 芯部と凸部とを順次成形し、 得ら れた成形体の軸方向 (強化用織維束方向) に引張力を加えながら熱 硬化させることにより、 周囲の樹脂に引張応力を与えずに (樹脂は 引張応力によって破壊され易いので圧縮応力が加わるようにする) 、 繊維の方向を揃えるとともに引張応力を与えることで強化用繊維 それ自体が有する高強度及び高弾性を引出すことができ、 これによ つて生産効率が高く、 かつ、 保証強度の高い繊維強化複合筋材を製 造することができることを見出した。  Regarding the second problem, the core part and the convex part are sequentially formed, and the obtained molded body is heat-cured while applying a tensile force in the axial direction (the direction of the reinforcing fiber bundle), thereby forming a peripheral part. Without giving tensile stress to the resin (resin is easily broken by tensile stress, so that compressive stress is applied), by aligning the fiber direction and applying tensile stress, the high strength of the reinforcing fiber itself and It has been found that a high elasticity can be obtained, and thus, a fiber-reinforced composite reinforcing material having high production efficiency and high guaranteed strength can be manufactured.
また、 繊維強化樹脂複合筋材に強度劣化なしに臀曲を付与するた めに、 芯部に捩れを加えるとともに、 芯部と表面凸部よりなる成形 体を彎曲せしめた状態で、 更に芯部に一定の引張応力を与えながら 熱硬化処理を施すことが有効であることを見出した。 芯部に引張応 力を与えると芯部を構成する各単位織維にほ 平等な引張応力がか 、 るので芯部に捩れを加えて湾曲させた状態であっても成形体の局 部座屈や強度低下を完全に回避することができた。 In addition, in order to give the fiber-reinforced resin composite reinforcing material a gluttony without deterioration in strength, a twist is added to the core and a molding consisting of the core and the surface convex It has been found that it is effective to apply a thermosetting treatment while applying a certain tensile stress to the core while the body is bent. When a tensile stress is applied to the core, each unit fiber constituting the core is subjected to an equal tensile stress. Therefore, even if the core is twisted and curved, the local seat of the molded body is formed. Flexing and reduction in strength could be completely avoided.
以下、 本発明を更に説明する。  Hereinafter, the present invention will be further described.
本発明は熱硬化性樹脂と強化用繊維束からなる熱硬化組成物で構 成された芯部と巻締め部 (該巻締め部は芯部表面に凸部を形成する The present invention relates to a core and a crimped portion made of a thermosetting composition comprising a thermosetting resin and a reinforcing fiber bundle (the crimped portion forms a convex portion on the surface of the core portion).
) からなる成形体が引張力による 500 〜3000 Ζ πιの歪量を有する 繊維強化樹脂複合筋材である。 ) Is a fiber-reinforced resin composite rebar having a strain of 500-3000Ζπι due to tensile force.
この複合筋材を製造するために、 例えばフィ ラメ ン トワイ ンディ ング装置を用い、 この装置の両端チャ ッ ク部に複数のピンを有する 治具を取り付け、 これら一対の治具のピン間に熱硬化性樹脂を含浸 させた強化用織維束を掛け渡してフィ ラメ ン トワイ ンデイ ング法に より芯部を成形し、 次いでこの芯部の表面に熱硬化性樹脂含浸の強 化用繊維束を巻締めして凸部を成形し、 得られた成形体をその軸方 向に引張力を加えながら熱硬化処理を施す。 また、 上記凸部を形成 する強化用織維束に所定の捩れを加える。  In order to manufacture this composite rebar, for example, a filament winding device is used, jigs having a plurality of pins are attached to both end chuck portions of the device, and heat is applied between the pins of the pair of jigs. A reinforcing fiber impregnated with a thermosetting resin is impregnated with a fiber bundle for impregnating the thermosetting resin on the surface of the core by wrapping the reinforcing fiber bundle impregnated with the curable resin and forming the core by the filament winding method. The convex is formed by tightening, and the obtained molded body is subjected to a thermosetting treatment while applying a tensile force in the axial direction. In addition, a predetermined twist is applied to the reinforcing woven bundle that forms the convex portion.
以上の構成によって、 本発明の複合筋材は強化用織維の持つ本来 の強度を発揮した高い引張り強度を有するとともに繊維の損傷を防 止しながらコンク リー トとの付着力を大き く改善することができる o  With the above configuration, the composite reinforcing material of the present invention has a high tensile strength that exhibits the original strength of the reinforcing fiber, and significantly improves the adhesion to the concrete while preventing fiber damage. Can o
更に、 本発明は、 熱硬化性樹脂含浸の強化用織維束により成形さ れ、 所定の捩れを有する芯部と、 この芯部に熱硬化性樹脂含浸の強 化用繊維束を巻き締めして形成された凸部とを有し、 全体が所定の 曲率半径で彎曲している彎曲状繊維強化樹脂複合筋材である。  Further, the present invention provides a core formed from a reinforcing woven fiber bundle impregnated with a thermosetting resin and having a predetermined twist, and a reinforcing fiber bundle impregnated with the thermosetting resin wound around the core. A curved fiber-reinforced resin composite reinforced material having a convex portion formed as a whole and having a predetermined radius of curvature.
この複合筋材を製造するために、 先ず芯部を成形し、 次いでこの 芯部に捩れを加えた後、 少く とも 1本の熱硬化性樹脂含浸の強化用 織維束により凸部を形成し、 得られた凸部付芯部材すなわち成形体 を所定の曲率半径で彎曲した彎曲型内に固定し、 芯部に一定の引張 応力を与えながら上記強化用繊維束に含浸させた熱硬化性樹脂を熱 硬化させる。 In order to manufacture this composite rebar, the core is first formed and then After the core is twisted, at least one reinforced fiber bundle impregnated with a thermosetting resin is used to form a convex portion, and the obtained core member with a convex portion, that is, the molded body is bent at a predetermined radius of curvature. The thermosetting resin impregnated in the reinforcing fiber bundle is heat-set while applying a certain tensile stress to the core while fixing the core in a curved shape.
また、 他の方法として、 成形した芯部に少く とも 1本の熱硬化性 樹脂含浸の強化用織維束により凸部を形成し、 形成された凸部と同 方向に捩れを加え、 得られた凸部付芯部材すなわち成形体を所定の 曲率半径で彎曲した彎曲型内に固定し、 一定の引張応力を与えなが ら強化用繊維束に含浸させた熱硬化性樹脂に熱硬化処理を施す。 このようにして製造した彎曲状繊維強化樹脂複合筋材は下水道ェ 事用、 地下鉄工事用等の竪穴掘削時に使用される補強筋として極め て好ましい。 図面の簡単な説明  Alternatively, as another method, a convex portion is formed on the molded core portion by using a reinforcing woven fiber bundle impregnated with at least one thermosetting resin, and twisting is performed in the same direction as the formed convex portion. The core member with a convex portion, that is, the molded body is fixed in a curved mold having a predetermined radius of curvature, and a thermosetting resin is impregnated into the reinforcing fiber bundle while applying a constant tensile stress to the thermosetting resin. Apply. The curved fiber-reinforced resin composite bar thus manufactured is extremely preferable as a reinforcing bar used for excavating a pit for sewerage works, subway works and the like. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 フィ ラメ ン トワイ ンディ ング法で用いる治具の一部断 面正面図である。  FIG. 1 is a partially sectional front view of a jig used in the filament winding method.
第 2図は、 フィ ラメ ン トワイ ンディ ング法の概念説明図である。 第 3図は、 金属製固定型の部分斜視図である。  FIG. 2 is a conceptual explanatory diagram of the filament winding method. FIG. 3 is a partial perspective view of a metal fixed type.
第 4図は、 本発明の一実施例の織維強化樹脂複合筋材を示す部分 正面図である。  FIG. 4 is a partial front view showing a fiber-reinforced resin composite reinforced material according to one embodiment of the present invention.
第 5図は、 比較例 1 の繊維強化樹脂複合筋材を示す部分正面図で め 。  FIG. 5 is a partial front view showing the fiber-reinforced resin composite reinforcing bar of Comparative Example 1.
第 6図は、 比較例 3の織維強化樹脂複合筋材を示す部分断面正面 図である。  FIG. 6 is a partial cross-sectional front view showing the fiber-reinforced resin composite reinforced material of Comparative Example 3.
第 7図は、 引張り試験の試験方法を示す一部断面正面図である。 第 8 1¾は、 引張り試験の結果得られた平均付着応力度とすべり量 との関係を示すグラフ図である。 FIG. 7 is a partially sectional front view showing a test method of a tensile test. No. 81¾ is the average bond stress and slip amount obtained from the tensile test. FIG. 6 is a graph showing the relationship between
第 9図は、 本発明例及び比較例における引張り試験で用いた口ッ ド状試験体を示す一部断面斜視図である。  FIG. 9 is a partial cross-sectional perspective view showing a pad-like specimen used in a tensile test in the present invention example and the comparative example.
第 1 0図は本発明の他の実施例の彎曲状織維強化樹脂複合筋材を成 形する状態を示す部分斜視図である。  FIG. 10 is a partial perspective view showing a state in which a curved fiber reinforced resin composite reinforced material according to another embodiment of the present invention is formed.
第 1 1図は本発明の他の実施例の彎曲状繊維強化樹脂複合筋材を示 す部分斜視図である。 発明を実施するための最良の形態  FIG. 11 is a partial perspective view showing a curved fiber reinforced resin composite reinforced material according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明の直線状繊維強化樹脂複合筋材について説明する。 本発明において、 強化用繊維束を形成するための補強用の強化用 繊維については、 それが製造される複合筋材の始端から終端まで連 続した繊維であれば、 従来より知られているものを適宜使用するこ とができ、 例えば PAN 系 (ボリァク リルニト リル系) 、 ピッチ系、 ハイプリ ッ ド系等の種々の炭素織維や、 ァラ ミ ド繊維、 ガラス繊維 等を挙げることができる。 また、 強化用繊維束に含浸させる熱硬化 性樹脂 (強化樹脂) についても、 従来より知られているものを適宜 使用することができ、 例えばエポキシ樹脂、 フエノール樹脂、 ボリ アミ ド樹脂等を例示することができる。 これら強化用繊維や熱硬化 性樹脂については、 製造される複合筋材の用途等により適宜選択し 得るものであるが、 耐熱性、 耐蝕性等の点から、 強化用繊維につい ては好ましくは炭素織維であり、 熱硬化性樹脂については好ましく はエポキシ樹脂である。  First, the linear fiber-reinforced resin composite reinforcing material of the present invention will be described. In the present invention, the reinforcing fibers for forming the reinforcing fiber bundle are conventionally known as long as the fibers are continuous from the starting end to the end of the composite reinforcing bar to be manufactured. Can be used as appropriate, and examples thereof include various carbon fibers such as PAN (polyacrylonitrile), pitch, and hybrid, and aramide fibers and glass fibers. Also, as the thermosetting resin (reinforced resin) to be impregnated into the reinforcing fiber bundle, conventionally known ones can be appropriately used, and examples thereof include an epoxy resin, a phenol resin, and a polyamide resin. be able to. These reinforcing fibers and thermosetting resins can be appropriately selected depending on the use of the composite reinforcing material to be produced, but from the viewpoints of heat resistance, corrosion resistance, etc., the reinforcing fibers are preferably made of carbon. It is a fiber, and the thermosetting resin is preferably an epoxy resin.
本発明において、 その芯部の成形は、 単にコンク リー ト付着性を 改善するという観点からは、 例えば、 熱硬化性樹脂含浸の炭素織維 ヤーンを芯にしてその回りに熱硬化性樹脂含浸の炭素繊維プリプレ グをすのこ状に巻き付けて形成するハン ドレイアップ法や、 複数の 熱硬化性樹脂含浸の炭素繊維ヤーンを集合させ、 その回りにブレー ダー装置を用いてブレー ド糸を巻き付けて形成する方法、 更には引 抜き法等の何れの方法によっても成形することができるが、 好適に は以下のような方法で行うのがよい。 In the present invention, the molding of the core portion may be performed, for example, from the viewpoint of simply improving the adhesiveness of the concrete, by, for example, using a carbon woven yarn impregnated with a thermosetting resin as a core and surrounding the core with a thermosetting resin impregnated. A hand lay-up method in which a carbon fiber prepreg is formed by winding it It can be formed by assembling carbon fiber yarn impregnated with thermosetting resin and winding it around with a braider using a blader device, or by drawing, etc. Preferably, the following method is used.
すなわち、 フィ ラメ ン トワイ ンデイ ング装置 (以下、 「FW装置 J と略称する) の両端チヤ ッ ク部に複数のピンを有する治具を取り付 け、 これら一対の治具のピン間に熱硬化性樹脂を含浸させた強化用 繊維束を掛け渡してフイ ラメ ン トワイ ンデイ ング法 (以下、 「FW法 J と略称する) により芯部を成形し、 次いでこの芯部の表面に熱硬 化性樹脂含浸の強化用織維束を巻き締めして凸部を成形し、 得られ た成形体をその軸方向に引張力を加えながら熱硬化させる方法であ この方法について、 以下に具体的に説明する。  That is, a jig having a plurality of pins is attached to both ends of a filament winding device (hereinafter abbreviated as “FW device J”), and thermosetting is performed between the pins of the pair of jigs. A reinforcing fiber bundle impregnated with a conductive resin is wrapped around the core, and a core is formed by a filament winding method (hereinafter abbreviated as “FW method J”). This is a method in which a convex portion is formed by winding a reinforcing fiber bundle impregnated with resin to form a convex portion, and the obtained molded product is thermally cured while applying a tensile force in the axial direction. This method is specifically described below. I do.
すなわち、 先ず、 第 1 図に示すように、 基端側に把持部 2を有す ると共に先端側に複数 ( 2〜10本) のピン 3を有し、 これら把持部 2 とピン 3の間には雄ねじ 5 とナッ ト 6 とからなる固定部 4を有す る一対の金属製治具 1 を用意し、 これら一対の金属製治具 1 を、 第 2図に示すように、 フィ ラメ ン トワイ ンデイ ング装置 7の両端チャ ッ ク部 8に取付ける。  That is, first, as shown in FIG. 1, a grip portion 2 is provided on the base end side and a plurality of (2 to 10) pins 3 are provided on the distal end side. In FIG. 2, a pair of metal jigs 1 each having a fixing portion 4 composed of a male screw 5 and a nut 6 are prepared. Attach it to the chuck section 8 at both ends of the twisting device 7.
次に、 複数の補強用の強化用繊維束 9を連続的に繰り出して熱硬 化性樹脂の樹脂浴槽 10を通過させ、 ここで強化用織維束内に熱硬化 性樹脂を含浸させ、 次いでこの熱硬化性樹脂を含浸した熱硬化性樹 脂含浸強化用織維束をトラバーサ一 1 1により上記一対の治具 1 に設 けられた複数のピン 3間に必要とされる直径になるまで繰り返し掛 け渡し、 軸方向に複数の熱硬化性樹脂含浸強化用繊維束を配して芯 部を形成する。  Next, a plurality of reinforcing fiber bundles 9 for reinforcement are continuously fed out and passed through a resin bath 10 of thermosetting resin, where the woven fiber bundle for reinforcement is impregnated with thermosetting resin. The woven fiber bundle impregnated with the thermosetting resin impregnated with the thermosetting resin is traversed by the traverser 11 until the diameter of the woven bundle reaches a required value between the plurality of pins 3 provided on the pair of jigs 1. A plurality of thermosetting resin impregnated reinforcing fiber bundles are arranged in the axial direction to form a core.
このようにして成形された芯部について、 その強化用繊維束に含 浸された熱硬化性樹脂は、 次にその表面に凸部が形成されて熱硬化 されるまで、 完全に硬化されていない状態である必要があるが、 全 く未硬化状態であっても、 また、 Bステージといわれる半硬化状態 であってもよい。 また、 この芯部の繊維体積含有率については、 好 ましく は 40〜了 0 %、 より好ましく は 50〜60 %であり、 この繊維体積 含有率が 40 %より低いと樹脂過剰で硬化時に樹脂ダレの問題が発生 する虞があり、 また、 70 %より大き く なると樹脂不足で芯部と凸部 との接着不良が発生する虞がある。 The core formed in this manner is included in the reinforcing fiber bundle. The soaked thermosetting resin must be in a completely uncured state until the next time a convex is formed on the surface and it is thermoset, but even if it is completely uncured, Further, it may be in a semi-cured state called B stage. Further, the fiber volume content of the core is preferably 40 to 0%, more preferably 50 to 60%. When the fiber volume content is lower than 40%, the resin is excessive and the resin is hardened at the time of curing. There is a risk that sagging will occur, and if it is greater than 70%, there is a risk that poor adhesion between the core and the protrusion may occur due to insufficient resin.
このようにして成形された芯部には、 引続きその表面に、 熱硬化 性樹脂を含浸させた少く とも 1本の強化用繊維束を卷付けて凸部が 形成され、 芯部とその表面に凸部を有する成形体とされる。 この際 に使用する強化用繊維束への熱硬化性樹脂の含浸と芯部への巻締め はこの芯部の成形時に FW装置を用いて連続して実施してもよく、 ま た、 外部から予め熱硬化性樹脂を含浸させた強化用繊維束を持ち込 んで実施してもよい。  On the core formed in this way, at least one reinforcing fiber bundle impregnated with a thermosetting resin is wound around the surface to form a convex portion, and the core and the surface are formed on the core. The molded body has a convex portion. At this time, the impregnation of the reinforcing fiber bundle with the thermosetting resin and the winding around the core may be continuously performed using a FW device at the time of molding the core. It may be carried out by bringing in a reinforcing fiber bundle impregnated with a thermosetting resin in advance.
こ こで、 この凸部を成形するために強化用繊維束に含浸された熱 硬化性樹脂やその繊維体積含有率については、 上記芯部の場合と同 様でよい。  Here, the thermosetting resin impregnated in the reinforcing fiber bundle to form the convex portion and the fiber volume content thereof may be the same as in the case of the core portion.
こ こで、 芯部の表面に巻締める熱硬化性樹脂含浸の強化用織維束 については、 コンク リー トへの付着力を改善するために、 好ましく は強化用繊維束に 1 m当り 10〜50回の捩れを入れ、 また、 芯部に巻 付ける際にはその軸方向に対して 65〜85° の角度で行うのがよい。  Here, the reinforcing fiber bundle impregnated with a thermosetting resin to be wound around the surface of the core is preferably 10 to 10 m / m per reinforcing fiber bundle in order to improve the adhesion to the concrete. Twisting the core 50 times and winding it around the core should be done at an angle of 65 to 85 ° to the axial direction.
この凸部を構成する強化用織維束に付与する捩れが、 1 m当り 10 回未満であるとコンク リー トとの付着力があまり改善されず、 また 、 50回を越えると繊維の損傷と芯部との付着性低下が発生する。 ま た、 この捩れた強化用雄維束を巻付ける角度が芯部の軸方向に対し て 65 ° より小さ くなるとコンク リー ト付着力の低下という問題が生 じ、 反対に、 85 ° より大き くなつてもコンク リー ト付着力の低下と いう問題が生じる。 If the twist given to the reinforcing woven fiber bundle constituting the convex portion is less than 10 times per 1 m, the adhesion to the concrete is not significantly improved, and if it exceeds 50 times, fiber damage and damage may occur. A decrease in adhesion to the core occurs. In addition, if the angle at which the twisted reinforcing fiber bundle is wrapped is smaller than 65 ° with respect to the axial direction of the core, there is a problem that the adhesive strength of the concrete decreases. On the other hand, even if the angle is larger than 85 °, the problem of a decrease in concrete adhesion occurs.
なお、 この芯部に熱硬化性樹脂含浸の繊維強化束をコィル状に巻 付けて凸部を形成する際に、 芯部の上に捩った織維を折返し巻いて クロスに配向させると (第 5図参照) 、 コンク リー トとの付着力は 最大になるが、 最大になった後突然、 コンク リー トからの引抜けが 発生するという特異な挙動を示すため、 実際の使用には不適である When the fiber-reinforced bundle impregnated with a thermosetting resin is wound around the core in a coil shape to form a convex portion, the twisted fiber is folded back over the core to orientate in a cross ( Adhesion with concrete is maximized, but after the maximum, it suddenly pulls out of concrete, which is unsuitable for actual use. Is
0 0
このようにして芯部の表面に熱硬化性樹脂含浸強化用繊維束を巻 締めて凸部が形成された成形体は、 使用した強化用織維の強度を十 分に発現させるために、 その成形体に軸方向の引張力 (すなわち、 芯部を構成する軸方向繊維に対して引張力) を加えながら熱硬化さ せる。  In this way, the molded body in which the protrusions are formed by winding the fiber bundle for impregnating and reinforcing the thermosetting resin on the surface of the core portion is used in order to sufficiently exhibit the strength of the reinforcing fiber used. The molded body is thermoset while applying a tensile force in the axial direction (that is, a tensile force on the axial fibers constituting the core).
ここで、 上記成形体の軸方向繊維に所定の引張力を付与する方法 としては、 基本的にはどのような方法でもよいが、 好ましく は、 成 形体の両端を一対の治具で金属製固定型の両端に固定し、 そのまま の状態で金属製固定型ともども全体を加熱して強化用織維束に含浸 させた熱硬化性樹脂を熱硬化させ、 この際の金属製固定型の熱膨張 により成形体に引張力を付与する方法である。 このような方法を採 用することにより、 保証強度の高い高強度の織維強化樹脂複合筋材 をより容易に製造することができる。  Here, as a method for applying a predetermined tensile force to the axial fibers of the molded body, basically any method may be used, but preferably, both ends of the molded body are fixed to a metal with a pair of jigs. It is fixed to both ends of the mold, and the whole is heated as it is with the metal fixed mold, and the thermosetting resin impregnated in the reinforcing woven fiber bundle is thermoset, and due to the thermal expansion of the metal fixed mold at this time, This is a method of applying a tensile force to a molded body. By adopting such a method, it is possible to more easily produce a high-strength fiber-reinforced resin composite reinforced material having a high guaranteed strength.
すなわち、 上述のようにして成形され、 未硬化の芯部 13と未硬化 の凸部 14とを有する成形体 12を FW装置 7の両端チヤック部 8から一 対の治具 1共々取り外し、 次に、 第 3図に示すように、 その両端に 位置する一対の治具 1 の雄ねじ 5及びナッ ト 6を利用し、 少なく と も強化用繊維束の熱膨張係数より大きい熱膨張係数を有する金属製 固定型 15の両端に固定し、 この状態で約 1 10 〜200 eCの温度で 50〜 120 分間に加熱処理し、 成形体 12の強化用織維束中に含浸されてい る熱硬化性樹脂を熱硬化させ、 これによつて、 第 ·4図に示すように 、 強化用繊維束中に含浸させた熱硬化性樹脂が硬化した芯部 1 7と凸 部 18とを有する製品の繊維強化樹脂複合筋材 1 6が得られる。 That is, the molded body 12 formed as described above and having the uncured core 13 and the uncured protrusion 14 is removed together with the pair of jigs 1 from the both-ends chuck 8 of the FW device 7. As shown in FIG. 3, a metal material having a thermal expansion coefficient at least larger than the thermal expansion coefficient of the reinforcing fiber bundle is utilized by using the male screw 5 and the nut 6 of the pair of jigs 1 located at both ends thereof. fixed on both ends of the fixed mold 15, 50 in this state at a temperature of about 1 10 to 200 DEG e C Heat treatment is performed for 120 minutes to thermally cure the thermosetting resin impregnated in the reinforcing woven fiber bundle of the molded body 12, thereby forming the reinforcing fiber bundle in the reinforcing fiber bundle as shown in FIG. Thus, a fiber-reinforced resin composite reinforced material 16 having a core portion 17 and a convex portion 18 in which the thermosetting resin impregnated into the resin is cured is obtained.
この熱硬化時に与える引張力としては、 歪量で 500 〜3, 000 a / m、 好ま しく は 800 〜2, 000 〃 mであるのがよい。 この熱硬化時 に与える引張力による歪量が 500 ^ mより少ないと強化用繊維の 周囲に存在する熱硬化性樹脂に打ち勝つだけの高強度を発現させる ことができず、 強化用織維の配向性が低下して強化用繊維の持つ本 来の強度を発揮することができない。 この結果、 実際に外部応力が か、 つた場合に、 樹脂に過度の応力がかゝ り、 複合筋材が破壊され る。 また、 3, 000 〃 Z mを越えると逆に強化用織維に損傷を与えて しまい、 強度低下の原因となる。  The tensile force applied at the time of this heat curing is preferably from 500 to 3,000 a / m, preferably from 800 to 2,000 μm in terms of strain. If the amount of strain due to the tensile force applied during this thermosetting is less than 500 ^ m, it is not possible to develop high strength enough to overcome the thermosetting resin existing around the reinforcing fibers, and the orientation of the reinforcing fibers The strength of the reinforcing fiber is reduced, and the original strength of the reinforcing fiber cannot be exhibited. As a result, if external stress is actually applied, excessive stress is applied to the resin, and the composite reinforcing material is broken. On the other hand, if it exceeds 3,000 mm Zm, the reinforcing fabric will be damaged, and the strength will be reduced.
なお、 上記引張力は常温でも残留応力として存在し、 従って引張 力による歪量も常温でほ ^そのま 、残る。  Note that the tensile force exists as a residual stress even at room temperature, and therefore, the amount of strain due to the tensile force remains at room temperature.
こ こで、 膨張係数 1 X 10 5 ( 1 Z。C ) を有する鉄製の金属製固定型 15に、 室温 20てで成形体をセッ ト して下記条件で熱硬化処理を行つ た例を示す。 強化用雄維束は鉄に比較して熱膨張率が極めて小さい ので、 1 10 。C , 60分の熱硬化処理を行うことで約 800 / Z mの引張 応力を、 また、 220 。C , 60分の熱硬化処理を行うことで約 2, 000 Z mの引張応力をそれぞれ発現させることができた。 この引張応力 の範囲が特に好ま しいものである。 Here, an example is shown in which a compact was set at a room temperature of 20 in an iron metal fixed mold 15 having an expansion coefficient of 1 × 10 5 (1Z.C), and a thermosetting treatment was performed under the following conditions. Show. Male reinforcing fibers have a very low coefficient of thermal expansion as compared to iron, so 1 10. C, a tensile stress of about 800 / Zm by performing a heat hardening treatment for 60 minutes, and 220. By performing the heat hardening treatment for 60 minutes at C, a tensile stress of about 2,000 Zm could be developed. This range of tensile stress is particularly preferred.
このような繊維強化樹脂複合筋材をコンク リー トブロッ ク中に使 用すると、 ブロッ ク中で引張サイ ドのカを受けもつ配筋中での樹脂 の部分の圧縮応力が低減するが、 極端な引張にはならずに樹脂部分 の破壊が避けられ、 かつ繊維束全体としての特性が維持されるので のる。 次に彎曲状繊維強化樹脂複合筋材について説明する。 The use of such fiber-reinforced resin composite rebar in a concrete block reduces the compressive stress of the resin in the reinforcing bars that support the tensile side of the block in the block. The resin part is prevented from breaking without being pulled, and the properties of the fiber bundle as a whole are maintained. Next, the curved fiber reinforced resin composite reinforced material will be described.
この複合筋材は上記の直線状複合筋材の場合と同様の強化用繊維 及び熱硬化性樹脂 (強化樹脂) を使用する。 また、 前記彎曲状複合 筋材の成形体を製造するには FW装置を利用することが好適である。 この実施例では成形体を製造後、 前記方法で用いる一対の治具 1 ( 第 1 図、 第 2図参照) の一方を固定し他方を回転させて前記成形体 の芯部に所定の捩れを加える。  The composite reinforcing material uses the same reinforcing fibers and thermosetting resin (reinforced resin) as in the case of the linear composite reinforcing material. In addition, it is preferable to use a FW device in order to manufacture a molded body of the curved composite reinforcing bar. In this embodiment, after the molded body is manufactured, one of a pair of jigs 1 (see FIGS. 1 and 2) used in the above method is fixed, and the other is rotated to apply a predetermined twist to the core of the molded body. Add.
ここで芯部に加える捩れは、 1 m当り 0. 5 〜 1 回転であるのがよ い。 芯部に捩れを加えなかったり、 あるいは、 l m当り 0. 5 回転未 満の捩れでは、 成形体を弯曲状に維持した際に、 この成形体に局部 座屈を起こす可能性があり、 反対に、 l m当り 1 回転をこえると、 強化用繊維の剛性により硬化後に捩れが戻る可能性がある。  Here, the twist applied to the core should be 0.5 to 1 rotation per meter. If the core is not twisted, or if the twist is less than 0.5 rotations per lm, it may cause local buckling of the compact when the compact is maintained in a curved shape. If the rotation exceeds 1 rotation per lm, the torsion may return after curing due to the rigidity of the reinforcing fiber.
従ってかかる捩れを加えることにより成形体の局部座屈を防止す ることができる。  Therefore, by applying such a twist, local buckling of the molded body can be prevented.
なお、 上記方法の他に、 芯部を成形したのちに、 該芯部に捩れを 加え、 その表面に引続き、 熱硬化性樹脂を含浸させた少く とも 1本 の強化用繊維束を巻付けて凸部を形成してもよい。 この際に使用す る強化用織維束への熱硬化性樹脂の含浸と芯部への巻締めはこの芯 部の成形時に FW装置を用いて連続して実施してもよく、 また、 外部 から予め熱硬化性樹脂を含浸させた強化用繊維束を持込んで実施し てもよい。  In addition to the above method, after forming the core, the core is twisted, and at least one reinforcing fiber bundle impregnated with a thermosetting resin is wound around the surface thereof. Protrusions may be formed. The impregnation of the thermosetting resin into the reinforcing woven fiber bundle and the winding around the core may be performed continuously using a FW device during molding of the core. Alternatively, the method may be carried out by bringing in a reinforcing fiber bundle impregnated with a thermosetting resin in advance.
このようにして製造された成形体の強化用繊維束に含浸された熱 硬化性樹脂は、 次の工程で熱硬化されるまで、 完全に硬化されてい ない状態である必要があるが、 全く未硬化状態であっても、 また、 Bステージといわれる半硬化状態であってもよい。 また、 この芯部 の繊維体積含有率については、 好ましく は 40〜了 0 %、 より好ましく は 50〜60 %であり、 この織維体積含有率が 40 %より低いと樹脂過剰 で硬化時に樹脂ダレが発生するという問題があり、 また、 70 %より 大き く なると樹脂不足で芯部と凸部との接着不良が発生するという 問題がある。 The thermosetting resin impregnated in the reinforcing fiber bundle of the molded body manufactured in this way needs to be in a state where it is not completely cured until it is thermally cured in the next step, but it is not completely cured. It may be in a cured state or in a semi-cured state called a B stage. The fiber volume content of the core is preferably 40 to 0%, more preferably 50 to 60%. If the fiber volume content is lower than 40%, the resin is excessive. However, there is a problem that resin dripping occurs at the time of curing, and if it exceeds 70%, there is a problem that insufficient resin causes poor adhesion between the core portion and the convex portion.
前記成形体は、 次いで第 1 図で示す FW装置 7の両端チヤ ッ ク部 8 から一対の治具 1 共々取り外され、 次に、 第 10図に示すように、 こ れら一対の治具 1 はこの治具に設けられた固定部 4の雄ねじ 5及び ナッ ト 6を利用し、 所定の曲率半径に彎曲した受け部 1 3とその両端 に設けられた治具止め部 1 4とを有する彎曲型 12に取付けられる。 前 記成形体はこの状態で機械的な方法もしく は金属製型の熱膨張を利 用して引張力が加えられながら約 1 10 〜200 'Cで 50〜120 分間加熱 処理されて、 芯部や凸部を構成する強化用織維束に含浸されている 熱硬化性樹脂が熱硬化され、 第 1 図に示すように、 芯部 1 6の回りに 凸部 1 7が巻き付けられた製品の彎曲状雄維強化樹脂複合筋材 15が製 造される。 この場合の引張力も、 複合筋材に 500 〜3000 Z mの歪 量を付与するように成形体に加えられる。  Next, the molded body is removed together with the pair of jigs 1 from both end chuck portions 8 of the FW device 7 shown in FIG. 1, and then, as shown in FIG. Using a male screw 5 and a nut 6 of a fixing portion 4 provided on the jig, a curved portion having a receiving portion 13 having a predetermined radius of curvature and jig stoppers 14 provided at both ends thereof. Mounted on mold 12. In this state, the molded body is heated at about 110 to 200'C for 50 to 120 minutes while applying a tensile force using a mechanical method or the thermal expansion of a metal mold, and the core is formed. Product in which the thermosetting resin impregnated in the reinforcing woven fiber bundles constituting the convex portions and the convex portions is thermoset, and the convex portions 17 are wrapped around the core 16 as shown in Fig. 1. The curved male fiber reinforced resin composite reinforcing material 15 is manufactured. The tensile force in this case is also applied to the formed body so as to impart a strain of 500 to 3000 Zm to the composite reinforcing bar.
この彎曲状繊維強化樹脂複合筋材の曲率半径については、 特に制 限されるものではなく、 例えば、 下水道工事用の竪穴掘削時に用い るための複合筋材については 6〜10m程度、 電気地下配線ダク トェ 事用の竪穴掘削時に用いるための複合筋材については 2〜 4 m程度 、 地下鉄工事用の竪穴掘削時に用いるための複合筋材については 15 〜20m程度のものが製造されて使用される。  The radius of curvature of the curved fiber reinforced resin composite reinforcing material is not particularly limited.For example, a composite reinforcing material used for excavating a pit for sewerage works is about 6 to 10 m, and electric underground wiring is used. About 2 to 4 m of composite rebar used for excavating shafts for duct work, and about 15 to 20 m for composite rebars used for excavating shafts for subway construction. .
以上のように、 本発明方法によれば、 直線状線維強化樹脂複合筋 材において、 芯部の表面に凸部を形成する強化用繊維束に所定の捩 れを入れることにより、 凸部の山高さを確保できるので、 芯部の強 度を劣化させることなく コンク リー トに対する付着力を顕著に改善 できる。  As described above, according to the method of the present invention, in the linear fiber reinforced resin composite reinforced material, a predetermined twist is applied to the reinforcing fiber bundle that forms the convex portion on the surface of the core portion, thereby increasing the peak height of the convex portion. As a result, adhesion to concrete can be significantly improved without deteriorating the strength of the core.
また、 得られた成形体の軸方向織維に引張力を加えたまま熱硬化 させるので、 高速で複合筋材を製造でき、 しかも、 複数の強化用織 維束を均一にしてそのたるみをなくすことができ、 保証強度の高い 高強度の繊維強化樹脂複合筋材を製造することができる。 In addition, thermosetting is performed while applying tensile force to the axial textile of the obtained molded body. To produce a high-strength fiber-reinforced resin composite reinforcing bar with high guaranteed strength, which can produce composite reinforcing bars at high speed, and can evenly eliminate multiple slacks by reinforcing multiple woven fibers. Can be.
また、 彎曲状繊維強化樹脂複合筋材において、 得られた彎曲状複 合筋材を構成する強化用繊維には局部座屈や強度劣化が発生せず、 しかも、 製造された筋材を再加熱して曲げ加工する等の手間のかか る作業も必要なくなり、 従って彎曲状織維強化樹脂複合筋材の製造 工程が極めて容易になる。 実施例  In addition, in the curved fiber reinforced resin composite reinforcing material, the reinforcing fibers constituting the obtained curved composite reinforcing material do not undergo local buckling or deterioration in strength, and the manufactured reinforcing material is reheated. This eliminates the need for time-consuming operations such as bending and bending, thus greatly facilitating the manufacturing process of the curved fiber-reinforced resin composite rebar. Example
以下、 実施例及び比較例に基づいて、 本発明を具体的に説明する Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.
0 0
実施例 1  Example 1
弾性率 3. 4 x l 05MPaの炭素繊維にエポキシ樹脂を含浸させ、 この 炭素繊維を体積率 55 %で軸方向に配向させた径 20 0の芯部を使用し 、 また、 12, 000本 束の炭素織維 8本束に 1 m当り 20回の捩れを入 れ、 エポキシ樹脂を含浸させた捩れ入りの巻締め織維を芯部の軸方 向に対し 80° の角度でコイル状に巻付けて成形体を成形し、 この成 形体の芯部及び凸部を形成する炭素繊維束に含浸された熱硬化性樹 脂を硬化させ、 第 4図に示すように、 芯部 とその表面に捩れを入 れた卷締め用の炭素繊維束で形成した凸部 18とを有し、 炭素織維束 中に含浸させた熱硬化性樹脂が硬化している製品の繊維強化樹脂複 合筋材 1 6を製造した。 Epoxy resin is impregnated into a carbon fiber having an elastic modulus of 3.4 xl 0 5 MPa, and a core having a diameter of 200 in which the carbon fiber is axially oriented at a volume ratio of 55% is used. Twenty twisted winding fibers impregnated with epoxy resin are twisted 20 times per meter into 8 bundles of carbon fiber bundles, and coiled at an angle of 80 ° with respect to the axial direction of the core. The molded body is formed by winding, and the thermosetting resin impregnated in the carbon fiber bundle forming the core portion and the convex portion of the molded body is cured, and as shown in FIG. 4, the core portion and the surface thereof are formed. A fiber-reinforced resin composite bar of a product in which a thermosetting resin impregnated in a carbon woven fiber bundle is cured and has a convex portion 18 formed of a winding carbon fiber bundle twisted into Material 16 was produced.
比較例 1  Comparative Example 1
第 5図に示すように、 芯部 1 7の表面にその軸方向に対して捩りを 入れた巻締め用の炭素繊維束で 80° の角度を持たせてコイル状に折 返し卷きにし、 クロスに配向させた凸部 18を形成した以外は、 上記 実施例 1 と同様にして繊維強化樹脂複合筋材 1 6を製作し、 これを比 較例 1 とした。 As shown in Fig. 5, the surface of the core 17 is twisted in the axial direction with a bundle of carbon fibers for tightening, which is turned into a coil form at an angle of 80 °, Except for forming the convex part 18 oriented in the cloth, A fiber-reinforced resin composite reinforcing material 16 was produced in the same manner as in Example 1, and this was used as Comparative Example 1.
比較例 2  Comparative Example 2
次に、 捩れを入れずに 8本の炭素織維を合糸したものに直接樹脂 を含浸させ、 これを芯部の軸方向に対して 80° の角度でコイル状に 巻付けた以外は、 上記実施例 1 と同様にして図示外の繊維強化樹脂 複合筋材を製作し、 これを比較例 2 とした。  Next, except that the resin was directly impregnated with a twist of eight carbon fibers without twisting, and this was wound into a coil at an angle of 80 ° to the axial direction of the core. A fiber reinforced resin composite reinforcing bar (not shown) was produced in the same manner as in Example 1 above, and this was designated as Comparative Example 2.
比較例 3  Comparative Example 3
第 6図に示すように、 巻締めを実施せずに、 芯部 17の表面に、 波 の高さが 3 mm程度の波打ちを有する表面なみうち層 1 9 (繊維と含浸 樹脂から成る) を形成し、 これによつて芯部 17の表面に凸部を形成 した以外は、 上記実施例 1 と同様にして織維強化樹脂複合筋材 1 6を 製作し、 これを比較例 3 とした。  As shown in FIG. 6, a surface layer 19 (composed of fiber and impregnated resin) having a wavy height of about 3 mm is formed on the surface of the core 17 without performing the tightening. A fiber-reinforced resin composite reinforced material 16 was produced in the same manner as in Example 1 except that the projections were formed on the surface of the core 17.
比較例 4  Comparative Example 4
既製品の約 20 0の鉄製筋材を比較例 4 とした。  Approximately 200 ready-made iron bars were used as Comparative Example 4.
このようにして調製された上記実施例 1 及び比較例 1 〜 4の繊維 強化樹脂複合筋材 16について、 第 7図に示すような土木学会規準 ( 土木学会 「連続繊維補強材のコンク リー ト構造物への適用」 26〜27 頁) の引張り試験に準じてコンク リー トの付着性の試験をした。 な お、 第 7図中、 符号 20は変位計であり、 符号 21はコンク リー トであ The fiber-reinforced resin composite reinforcing bars 16 of Example 1 and Comparative Examples 1 to 4 prepared in this manner were subjected to the standard of the Japan Society of Civil Engineers as shown in FIG. Application to Concrete ”(pages 26 to 27) was tested for adhesion of concrete. In Fig. 7, reference numeral 20 is a displacement meter, and reference numeral 21 is a concrete.
Ό Ό
結果を第 8図に示す。 この図の横軸のすべり量は変位計 20の数値 を表わし、 コンク リー トからの複合筋材の引抜け量を示す。  The results are shown in FIG. The amount of slip on the horizontal axis in this figure represents the numerical value of the displacement meter 20, and indicates the amount of pullout of the composite bar from the concrete.
第 8図から明らかなように、 実施例 1 の繊維強化樹脂複合筋材は 、 比較例 4の鉄製筋材と同等以上の付着力を示した。 また、 比較例 1 の織維強化樹脂複合筋材は初期強度は高いが、 その後突然強度低 下を示した。 また、 捩れを全く入れない比較例 2はその付着強度が 半分以下であった。 As is clear from FIG. 8, the fiber-reinforced resin composite reinforced material of Example 1 exhibited an adhesive force equal to or higher than that of the iron reinforced material of Comparative Example 4. In addition, the fiber-reinforced resin composite reinforced material of Comparative Example 1 had a high initial strength, but then suddenly showed a decrease in strength. In Comparative Example 2 where no twist was applied, the adhesive strength was Less than half.
実施例 2  Example 2
弾性率 3. 4 x l 05MPaの炭素繊維にエポキシ樹脂を含浸させ、 この 炭素繊維を体積率 55 %で軸方向に配向させた径 20 0の芯部を使用し 、 また、 12, 000本 Z束の炭素繊維 8本束に 1 m当り 20回の捩れを入 れ、 エポキシ樹脂を含浸させた捩れ入りの巻締め織維を芯部の軸方 向に対し 80。 の角度でコィル状に巻付けて成形体をフイ ラメ ン トヮ ィ ンディ ング装置を用いて成形した。 Epoxy resin is impregnated into a carbon fiber having an elastic modulus of 3.4 xl 0 5 MPa, and a core having a diameter of 200 in which the carbon fiber is axially oriented at a volume ratio of 55% is used. Twenty twisted weaves, impregnated with epoxy resin, are twisted 20 times per meter into eight bundles of Z bundles of carbon fibers, and 80 with respect to the axial direction of the core. The formed body was wound in a coil shape at an angle of, and formed using a filament winding apparatus.
次に、 得られた成形体をその両端に取付けられた治具共々 フイ ラ メ ン トワイ ンディ ング装置から取外し、 これを、 第 3図に示すよう に、 両端の治具を利用して鉄製の固定型に固定し、 成形体を形成す る炭素繊維束に含浸させたエポキシ樹脂を 150 eC、 60分間の加熱処 理で熱硬化させ、 実施例 2の織維強化樹脂複合筋材を製作した。 こ の時、 固定型の熱膨張力により織維強化樹脂複合筋材に作用する引 張力は第 1表に示すとおりであった。 Next, the obtained molded body together with the jigs attached to both ends thereof were removed from the filament winding device, and as shown in FIG. and fixed to the fixed mold, the epoxy resin impregnated into the carbon fiber bundle that form a molded body is heat cured in a heating treatment of 0.99 e C, 60 min, manufactured of woven fiber-reinforced resin composite muscle material example 2 did. At this time, the tensile force acting on the fiber-reinforced composite fiber due to the thermal expansion force of the fixed type was as shown in Table 1.
比較例 5  Comparative Example 5
成形体の炭素繊維束の含浸されたエポキシ樹脂を熱硬化させる際 に 60で、 90分間に加熱処理した以外は、 上記実施例 2 と同様にして 成形体を得た。  A molded article was obtained in the same manner as in Example 2 except that the epoxy resin impregnated with the carbon fiber bundle of the molded article was heat-treated at 60 for 90 minutes when thermally cured.
比較例 6  Comparative Example 6
成形体の成形に当たって、 治具による芯部への軸方向引張力の付 与を行わなかった以外は、 上記実施例 2 と同様にして繊維強化樹脂 複合筋材を製作した。 この時の熱硬化処理条件は上記実施例 2 と同 じ 150 eC、 60分間であった。 A fiber reinforced resin composite reinforced material was produced in the same manner as in Example 2 except that no axial tensile force was applied to the core by the jig during the molding of the molded body. The heat curing treatment conditions at this time were the same as those in Example 2 at 150 eC for 60 minutes.
以上のようにして得られた実施例 2、 比較例 5及び 6の繊維強化 樹脂複合筋材について、 それぞれ約 1 , 500mm の長さのロッ ド状試験 体 22を切出し、 第 9図に示すように、 この試験体 22の両端 500匪 を 定着材 23で管状の金属製固定金具 24に固定し、 両端の金属製固定金 具 24を把持して口ッ ド状試験体が破壊するまで左右に引張る引張試 験を実施した。 結果を第 1表に示す。 From the fiber-reinforced resin composite reinforcing bars of Example 2 and Comparative Examples 5 and 6 obtained as described above, rod-shaped test pieces 22 each having a length of about 1,500 mm were cut out, and as shown in FIG. In addition, 500 marauders at both ends of this specimen 22 Tensile tests were performed in which the metal fixing brackets 24 at both ends were fixed and fixed to the tubular metal fixing bracket 24 with the fixing material 23, and were pulled to the left and right until the mouth-shaped test piece was broken. The results are shown in Table 1.
この第 1表の結果から明らかなように、 比較例 5が比較例 6 より 大きい破断荷重を示したが歪量は本発明の範囲外であつたので強化 用繊維の周囲に存在する熱硬化樹脂の強度より小さ く、 複合筋材の 強度が劣化した。 実施例 2はこの比較例 5 より更に大きい破断荷重 を示した。  As is clear from the results in Table 1, Comparative Example 5 showed a larger breaking load than Comparative Example 6, but the amount of strain was out of the range of the present invention. The strength of the composite bar deteriorated. Example 2 exhibited a larger breaking load than Comparative Example 5.
第 1 表  Table 1
Figure imgf000020_0001
実施例 3
Figure imgf000020_0001
Example 3
上記実施例 2 と同様に、 弾性率 3. 4 x i 06MPaの炭素繊維とェボキ シ樹脂とをフィ ラメ ン トワイ ンディ ング法で繊維体積含有率 55 %及 び約 20 0の成形体を製作し、 片側の治具を硬化炉側壁に固定し、 他 方の治具に油圧ジャツキを取付け、 これら一対の治具間に掛渡され た成形体の歪量が 800 以上になるように、 油圧ジャ ッキで約 4. 9 X 104 Nの引張力を加え、 その状態で成形体のみを 150 eC 60分間で 加熱処理し、 硬化させた。 Similarly to the second embodiment, fabricating a modulus 3. 4 xi 0 6 MPa of carbon fibers and Eboki sheet resin and Ficoll lame emissions Towai Ndi 55% fiber volume fraction in the ring method及beauty about 20 0 molded body Then, fix the jig on one side to the side wall of the curing furnace, attach a hydraulic jack to the other jig, and set the hydraulic pressure so that the amount of distortion of the molded body between the pair of jigs is 800 or more. With a jack, a tensile force of about 4.9 × 10 4 N was applied, and in this state, only the molded body was heated at 150 eC for 60 minutes and cured.
得られた成形体について、 上記実施例 2及び比較例 5〜 6 と同様 に引張試験を実施した。 結果は、 破断荷重が 4. 85 X 105 Nであり、 上記の比較例 6の無負荷のものに比べて、 顕著に高い値を示した。 The obtained molded body was subjected to a tensile test in the same manner as in Example 2 and Comparative Examples 5 and 6 above. As a result, the breaking load was 4.85 × 10 5 N, which was a remarkably high value as compared with the above-mentioned comparative example 6 having no load.
実施例 4 弾性率 3.4 x i05MPaである ^,(^(!本 束の炭素繊維 6本束とェポ キシ樹脂とを使用し、 FW装置 ( ドイツの B0LENZ & SCHAFER社製) を 用いて 30回掛渡し、 FW法により繊維体積含有率 55%で約 020關の芯 部約 3 mを成形し、 2.4 回転の捩れ (0.8 回転 Zm) を入れた後、 引続いて 12, 000本 Z束の炭素繊維 4本束で芯部を巻締めした。 Example 4 The elastic modulus is 3.4 x i0 5 MPa ^, (^ (! Using a bundle of 6 carbon fibers and epoxy resin, it takes 30 times using a FW device (manufactured by B0LENZ & SCHAFER, Germany). FW method, formed about 3 m of core of about 020 with a fiber volume content of 55%, twisted 2.4 times (0.8 turns Zm), and then 12,000 carbon bundles of Z bundle The core was wound up with a bundle of four fibers.
得られた凸部付き芯部を、 曲げ半径 15mの金属製の膂曲型内に固 定し、 150 てで 1 時間熱硬化させ、 曲げ半径 15m、 引張力による歪 量 12000 /Zmを有する臀曲状炭素繊維強化樹脂複合筋材を得た。  The obtained core with protrusions is fixed in a metal bending mold with a bending radius of 15 m, and is heat-cured at 150 ° C for 1 hour.A hip with a bending radius of 15 m and a strain of 12000 / Zm due to tensile force A curved carbon fiber reinforced resin composite reinforced material was obtained.
実施例 5  Example 5
エポキシ樹脂を含浸させた弾性率 3.4 x l05MPaの炭素織維ヤーン 又はプリプレグを用い、 これをハン ドレイアップ法又はブレーダー 装置を用いる方法で、 織維体積含有率 55%及び約 200の芯部約 3 m を成形し、 その芯部の両端を治具 1 に紐で縛って固定し、 これを FW 装置に取付けて芯部に 2.4 回転の捩れ (0.8 回転 Zm) を入れた後 、 この芯部の回りを上記実施例 1 と同様にして 12, 000本 Z束の炭素 繊維 4本束で卷締め、 曲げ半径 15mの金属製彎曲型内に固定し、 15 0ノ Cで 1 時間熱硬化させて、 曲げ半径 15m、 引張力による歪量 1200 0 Zmを有する脊曲状炭素織維強化樹脂複合筋材を得た。 Using impregnated with epoxy resin elastic modulus 3.4 x l0 5 MPa carbon O維yarn or prepreg, which Han drain-up method or a method using a braider apparatus, woven維体product content of 55% and about 200 core of Approximately 3 m is molded, and both ends of the core are tied and fixed to a jig 1 with a string, and this is attached to a FW device, and a 2.4-turn twist (0.8 rotation Zm) is inserted into the core. The area around the part is wrapped with 4 bundles of 12,000 carbon fiber bundles in the same manner as in Example 1 above, fixed in a metal bending mold with a bending radius of 15 m, and thermoset at 150 ° C for 1 hour. As a result, a bent carbon fiber reinforced resin composite bar having a bending radius of 15 m and an amount of strain of 1200 Zm due to tensile force was obtained.
実施例 6  Example 6
上記実施例 1 と同じ成形手順で 12, 000本 Z束の炭素織維 4本束で 卷締めた後、 凸部と同じ方向で剝離を生ぜしめることなく 2.4 回転 の捩れ (0.8 回転 Zm) を入れ、 これを曲げ半径 15mの金属製彎曲 型内に固定し、 150 てで 1 時間熱硬化させ、 曲げ半径 15m、 引張力 による歪量 12000 /Zmを有する臀曲状炭素繊維強化樹脂複合筋材 を得た。  After winding with 4 bundles of carbon fibers of 12,000 Z bundles in the same forming procedure as in Example 1 above, a twist of 2.4 rotations (0.8 rotation Zm) was produced without causing separation in the same direction as the convex portion. It is fixed in a metal bending mold with a bending radius of 15 m, heat-hardened at 150 mm for 1 hour, and has a bending radius of 15 m and a strain of 12000 / Zm due to tensile force. I got
なお、 上記実施例 4〜 6で得られた成形体のコンク リー ト付着力 は実施例 1 とほ 同等であり、 引張り強度は実施例 2 とほ 同等で あった。 産業上の利用可能性 Note that the compacts obtained in Examples 4 to 6 had a concrete adhesive strength similar to that of Example 1 and a tensile strength similar to that of Example 2. there were. Industrial applicability
本発明の繊維強化樹脂複合筋材は、 芯部の強度を劣化させること なく、 優れたコンク リー ト付着力を発揮させることができ、 軽量で 高耐食性、 良好な切削性等の多くの特性を併せ持つものである。  The fiber reinforced resin composite reinforcing material of the present invention can exhibit excellent concrete adhesion without deteriorating the strength of the core, and has many characteristics such as light weight, high corrosion resistance, and good machinability. It has both.
また、 本発明方法によれば、 保証強度の高い高強度繊維強化複合 筋材を極めて生産性良く容易に製造することができ、 また、 強化用 繊維が有するそれ本来の強度を効率良く発現させることができるの で、 それだけ少ない繊維量で必要強度を発現させることができ、 経 済性に優れており、 市場に大量に供給することが可能になってその 普及を促進することができる。  Further, according to the method of the present invention, a high-strength fiber-reinforced composite bar having a high guaranteed strength can be easily produced with extremely high productivity, and the original strength of the reinforcing fiber can be efficiently exhibited. As a result, the required strength can be developed with a smaller amount of fiber, the economical efficiency is excellent, and a large amount can be supplied to the market, and the spread thereof can be promoted.
更に、 本発明によれば、 臂曲した寸法精度の高い高強度繊維強化 樹脂複合筋材を強度劣化無しに、 しかも、 容易に製造することがで き、 また、 曲率半径 2 m以上に彎曲した寸法精度の高い高強度繊維 強化樹脂複合筋材を提供することができる。  Furthermore, according to the present invention, a bent high-strength fiber-reinforced resin composite reinforced material with high dimensional accuracy can be easily manufactured without deterioration in strength, and a curved radius of curvature of 2 m or more can be obtained. A high-strength fiber-reinforced resin composite reinforced material with high dimensional accuracy can be provided.
このため、 鉄筋あるいは PC鋼線の代替材として需要が拡大する繊 維強化樹脂複合材を安価に提供することができ、 ますます広範囲に その用途の拡大を図ることができ、 工業的価値の高いものである。  As a result, fiber-reinforced resin composites, whose demand is expanding as a substitute for rebar or PC steel wire, can be provided at low cost, and their use can be expanded over a wider range. Things.

Claims

請 求 の 範 囲 The scope of the claims
1. 熱硬化性樹脂と強化用織維束からなる熱硬化組成物で構成さ れた芯部と巻締め部 ; 該巻締め部は前記芯部表面に凸部を形成する1. a core portion and a tightening portion made of a thermosetting composition comprising a thermosetting resin and a reinforcing woven fiber bundle; the tightening portion forms a convex portion on the surface of the core portion
; 以上からなる繊維強化樹脂複合成形体において、 該成形体が引張 力による 500 〜3000 z Zmの歪量を有することを特徵とする繊維強 化樹脂複合筋材。 A fiber-reinforced resin composite reinforced material comprising the fiber-reinforced resin composite molded article as described above, wherein the molded article has a strain of 500 to 3000 zm due to tensile force;
2. 前記巻締め部の強化用繊維束が 1 m当り 10〜50回転の捩れを 有する請求の範囲 1記載の繊維強化樹脂複合筋材。  2. The fiber-reinforced resin composite reinforcing material according to claim 1, wherein the reinforcing fiber bundle in the tightening portion has a twist of 10 to 50 rotations per meter.
3. 前記巻締め部が前記芯部の軸方向に対して 65〜85° の角度で 螺旋状に形成されている請求項 1 又は 2記載の織維強化樹脂複合筋 材。  3. The fiber-reinforced resin composite reinforcing material according to claim 1, wherein the tightening portion is spirally formed at an angle of 65 to 85 ° with respect to the axial direction of the core portion.
4. 熱硬化性樹脂と強化用織維束からなる熱硬化組成物で構成さ れた芯部と卷締め部 ; 該巻締め部は前記芯部表面に凸部を形成する 4. A core and a crimped portion composed of a thermosetting composition comprising a thermosetting resin and a reinforcing woven bundle; the crimped portion forms a projection on the surface of the core.
; 以上からなる繊維強化樹脂複合成形体において、 前記芯部が捩れ を有し、 かつ前記成形体が引張力による 500 〜3000 / Zmの歪量を 有するとともに彎曲していることを特徵とする織維強化樹脂複合筋 お。 A fiber-reinforced resin composite molded article comprising the core having a twist, and the molded article having a strain of 500 to 3000 / Zm due to tensile force and being curved. Fiber reinforced resin composite muscle.
5. 前記芯部の捩れが 1 m当り 0. 5 〜 1 回転である請求の範囲 4 記載の繊維強化樹脂複合筋材。  5. The fiber-reinforced resin composite reinforcing material according to claim 4, wherein the core has a twist of 0.5 to 1 rotation per 1 m.
6. 前記芯部の彎曲が約 2〜20mの曲率半径を有する請求の範囲 4記載の繊維強化樹脂複合筋材。  6. The fiber-reinforced resin composite reinforced material according to claim 4, wherein the curvature of the core has a radius of curvature of about 2 to 20 m.
7 . 前記巻締め部が少く とも 1本の熱硬化された樹脂を含む強化 用繊維束で形成されている請求の範囲 1 又は 4記載の織維強化樹脂 複合筋材。  7. The fiber-reinforced resin composite reinforced material according to claim 1, wherein the wound portion is formed of a reinforcing fiber bundle containing at least one thermoset resin.
8. 繊維の方向が長さ方向に配向された複数の強化用織維束に熱 硬化性樹脂を含浸させて芯部を成形し、 得られた芯部の表面に少く とも 1 本の熱硬化性樹脂含浸の強化用織維束を巻締め、 凸部を形成 して成形体を製造するこ と ; 得られた成形体の軸方向に 500 〜3000 / Z mの歪量を付与する引張力を加えながら熱硬化処理を施すこと ; 以上からなる繊維強化樹脂複合筋材の製造方法。 8. A core is formed by impregnating a thermosetting resin into a plurality of reinforcing woven bundles in which the fiber direction is oriented in the length direction. One of them is to wind a thermosetting resin-impregnated reinforcing woven bundle and form a convex part to produce a molded product; a strain of 500 to 3000 / Zm in the axial direction of the obtained molded product Performing a thermosetting treatment while applying a tensile force for imparting an amount; a method for producing a fiber-reinforced resin composite reinforced material comprising the above.
9. フィ ラメ ン トワイ ンディ ング装置の両端チャッ ク部に設けた 複数のピンを有する一対の治具のピン間に熱硬化性樹脂を含浸した 強化用繊維束を掛渡して芯部を形成する請求の範囲 8記載の繊維強 化樹脂複合筋材の製造方法。  9. A core is formed by passing a reinforcing fiber bundle impregnated with thermosetting resin between the pins of a pair of jigs having a plurality of pins provided at both ends of the filament winding device. 9. The method for producing a fiber-reinforced resin composite reinforcing material according to claim 8.
10. 芯部の表面に熱硬化性樹脂含浸の強化用繊維束を巻締めして 凸部を成形するに際し、 l m当り 10〜50回転の捩れを有する強化用 織維束を使用する請求項 8に記載の織維強化樹脂複合筋材の製造法 o  10. The reinforcing fiber bundle impregnated with a thermosetting resin is wound around the surface of the core to form a convex part, and the reinforcing fiber bundle having a twist of 10 to 50 rotations per lm is used. The method for producing the fiber-reinforced resin composite reinforced material described in o
1 1. 成形体の芯部及び凸部の成形時にその両端に配置された一対 の治具を用いてこの成形体を金属製固定型の両端に固定し、 この金 属製固定型に固定したまま成形体を加熱して強化用繊維束に含浸さ れた熱硬化性樹脂を熱硬化させ、 この熱硬化の際の加熱による金属 製固定型の熱膨張力により成形体に 500 〜3000 mの歪量を付与 する引張力を加える請求項 8又は 10記載の繊維強化樹脂複合筋材の 製造法。  1 1. The molded body was fixed to both ends of a metal fixed mold using a pair of jigs arranged at both ends during molding of the core and the convex part of the molded body, and fixed to the metal fixed mold. The molded body is heated as it is to thermally cure the thermosetting resin impregnated in the reinforcing fiber bundle, and the thermal expansion force of the metal fixed mold caused by heating during this thermal curing causes the molded body to have a thickness of 500 to 3000 m. The method for producing a fiber-reinforced resin composite reinforcing material according to claim 8 or 10, wherein a tensile force for imparting a strain is applied.
12. 織維の方向が長さ方向に配向された複数の強化用繊維束に熱 硬化性樹脂を含浸させて芯部を成形し、 得られた芯部に捩れを加え ること ; 次いで該芯部の表面に少く とも 1本の熱硬化性樹脂含浸の 強化用繊維束を巻締め、 凸部を形成して成形体を製造すること ; 該 成形体を所定の曲率半径で彎曲した彎曲型内に固定し、 該彎曲した 成形体に熱硬化処理を施して 500 SOOO z Zmの歪量を付与する引 張力を加えること ; 以上からなる織維強化性樹脂複合筋材の製造方 法 o 12. A plurality of reinforcing fiber bundles in which the direction of the fibers is oriented in the length direction is impregnated with a thermosetting resin to form a core, and the obtained core is twisted; Winding a reinforcing fiber bundle impregnated with at least one thermosetting resin on the surface of the portion to form a convex portion to produce a molded product; the molded product is formed into a curved mold having a predetermined radius of curvature. And heat-curing the curved molded body to apply a tensile force giving a strain of 500 SOOO z Zm; a method of manufacturing a fiber-reinforced resin composite reinforcing bar comprising the above o
1 3. 繊維の方向が長さ方向に配向された複数の強化用繊維束に熱 硬化性樹脂を含浸させて芯部を成形し、 得られた芯部の表面に少く とも 1本の熱硬化性樹脂含浸の強化用繊維束を巻締め、 凸部を形成 して成形体を製造すること ; 得られた成形体の巻締め方向と同一方 向に該成形体に捩れを加えること ; 該成形体を所定の曲率半径で彎 曲した彎曲型内に固定し、 該彎曲した成形体に熱硬化処理を施して 500 〜3000 jLt Z mの歪量を付与する引張力を加えること ; 以上から なる繊維強化性樹脂複合筋材の製造方法。 1 3. A core is formed by impregnating a thermosetting resin into a plurality of reinforcing fiber bundles in which the fiber direction is oriented in the length direction, and at least one thermoset is formed on the surface of the obtained core. Winding a reinforcing fiber bundle impregnated with a conductive resin to form a convex portion to produce a molded body; twisting the molded body in the same direction as the winding direction of the obtained molded body; Fixing the body in a curved mold having a predetermined radius of curvature, applying a thermosetting treatment to the curved molded body, and applying a tensile force for imparting a strain of 500 to 3000 jLt Zm; A method for producing a fiber-reinforced resin composite reinforced material.
14. 前記芯部を成形するに際し、 フ ィ ラ メ ン ト ワ イ ンデイ ング装 置の両端チヤッ ク部に設けた複数のピン及び前記彎曲型に固定する ための固定部を有する一対の治具のピン間に熱硬化性樹脂を含浸し た強化用繊維束を掛渡して芯部を形成する請求の範囲 12又は 13記載 の繊維強化性樹脂複合筋材の製造方法。  14. A pair of jigs having a plurality of pins provided on both ends of the filament winding device and a fixing portion for fixing to the curved mold when forming the core portion. 14. The method for producing a fiber-reinforced resin composite reinforcing bar according to claim 12, wherein a reinforcing fiber bundle impregnated with a thermosetting resin is stretched between the pins to form a core.
15. 前記芯部に 1 m当り 0. 5 〜 1 回転の捩れを加える請求の範囲 12又は 13記載の繊維強化性樹脂複合筋材の製造方法。  15. The method for producing a fiber-reinforced resin composite reinforcing material according to claim 12 or 13, wherein a twist of 0.5 to 1 rotation per meter is applied to the core.
16. 前記芯部に約 2〜20mの曲率半径を有する彎曲を加える請求 の範囲 12又は 13記載の繊維強化性樹脂複合筋材の製造方法。  16. The method for producing a fiber-reinforced resin composite reinforcing material according to claim 12, wherein a curvature having a radius of curvature of about 2 to 20 m is added to the core.
17. 前記強化用繊維束を前記芯部表面に該芯部の軸方向に対して 65〜85° の角度で螺旋状に巻付けて巻締め部を形成する請求の範囲 12又は 13記載の繊維強化樹脂複合筋材の製造方法。  17. The fiber according to claim 12, wherein the reinforcing fiber bundle is spirally wound around the surface of the core at an angle of 65 to 85 ° with respect to the axial direction of the core to form a tightened portion. A method for producing a reinforced resin composite reinforcing bar.
18. 前記熱硬化性樹脂がエポキシ樹脂、 フエノール樹脂、 ポリア ミ ド樹脂等であり、 又、 前記強化用織維が PAN 系、 ピッチ系、 ハイ プリ ッ ド系等の炭素織維、 ァラ ミ ド繊維、 ガラス繊維等である請求 の範囲 1又は 4記載の繊維強化樹脂複合筋材。  18. The thermosetting resin is an epoxy resin, a phenol resin, a polyamide resin, or the like, and the reinforcing fiber is a carbon fiber or arami such as a PAN-based, pitch-based, or high-printed-based resin. 5. The fiber-reinforced resin composite reinforced material according to claim 1, wherein the fiber-reinforced resin composite reinforced material is glass fiber, glass fiber or the like.
19. 前記強化用繊維が PAN 系、 ピッチ系、 ハイプリ ッ ド系等の炭 素繊維、 ァラ ミ ド織維、 ガラス織維等であり、 又、 前記熱硬化性樹 脂がエポキシ樹脂、 フ ノール樹脂、 ポリアミ ド樹脂等である請求 の範囲 8 , 12又は 13記載の織維強化樹脂複合筋材の製造方法, 19. The reinforcing fibers are PAN-based, pitch-based, and hybrid-based carbon fibers, alkamide fibers, glass fibers, and the like, and the thermosetting resin is an epoxy resin, Phenolic resin, polyamide resin, etc. The method for producing a fiber-reinforced resin composite reinforcing bar according to the range 8, 12, or 13,
PCT/JP1995/001029 1994-05-27 1995-05-29 Fibre reinforced resin composite reinforcing material and method for producing the same WO1995033109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002191241A CA2191241A1 (en) 1994-05-27 1995-05-29 Fibre reinforced resin composite reinforcing material and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6115001A JP3064179B2 (en) 1994-05-27 1994-05-27 Curved fiber reinforced resin composite bar and method for producing the same
JP06115002A JP3088061B2 (en) 1994-05-27 1994-05-27 Fiber reinforced resin composite reinforced material and method for producing the same
JP6/115001 1994-05-27
JP6/115002 1994-05-27

Publications (1)

Publication Number Publication Date
WO1995033109A1 true WO1995033109A1 (en) 1995-12-07

Family

ID=26453627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001029 WO1995033109A1 (en) 1994-05-27 1995-05-29 Fibre reinforced resin composite reinforcing material and method for producing the same

Country Status (2)

Country Link
CA (1) CA2191241A1 (en)
WO (1) WO1995033109A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044173A1 (en) * 1996-05-23 1997-11-27 Uponor B.V. Method for manufacturing pipe fitting, and pipe fitting
CN100411856C (en) * 2006-09-29 2008-08-20 连云港中复连众复合材料集团有限公司 Making process of molded curved GRP lattice
CN103498535A (en) * 2013-09-29 2014-01-08 江苏法尔胜泓昇集团有限公司 Anchoring method of flat cross section of carbon fiber composite reinforcement material
EP2982871A4 (en) * 2013-04-05 2016-11-16 Shikibo Ltd Composite material lightweight coupling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2773042A1 (en) * 2012-03-23 2013-09-23 Pultrall Inc. Curved rod with improved mechanical resistance on its curve and production method therefof
AT514390A1 (en) * 2013-05-17 2014-12-15 Asamer Basaltic Fibers Gmbh rebar
US10843378B2 (en) 2017-05-15 2020-11-24 Morton Buildings, Inc. System and method for applying stress to a reinforcement member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274036A (en) * 1985-04-26 1986-12-04 ソシエテ・ナシヨナル・ド・ラミアント Structural rod and reinforced structural member
JPS6351014U (en) * 1986-09-22 1988-04-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274036A (en) * 1985-04-26 1986-12-04 ソシエテ・ナシヨナル・ド・ラミアント Structural rod and reinforced structural member
JPS6351014U (en) * 1986-09-22 1988-04-06

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044173A1 (en) * 1996-05-23 1997-11-27 Uponor B.V. Method for manufacturing pipe fitting, and pipe fitting
US6258197B1 (en) 1996-05-23 2001-07-10 Uponor Innovation Ab Method for manufacturing pipe fitting, and pipe fitting
CN100411856C (en) * 2006-09-29 2008-08-20 连云港中复连众复合材料集团有限公司 Making process of molded curved GRP lattice
EP2982871A4 (en) * 2013-04-05 2016-11-16 Shikibo Ltd Composite material lightweight coupling
CN103498535A (en) * 2013-09-29 2014-01-08 江苏法尔胜泓昇集团有限公司 Anchoring method of flat cross section of carbon fiber composite reinforcement material
CN103498535B (en) * 2013-09-29 2016-02-17 江苏法尔胜泓昇集团有限公司 Carbon fiber composite reinforcement material tabular cross section anchoring process

Also Published As

Publication number Publication date
CA2191241A1 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
US6811877B2 (en) Reinforcing structure
US20080141614A1 (en) Flexible fiber reinforced composite rebar
US5077113A (en) Filament-reinforced resinous structural rod
JP2012528746A (en) Fiber-reinforced resin bolt and method for manufacturing the same
KR101043809B1 (en) Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same
JP2016519745A (en) Hybrid spring device
JPH05148780A (en) Production of rope composed of fiber-reinforced composite material
JP3088061B2 (en) Fiber reinforced resin composite reinforced material and method for producing the same
WO1995033109A1 (en) Fibre reinforced resin composite reinforcing material and method for producing the same
US9682527B2 (en) Laminated composite structure and related method
JP4803499B2 (en) Bar and bar forming apparatus
WO1994011590A1 (en) Fiber-reinforced plastic rod and method of manufacturing the same
CN113039332B (en) Composite steel bar
JPH0533278A (en) Rope comprising carbon fiber-reinforced composite material and production thereof
JP2021147791A (en) Binding tool, and binding method
JP2019044542A (en) Concrete column reinforcement device
JP2524315B2 (en) FRP coil spring manufacturing method
JP3064179B2 (en) Curved fiber reinforced resin composite bar and method for producing the same
JP2012097386A (en) Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same
KR101614850B1 (en) Fiber reinforced polymer bar of a multi-divisional and production method therefor
JP3672684B2 (en) Continuous rod-shaped molded product intermediate, method for producing the same, molded product and molded method thereof
JP4489685B2 (en) Arrangement method of low thermal expansion linear body
JPH0866922A (en) Fiber reinforced plastic rod material and manufacture thereof
JPH01222927A (en) Manufacture of fiber reinforced resin member
JPH06136882A (en) Manufacture of concrete reinforcing material made of frp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2191241

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1996 737966

Country of ref document: US

Date of ref document: 19961126

Kind code of ref document: A