JPH0866612A - Removing method of nitrogen dioxide - Google Patents

Removing method of nitrogen dioxide

Info

Publication number
JPH0866612A
JPH0866612A JP6205053A JP20505394A JPH0866612A JP H0866612 A JPH0866612 A JP H0866612A JP 6205053 A JP6205053 A JP 6205053A JP 20505394 A JP20505394 A JP 20505394A JP H0866612 A JPH0866612 A JP H0866612A
Authority
JP
Japan
Prior art keywords
concentration
gas
adsorbent
nitrogen dioxide
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6205053A
Other languages
Japanese (ja)
Other versions
JP3568244B2 (en
Inventor
Yuji Horii
雄二 堀井
Takeshi Yamashita
岳史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16500670&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0866612(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20505394A priority Critical patent/JP3568244B2/en
Publication of JPH0866612A publication Critical patent/JPH0866612A/en
Application granted granted Critical
Publication of JP3568244B2 publication Critical patent/JP3568244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To remove NO2 conveniently and at low cost by passing a gas to be treated containing relatively low concn. NO and NO2 through a layer filled with a nitrogen dioxide adsorbent and/or a reducing agent. CONSTITUTION: The gas to be treated such as ventilated gas from an automobile tunnel or closed automobile stall containing both nitrogen monoxide and nitrogen dioxide and having <=6ppm total concn. of these is treated. This gas is passed through the layer filled with the nitrogen dioxide adsorbent such as carbonaceous adsorbent and/or reducing agent. The nitrogen dioxide in the gas is removed by adsorption and/or reduction. In this way, the NO2 harmful essentially is removed and its concn. is lowered to less than an environmental reference value of NO2 concn. by a convenient device and at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化窒素の除去方法
に関し、詳細には、比較的低濃度の窒素酸化物(以下,
NOX ) 即ち一酸化窒素(以下 NO)及び二酸化窒素(以下
NO2)を含む被処理ガスから本質的に有害であるNO2
除去する方法に関し、特には、自動車トンネルや閉鎖型
自動車駐車場(地下駐車場等)等からの換気ガス中、或
いは大気汚染の著しい地域における居住空間や医療施設
等の空気中に含まれる比較的低濃度のNOX 中のNO2 を高
効率で除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrogen dioxide.
NO X ) That is, nitric oxide (hereinafter NO) and nitrogen dioxide (hereinafter
Relates to a method of removing NO 2 is essentially harmful from the process gas containing NO 2), in particular, automobile tunnels and closed car parking (in the ventilation gas from the underground parking lot, etc.) or the like, or air pollution The present invention relates to a method for highly efficiently removing NO 2 in a relatively low concentration of NO X contained in the air of a living space or a medical facility in a region where the

【0002】[0002]

【従来の技術】アンモニアを還元剤としてNOX を窒素に
変換する選択的触媒還元法が、固定発生源からのNOX
減技術として普及し、高温かつ高濃度(数100ppm)の対
象には効果をあげている。
2. Description of the Related Art A selective catalytic reduction method in which NO x is converted to nitrogen using ammonia as a reducing agent has become popular as a technique for reducing NO x from fixed sources, and is effective for high temperature and high concentration (several hundred ppm) targets. Is giving.

【0003】しかし、自動車トンネルや閉鎖型自動車駐
車場からの換気ガス等の如く、NOX濃度が比較的低く
(一般には1〜3ppm 程度)、低温(常温)である被処
理ガスに対しては、前記選択的触媒還元法は直接適用す
ることができない(即ち、反応効率が悪いこと等により
有効でなく、好適に適用できない)。そのため、かかる
ガスに対しては、以下の如き方法が提案されている。
However, as such ventilation gas from automobiles tunnel or closed car parking, NO X concentration is relatively low (typically about 1-3 ppm), relative to the processed gas is cold (room temperature) is However, the selective catalytic reduction method cannot be directly applied (that is, it is not effective due to poor reaction efficiency and cannot be suitably applied). Therefore, the following methods have been proposed for such gas.

【0004】 被処理ガスにオゾンを添加し、NOをNO
2 に酸化してNOX の全量をNO2 にしてから複合金属酸化
物吸着剤を用いて該NO2 を吸着除去する方式が提案され
ている(特開平3-275126号、特開平4-176335号公報)。
その際に、余剰オゾンの分解を NO2吸着剤にさせる方式
も提案されている(特開平6-275126号公報)。 NOをそのまま吸着させるために、ゼオライトを用い
る方式(特開平1-155934号公報)、酸化チタンにルテニ
ウムを担持させた吸着剤を用いる方式(特開平5-123568
号公報)が提案されている。 本発明者らにより、表面酸化を抑制した炭素質吸着
剤、その中でも特に、特定の直径の細孔の発達した炭素
質吸着剤が高いNO吸着力を有することが見出されている
(特開平5-76753 号公報、特願平4-329652号)。 又、本発明者らにより、特定の結晶形態のマンガン
酸化物がNOの常温酸化活性を有することが見出され(特
開平5-253474号公報)、炭素質吸着剤と併用してNOX
除去する方式が提案されている(特願平4-252872号)。
Ozone is added to the gas to be treated to change NO to NO.
Method for adsorbing and removing the NO 2 with 2 total amount of oxidizing NO X to after the NO 2 composite metal oxide sorbents have been proposed (JP-A-3-275126, JP-A 4-176335 Issue).
At that time, a method has also been proposed in which the decomposition of excess ozone is performed by a NO 2 adsorbent (JP-A-6-275126). In order to adsorb NO as it is, a method using zeolite (Japanese Patent Laid-Open No. 1-155934) and a method using an adsorbent in which ruthenium is supported on titanium oxide (Japanese Patent Laid-Open No. 5-123568)
Issue). The present inventors have found that a carbonaceous adsorbent that suppresses surface oxidation, and in particular, a carbonaceous adsorbent with well-developed pores having a specific diameter has a high NO adsorbing power (Japanese Patent Laid-Open No. H11 (1999) -135242). 5-76753, Japanese Patent Application No. 4-329652). Further, the present inventors have found that a specific crystal form of manganese oxide has room temperature oxidation activity of NO (Japanese Patent Application Laid-Open No. 5-253474), and NO x can be used in combination with a carbonaceous adsorbent. A removal method has been proposed (Japanese Patent Application No. 4-252872).

【0005】[0005]

【発明が解決しようとする課題】前記従来ののオゾン
添加方式においては、NOX 濃度の変動が大きな対象(被
処理ガス)に対してはオゾンの添加率の正確な制御が困
難であるという問題点がある。即ち、オゾン添加量不足
を防ぐために安全をみてオゾンを過剰に添加すると、NO
X 中のNOの全量がNO2 に酸化されるが、NO2 除去率を高
く維持し続けないと規制対象であるNO2 の濃度がかえっ
て高まる。又、オゾン自体が有害なオキシダントである
と同時に、被処理ガス中の酸化され易い成分が酸化さ
れ、活性の高いオキシダント類を副生する恐れがある。
このとき、これらオキシダント類は適当な吸着剤や分解
剤で除去できるとしても、実装置においてはオゾン注入
部から該吸着剤(又は分解剤)の充填部に至る途中のダ
ンパー等からの若干のリーク(漏洩)は定常的にも避け
られず、又、その際にはNO2 も同時に漏洩するという不
具合がある。例えば、被処理ガス中NOX濃度か3ppm(自
動車トンネル換気ガスではNO2 は0.3ppm程度、残りはNO
)であり、該NOX 中のNOの全量をNO2 に酸化する場合、
処理装置出口のNO2 濃度を環境基準値並みの0.06ppm 以
下に抑制するには、漏洩分を含めて98%以上の除去率を
維持する必要があり、漏洩率が2%以上あれば、吸着剤
等による除去率が 100%であっても上記出口NO2 濃度:
0.06ppm以下を達成できず、又、その比率でオキシダン
ト類も漏洩するという不具合がある。以上の不具合や危
険性を回避するためにオゾンの添加を抑えると、未酸化
NO濃度が増し、全体としてのNOX 除去率が低下するとい
う不具合がある。
In [0008] the conventional of ozone addition method, a problem that for the concentration of NO X fluctuation large target (gas to be treated) it is difficult to accurately control the addition rate of the ozone There is a point. That is, if ozone is added excessively for safety in order to prevent insufficient ozone addition, NO
The total amount of NO in X is oxidized to NO 2 , but if the NO 2 removal rate is not kept high, the regulated NO 2 concentration will increase. In addition, ozone itself is a harmful oxidant, and at the same time, components that are easily oxidized in the gas to be treated are oxidized, and oxidants having high activity may be by-produced.
At this time, even if these oxidants can be removed by an appropriate adsorbent or decomposing agent, in an actual device, some leakage from a damper or the like on the way from the ozone injecting section to the adsorbent (or decomposing agent) filling section. (Leakage) is unavoidable on a steady basis, and at that time, NO 2 also leaks at the same time. For example, the concentration of NO X in the gas to be treated is 3 ppm (NO 2 is about 0.3 ppm in automobile tunnel ventilation gas, and the rest is NO).
), And oxidizing all of the NO in the NO x to NO 2 ,
In order to control the NO 2 concentration at the treatment equipment outlet to 0.06 ppm or less, which is similar to the environmental standard value, it is necessary to maintain a removal rate of 98% or more including leakage, and if the leakage rate is 2% or more, adsorption Even if the removal rate by chemicals etc. is 100%, the above NO 2 concentration at the outlet:
There is a problem that 0.06ppm or less cannot be achieved and oxidants are also leaked at that ratio. If the addition of ozone is suppressed to avoid the above problems and dangers, unoxidized
There is a problem that the NO concentration increases and the overall NO X removal rate decreases.

【0006】の方式の中、ゼオライトを用いる方式で
は、予め被処理ガスを脱湿しなければ高いNO吸着性能が
えられず経済性に欠ける。尚、特開平5-123568号記載の
方式ではNO2 の除去性能については述べられておらず、
不明である。
In the method of using zeolite among the methods of 1, the high NO adsorption performance cannot be obtained unless the gas to be treated is dehumidified in advance, which is economically disadvantageous. Incidentally, in the method described in JP-A-5-123568, NO 2 removal performance is not mentioned,
Unknown.

【0007】に係る炭素質吸着剤を用いる方式におい
ては、該吸着剤はNOの酸化活性を高めて高吸着性のNO2
を生成させる点に特徴があり、気相全体を酸化雰囲気に
することはないのでオキシダント類は生成せず、又、該
吸着剤はNO2 の吸着除去性能が極めて高いので、NO2
ほぼ完全に除去される。しかしながら、該吸着剤は通常
の活性炭に比べて高コストであるので、除去性能を損な
うことなく充填量を減らすか、寿命を伸ばすことが望ま
れる。
In the system using the carbonaceous adsorbent according to the above, the adsorbent enhances the oxidation activity of NO to increase the NO 2 having high adsorbability.
Is characterized in that it does not form an oxidizing atmosphere in the entire gas phase, so it does not generate oxidants, and the adsorbent has a very high NO 2 adsorption and removal performance, so NO 2 is almost completely removed. Will be removed. However, since the cost of the adsorbent is higher than that of ordinary activated carbon, it is desired to reduce the filling amount or extend the life without impairing the removal performance.

【0008】の方式においては、特定の結晶形態のマ
ンガン酸化物がNOの吸着力及びNO2への酸化力を有する
ため、NO2 吸着活性の高い炭素質吸着剤と組合せること
により、NOX 吸着性能を高めることができるが、本酸化
物は耐熱性が低いため高強度の粒状品を製造することが
困難であり、実装置における長期的な使用に難があるこ
とがわかった。
[0008] In scheme, since the manganese oxide in a particular crystalline form having an oxidizing power of the suction force and NO 2 NO, the by combining a high carbonaceous adsorbent of NO 2 adsorption activity, NO X Although it is possible to improve the adsorption performance, it was found that this oxide has low heat resistance, so that it is difficult to produce a high-strength granular product, and it is difficult to use it for a long time in an actual device.

【0009】更に、以上の各方法に共通して、NOをNO2
とともに除去対象とすることには経済上の問題がある。
即ち、固定発生源から排出されるNOX は全量がNOである
が、大気中へ放出、希釈されても長時間かけてNO2 へ酸
化されるため、このNOの除去は地域全体の総量規制対策
として有効である。これに対し、本発明の対象の被処理
ガス(自動車トンネルや閉鎖型自動車駐車場からの換気
ガス等)はNOX 濃度が低く総量も少ないため総量削減に
は役立たないものの、NO2 が全NOX の10〜50%も含ま
れ、これが原因となって環境基準を上回る測定ポイント
も出現しているため、局所的な環境対策が望まれる。そ
の対策として、NOX 全体を対象とする以上の各方式が提
案されているが、これら各方式では吸着性及び反応性が
低く、濃度的にも過半を占めるNOも除去対象とすること
によって装置が大型化し、且つ高コスト化も避けられな
いという問題点がある。
Further, in common with each of the above methods, NO is replaced with NO 2
Along with this, there is an economic problem in targeting removal.
In other words, the total amount of NO X emitted from fixed sources is NO, but even if it is released or diluted in the atmosphere, it will be oxidized to NO 2 over a long period of time, so the removal of this NO is restricted by the total amount regulation of the entire region. It is effective as a countermeasure. In contrast, the subject of the gas to be treated of the present invention (such as ventilation gases from automobiles tunnel or closed car parking) Although not help total reduction for even small amount low NO X concentration, NO 2 is total NO 10 to 50% of X is included, and because of this, some measurement points that exceed environmental standards have appeared, so local environmental measures are desired. As a countermeasure, the above-mentioned methods that target the entire NO X have been proposed.However, in each of these methods, the adsorption and reactivity are low, and NO that accounts for the majority of the concentration is also targeted for removal. However, there is a problem in that it is inevitable to increase the size and increase the cost.

【0010】そのため、より簡便にNO2 のみを除去する
ことが考えられる。その際、除去されなかったNOが大気
中で酸化されてNO2 になることが問題となるが、0.1ppm
(汚染された大気中NO濃度レベル)〜数ppm (自動車ト
ンネルや閉鎖型自動車駐車場からの換気ガス中NO濃度レ
ベル)程度の濃度のNOの酸化速度が極めて遅いのであれ
ば、その間のガスの拡散を考慮すると、簡易法としてNO
2 を除去の主対象とすることも有効である。
Therefore, it can be considered to remove only NO 2 more easily. At that time, there is a problem that unremoved NO is oxidized to NO 2 in the atmosphere, but 0.1ppm
If the oxidation rate of NO at a concentration of (contaminated atmospheric NO concentration level) to several ppm (NO concentration level in ventilation gas from automobile tunnels or closed-type automobile parking lots) is extremely slow, Considering diffusion, NO is a simple method.
It is also effective to set 2 as the main target of removal.

【0011】本発明はこの様な事情に着目してなされた
ものであって、その目的は、NOX 全体を除去対象とする
前記従来の各方式が共通して有する装置の大型化及び高
コスト化という経済上の問題点を解消し、より簡便な装
置で且つ低コストで本質的に有害であるNO2 を除去し
得、本質的にNO2 濃度の環境基準値:0.06ppm 以下への
対応を図り得るNO2 の除去方法を提供しようとするもの
である。
The present invention has been made by paying attention to such a situation, and an object thereof is to increase the size and cost of an apparatus which is common to the above-mentioned conventional methods in which the entire NO X is removed. It is possible to eliminate the economical problem of aging, remove NO 2 which is essentially harmful with a simpler device and at lower cost, and to meet the environmental standard value of essentially NO 2 concentration of 0.06 ppm or less. The present invention intends to provide a NO 2 removal method capable of achieving the above.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係るNO2 の除去方法は次のような構成と
している。即ち、請求項1記載のNO2 の除去方法は、一
酸化窒素及び二酸化窒素をともに含み、それらの合計濃
度が6ppm 以下である被処理ガスを、二酸化窒素吸着剤
及び/又は還元剤を充填した層に通じることを特徴とす
る二酸化窒素の除去方法である。
In order to achieve the above object, the NO 2 removal method according to the present invention has the following constitution. That is, in the method for removing NO 2 according to claim 1, the nitrogen dioxide adsorbent and / or the reducing agent is filled with the gas to be treated which contains both nitric oxide and nitrogen dioxide and has a total concentration of 6 ppm or less. It is a method of removing nitrogen dioxide, which is characterized in that it is connected to a layer.

【0013】請求項2記載のNO2 の除去方法は、一酸化
窒素及び二酸化窒素をともに含み、それらの合計濃度が
6ppm 以下である被処理ガスを、二酸化窒素吸着剤及び
/又は還元剤を充填した層に通じ、該ガス中の二酸化窒
素を吸着及び/又は還元せしめて除去することを特徴と
する二酸化窒素の除去方法である。
A method for removing NO 2 according to a second aspect of the present invention is to fill a nitrogen gas adsorbent and / or a reducing agent with a gas to be treated containing both nitric oxide and nitrogen dioxide and having a total concentration of 6 ppm or less. The nitrogen dioxide in the gas is removed by adsorbing and / or reducing the nitrogen dioxide in the gas.

【0014】請求項3記載のNO2 の除去方法は、前記二
酸化窒素を除去した後のガスを大気中に放出する請求項
2記載の二酸化窒素の除去方法である。
The method for removing NO 2 according to claim 3 is the method for removing nitrogen dioxide according to claim 2, wherein the gas after removing the nitrogen dioxide is released into the atmosphere.

【0015】請求項4記載のNO2 の除去方法は、前記二
酸化窒素吸着剤及び/又は還元剤が炭素質吸着剤である
請求項1、2又は3記載の二酸化窒素の除去方法であ
る。請求項5記載のNO2 の除去方法は、前記炭素質吸着
剤での吸着及び還元を終了した後、該炭素質吸着剤を10
0 〜200 ℃の温度まで加熱して吸着ガス成分を脱着さ
せ、該炭素質吸着剤の吸着及び還元活性を回復させる請
求項4記載の二酸化窒素の除去方法である。請求項6記
載のNO2 の除去方法は、前記脱着させたガス成分を冷却
した後、炭素質吸着剤を含む充填層に通じ、該ガス成分
中の二酸化窒素を吸着及び/又は還元せしめることによ
り、大気中への二酸化窒素の漏洩を防止する請求項5記
載の二酸化窒素の除去方法である。
The method for removing NO 2 according to claim 4 is the method for removing nitrogen dioxide according to claim 1, 2 or 3, wherein the nitrogen dioxide adsorbent and / or the reducing agent is a carbonaceous adsorbent. The method for removing NO 2 according to claim 5, wherein after the adsorption and reduction with the carbonaceous adsorbent is completed, the carbonaceous adsorbent is treated with 10
The method for removing nitrogen dioxide according to claim 4, wherein the adsorption gas component is desorbed by heating to a temperature of 0 to 200 ° C. to recover the adsorption and reduction activities of the carbonaceous adsorbent. The method for removing NO 2 according to claim 6, wherein after cooling the desorbed gas component, it is passed through a packed bed containing a carbonaceous adsorbent to adsorb and / or reduce nitrogen dioxide in the gas component. The method for removing nitrogen dioxide according to claim 5, which prevents leakage of nitrogen dioxide into the atmosphere.

【0016】[0016]

【作用】自動車トンネルや閉鎖型自動車駐車場からの換
気ガス等の如くNOX 濃度が低い被処理ガスについてのNO
X 除去方法を種々検討してきたが、かかる低濃度NOX
スの場合、前述の如く、NOの酸化速度が極めて遅いので
あれば、その間のガスの拡散を考慮すると、簡易法とし
てNO2 を除去の主対象とすることも有効であるとの発想
に立脚し、その正否を確認すべく検討したところ、かか
る低濃度NOX ガスの場合には、そのNOX の全量を除去対
象としなくても、その中に含まれるNO2 を除去すれば、
局所的なNO2 濃度の低減には有効であり、本発明の目的
を達成し得ることが明らかになり、かかる知見に基づき
本発明を完成するに至った。
[Action] NO for NO X concentration is lower the gas to be treated as such ventilation gas from automobiles tunnel or closed car parking
We have studied various X removal methods, but in the case of such low-concentration NO X gas, if the NO oxidation rate is extremely slow as described above, NO 2 is removed as a simple method considering the gas diffusion during that period. Based on the idea that it is also effective to make it the main target of NOx, we examined to confirm the correctness, and in the case of such low-concentration NO X gas, even if the entire amount of NO X was not targeted for removal. , If you remove the NO 2 contained in it,
It has been clarified that it is effective for locally reducing NO 2 concentration and that the object of the present invention can be achieved, and the present invention has been completed based on such findings.

【0017】即ち、自動車トンネルや閉鎖型自動車駐車
場からの換気ガスが地表に到達する迄には3〜5分程度
を要する。このガスに含まれるNOX (通常の平均濃度は
1〜3ppm 、その約10%がNO2 、残りはNO)を除去する
のではなく、NO2 を吸着又はNOに還元して除去した後、
大気中へ放出した場合、上記地表への到達時間(即ち3
〜5分程度)内に空気酸化されて生成するNO2 濃度が、
上記吸着又は還元により除去できずに放出され地表に到
達するガス中のNO2 の一部も含めて、環境基準値である
0.06ppm 以下であれば、本質的にNO2 濃度の環境基準
値:0.06ppm以下への対応を図り得ることになる。そこ
で、かかるNO2 濃度が環境基準値:0.06ppm以下となるた
めの初期条件(即ち、上記NO2 除去された後大気中へ放
出するガスのNO濃度〔以下、放出初期NO濃度〕)を明ら
かにするため、NOを空気で希釈してNO濃度(以下、初期
NO濃度)が数ppm で種々異なるガス(空気)を調整し、
それを透光性容器内に充填し、種々の条件下に放置し、
NOの酸化生成物であるNO2 の濃度の経時変化を測定し、
その変化とガスの初期NO濃度との関係を調べた結果、3
分でNO2 濃度が0.06ppm に達する場合の初期NO濃度は8.
2ppm程度、5分でNO2 濃度が0.06ppm に達する場合の初
期NO濃度は6.4ppm程度であると評価された。この結果
は、文献(大喜多敏一著,大気保全学,産業図書(198
2),表 4.7)に記載されたNOの酸化反応速度定数を基
にして計算した結果とほぼ一致する。これらの結果よ
り、上記NO2 濃度が環境基準値:0.06ppm 以下となるた
めの放出初期NO濃度は、前記地表への到達時間として最
長の5分を採用した場合、6.4ppm程度であり、従って、
放出初期NO濃度(即ち NO2除去された後のガス中NO濃
度)を6ppm以下にしておけば、それを大気中へ放出し
た場合、前記地表への到達時間(3〜5分程度)内に空
気酸化されて生成するNO2 濃度は環境基準値である0.06
ppm 以下になり、本質的にNO2 濃度の環境基準値:0.06
ppm 以下への対応を図り得ることになる。ここで、かか
る放出初期NO濃度:6ppm 以下とするには、NO2 除去前
の元のガス中のNOX 濃度(即ちNO及びNO2 の合計濃度)
を6ppm 以下にしておけばよい。尚、上記吸着又は還元
で除去されずに放出されるNO2 の許容濃度(放出時NO2
許容濃度)は、後述の如く、被処理ガス中のNOX (=NO+
NO2)濃度、より厳密(或いは直接的)には放出初期NO濃
度に依存し、かかる放出時NO2 許容濃度を含めてもNO2
除去前の元のガス中のNOX 濃度を6ppm 以下にしておけ
ばよい。
That is, it takes about 3 to 5 minutes for the ventilation gas from the automobile tunnel or the closed type automobile parking lot to reach the ground surface. NO X contained in the gas (the average concentration of usually 1-3 ppm, of which about 10% NO 2, remaining NO) instead of removing, after removal by reducing the adsorption or NO to NO 2,
When released to the atmosphere, the time required to reach the surface (ie 3
The concentration of NO 2 generated by air oxidation within about 5 minutes)
It is an environmental standard value, including a part of NO 2 in the gas that reaches the surface of the earth that cannot be removed by the above adsorption or reduction.
If it is 0.06 ppm or less, it is possible to essentially meet the environmental standard value of NO 2 concentration: 0.06 ppm or less. Therefore, the initial conditions for the NO 2 concentration to become the environmental standard value: 0.06 ppm or less (that is, the NO concentration of the gas released into the atmosphere after the NO 2 is removed (hereinafter, the initial release NO concentration)) are clarified. In order to obtain
Adjusting various gases (air) with NO concentration) of several ppm,
Fill it in a translucent container, leave it under various conditions,
By measuring the change with time of the concentration of NO 2 which is an oxidation product of NO,
As a result of examining the relationship between the change and the initial NO concentration of gas, 3
When the NO 2 concentration reaches 0.06 ppm in minutes, the initial NO concentration is 8.
It was evaluated that the initial NO concentration was about 6.4 ppm when the NO 2 concentration reached 0.06 ppm in about 5 ppm in about 2 ppm. The results are based on literature (Toshikazu Okita, Atmospheric Conservation Science, Industrial Books (198
2), Table 4.7) shows almost the same as the result calculated based on the NO oxidation rate constant. From these results, the initial release NO concentration for the above-mentioned NO 2 concentration to become the environmental standard value: 0.06 ppm or less is about 6.4 ppm when the longest time to reach the surface of the earth is 5 minutes. ,
If the initial release NO concentration (that is, the NO concentration in the gas after removal of NO 2 ) is kept at 6 ppm or less, when it is released into the atmosphere, it will reach the surface of the earth within about 3 to 5 minutes. The NO 2 concentration produced by air oxidation is 0.06, which is an environmental standard value.
ppm or less, essentially NO 2 concentration environmental standard value: 0.06
Therefore, it will be possible to cope with ppm or less. Here, in order to make the initial release NO concentration: 6 ppm or less, the NO X concentration in the original gas before removal of NO 2 (that is, the total concentration of NO and NO 2 )
Should be 6ppm or less. Note that the allowable concentration of NO 2 that is released without being removed by the adsorption or reduction (NO 2
The allowable concentration) is NO X (= NO + in the gas to be treated, as described later).
NO 2 ) concentration, more strictly (or directly), depends on the initial release NO concentration, and even if such allowable release NO 2 concentration is included, NO 2
The NO x concentration in the original gas before removal should be 6 ppm or less.

【0018】本発明に係るNO2 の除去方法は、以上の如
き知見に基づき完成されたものであり、NO(一酸化窒
素)及びNO2(二酸化窒素)をともに含み、それらの合計
濃度が6ppm 以下である被処理ガスを、NO2(二酸化窒
素)吸着剤及び/又は還元剤を充填した層に通じるよう
にしている。従って、この層(充填層)において被処理
ガス中のNO2 は吸着されるか、又はNOに還元されるか、
あるいは吸着されると共にNOに還元されて除去されるの
で、充填層の出口でのガスはNO2 の除去されたNO濃度:
6ppm 以下のガス(即ち、放出初期NO濃度:6ppm 以下
のガス)となり、これを大気中へ放出しても、前記知見
からわかる如く、地表への到達時間(3〜5分程度)内
に空気酸化されて生成するNO2 濃度は0.06ppm 以下にな
り、本質的にNO2 濃度の環境基準値:0.06ppm 以下への
対応を図り得る。尚、NO2 の除去されたNO濃度:6ppm
以下のガス(即ち、放出初期NO濃度:6ppm 以下のガ
ス)とは、NO2 を全く含んではならないというわけでは
なく、被処理ガス中のNOX (NO +NO2)濃度、より直接的
には放出初期NO濃度に対応して、ある程度まで許容でき
る(前記放出時NO2 許容濃度まで含んでもよい)ことは
前述のとおりである(この詳細については後述する)。
The method for removing NO 2 according to the present invention has been completed based on the above findings, and contains both NO (nitric oxide) and NO 2 (nitrogen dioxide), and their total concentration is 6 ppm. The following gases to be treated are communicated with the layer filled with the NO 2 (nitrogen dioxide) adsorbent and / or the reducing agent. Therefore, in this layer (packed bed), NO 2 in the gas to be treated is adsorbed or reduced to NO,
Alternatively, the gas at the outlet of the packed bed is adsorbed and reduced to NO and removed, so that the NO concentration of NO 2 removed is:
Even if it becomes a gas of 6 ppm or less (that is, a gas having an initial release NO concentration of 6 ppm or less) that is released into the atmosphere, as can be seen from the above findings, air is not reached within the time to reach the ground surface (about 3 to 5 minutes). The NO 2 concentration produced by oxidation is 0.06 ppm or less, and it is possible to essentially meet the environmental standard value of the NO 2 concentration: 0.06 ppm or less. In addition, NO concentration with NO 2 removed: 6 ppm
The following gases (that is, gases with an initial release NO concentration of 6 ppm or less) do not mean that NO 2 should not be contained at all, and the NO X (NO + NO 2 ) concentration in the gas to be treated, more directly, Corresponding to the initial release NO concentration, it is acceptable to some extent (the release NO 2 allowable concentration may be included) as described above (the details will be described later).

【0019】このとき、NO2 除去(浄化処理)対象のガ
スがNOX 濃度(即ちNO及びNO2 の合計濃度):6ppm 以
下の低濃度NOX ガスであれば、それを直接(事前浄化処
理することなく)、上記被処理ガスとして充填層に通じ
ればよく、本発明の処理対象のガスは低濃度NOX ガスで
あり、特に自動車トンネルや閉鎖型自動車駐車場からの
換気ガス、又は、大気汚染の著しい地域における居住空
間や医療施設等の空気等(NOX 濃度1〜3ppm 程度)で
あるので、それを直接充填層に通じればよく、事前浄化
処理の必要がない。又、本発明法は、上記の如く、NOX
全体を除去対象とするものではなく、NOX 中のNO2 を除
去の対象とするものであり、かかるNOX中のNO2 の割合
は低く、例えば自動車トンネルや閉鎖型自動車駐車場か
らの換気ガスの場合には前記の如く約10%と低く、その
ため吸着及び/又は還元による除去量が少なくてすむの
で、前記従来の各方式が共通して有する装置の大型化及
び高コスト化という経済上の問題点を解消し、より簡便
な装置で且つ低コストで遂行し得る。
At this time, if the gas targeted for NO 2 removal (purification treatment) is a low-concentration NO X gas having a NO X concentration (that is, the total concentration of NO and NO 2 ) of 6 ppm or less, it is directly (pre-purification treatment). However, the gas to be treated in the present invention is a low-concentration NO X gas, especially ventilation gas from an automobile tunnel or a closed type automobile parking lot, or the atmosphere. Since it is air such as living space or medical facilities (NO X concentration of about 1 to 3 ppm) in a heavily polluted area, it can be directly passed through the packed bed, and there is no need for prior purification treatment. Further, the present invention method, as described above, NO X
It is intended to remove NO 2 in NO X , not the whole to be removed, and the proportion of NO 2 in such NO X is low, such as ventilation from an automobile tunnel or a closed car parking lot. In the case of gas, it is as low as about 10% as described above, and therefore the amount of removal by adsorption and / or reduction can be small. The problem described above can be solved, and the operation can be performed with a simpler device at low cost.

【0020】従って、本発明に係るNO2 の除去方法によ
れば、自動車トンネルや閉鎖型自動車駐車場からの換気
ガス等の如き低濃度NOX ガスに対し、前記従来の各方式
に比し、より簡便な装置で且つ低コストで本質的に有害
であるNO2 を除去し得、本質的にNO2 濃度の環境基準
値:0.06ppm 以下への対応を図り得るようになる。
Therefore, according to the method for removing NO 2 according to the present invention, as compared with the above-mentioned conventional methods, for low-concentration NO X gas such as ventilation gas from an automobile tunnel or a closed type automobile parking lot, With a simpler device and at a lower cost, it is possible to remove essentially harmful NO 2, and it is possible to meet the environmental standard value of the NO 2 concentration of 0.06 ppm or less.

【0021】前記NO2 吸着剤及び/又は還元剤の充填層
において、被処理ガス中のNO2 は、前記の如く吸着され
るか、又はNOに還元されるか、或いは吸着されると共に
NOに還元されて、除去される(請求項2記載のNO2 の除
去方法)。この充填層の出口において被処理ガスは前記
の如くNO2 除去されたNO濃度:6ppm 以下のガスとな
り、これを後処理することなく、そのまま大気中へ放出
してもよい(請求項3記載のNO2 の除去方法)。
In the packed bed of the NO 2 adsorbent and / or the reducing agent, the NO 2 in the gas to be treated is adsorbed as described above, reduced to NO, or adsorbed at the same time.
It is reduced to NO and removed (NO 2 removal method according to claim 2). At the outlet of this packed bed, the gas to be treated becomes a gas having NO concentration removed from NO 2 as described above: 6 ppm or less, which may be directly discharged into the atmosphere without post-treatment (claim 3). NO 2 removal method).

【0022】前記NO2 吸着剤及び/又は還元剤として
は、低濃度NOX 中のNOをNO2 にできるだけ酸化せず、同
時にNO2 を高効率で吸着除去できる吸着剤であることが
望ましい。かかる吸着剤を探索すべく多数の吸着剤につ
いて研究を重ねた結果、炭素質吸着剤が最適であるとの
結論に達した。従って、この点から、前記NO2 吸着剤及
び/又は還元剤として炭素質吸着剤を使用すること、即
ち、炭素質吸着剤充填層を充填層として使用することが
好ましい(請求項4記載のNO2 の除去方法)。ここで、
炭素質吸着剤とは一般に活性炭を指すが、炭化のみに止
め賦活を行わないもの(活性コークス等)や、他材料と
活性炭との複合材料、或いは活性炭が他材料上に担持さ
れたものであってもよい。
The NO 2 adsorbent and / or the reducing agent is preferably an adsorbent which does not oxidize NO in low concentration NO X to NO 2 as much as possible and at the same time can adsorb and remove NO 2 with high efficiency. As a result of repeated research on a large number of adsorbents in order to search for such an adsorbent, it was concluded that the carbonaceous adsorbent is optimal. Therefore, from this point, it is preferable to use the carbonaceous adsorbent as the NO 2 adsorbent and / or the reducing agent, that is, to use the carbonaceous adsorbent packed bed as the packed bed (NO in claim 4). 2 removal method). here,
The carbonaceous adsorbent generally refers to activated carbon, but it is one that does not activate only by carbonization (activated coke, etc.), a composite material of another material and activated carbon, or one in which activated carbon is supported on another material. May be.

【0023】上記炭素質吸着剤に代えてゼオライトや活
性アルミナ等の如き極性吸着剤を用いると、該吸着剤は
乾燥下ではNO2 をかなり吸着するものの、高湿度下では
低性能であった。これに対して、疎水性の炭素質吸着剤
は高湿度域でも性能低下が僅かであるか、むしろ性能が
向上するものもあり、又、NO2 を極めて放出し難く、NO
を含まないNO2 を通じても、吸着せずに破過したものの
全量がNOであった。これは、NO2 が表面炭素によってNO
に還元されてから破過したためであり、高い空間速度条
件下でもNO2 に関してはほぼ完全な除去が可能である点
が他の吸着剤に見られない特徴である。
When a polar adsorbent such as zeolite or activated alumina was used in place of the carbonaceous adsorbent, the adsorbent adsorbed a considerable amount of NO 2 under dry conditions, but had low performance under high humidity. In contrast, if the hydrophobic carbonaceous adsorbent performance degradation even at high humidity range is small, while others are rather improved performance, also difficult to very releasing NO 2, NO
Even through NO 2 which did not contain NO, the total amount of NO 2 which was broken through without being adsorbed was NO. This is because NO 2 is NO due to surface carbon.
This is due to the breakthrough after being reduced to, and it is a feature not found in other adsorbents that NO 2 can be almost completely removed even under high space velocity conditions.

【0024】NO2 と僅かにNOを吸着した炭素質吸着剤
は、その性能が低下すると加熱再生することによって繰
り返し使用が可能になる。即ち、前記炭素質吸着剤での
吸着及び還元を終了した後、該炭素質吸着剤を100 〜20
0 ℃の温度まで加熱して吸着ガス成分を脱着させ、該炭
素質吸着剤の吸着及び還元活性を回復させることができ
る(請求項5記載のNO2 の除去方法)。このとき、上記
加熱温度(再生温度)を150 〜200 ℃とすると、脱着が
より完全に起こるので好ましい。上記加熱により、NO
2(或いは共存水と反応してできた硝酸)の大部分は表面
炭素と反応してNOに還元されて脱着する。NO2 のままで
脱着するゼオライトや活性アルミナ等に比べて脱着NO2
の除去を殆ど考慮しなくてよい点で有利である。
The carbonaceous adsorbent which adsorbs a small amount of NO 2 and NO becomes reusable by heating and regeneration when its performance deteriorates. That is, after the adsorption and reduction with the carbonaceous adsorbent is completed, the carbonaceous adsorbent is treated with 100 to 20
The adsorbed gas component can be desorbed by heating to a temperature of 0 ° C. to recover the adsorption and reduction activities of the carbonaceous adsorbent (the method for removing NO 2 according to claim 5). At this time, it is preferable that the heating temperature (regeneration temperature) is 150 to 200 ° C. because desorption occurs more completely. NO by heating above
Most of 2 (or nitric acid formed by reacting with coexisting water) reacts with surface carbon and is desorbed by being reduced to NO. NO 2 desorbed as compared to zeolite and activated alumina which desorb NO 2 as it is
It is advantageous in that it is not necessary to consider the removal of.

【0025】上記脱着の際、吸着していたNO2 濃度等に
よって、僅かではあるがNO2 のままで脱着する可能性も
あるが、その場合には脱着させたガス成分を冷却した
後、炭素質吸着剤を含む充填層に通じ、該ガス成分中の
NO2 を吸着及び/又は還元せしめるとよく、それにより
大気中への二酸化窒素の漏洩を防止できる(請求項6記
載のNO2 の除去方法)。複数の充填層を設け連続的に被
処理ガスを浄化する場合には、この充填層の中の吸着操
作中の充填層に脱着ガスを通してもよい。
[0025] During the desorption, the NO 2 concentration and the like which has been adsorbed, after slight but it is also possible to desorb remain NO 2, but which has cooled the gas components desorbed in which case, the carbon Through a packed bed containing a porous adsorbent,
It is advisable to adsorb and / or reduce NO 2 , which can prevent leakage of nitrogen dioxide into the atmosphere (the method for removing NO 2 according to claim 6). When a plurality of packed beds are provided and the gas to be treated is continuously purified, the desorbed gas may be passed through the packed bed during the adsorption operation in the packed bed.

【0026】前記の如く炭素質吸着剤充填層を使用する
場合(請求項4記載のNO2 の除去方法)、該炭素質吸着
剤充填層の上流側にゼオライトや活性アルミナ等のNO2
吸着剤充填層を設けると、該炭素質吸着剤充填層のNO2
負荷を下げて該炭素質吸着剤の寿命を伸ばすことができ
る。但し、この場合、吸着剤の加熱再生の際、ゼオライ
トや活性アルミナ等では前述の如くNO2 のままで脱着す
るので、この脱着したNO2 は無害化処理(前述の選択的
触媒還元法等による処理)後に放出する必要がある。そ
の反面、大風量装置等で大量の炭素質吸着剤を必要とす
る場合等には、その充填量を下げて取り替え頻度を減ら
すことが可能となる利点がある。
When the carbonaceous adsorbent packed bed is used as described above (the method for removing NO 2 according to claim 4), NO 2 such as zeolite or activated alumina is provided upstream of the carbonaceous adsorbent packed bed.
When the adsorbent packed bed is provided, NO 2 in the carbonaceous adsorbent packed bed is provided.
The load can be reduced to extend the life of the carbonaceous adsorbent. However, according to this case, when the thermal regeneration of the adsorbent, because the zeolite or activated alumina desorbs remains NO 2 as described above, the desorbed NO 2 is detoxification (the aforementioned selective catalytic reduction method or the like It must be released after treatment). On the other hand, when a large amount of carbonaceous adsorbent is required in a large air volume device or the like, there is an advantage that the filling amount can be reduced and the replacement frequency can be reduced.

【0027】前述の如く放出初期NO濃度:6ppm 以下の
ガスは放出時NO2 許容濃度までNO2を含んでもよく、こ
の放出時NO2 許容濃度は被処理ガス中のNOX (=NO+NO2)
濃度、より直接的には放出初期NO濃度に依存する。この
詳細を以下説明する。
The release initial NO concentration as described above: 6 ppm or less of gas may comprise a release time of NO 2 OEL to NO 2, NO X (= NO + NO 2) in the release time of NO 2 OEL to be treated in the gas
The concentration depends more directly on the initial NO concentration released. The details will be described below.

【0028】NOの空気中でのNO2 への酸化反応は 2NO+
O2→2NO2で表現され、その反応速度は、−d[NO]/dt=d
[NO2]/dt =k[NO]2(但し、[NO], [NO2]:濃度、k:反応
速度定数)の式に従う。これを積分すると、c=c1+(k
tc0 2)/(c0kt +1) の式が得られる。但し、c0:反応開
始前のNO濃度(本発明では換気設備等から放出される時
の濃度)、c1:反応開始前のNO2 濃度(本発明では換気
設備等から放出される時の濃度、即ち除去できなかった
NO2 の濃度)、k:反応速度定数、t:反応時間(本発明で
は、放出〜地表への到達時間)、c:時間t の時点での
NO2 濃度である。ここで、前述の如きNO含有空気中での
NOの酸化生成物であるNO2 の濃度経時変化の測定実験と
同様の実験を行った結果、濃度をモル分率(〔例〕3pp
m の場合→3×10-6)、時間を分で表した場合に、常温
において、 k=300 [min-1] で表されることが分かっ
た。
The oxidation reaction of NO to NO 2 in air is 2NO +
It is expressed as O 2 → 2NO 2 , and its reaction rate is −d [NO] / dt = d
Follow the formula [NO 2 ] / dt = k [NO] 2 (where [NO], [NO 2 ]: concentration, k: reaction rate constant). If this is integrated, c = c 1 + (k
The equation tc 0 2 ) / (c 0 kt +1) is obtained. Here, c 0 : NO concentration before the start of reaction (concentration when released from ventilation equipment or the like in the present invention), c 1 : NO 2 concentration before start of reaction (when released from ventilation equipment or the like in the present invention) Concentration, i.e. could not be removed
NO 2 concentration), k: reaction rate constant, t: reaction time (in the present invention, release-time to reach the ground surface), c: time t
NO 2 concentration. Here, in the NO-containing air as described above
As a result of the same experiment as the measurement of the change with time of the concentration of NO 2 which is an oxidation product of NO, the concentration was determined to be a molar fraction ([Example] 3 pp
In the case of m → 3 × 10 −6 ), it was found that when the time is expressed in minutes, k = 300 [min −1 ] at room temperature.

【0029】上記式を用いて、種々のc0に対して、 t=
3及び5[min] の場合のcを計算すると、次のようにな
る(下記表イ)。この計算結果の NO2濃度にc1を加えた
ものが、実際の予想NO2 濃度になる。
Using the above equation, for various c 0 , t =
Calculating c for 3 and 5 [min] is as follows (Table A below). The NO 2 concentration in the calculation result plus c 1 is the actual expected NO 2 concentration.

【0030】 [0030]

【0031】前述の如く地表への到達時間(3〜5分)
後の地表での総NO2 濃度が0.06ppm以下であればよい。
そこで、5分後の総NO2 濃度の許容値を0.06ppm 以下と
して計算すると、c1即ち放出時の許容NO2 濃度(放出時
NO2 許容濃度)が求められ、上記表イの最終カラムに記
した濃度〔放出時NO2 許容濃度〕になる。従って、放出
時のNO濃度(放出初期NO濃度)が1〜3ppm 程度の一般
的な対象に対しては、放出時NO2 許容濃度が0.05ppm 程
度になるように除去性能を設定すればよく、逆に6ppm
程度に達する場合には、0.01ppm 程度以下まで除去する
必要がある。このように、放出時NO2 許容濃度は放出初
期NO濃度に依存し、放出初期NO濃度が小さいほど大き
く、放出初期NO濃度6ppm のとき0.006ppm以下、放出初
期NO濃度1ppm のとき0.058ppm以下である。これらのこ
とからも、NO2 除去前の元のガス中のNOX 濃度としては
6ppm 以下にしておけば充分であることがわかる。
As mentioned above, the time to reach the ground surface (3 to 5 minutes)
It suffices if the total NO 2 concentration on the subsequent surface is 0.06 ppm or less.
Therefore, if the allowable value of the total NO 2 concentration after 5 minutes is 0.06 ppm or less, c 1 or the allowable NO 2 concentration at the time of release (at the time of release)
The NO 2 permissible concentration) is obtained, and the concentration shown in the last column of Table A above (NO 2 permissible concentration upon release) is obtained. Therefore, for general targets whose NO concentration at the time of release (initial NO concentration of release) is about 1 to 3 ppm, the removal performance may be set so that the allowable NO 2 concentration at release is about 0.05 ppm. Conversely, 6 ppm
When it reaches a certain level, it is necessary to remove it to less than 0.01ppm. Thus, the allowable concentration of NO 2 at release depends on the initial NO concentration, and the smaller the initial NO concentration is, the larger it is. When the initial NO concentration of 6 ppm is 0.006 ppm or less, when the initial NO concentration of 1 ppm is 0.058 ppm or less. is there. From these facts, the concentration of NO X in the original gas before NO 2 removal it can be seen that it is sufficient if not exceed 6 ppm.

【0032】上記のことを一般化すると、5分後の総NO
2 濃度を0.006ppm以下とする(地表での総NO2 濃度の許
容値以下とする)のに必要な、放出時NO2 許容濃度(モ
ル分率)は、放出初期NO濃度(モル分率)をC0とすると
下記式で表され、このとき濃度をppm で表すと下記
式で表される。 (0.06×10-6)−(1500C0 2)/(1500C0+1) -------- 式 0.06−(1500×10-6C0 2)/(1500×10-6C0+1) ---- 式
Generalizing the above, total NO after 5 minutes
2 NO 2 permissible concentration at release (molar fraction) required to reduce the concentration to 0.006 ppm or less (to be less than or equal to the permissible value of total NO 2 concentration on the ground surface) is the initial release NO concentration (molar fraction) the when C 0 is represented by the following formula, it is represented by the following formula to represent the concentration at this time in ppm. (0.06 × 10 -6 )-(1500C 0 2 ) / (1500C 0 +1) -------- Formula 0.06− (1500 × 10 -6 C 0 2 ) / (1500 × 10 -6 C 0 +1) ) ---- expression

【0033】尚、上記式より、NOX (NO +NO2)濃度:6
ppm 以下の被処理ガスを、NO2 吸着剤及び/又は還元剤
の充填層に通じ、該ガス中のNO2 を吸着及び/又は還元
せしめて除去するに際し、該充填層出口でのNO濃度をX
とすると、該充填層出口でのNO2 濃度が〔0.06−(1500
×10-62)/(1500×10-6X+1)〕ppm 以下になるよ
うに制御してやればよいといえる。
From the above equation, NO X (NO + NO 2 ) concentration: 6
Gas to be treated below ppm is passed through a packed bed of NO 2 adsorbent and / or reducing agent, and when removing NO 2 by adsorbing and / or reducing NO 2 in the gas, the NO concentration at the outlet of the packed bed is adjusted. X
Then, the NO 2 concentration at the packed bed outlet is [0.06− (1500
It can be said that the control should be performed so that it becomes less than or equal to × 10 -6 X 2 ) / (1500 × 10 -6 X + 1)] ppm.

【0034】[0034]

【実施例】炭素質吸着剤として、市販の武田薬品工業社
製粒状椰子殻活性炭GX(以下、吸着剤A)と、NOのNO2
への酸化触媒活性を高めるように、直径4〜10Åの細孔
径を発達させると共に、表面酸化を抑制するために賦活
後に窒素雰囲気中で冷却したフェノール樹脂賦活粒状炭
(神戸製鋼所社製)(以下、吸着剤B)とを用意した。
また、住友化学工業社製粒状活性アルミナ KHD(以下、
吸着剤C)も用意した。そして、これら吸着剤を別々に
内寸 3.2cmの吸着管内に充填して充填高さ:150mm の吸
着剤充填層を形成し、これら充填層に、温度:35℃、相
対湿度:60%、NOX 濃度:5.0ppm(NO:4.5ppm, NO2:0.5
ppm )の空気を被処理ガスとして通じて処理した。この
とき、吸着温度:35℃、空間速度:12000/h 、処理時
間:連続60hとした。
[Example] As a carbonaceous adsorbent, commercially available granular palm shell activated carbon GX (hereinafter, adsorbent A) manufactured by Takeda Pharmaceutical Co., Ltd. and NO 2 of NO
Phenol resin activated granular charcoal (Kobe Steel Co., Ltd.) which was cooled in a nitrogen atmosphere after activation to develop a pore diameter of 4 to 10Å to enhance the oxidation catalytic activity to Hereinafter, an adsorbent B) was prepared.
In addition, Sumitomo Chemical Co., Ltd. granular activated alumina KHD (hereinafter,
Adsorbent C) was also prepared. Then, these adsorbents are separately filled into an adsorption tube with an internal size of 3.2 cm to form an adsorbent packed bed with a packing height of 150 mm, and these packed beds have a temperature of 35 ° C, a relative humidity of 60% and NO. X concentration: 5.0ppm (NO: 4.5ppm, NO 2: 0.5
ppm) air was passed as the gas to be treated. At this time, the adsorption temperature was 35 ° C., the space velocity was 12000 / h, and the treatment time was continuous 60 hours.

【0035】そして、上記処理の際、吸着剤充填層出口
のNO濃度及びNOX 濃度を化学発光式NOX 分析計(最小測
定範囲:0−2ppm )で測定し、両濃度の差からNO2
度を求めた。このようにして求めたNO及びNO2 濃度変化
を表1に示す。表1からわかる如く、吸着剤充填層出口
のNO濃度は 1.1〜4.4ppmで、いづれの場合も6ppm 以下
である。一方、充填層出口のNO2 濃度は、吸着剤A充填
層の場合は処理時間60hの間 N.D(:検出されず〔検出
下限 0.02ppm〕)のレベルであり、吸着剤B充填層の場
合は処理時間24hまでの間 N.Dのレベルであるので、こ
れらは放出初期NO濃度6ppm 以下のガス(即ち、NO2
去されたNO濃度:6ppm 以下のガス)に相当し、従っ
て、それを直接大気中へ放出しても、地表への到達時間
(3〜5分程度)内に空気酸化され生成するNO2 濃度は
0.06ppm 以下になり(0.02ppm 程度のNO2 が常時放出さ
れていたと仮定しても地表でのNO2 濃度は0.06ppm 以下
になり)、本質的にNO2 濃度の環境基準値:0.06ppm 以
下への対応を図り得ることになる。尚、吸着剤B充填層
の場合、処理時間36〜60hでの充填層出口のNO2 濃度は
0.03〜0.10ppm であり、この中、処理時間48h以降では
直接大気中へ放出するとNO2 濃度の環境基準値:0.06pp
m 以下への対応が図り難いが、少なくとも処理時間36h
迄は直接大気中へ放出してもNO2 濃度の環境基準値:0.
06ppm 以下への対応が図れる。又、吸着剤C充填層の場
合、処理時間12〜60hでの充填層出口のNO2 濃度は0.03
〜0.37ppm であり、この中、処理時間24h以降では直接
大気中へ放出するとNO2 濃度の環境基準値:0.06ppm 以
下への対応が図り難いが、少なくとも処理時間12h迄は
直接大気中へ放出してもNO2 濃度の環境基準値:0.06pp
m以下への対応が図れる。
In the above treatment, the NO concentration and NO X concentration at the adsorbent packed bed outlet were measured by a chemiluminescence type NO X analyzer (minimum measurement range: 0-2 ppm), and NO 2 was calculated from the difference between the two concentrations. The concentration was determined. Table 1 shows the NO and NO 2 concentration changes thus obtained. As can be seen from Table 1, the NO concentration at the outlet of the adsorbent packed bed is 1.1 to 4.4 ppm, which is 6 ppm or less in any case. On the other hand, the NO 2 concentration at the packed bed outlet is at the level of ND (: not detected [detection lower limit 0.02 ppm]) during the treatment time of 60 hours in the case of the packed bed of adsorbent A, and in the case of the packed bed of adsorbent B, Since the treatment time is up to 24 hours and the level of ND, these correspond to a gas having an initial release NO concentration of 6 ppm or less (that is, a NO 2 removed NO concentration: gas having a concentration of 6 ppm or less), and therefore, it is directly exposed to the atmosphere. Even if released to, the NO 2 concentration generated by air oxidation within the time to reach the surface (about 3 to 5 minutes) is
0.06ppm becomes less (NO 2 concentration at the surface even assuming that NO 2 of about 0.02ppm had been released at all times becomes less 0.06ppm), essentially NO 2 concentration of environmental standards: 0.06ppm or less Can be dealt with. In the case of the adsorbent B packed bed, the NO 2 concentration at the packed bed outlet during the treatment time of 36 to 60 h is
0.03 to 0.10 ppm, of which, after the treatment time of 48 hours, if released directly into the atmosphere, the environmental standard value of NO 2 concentration is: 0.06 pp
It is difficult to cope with m or less, but at least processing time 36h
Even if it is directly released into the atmosphere, the environmental standard value of NO 2 concentration is: 0.
It is possible to achieve a level below 06ppm. Further, in the case of the adsorbent C packed bed, the NO 2 concentration at the packed bed outlet at the treatment time of 12 to 60 hours is 0.03.
It is ~ 0.37ppm, of which, if it is directly discharged into the atmosphere after the treatment time of 24h, it is difficult to meet the environmental standard value of NO 2 concentration: 0.06ppm or less, but it is directly released into the atmosphere until the treatment time of 12h. Even if the environmental standard value of NO 2 concentration: 0.06pp
It is possible to deal with m or less.

【0036】吸着剤A、B、Cの三者の性能を比較する
に、吸着剤CはNO吸着能を殆ど示さず、又、当初からNO
2 の破過が認められ、最も性能が劣っていた。これに対
し、吸着剤A、Bは性能に優れ、この両者を比較する
と、NOを含むNOX 全体の除去性能は吸着剤Bの方が優れ
ていたが、しかしNO2 のみに着目すると吸着剤Aの方が
優れ、実験期間(処理時間60h)中NO2 の破過は認めら
れなかった。ここで、活性炭へのNOの吸着は活性炭の酸
化触媒能によってNOがNO2 に酸化されることに起因して
いるため、この酸化触媒能力を強化した吸着剤Bは、同
一運転(処理)時間で比較すると、より多量のNO2 を処
理した(一部は吸着し、一部は表面炭素との反応によっ
てNOに再還元されて再放出された)ことになる。従っ
て、本発明法の場合のようなNO2 のみの除去に対して
は、吸着剤Bの如くNO吸着活性を強化せしめた高価な活
性炭よりも、吸着剤Aの如くNO吸着活性を強化していな
い安価な活性炭の方がむしろ高性能であり、従来のNOX
全体を処理する方法に比べて経済的である。
Comparing the performances of the three adsorbents A, B, and C, adsorbent C showed almost no NO adsorbing capacity, and from the beginning, NO
A breakthrough of 2 was observed, with the worst performance. On the other hand, the adsorbents A and B were excellent in performance, and comparing them, the adsorbent B was superior in the removal performance of the entire NO X including NO, but when only focusing on NO 2 , A was superior, and no breakthrough of NO 2 was observed during the experimental period (treatment time 60 h). Here, the adsorption of NO on the activated carbon is due to the fact that NO is oxidized to NO 2 by the oxidation catalytic ability of the activated carbon. Therefore, the adsorbent B with enhanced oxidation catalytic ability has the same operation (treatment) time. In comparison with the above, a larger amount of NO 2 was treated (a part was adsorbed, and a part was re-reduced and re-released to NO by the reaction with the surface carbon). Therefore, for removal of only NO 2 as in the case of the method of the present invention, the NO adsorption activity is enhanced as in the adsorbent A, as compared with the expensive activated carbon having the enhanced NO adsorption activity as in the adsorbent B. Inexpensive activated carbon, which is not cheaper, has higher performance than conventional NO X.
It is more economical than the whole method.

【0037】[0037]

【表1】 [Table 1]

【0038】以上の実施例からもわかる如く、本発明に
よれば、自動車トンネルや閉鎖型自動車駐車場からの換
気ガス等の如き低濃度NOX ガスの浄化のためのNOX の除
去対象をNO2 に限定することによって、一般的な安価な
吸着剤を用いて高い空間速度で浄化処理を行わせること
ができるようになる。この場合、特に、前記吸着剤A等
の如き炭素質吸着剤を用いると、NO2 のほぼ全量が、吸
着操作時の破過ガスとして或いは再生操作時の脱着ガス
としてNOの形で脱離するため、吸着剤の再生操作によっ
て生成するNO2 の処理という問題がなく、経済的であ
る。
As can be seen from the above embodiments, according to the present invention, NO X removal target for purifying low concentration NO X gas such as ventilation gas from an automobile tunnel or a closed type automobile parking lot is NO. By limiting the number to 2 , it becomes possible to perform the purification treatment at a high space velocity using a general inexpensive adsorbent. In this case, in particular, when a carbonaceous adsorbent such as the adsorbent A is used, almost all of NO 2 is desorbed in the form of NO as a breakthrough gas during the adsorption operation or as a desorption gas during the regeneration operation. Therefore, there is no problem of treatment of NO 2 generated by the adsorbent regeneration operation, which is economical.

【0039】[0039]

【発明の効果】本発明に係るNO2 の除去方法は、自動車
トンネルや閉鎖型自動車駐車場からの換気ガス等の如き
低濃度NOX ガスの浄化に際し、本質的に有害であるNO2
を除去対象とするものであり、NOX 全体を除去対象とす
る従来の各方式が共通して有する装置の大型化及び高コ
スト化という経済上の問題点を解消し、従来の各方式に
比し、より簡便な装置で且つ低コストで本質的に有害で
あるNO2 を除去し得、本質的にNO2 濃度の環境基準値:
0.06ppm 以下への対応を図り得るようになるという効果
を奏する。又、本発明法は、オゾンを添加するものでは
なく、脱湿を要するものでもないから、従来のオゾン添
加方式及びゼオライト充填方式の如き問題点はなく
て解消することができるという効果を奏する。
Method of removing NO 2 according to the present invention, upon purification of such low concentration NO X gas such as ventilation gases from automobiles tunnel or closed car parking, NO 2 is essentially harmful
It eliminates the economic problem of increasing the size and cost of the equipment that is common to each conventional method that removes the entire NO X and eliminates the economic problems. However, it is possible to remove essentially harmful NO 2 at a lower cost with a simpler device, and the environmental standard value of the essentially NO 2 concentration is:
This has the effect of making it possible to meet the requirement of 0.06 ppm or less. Further, since the method of the present invention does not add ozone and does not require dehumidification, it has an effect that it can be solved without problems such as the conventional ozone addition method and zeolite filling method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一酸化窒素及び二酸化窒素をともに含
み、それらの合計濃度が6ppm 以下である被処理ガス
を、二酸化窒素吸着剤及び/又は還元剤を充填した層に
通じることを特徴とする二酸化窒素の除去方法。
1. A carbon dioxide containing both nitrogen monoxide and nitrogen dioxide, the total concentration of which is 6 ppm or less, is passed through a layer filled with a nitrogen dioxide adsorbent and / or a reducing agent. How to remove nitrogen.
【請求項2】 一酸化窒素及び二酸化窒素をともに含
み、それらの合計濃度が6ppm 以下である被処理ガス
を、二酸化窒素吸着剤及び/又は還元剤を充填した層に
通じ、該ガス中の二酸化窒素を吸着及び/又は還元せし
めて除去することを特徴とする二酸化窒素の除去方法。
2. A treated gas containing both nitric oxide and nitrogen dioxide, the total concentration of which is 6 ppm or less, is passed through a layer filled with a nitrogen dioxide adsorbent and / or a reducing agent, and the dioxide in the gas is discharged. A method for removing nitrogen dioxide, which comprises removing nitrogen by adsorbing and / or reducing it.
【請求項3】 前記二酸化窒素を除去した後のガスを大
気中に放出する請求項2記載の二酸化窒素の除去方法。
3. The method for removing nitrogen dioxide according to claim 2, wherein the gas after removing the nitrogen dioxide is released into the atmosphere.
【請求項4】 前記二酸化窒素吸着剤及び/又は還元剤
が炭素質吸着剤である請求項1、2又は3記載の二酸化
窒素の除去方法。
4. The method for removing nitrogen dioxide according to claim 1, 2 or 3, wherein the nitrogen dioxide adsorbent and / or the reducing agent is a carbonaceous adsorbent.
【請求項5】 前記炭素質吸着剤での吸着及び還元を終
了した後、該炭素質吸着剤を100 〜200 ℃の温度まで加
熱して吸着ガス成分を脱着させ、該炭素質吸着剤の吸着
及び還元活性を回復させる請求項4記載の二酸化窒素の
除去方法。
5. After completion of adsorption and reduction with the carbonaceous adsorbent, the carbonaceous adsorbent is heated to a temperature of 100 to 200 ° C. to desorb the adsorbed gas component, and the carbonaceous adsorbent is adsorbed. And the method for removing nitrogen dioxide according to claim 4, wherein the reducing activity is restored.
【請求項6】 前記脱着させたガス成分を冷却した後、
炭素質吸着剤を含む充填層に通じ、該ガス成分中の二酸
化窒素を吸着及び/又は還元せしめることにより、大気
中への二酸化窒素の漏洩を防止する請求項5記載の二酸
化窒素の除去方法。
6. After cooling the desorbed gas component,
6. The method for removing nitrogen dioxide according to claim 5, wherein nitrogen dioxide in the gas component is adsorbed and / or reduced by passing through a packed bed containing a carbonaceous adsorbent to prevent leakage of nitrogen dioxide into the atmosphere.
JP20505394A 1994-08-30 1994-08-30 Automobile tunnel ventilation gas purification method Expired - Lifetime JP3568244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20505394A JP3568244B2 (en) 1994-08-30 1994-08-30 Automobile tunnel ventilation gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20505394A JP3568244B2 (en) 1994-08-30 1994-08-30 Automobile tunnel ventilation gas purification method

Publications (2)

Publication Number Publication Date
JPH0866612A true JPH0866612A (en) 1996-03-12
JP3568244B2 JP3568244B2 (en) 2004-09-22

Family

ID=16500670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20505394A Expired - Lifetime JP3568244B2 (en) 1994-08-30 1994-08-30 Automobile tunnel ventilation gas purification method

Country Status (1)

Country Link
JP (1) JP3568244B2 (en)

Also Published As

Publication number Publication date
JP3568244B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
TWI282748B (en) Gas purification method and apparatus thereof
JPH0616818B2 (en) Exhaust gas purification method and device
JPH04367707A (en) Nitrogen oxides removal
JP2005177737A (en) Activated carbon for removing siloxane, method for removing siloxane, and adsorbent for removing siloxane
JPH0866612A (en) Removing method of nitrogen dioxide
JPH0618609B2 (en) Ventilation gas purification equipment for road tunnels, etc.
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JPH05154339A (en) Removal of nitrogen oxide
JP2670972B2 (en) How to remove trace acetaldehyde from air
JPH0747227A (en) Purification of exhaust gas containing nitrogen oxide in low concentration
JPH08252428A (en) Removal of nitrogen dioxide
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JPH06262025A (en) Concentration of nitrogen monoxide
JPH08215545A (en) Method for removing nitrogen monoxide
JP2631067B2 (en) How to remove trace acetaldehyde from air
JP4256216B2 (en) Gas processing apparatus and gas processing method
JP2006026590A (en) Method for removing nitrogen dioxide and adsorbent for nitrogen dioxide
JPH05123525A (en) Gas purifying method and apparatus therefor
JPH07275656A (en) Gas purifying method
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP3545029B2 (en) Exhaust gas purification method
JP2651779B2 (en) How to remove trace acetaldehyde from air
JP2007175595A (en) Exhaust gas treatment facility and exhaust gas treatment method
JP3310861B2 (en) Method for treating gas containing NO X and O 3

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4