JP6575050B2 - Carbon dioxide recovery method and recovery apparatus - Google Patents

Carbon dioxide recovery method and recovery apparatus Download PDF

Info

Publication number
JP6575050B2
JP6575050B2 JP2014164072A JP2014164072A JP6575050B2 JP 6575050 B2 JP6575050 B2 JP 6575050B2 JP 2014164072 A JP2014164072 A JP 2014164072A JP 2014164072 A JP2014164072 A JP 2014164072A JP 6575050 B2 JP6575050 B2 JP 6575050B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
pressure
adsorption tower
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014164072A
Other languages
Japanese (ja)
Other versions
JP2016040025A (en
Inventor
俊之 内藤
俊之 内藤
北野 誠
誠 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014164072A priority Critical patent/JP6575050B2/en
Publication of JP2016040025A publication Critical patent/JP2016040025A/en
Application granted granted Critical
Publication of JP6575050B2 publication Critical patent/JP6575050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Description

本発明は、二酸化炭素を選択的に吸着する吸着剤を用いて、圧力スイング吸着法に従って燃焼ガス等の二酸化炭素を含有するガスから二酸化炭素を分離・濃縮する二酸化炭素の回収方法及び回収装置に関し、特に、吸着剤として金属−有機構造体を用いる構成を効果的に利用して高純度の二酸化炭素を回収可能な二酸化炭素の回収方法及び回収装置に関する。   The present invention relates to a carbon dioxide recovery method and recovery apparatus that uses an adsorbent that selectively adsorbs carbon dioxide and separates and concentrates carbon dioxide from a gas containing carbon dioxide such as combustion gas according to a pressure swing adsorption method. In particular, the present invention relates to a carbon dioxide recovery method and a recovery apparatus capable of recovering high-purity carbon dioxide by effectively using a configuration using a metal-organic structure as an adsorbent.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められ、二酸化炭素の回収方法として、例えば、圧力スウィング吸着法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。   Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, in order to enable recovery and storage of carbon dioxide from combustion exhaust gases and process exhaust gases without releasing them into the atmosphere, various researches have been vigorously conducted. As a method for recovering carbon dioxide, for example, pressure swing Adsorption methods, membrane separation and concentration methods, chemical absorption methods utilizing reaction absorption by basic compounds, and the like are known.

圧力スイング吸着(PSA)法は、特定成分に選択吸着性を有する吸着剤を用いて、ガス中の特定成分を吸着することによってガスから分離する分離方法であり、複数の成分を含有する混合ガスの分離方法として広く知られており、様々な分野で混合ガスの分離方法として利用することができる。PSA法において、吸着された吸着剤上の特定成分は、その後圧力を低下させることによって吸着剤から脱離させて回収し、吸着と脱離とが繰り返し行われる。PSA法の分離効率は、特定成分に対する吸着剤の選択性に依存するが、吸着剤の選択性及び原料ガスの特定成分濃度等に応じて、特定成分の除去、分離、濃縮又は精製を目的としてPSA法を利用することができる。例えば、下記特許文献1には、PSA装置で製造した酸素を酸素燃焼設備へ供給することが記載される。   The pressure swing adsorption (PSA) method is a separation method in which a specific component in a gas is separated from a gas by using an adsorbent having selective adsorption property to the specific component, and a mixed gas containing a plurality of components. It is widely known as a separation method for the mixed gas and can be used as a separation method for mixed gas in various fields. In the PSA method, the specific component on the adsorbent adsorbed is then desorbed and recovered from the adsorbent by reducing the pressure, and adsorption and desorption are repeated. The separation efficiency of the PSA method depends on the selectivity of the adsorbent with respect to the specific component, but for the purpose of removing, separating, concentrating or purifying the specific component depending on the selectivity of the adsorbent and the specific component concentration of the raw material gas. The PSA method can be used. For example, Patent Document 1 described below describes supplying oxygen produced by a PSA apparatus to an oxyfuel combustion facility.

従来、排ガスから二酸化炭素を回収する方法として、各種不純物(硫黄酸化物、窒素酸化物、塩素、水銀等)を排ガスから除去した後に、残留する濃縮二酸化炭素を深冷分離(液化及び精密蒸留)によって精製する方法が有力であり、実用化に向けて様々に検討されている。   Conventionally, as a method of recovering carbon dioxide from exhaust gas, after removing various impurities (sulfur oxide, nitrogen oxide, chlorine, mercury, etc.) from exhaust gas, the remaining concentrated carbon dioxide is subjected to cryogenic separation (liquefaction and precision distillation) The method of purifying by the method is promising, and various studies have been made for practical use.

吸着剤を利用した二酸化炭素の分離は、例えば、下記特許文献2に記載される。この文献では、吸着剤として、メソポーラスシリカで形成した担体にMg,Ca,Sr,Ba,Y及びLaから選択される元素を担持させたものを用い、吸着剤に吸着された二酸化炭素を加熱によって脱着することが示されている。他方、下記特許文献3には、二酸化炭素を含むガスの精製において、硫黄酸化物や窒素酸化物の存在下で水を吸着除去する際の吸着剤として、シリカゲル、ゼオライト、多孔質ガラスなどを用いることを記載する。又、新素材の開発において、吸着剤としての用途開発が試みられている(下記非特許文献1,2参照)。   The separation of carbon dioxide using an adsorbent is described in Patent Document 2 below, for example. In this document, as an adsorbent, a carrier made of mesoporous silica is used which supports an element selected from Mg, Ca, Sr, Ba, Y, and La, and carbon dioxide adsorbed on the adsorbent is heated. Desorption has been shown. On the other hand, in Patent Document 3 below, silica gel, zeolite, porous glass, or the like is used as an adsorbent when water is adsorbed and removed in the presence of sulfur oxide or nitrogen oxide in the purification of gas containing carbon dioxide. It is described. In the development of new materials, attempts have been made to develop applications as adsorbents (see Non-Patent Documents 1 and 2 below).

特開2001−221429号公報JP 2001-221429 A 特開2010−184229号公報JP 2010-184229 A 特許5350376号Patent 5350376

高分子学会、「超ハイブリッド材料(ポリマーフロンティア21講演録シリーズ34)」、2012年11月The Society of Polymer Science, “Super Hybrid Materials (Polymer Frontier 21 Lecture Series 34)”, November 2012 SIGMA-ALDRICH カタログ、「材料科学の基礎 第7号 多孔性配位高分子(PCP)/金属有機構造体(MOF)の基礎」SIGMA-ALDRICH catalog, “Fundamentals of Materials Science No.7: Basics of Porous Coordination Polymers (PCP) / Metal Organic Structures (MOF)”

PSA法は、二酸化炭素と共に多種類の不純物を含む排ガスから選択的に二酸化炭素を分離し、高純度の二酸化炭素を回収することが比較的容易であるので、この点において、PSA法による二酸化炭素の回収の方が、排ガスから各種不純物(硫黄酸化物、窒素酸化物、塩素、水銀等)を除去した後に二酸化炭素を深冷分離(液化及び精密蒸留)する回収方法に比べて優れている。又、上述の不純物を除去するための器具及び装置の腐食に対応するためのメンテナンスの負担が軽減される利点もある。   In the PSA method, it is relatively easy to selectively separate carbon dioxide from exhaust gas containing carbon dioxide and various types of impurities, and to recover high-purity carbon dioxide. Is better than a recovery method in which carbon dioxide is subjected to cryogenic separation (liquefaction and precision distillation) after removing various impurities (sulfur oxide, nitrogen oxide, chlorine, mercury, etc.) from the exhaust gas. In addition, there is an advantage that the burden of maintenance for coping with the corrosion of the instrument and apparatus for removing the impurities described above is reduced.

しかし、PSA法において従来使用される活性炭、ゼオライト等の無機系の吸着剤は、吸着した二酸化炭素を脱離させるために負圧条件又は高温状態に設定することが必要である。加熱による脱着は、吸着/脱着の切り替えに時間を必要とするので処理効率が悪いので、実用化については負圧条件が有利であるが、この場合、真空ポンプを用いて二酸化炭素の回収装置を構成する必要がある。このため、処理能力を高めようとすると、真空ポンプも大型化する必要があり、処理能力の向上が真空ポンプの規模によって制限される。   However, the inorganic adsorbents conventionally used in the PSA method such as activated carbon and zeolite need to be set to a negative pressure condition or a high temperature state in order to desorb the adsorbed carbon dioxide. Since desorption by heating requires time for switching between adsorption / desorption, the processing efficiency is poor, so negative pressure conditions are advantageous for practical use. In this case, a carbon dioxide recovery device is used by using a vacuum pump. Must be configured. For this reason, in order to increase the processing capacity, it is necessary to enlarge the vacuum pump, and the improvement of the processing capacity is limited by the scale of the vacuum pump.

本発明の課題は、上述の問題を解決し、省エネルギー及び経済性に優れ、圧力スイング吸着法を利用して二酸化炭素含有ガスから高濃度の二酸化炭素を高い処理能力で回収可能な二酸化炭素の回収方法及び回収装置を提供することである。
又、本発明の課題は、エネルギーの利用効率が良く、装置に耐久性を付与する負担が軽減され、燃焼ガス等の排ガスの処理における二酸化炭素の回収を普及可能な高い経済性を備えた二酸化炭素の回収方法及び回収装置を提供することである。
The object of the present invention is to recover carbon dioxide, which solves the above-mentioned problems, is excellent in energy saving and economical efficiency, and can recover high-concentration carbon dioxide from a carbon dioxide-containing gas with a high processing capacity using a pressure swing adsorption method. It is to provide a method and a recovery device.
Another object of the present invention is to provide a highly economical dioxide dioxide that has high energy utilization efficiency, reduces the burden of imparting durability to the apparatus, and can disperse the recovery of carbon dioxide in the treatment of exhaust gas such as combustion gas. It is to provide a carbon recovery method and a recovery apparatus.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、吸着剤として金属−有機構造体を用いることによって、負圧条件を排除してPSA法による分離装置を真空ポンプを用いずに構成可能であり、又、PSA法による処理後のガスを除湿処理に有効利用してエネルギーの利用効率を改善できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research, and as a result, by using a metal-organic structure as an adsorbent, a vacuum pump is used for the separation apparatus by the PSA method by eliminating the negative pressure condition. The present invention has been completed by finding that it can be configured without using it, and that the gas used after the PSA method can be effectively used for dehumidification to improve the efficiency of energy use.

本発明の一態様によれば、二酸化炭素の回収装置は、圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離装置を有する二酸化炭素の回収装置であって、前記分離装置は、金属−有機構造体を有する吸着剤を収容し、ガスの供給によって前記ガスに含まれる二酸化炭素を前記吸着剤が吸着して、二酸化炭素が減少した処理後ガスが放出される吸着部と、前記吸着部へ相対的高圧の二酸化炭素分圧でガスを供給可能なようにガスに圧力を付与する加圧部と、前記加圧部によって圧力を付与されたガスを前記吸着部に供給可能なガス供給システムとを有し、前記吸着部は、二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して前記吸着部から放出するために、相対的低圧に圧力を低下させる圧力低下手段と、前記吸着部から放出される脱着した二酸化炭素の濃度が所定濃度以上である時に、脱着した二酸化炭素を回収する回収システムとを有し、前記回収システムは、前記吸着部から放出される脱着した二酸化炭素が流通する流路に設けられて脱着した二酸化炭素の濃度を検出する検出器と、脱着した二酸化炭素を前記ガス供給システムへ供給するための、前記流路から分岐する還流路とを有し、前記検出器によって検出される二酸化炭素の濃度が所定濃度以上の時に、脱着した二酸化炭素を回収し、前記検出器によって検出される二酸化炭素の濃度が所定濃度未満の時に、脱着した二酸化炭素を前記還流路から前記ガス供給システムへ供給することを要旨とする。 According to one aspect of the present invention, a carbon dioxide recovery device is a carbon dioxide recovery device having a separation device that separates carbon dioxide from gas by using adsorption and desorption of carbon dioxide to and from an adsorbent due to pressure fluctuation. The separator contains an adsorbent having a metal-organic structure, and the adsorbent adsorbs carbon dioxide contained in the gas by supplying gas, and releases the treated gas with reduced carbon dioxide. An adsorbing unit, a pressurizing unit that applies pressure to the gas so that the gas can be supplied to the adsorbing unit with a relatively high partial pressure of carbon dioxide, and a gas that has been pressurized by the pressurizing unit. and a suppliable gas supply system to the suction portion, the suction portion, in order to release from the suction unit to desorb carbon dioxide from the adsorbent having adsorbed carbon dioxide, lowering the pressure in the relative low pressure Pressure And a recovery system that recovers the desorbed carbon dioxide when the concentration of the desorbed carbon dioxide released from the adsorption unit is equal to or higher than a predetermined concentration, and the recovery system is released from the adsorption unit. A detector for detecting the concentration of the desorbed carbon dioxide provided in the flow path through which the desorbed carbon dioxide flows, and a reflux path branched from the flow path for supplying the desorbed carbon dioxide to the gas supply system And when the concentration of carbon dioxide detected by the detector is greater than or equal to a predetermined concentration, the desorbed carbon dioxide is recovered, and when the concentration of carbon dioxide detected by the detector is less than the predetermined concentration, desorption is performed. The gist of the invention is to supply the carbon dioxide that has been supplied to the gas supply system from the reflux path .

上記二酸化炭素の回収装置において、前記圧力低下手段は、圧力を付与されたガスから圧力を解放可能な圧力制御弁を有して、前記相対的低圧は大気圧以上に設定され、前記分離装置は、更に、前記吸着部に供給されるガスを予め冷却して所定温度以下に維持する冷却器を有する。前記吸着部は、1対の第1吸着塔及び前記第2吸着塔を有して、前記吸着剤は、前記第1吸着塔及び前記第2吸着塔の各々に収容され、前記ガス供給システムは、前記加圧部によって圧力を付与されたガスを前記第1吸着塔及び前記第2吸着塔のうちの一方に交互に供給可能なように構成して、前記第1吸着塔及び前記第2吸着塔のうちの一方において、圧力を付与されたガスに含まれる二酸化炭素が、相対的高圧の二酸化炭素分圧において吸着剤へ吸着されて、二酸化炭素の濃度が低下した処理後ガスが交互に放出され、前記圧力低下手段は、前記第1吸着塔及び第2吸着塔のうちのガスが供給されない他方において交互に圧力を低下させて、相対的低圧に低下した圧力で二酸化炭素が吸着剤から脱着して放出されるように構成可能である。 In the carbon dioxide recovery apparatus, the pressure lowering means includes a pressure control valve capable of releasing pressure from a gas to which pressure is applied, the relative low pressure is set to be equal to or higher than atmospheric pressure, and the separation apparatus includes Furthermore, it has a cooler that cools the gas supplied to the adsorption unit in advance and maintains it at a predetermined temperature or lower. The adsorption unit includes a pair of first adsorption tower and second adsorption tower, the adsorbent is accommodated in each of the first adsorption tower and the second adsorption tower, and the gas supply system is , the pressing by one by can be supplied alternately to urchin configuration of said gas that is applying pressure first adsorption column and the second adsorption tower by the first adsorption tower and the second adsorption In one of the columns, the carbon dioxide contained in the pressured gas is adsorbed to the adsorbent at a relatively high carbon dioxide partial pressure, and the treated gas with reduced carbon dioxide concentration is released alternately. The pressure reducing means alternately reduces the pressure on the other of the first adsorption tower and the second adsorption tower where the gas is not supplied, and the carbon dioxide is desorbed from the adsorbent at a pressure reduced to a relatively low pressure. Can be configured to be released

前記回収システムの前記検出器は、前記第1吸着塔及び前記第2吸着塔から交互に放出される脱着した二酸化炭素の濃度を検出し、前記回収システムは、前記還流路によって前記ガス供給システムへ供給される二酸化炭素に圧力を付与するための加圧装置を有し、これにより、脱着した二酸化炭素は吸着剤に吸着されるように構成可能である。又、前記吸着部は、更に、前記第1吸着塔の吸着剤が破瓜した時にガスの供給先が前記第1吸着塔から前記第2吸着塔へ切り替わり、前記第2吸着塔の吸着剤が破瓜した時にガスの供給先が前記第2吸着塔から前記第1吸着塔へ切り替わるように、前記ガス供給システムによるガスの供給先の切り替えを制御する制御システムを有するように構成可能である。前記制御システムは、前記第1吸着塔及び前記第2吸着塔から交互に放出される処理後ガスの二酸化炭素の濃度を検出する検出器を有し、前記検出器によって検出される二酸化炭素の濃度が、供給されるガスの二酸化炭素濃度に達したらガスの供給先が切り替わるように、検出される二酸化炭素の濃度に基づいて制御するとよい。更に、前記分離装置の前段に順次配設される、ガスを冷却する冷却部、ガスから硫黄酸化物を除去する脱硫部、及び、ガスから湿分を除去する吸湿剤を有する除湿部と、前記分離装置の後段に配設されて、回収される二酸化炭素を圧縮して液化二酸化炭素を調製する液化部とを有し、前記分離装置は、更に、前記加圧部によって圧力を付与されたガスと前記第1吸着塔及び前記第2吸着塔から放出される処理後ガスとの間で熱交換する熱交換器と、前記熱交換器を経た処理後ガスを前記除湿部の吸湿剤の再生に利用するために前記除湿部に接続される流路とを有するように構成すると良い。 The detector of the recovery system, the first to detect the adsorption tower and the concentration of the desorbed carbon dioxide is released alternately from the second adsorption tower, wherein the recovery system, the gas supply system by prior Symbol return path has a pressurizing圧装location for applying pressure to the carbon dioxide is supplied to, thereby, the desorbed carbon dioxide can be configured to be adsorbed by the adsorbent. The adsorbing unit further switches the gas supply destination from the first adsorption tower to the second adsorption tower when the adsorbent in the first adsorption tower is broken, and the adsorbent in the second adsorption tower is broken. The gas supply destination can be switched from the second adsorption tower to the first adsorption tower at this time, and a control system that controls switching of the gas supply destination by the gas supply system can be provided. The control system has a detector that detects the concentration of carbon dioxide in the treated gas alternately discharged from the first adsorption tower and the second adsorption tower, and the concentration of carbon dioxide detected by the detector However, control may be performed based on the detected carbon dioxide concentration so that the gas supply destination is switched when the carbon dioxide concentration of the supplied gas is reached. A cooling unit for cooling the gas, a desulfurization unit for removing sulfur oxide from the gas, and a dehumidifying unit having a hygroscopic agent for removing moisture from the gas; A liquefying unit that is disposed downstream of the separation device and compresses recovered carbon dioxide to prepare liquefied carbon dioxide, and the separation device further includes a gas to which pressure is applied by the pressurizing unit. A heat exchanger for exchanging heat between the first adsorption tower and the treated gas emitted from the first adsorption tower and the second adsorption tower, and the treated gas passed through the heat exchanger to regenerate the moisture absorbent in the dehumidifying section. In order to use, it is good to comprise so that it may have a channel connected to the dehumidification part.

又、本発明の一態様によれば、二酸化炭素の回収方法は、圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離処理を有する二酸化炭素の回収方法であって、前記分離処理は、ガスに圧力を付与する加圧処理と、前記加圧処理を経たガスを用いて、金属−有機構造体を有する吸着剤に相対的高圧の二酸化炭素分圧でガスを接触させて、ガスに含まれる二酸化炭素を吸着剤に吸着させる吸着処理と、二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して二酸化炭素を放出するように、相対的低圧に圧力を低下させる脱着処理と、前記脱着処理によって放出される脱着した二酸化炭素の濃度が所定濃度以上である時に、脱着した二酸化炭素を回収する回収処理とを有し、検出される二酸化炭素の濃度が所定濃度未満である時に、脱着した二酸化炭素を前記吸着処理に供給することを要旨とする。
Moreover, according to one aspect of the present invention, a carbon dioxide recovery method includes a separation process for separating carbon dioxide from a gas using adsorption and desorption of carbon dioxide with respect to an adsorbent due to pressure fluctuation. The separation treatment includes a pressure treatment for applying pressure to the gas and a gas subjected to the pressure treatment at a relatively high carbon dioxide partial pressure to the adsorbent having a metal-organic structure. The pressure is set to a relatively low pressure so that carbon dioxide contained in the gas is adsorbed by the adsorbent and the carbon dioxide is desorbed and released from the adsorbent that has adsorbed carbon dioxide. carbon dioxide and desorption treatment for reducing the concentration of carbon dioxide desorbed is released by the desorption process when the predetermined concentration or more, possess a recovery process for recovering the desorbed carbon dioxide, it is detected When the concentration is below a predetermined concentration, and summarized in that feeding the desorbed carbon dioxide to the adsorption treatment.

上記二酸化炭素の回収方法において、前記回収処理において前記相対的低圧は大気圧以上に設定され、圧力制御弁を用いて圧力を解放することによって相対的低圧に低下させ、前記分離処理は、更に、前記吸着処理において用いるガスを、予め冷却して所定温度以下に維持する冷却処理を有する。前記分離処理は、吸着剤を各々収容する第1吸着塔及び第2吸着塔を用いて実施され、前記吸着処理及び前記脱着処理は、前記第1吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第2吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第1処理と、前記第2吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第1吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第2処理とによって実施され、前記分離処理は、更に、前記第1処理において前記第1吸着塔の吸着剤が破瓜した時に前記第1処理から前記第2処理へ切り替え、前記第2処理において前記第2吸着塔の吸着剤が破瓜した時に前記第2処理から前記第1処理へ切り替える切り替え操作を有し、前記回収処理において、前記第1処理及び前記第2処理の各々における前記第2吸着塔又は前記第1吸着塔から放出される二酸化炭素の濃度が所定濃度以上の時に、放出される二酸化炭素を回収するように構成することができる。   In the carbon dioxide recovery method, the relative low pressure is set to be equal to or higher than atmospheric pressure in the recovery process, and the pressure is reduced to a relatively low pressure by releasing the pressure using a pressure control valve. A cooling process in which the gas used in the adsorption process is cooled in advance and maintained at a predetermined temperature or lower. The separation process is performed using a first adsorption tower and a second adsorption tower each containing an adsorbent, and the adsorption process and the desorption process are performed by supplying a gas to the first adsorption tower to obtain a relatively high pressure. A first treatment for adsorbing carbon dioxide at a partial pressure of carbon dioxide and adjusting the second adsorption tower to a relatively low pressure to desorb carbon dioxide; and supplying a gas to the second adsorption tower to provide a relatively high pressure The carbon dioxide is adsorbed at a partial pressure of carbon dioxide, and the second treatment is performed by adjusting the first adsorption tower to a relatively low pressure to desorb carbon dioxide, and the separation treatment is further performed in the first treatment. When the adsorbent of the first adsorption tower is broken, the first process is switched to the second process, and when the adsorbent of the second adsorption tower is broken in the second process, the second process is changed to the first process. Switching operation to switch to And in the recovery process, the carbon dioxide released from the second adsorption tower or the first adsorption tower in each of the first treatment and the second treatment is released when the concentration is equal to or higher than a predetermined concentration. It can be configured to recover carbon dioxide.

更に、本発明の他の態様によれば、二酸化炭素の回収装置は、ガスから湿分を除去する吸湿剤を有する除湿部と、圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離装置とを有する二酸化炭素の回収装置であって、前記分離装置は、金属−有機構造体を有する吸着剤を収容し、ガスの供給によって前記ガスに含まれる二酸化炭素を前記吸着剤が吸着して、二酸化炭素が減少した処理後ガスが放出される吸着部と、前記吸着部へ供給するガスに圧力を付与するための加圧部と、前記加圧装置と前記吸着塔との間に配置され、前記加圧装置によって圧力を付与されたガスと、前記吸着塔から放出される処理後ガスとの間で熱交換して、前記ガスを冷却すると共に前記処理後ガスを加熱する熱交換部とを有し、前記熱交換部において加熱された前記処理後ガスを前記除湿部に供給するための流路を有して、前記除湿部は、加熱された前記処理後ガスを用いて吸湿剤を再生するように構成されることを要旨とする。上記回収装置において、前記吸着部は、前記吸着剤を各々収容する1対の第1吸着塔及び前記第2吸着塔と、前記加圧部によって圧力を付与されたガスを前記第1吸着塔及び前記第2吸着塔のうちの一方に交互に供給可能なガス供給システムと、前記第1吸着塔及び第2吸着塔のうちのガスが供給されない他方において交互に圧力を低下可能な圧力低下手段とを有し、前記第1吸着塔及び前記第2吸着塔のうちの一方において、圧力を付与されたガスに含まれる二酸化炭素が、相対的高圧の二酸化炭素分圧において吸着剤へ吸着されて、二酸化炭素の濃度が低下した処理後ガスが放出され、前記第1吸着塔及び前記第2吸着塔の他方において、相対的低圧に低下した圧力で二酸化炭素が吸着剤から脱着して放出されるように構成可能である。又、前記圧力低下手段は、圧力を付与されたガスから圧力を解放可能な圧力制御弁を有し、前記相対的低圧は大気圧以上に設定される。   Furthermore, according to another aspect of the present invention, a carbon dioxide recovery device uses a dehumidifying unit having a hygroscopic agent that removes moisture from a gas, and adsorption and desorption of carbon dioxide with respect to the adsorbent due to pressure fluctuation. A carbon dioxide recovery device having a separation device for separating carbon dioxide from a gas, wherein the separation device contains an adsorbent having a metal-organic structure and is contained in the gas by supplying a gas. An adsorbing part from which the adsorbent is adsorbed and a gas after treatment with reduced carbon dioxide is released, a pressurizing part for applying pressure to the gas supplied to the adsorbing part, the pressurizing device, and the Heat exchange is performed between the gas placed between the adsorption tower and the pressure applied by the pressurizing device, and the post-treatment gas released from the adsorption tower to cool the gas and after the treatment Heat exchange to heat gas And a flow path for supplying the treated gas heated in the heat exchanging section to the dehumidifying part, wherein the dehumidifying part absorbs moisture using the heated treated gas. The gist is that it is configured to regenerate the agent. In the recovery apparatus, the adsorption unit includes a pair of first adsorption tower and the second adsorption tower each containing the adsorbent, and gas applied with pressure by the pressurization unit. A gas supply system capable of alternately supplying one of the second adsorption towers, and a pressure reducing means capable of alternately reducing the pressure on the other of the first adsorption tower and the second adsorption tower where gas is not supplied. In one of the first adsorption tower and the second adsorption tower, carbon dioxide contained in the pressure-applied gas is adsorbed to the adsorbent at a relatively high partial pressure of carbon dioxide, The treated gas having a reduced concentration of carbon dioxide is released, and carbon dioxide is desorbed and released from the adsorbent at a pressure reduced to a relatively low pressure in the other of the first adsorption tower and the second adsorption tower. Can be configured. Further, the pressure lowering means has a pressure control valve capable of releasing the pressure from the pressure-applied gas, and the relative low pressure is set to be equal to or higher than the atmospheric pressure.

又、本発明の他の態様によれば、二酸化炭素の回収方法は、ガスから湿分を除去する吸湿剤を有する除湿処理と、圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離処理とを有する二酸化炭素の回収方法であって、前記分離処理は、ガスに圧力を付与する加圧処理と、前記加圧処理を経たガスを用いて、金属−有機構造体を有する吸着剤にガスを接触させてガスに含まれる二酸化炭素を吸着剤に吸着させ、これにより、二酸化炭素が減少した処理後ガスが放出される吸着処理と、前記加圧処理によって圧力を付与されたガスと、前記吸着処理によって放出される処理後ガスとの間で熱交換して、前記ガスを冷却すると共に前記処理後ガスを加熱する熱交換処理とを有し、前記熱交換処理において加熱された前記処理後ガスを前記除湿処理に供給して、加熱された前記処理後ガスを用いて吸湿剤を再生することを要旨とする。上記回収方法において、前記分離処理は、更に、相対的低圧において、二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して放出させる脱着処理を有し、前記分離処理は、吸着剤を各々収容する第1吸着塔及び第2吸着塔を用いて実施するために、更に、前記加圧処理によって圧力を付与されたガスを前記第1吸着塔及び前記第2吸着塔のうちの一方に交互に供給するガス供給と、前記第1吸着塔及び第2吸着塔のうちのガスが供給されない他方において交互に圧力を低下させる圧力低下操作とを有し、これにより、前記吸着処理及び前記脱着処理は、前記第1吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第2吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第1処理と、前記第2吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第1吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第2処理とによって実施され、前記第1吸着塔及び前記第2吸着塔のうちの一方において、圧力を付与されたガスに含まれる二酸化炭素が、相対的高圧の二酸化炭素分圧において吸着剤へ吸着されて、二酸化炭素の濃度が低下した処理後ガスが放出され、前記第1吸着塔及び前記第2吸着塔の他方において、相対的低圧に低下した圧力で二酸化炭素が吸着剤から脱着して放出されるように構成可能である。又、前記相対的低圧は大気圧以上に設定され、前記圧力低下操作は、圧力を解放可能な圧力制御弁を用いて圧力を相対的低圧に低下させる。   According to another aspect of the present invention, a method for recovering carbon dioxide uses a dehumidification process having a hygroscopic agent that removes moisture from a gas, and adsorption and desorption of carbon dioxide with respect to the adsorbent due to pressure fluctuation. And a separation process for separating carbon dioxide from the gas, wherein the separation process is performed using a pressurization process that applies pressure to the gas and a gas that has undergone the pressurization process. Gas is brought into contact with an adsorbent having an organic structure so that carbon dioxide contained in the gas is adsorbed to the adsorbent, and thereby, an adsorption treatment in which a gas after treatment with reduced carbon dioxide is released and the pressurization treatment are performed. Heat exchange between the pressure-applied gas and the post-treatment gas released by the adsorption treatment to cool the gas and heat the post-treatment gas, For exchange processing The processed gas which has been heated have been supplied to the dehumidifying process, the gist to play a desiccant with a heated said processed gas. In the above recovery method, the separation process further includes a desorption process for desorbing and releasing carbon dioxide from the adsorbent that has adsorbed carbon dioxide at a relatively low pressure, and each of the separation processes contains an adsorbent. In order to carry out using the first adsorption tower and the second adsorption tower, the gas pressurized by the pressure treatment is supplied alternately to one of the first adsorption tower and the second adsorption tower. Gas supply and a pressure reduction operation for alternately reducing the pressure on the other of the first adsorption tower and the second adsorption tower where gas is not supplied, whereby the adsorption treatment and the desorption treatment are Supplying a gas to the first adsorption tower to adsorb carbon dioxide at a relatively high carbon dioxide partial pressure, and adjusting the second adsorption tower to a relatively low pressure to desorb carbon dioxide; The second suction A gas is supplied to the tower to adsorb carbon dioxide at a relatively high partial pressure of carbon dioxide, and the first treatment is performed by a second treatment in which the first adsorption tower is adjusted to a relatively low pressure to desorb carbon dioxide, In one of the first adsorption tower and the second adsorption tower, carbon dioxide contained in the pressure-applied gas is adsorbed to the adsorbent at a relatively high carbon dioxide partial pressure, and the concentration of carbon dioxide is increased. The lowered treated gas is released, and the other of the first adsorption tower and the second adsorption tower can be configured such that carbon dioxide is desorbed and released from the adsorbent at a pressure reduced to a relatively low pressure. . Further, the relative low pressure is set to be equal to or higher than the atmospheric pressure, and the pressure reduction operation reduces the pressure to a relative low pressure using a pressure control valve capable of releasing the pressure.

本発明によれば、負圧に及ばない圧力設定範囲によって装置構成の負担が軽減し、簡素化が可能であるので、省エネルギー及びコスト削減に有効な二酸化炭素の回収方法及び回収装置を提供できる。特殊な装備や高価な装置を用いずに一般的な設備を利用して簡易に実施できるので、経済的に有利であり、PSA法による二酸化炭素の回収方法の汎用性が高くなり、利用分野の拡大に有効である。   According to the present invention, the burden of the apparatus configuration is reduced by a pressure setting range that does not reach negative pressure, and simplification is possible. Therefore, it is possible to provide a carbon dioxide recovery method and recovery apparatus that are effective for energy saving and cost reduction. Since it can be carried out easily using general equipment without using special equipment or expensive equipment, it is economically advantageous, and the versatility of the carbon dioxide recovery method by the PSA method is enhanced. Effective for enlargement.

吸着剤として使用する金属−有機構造体の吸着等温線を示すグラフ。The graph which shows the adsorption isotherm of the metal-organic structure used as an adsorbent. 本発明の一実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on one Embodiment of this invention. 図2の回収装置における吸着部の構成を示す概略構成図。The schematic block diagram which shows the structure of the adsorption | suction part in the collection | recovery apparatus of FIG. 図3の吸着部において吸着塔から放出されるガスの二酸化炭素濃度の経時変化を示すタイムチャート。The time chart which shows the time-dependent change of the carbon dioxide concentration of the gas discharge | released from an adsorption tower in the adsorption | suction part of FIG.

圧力スイング吸着(PSA)法は、圧力変動による特定成分の吸着剤に対する吸着及び脱離を利用して混合ガス中の特定成分を分離・除去する方法であり、二酸化炭素を吸着可能な物質を吸着剤として用いて、燃焼排ガス等の二酸化炭素を含有するガスから二酸化炭素を回収するために利用することができる。吸着剤に供給される排ガスの圧力を相対的高圧(吸着圧)に上昇させることによって、二酸化炭素は吸着剤に吸着し、圧力を相対的低圧(脱着圧)に低下させると、吸着された二酸化炭素は、吸着剤から脱離して放出される。このような圧力の上昇及び低下を繰り返し行って、排ガス中の二酸化炭素を吸着剤に吸着及び脱着(吸着質を脱離)することによって、排ガスから、脱二酸化炭素ガスと濃縮(又は精製)二酸化炭素とが得られる。   The pressure swing adsorption (PSA) method is a method that separates and removes specific components in a mixed gas by using adsorption and desorption of specific components to the adsorbent due to pressure fluctuations, and adsorbs substances capable of adsorbing carbon dioxide. It can be used as an agent to recover carbon dioxide from a gas containing carbon dioxide such as combustion exhaust gas. By increasing the pressure of the exhaust gas supplied to the adsorbent to a relatively high pressure (adsorption pressure), carbon dioxide is adsorbed on the adsorbent and when the pressure is reduced to a relatively low pressure (desorption pressure), Carbon is desorbed and released from the adsorbent. By repeatedly increasing and decreasing the pressure and adsorbing and desorbing carbon dioxide in the exhaust gas to the adsorbent (desorbing the adsorbate), the carbon dioxide gas and the concentrated (or purified) carbon dioxide are removed from the exhaust gas. Carbon is obtained.

二酸化炭素を吸着可能な物質として従来知られている活性炭やゼオライトは、脱着圧が負圧であるので、二酸化炭素の脱着には真空ポンプの使用が不可欠であり、吸着工程から脱着工程への移行に要する時間(減圧時間)の短縮にも限界がある。   Since activated carbon and zeolite, which are known as substances capable of adsorbing carbon dioxide, have a negative desorption pressure, the use of a vacuum pump is indispensable for the desorption of carbon dioxide, and the transition from the adsorption process to the desorption process is essential. There is a limit to shortening the time required for reducing the pressure (decompression time).

一方、新たな機能性材料として、近年、金属−有機構造体(MOFs:Metal-Organic Frame works)又は多孔性配位高分子(PCPs:Porous Coordination Polymers)と呼ばれる多孔質材料の研究が進められている。金属−有機構造体は、金属イオンと有機配位子とが配位結合して形成される錯体がベースとなって有孔構造の骨格を構成したものであり、その有孔構造を利用して吸着剤としての用途開発が試みられている。金属−有機構造体を吸着剤として用いる場合、吸着質の圧力と平衡吸着量との関係を示す吸着等温線には、ある圧力近辺において急激な立ち上がり部分を有するS字様曲線を表すという特徴があり、例えば、金属−有機構造体として[Cu(4,4’-ジヒドロキシビフェニル-3-カルボキシル)2(4,4’-ビピリジル)]nについて測定すると、図1に示すように、平衡吸着量は、0.25MPa近辺において急激に変動する。このような吸着等温線においては、平衡吸着量が急激に増加する圧力値(閾値)を境とする高圧側の圧力範囲に吸着圧を、低圧側の圧力範囲に脱着圧を各々設定する(例えば、図1の吸着圧PA、脱着圧PD)と、吸着圧と脱着圧との圧力差が小さくても平衡吸着量の差(=吸着容量)を大きくすることができる。この結果、吸着圧及び脱着圧間の圧力変動によって装置にかかる負荷は、従来の吸着剤を用いた場合に比べて大幅に小さくなり、装置構造に耐久性を付与するための負担を軽減することが可能である。しかも、脱着圧を負圧ではなく大気圧又は正圧(大気圧超)に設定可能であるので、真空ポンプを使用せずに、吸着圧及び脱着圧を圧力制御弁によって設定し調整することが可能である。それ故、真空ポンプに消費される分のエネルギーが削減され、従来のPSA法における問題点である真空ポンプの性能による回収装置の処理容量の制限も解消される。 On the other hand, as a new functional material, in recent years, research on porous materials called metal-organic structures (MOFs) or porous coordination polymers (PCPs) has been advanced. Yes. A metal-organic structure is a structure in which a porous structure is formed based on a complex formed by coordination bond between a metal ion and an organic ligand. Attempts have been made to develop applications as adsorbents. When a metal-organic structure is used as an adsorbent, the adsorption isotherm showing the relationship between the pressure of the adsorbate and the equilibrium adsorption amount is characterized by an S-shaped curve having a sharp rise near a certain pressure. For example, when [Cu (4,4′-dihydroxybiphenyl-3-carboxyl) 2 (4,4′-bipyridyl)] n is measured as a metal-organic structure, as shown in FIG. Fluctuates rapidly around 0.25 MPa. In such an adsorption isotherm, the adsorption pressure is set in the high pressure range and the desorption pressure is set in the low pressure range with the pressure value (threshold value) at which the equilibrium adsorption amount suddenly increases (for example, 1, even if the pressure difference between the adsorption pressure and the desorption pressure is small, the difference in equilibrium adsorption amount (= adsorption capacity) can be increased. As a result, the load on the device due to the pressure fluctuation between the adsorption pressure and the desorption pressure is significantly smaller than when a conventional adsorbent is used, reducing the burden for imparting durability to the device structure. Is possible. Moreover, since the desorption pressure can be set to atmospheric pressure or positive pressure (above atmospheric pressure) instead of negative pressure, the adsorption pressure and desorption pressure can be set and adjusted by the pressure control valve without using a vacuum pump. Is possible. Therefore, the energy consumed by the vacuum pump is reduced, and the limitation on the processing capacity of the recovery device due to the performance of the vacuum pump, which is a problem in the conventional PSA method, is also eliminated.

本発明は、上述に従って、PSA法による吸着剤として金属−有機構造体を用いて、エネルギー効率の改善及び処理容量の向上が可能なように構成される二酸化炭素の回収方法及び回収装置を提案する。以下に、本発明に係る二酸化炭素酸素の回収方法及びそれを実施する回収装置について、図面を参照して説明する。   In accordance with the above, the present invention proposes a carbon dioxide recovery method and recovery apparatus configured to improve energy efficiency and processing capacity by using a metal-organic structure as an adsorbent by the PSA method. . Hereinafter, a method for recovering carbon dioxide oxygen and a recovery apparatus for carrying out the method according to the present invention will be described with reference to the drawings.

図2は、本発明の二酸化炭素の回収装置の一実施形態を示す概略構成図である。回収装置1は、圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用して排ガスGから二酸化炭素を分離する分離装置を有し、分離装置は、吸着部ADを主要部として構成され、更に、排ガスGに圧力を付与するための加圧部PRと、加圧部PRによって圧力を付与された排ガスGと吸着部ADから放出される処理後ガスG’との間で熱交換する熱交換部EXとを有する。更に、分離装置の前段には、排ガスGを冷却する冷却部CL、排ガスGから硫黄酸化物を除去する脱硫部DS、及び、排ガスGから湿分を除去する吸湿剤を有する除湿部DHが順次配設され、分離装置の後段には、分離装置において回収された二酸化炭素Cを圧縮して液化二酸化炭素を調製する液化部LQが設けられる。冷却部CL、脱硫部DS、除湿部DH、加圧部PR及び吸着部ADは、冷却部CLへ導入される排ガスGが脱硫部DS、除湿部DH、加圧部PR及び吸着部ADへ順次供給されるように、流路L1,L2,L3,L4によって直列に接続され、流路L4上に熱交換部EXが配設される。吸着部ADへ供給される排ガスGは、濃縮又は精製された二酸化炭素Cと、二酸化炭素が減少又は除去された脱二酸化炭素ガスである処理後ガスG’とに分離される。吸着部ADは、流路L5及び流路L6によって、液化部LQ及び除湿部DHに各々接続され、濃縮又は精製された二酸化炭素Cは、流路L5を通じて液化部LQへ供給される。他方、二酸化炭素が除去されて吸着部ADから放出される処理後ガスG’は、流路L6を通じて除湿部DHへ供給される間に、流路L4上に設けられる熱交換部EXでの熱交換によって加熱され、除湿部DHの吸湿剤を再生するための加熱媒体として利用される。更に、冷却部CL、脱硫部DS及び除湿部DHにおいて生じる廃水を処理するための採水処理部WTが設けられ、各部の廃水は、流路L7,L8,L9を通じて採水処理部WTへ供給される。   FIG. 2 is a schematic configuration diagram showing an embodiment of the carbon dioxide recovery apparatus of the present invention. The recovery device 1 has a separation device that separates carbon dioxide from the exhaust gas G using adsorption and desorption of carbon dioxide with respect to the adsorbent due to pressure fluctuation, and the separation device is configured with the adsorption unit AD as a main part, , Heat exchange for exchanging heat between the pressurization part PR for applying pressure to the exhaust gas G, and the exhaust gas G given pressure by the pressurization part PR and the treated gas G ′ released from the adsorption part AD Part EX. Further, a cooling unit CL that cools the exhaust gas G, a desulfurization unit DS that removes sulfur oxides from the exhaust gas G, and a dehumidification unit DH that has a hygroscopic agent that removes moisture from the exhaust gas G are sequentially provided in the preceding stage of the separation device. A liquefaction unit LQ is provided in the rear stage of the separation device to compress the carbon dioxide C recovered in the separation device to prepare liquefied carbon dioxide. In the cooling part CL, the desulfurization part DS, the dehumidification part DH, the pressurization part PR and the adsorption part AD, the exhaust gas G introduced into the cooling part CL is sequentially supplied to the desulfurization part DS, the dehumidification part DH, the pressurization part PR and the adsorption part AD. As supplied, they are connected in series by flow paths L1, L2, L3, and L4, and a heat exchange section EX is disposed on the flow path L4. The exhaust gas G supplied to the adsorption unit AD is separated into concentrated or purified carbon dioxide C and a treated gas G ′ that is a decarbonized gas from which carbon dioxide has been reduced or removed. The adsorbing part AD is connected to the liquefying part LQ and the dehumidifying part DH by the flow path L5 and the flow path L6, respectively. The concentrated or purified carbon dioxide C is supplied to the liquefying part LQ through the flow path L5. On the other hand, after the carbon dioxide is removed and the treated gas G ′ released from the adsorption unit AD is supplied to the dehumidifying unit DH through the channel L6, the heat in the heat exchange unit EX provided on the channel L4. Heated by exchange and used as a heating medium for regenerating the hygroscopic agent of the dehumidifying part DH. Further, a water sampling treatment unit WT for treating waste water generated in the cooling unit CL, the desulfurization unit DS, and the dehumidification unit DH is provided, and the waste water from each unit is supplied to the water sampling treatment unit WT through the flow paths L7, L8, and L9. Is done.

冷却部CLは、燃焼施設等から高温で排出される排ガスを、後続の設備での処理に適した温度になるように冷却する設備であり、排ガスGが40℃程度以下、好ましくは30℃程度以下の出口温度に冷却されるように構成される。燃焼排ガスは、概して100〜200℃程度の入口温度であり、冷却することによって排ガスGの容積が減少するので、後続の設備における処理量を大きくすることができる。冷媒は、水、空冷、冷凍サイクルの冷媒等のような一般的に用いられる冷媒の何れでも良く、冷媒との接触についても、噴霧、充填材を用いた気液接触等の直接接触方式、或いは、凝縮器や熱交換器等を用いた間接接触方式による冷却の何れでも良い。この実施形態では、排ガスGに冷却水を噴霧する噴霧装置を有し、冷却水との直接接触により冷却する。冷却水を用いた直接接触方式は、経済性及び冷却効率が良く、更に、塩化物、硫黄酸化物等を排ガスGから除去する洗浄手段としての機能もある。冷却水がこのような成分の洗浄によって汚染されると、廃水は適宜採水処理部WTへ排出され、冷却水が補充される。   The cooling unit CL is a facility for cooling the exhaust gas discharged from the combustion facility at a high temperature so as to have a temperature suitable for processing in the subsequent facility, and the exhaust gas G is about 40 ° C. or less, preferably about 30 ° C. It is configured to be cooled to the following outlet temperature. The combustion exhaust gas generally has an inlet temperature of about 100 to 200 ° C., and the volume of the exhaust gas G is reduced by cooling, so that the throughput in the subsequent equipment can be increased. The refrigerant may be any of commonly used refrigerants such as water, air-cooling, and refrigerants in the refrigeration cycle, and the contact with the refrigerant may be a direct contact method such as spraying, gas-liquid contact using a filler, or Any of cooling by an indirect contact method using a condenser or a heat exchanger may be used. In this embodiment, the exhaust gas G is sprayed with cooling water and cooled by direct contact with the cooling water. The direct contact method using cooling water has good economic efficiency and cooling efficiency, and also has a function as a cleaning means for removing chlorides, sulfur oxides and the like from the exhaust gas G. If the cooling water is contaminated by washing such components, the waste water is appropriately discharged to the water sampling treatment unit WT and replenished with cooling water.

脱硫部DSは、吸着部ADの吸着剤が硫黄酸化物によって汚染又は損傷するのを防止するために排ガスGから硫黄酸化物を除去するための設備である。脱硫方式は、活性炭、アルミナ等のような固形の吸収剤、吸着剤又は触媒を用いる乾式脱硫、及び、アンモニア、石灰乳、アルカリ金属水酸化物等の塩基性物質を含む水性液を用いる湿式脱硫の何れでも良く、一般的に排ガスの脱硫に用いられる脱硫方式から適宜選択して利用すればよい。この実施形態では、吸収液として石灰石の分散水を使用する石灰石・石膏法による湿式脱硫装置を適用し、吸収液の温度上昇を防止するための冷却手段として、多管式熱交換器、プレート式熱交換器等の液−液型熱交換器(図示略)が付設され、冷却水との熱交換によって吸収液を冷却する。排ガスGの熱量及び硫黄酸化物濃度が比較的少ない場合は、排ガスGを噴霧水と接触させる水洗装置によって、前述の冷却部CLと脱硫部DSとを兼ね備えるように構成することも可能である。排ガスGに少量の塩素ガス含まれる場合には、脱硫部DSにおいて塩素も除去可能である。脱硫によって消耗した吸収剤等は適宜交換され、湿式脱硫の場合には廃水を採水処理部WTへ排出して脱硫用水性液を補充する。   The desulfurization section DS is equipment for removing sulfur oxide from the exhaust gas G in order to prevent the adsorbent of the adsorption section AD from being contaminated or damaged by sulfur oxide. The desulfurization method includes dry desulfurization using a solid absorbent such as activated carbon and alumina, an adsorbent or a catalyst, and wet desulfurization using an aqueous liquid containing a basic substance such as ammonia, lime milk, and alkali metal hydroxide. Any of these methods may be used, and a desulfurization method generally used for desulfurization of exhaust gas may be appropriately selected and used. In this embodiment, a wet desulfurization apparatus based on a limestone / gypsum method using limestone dispersed water as an absorbing liquid is applied, and as a cooling means for preventing the temperature of the absorbing liquid from rising, a multitubular heat exchanger, a plate type A liquid-liquid type heat exchanger (not shown) such as a heat exchanger is attached to cool the absorption liquid by heat exchange with cooling water. When the calorific value and sulfur oxide concentration of the exhaust gas G are relatively small, it is possible to configure the above-described cooling part CL and the desulfurization part DS to be combined by a water washing apparatus that contacts the exhaust gas G with the spray water. If the exhaust gas G contains a small amount of chlorine gas, chlorine can also be removed in the desulfurization section DS. The absorbent or the like consumed by desulfurization is appropriately replaced. In the case of wet desulfurization, the waste water is discharged to the water sampling treatment unit WT to replenish the desulfurization aqueous liquid.

除湿部DHは、吸着部ADにおいて使用される吸着剤の機能低下及び損傷を防止するために排ガスGから湿分を除去する設備であり、前段の冷却部CL及び脱硫部DSが湿式装置を用いて構成される場合には特に重要である。内部に吸湿剤を有し、排ガスGと吸湿剤とを接触させることによって排ガスが除湿され、低湿度の排ガスGが加圧部PRへ供給される。吸湿剤は、シリカゲル、アルミナゲル、モレキュラーシーブ、ゼオライト,活性炭等の一般的に使用される吸湿剤から適宜選択して使用すれば良い。経済的には、シリカゲル等の加熱によって容易に再生できる吸湿剤が有利であり、温度スイング吸湿塔を構成できる。吸湿剤を装填した1対又はそれ以上の吸湿塔を用いて除湿部DHを構成することによって、排ガスGと高温の再生用ガスとを交互に吸湿塔へ供給して排ガスGの吸湿と吸湿剤の再生とを交互に行うことができ、排ガスGの処理を中止せずに連続して除湿処理と吸湿剤の再生とを繰り返し実施できる。   The dehumidifying part DH is a facility for removing moisture from the exhaust gas G in order to prevent deterioration and damage of the adsorbent used in the adsorbing part AD, and the cooling unit CL and the desulfurizing part DS in the previous stage use a wet apparatus. This is especially important when configured. There is a hygroscopic agent inside, the exhaust gas is dehumidified by bringing the exhaust gas G into contact with the hygroscopic agent, and the low-humidity exhaust gas G is supplied to the pressurizing part PR. The hygroscopic agent may be appropriately selected from generally used hygroscopic agents such as silica gel, alumina gel, molecular sieve, zeolite, activated carbon and the like. Economically, a hygroscopic agent that can be easily regenerated by heating silica gel or the like is advantageous, and a temperature swing hygroscopic tower can be constructed. By constructing the dehumidifying section DH using one or more hygroscopic towers loaded with a hygroscopic agent, the exhaust gas G and the high-temperature regeneration gas are alternately supplied to the hygroscopic tower to absorb the moisture of the exhaust gas G and the hygroscopic agent. Can be alternately performed, and the dehumidification treatment and the regeneration of the hygroscopic agent can be repeated continuously without stopping the treatment of the exhaust gas G.

この実施形態では、除湿部DHは、吸着部ADから放出される処理後ガスG’を再生用ガスとして利用して、除湿処理に使用した後の吸湿剤を再生するように構成される。具体的には、後続の加圧部PRにおける圧力付与によって排ガスGの温度は上昇するので、熱交換部EXを用いて、吸着部ADから放出される処理後ガスG’を、高温の排ガスGとの熱交換によって加熱し、加熱された処理後ガスG’を使用後の吸湿剤に供給して湿分を吸湿剤から放出させる。熱交換部EXにおいて処理後ガスG’の温度は概して150〜180℃程度に上昇し、水分を殆ど含まない露点−90〜−60℃程度の高温乾燥ガスとなる。吸湿剤の再生によって湿分を含んだ処理後ガスG’は圧力制御弁PVを介して外部へ排出され、処理後ガスG’の圧力は解放されて大気圧になる。尚、この実施形態は、吸着部ADから放出される処理後ガスG’を全て再生用ガスとして利用するように構成されているが、吸着部ADから放出される処理後ガスG’の一部を、脱硫部DSから供給される排ガスGの冷却に利用するように変更してもよい。例えば、流路L6を分岐させて、処理後ガスG’の一部を熱交換部EXを介さずに直接除湿部DHへ供給するように接続し、加熱されない処理後ガスG’と排ガスGとを熱交換させる熱交換器を吸湿塔の前段に設けることができる。排ガスGの温度が低下すると、飽和水蒸気圧の低下によって水蒸気が凝縮分離するので、排ガスGの冷却によって生じる凝縮水は、排ガスGから分離し、廃水として採水処理部WTへ排出される。冷却された排ガスGは、吸湿剤との接触によって除湿されるので、低温且つ低湿度の排ガスGが加圧部PRへ供給される。   In this embodiment, the dehumidifying part DH is configured to regenerate the moisture absorbent after being used for the dehumidifying process by using the post-treatment gas G ′ released from the adsorption part AD as a regeneration gas. Specifically, since the temperature of the exhaust gas G rises due to the application of pressure in the subsequent pressurizing part PR, the treated gas G ′ released from the adsorption part AD is converted into the high-temperature exhaust gas G using the heat exchange part EX. The heated post-treatment gas G ′ is supplied to the used moisture absorbent to release moisture from the moisture absorbent. In the heat exchanging unit EX, the temperature of the treated gas G ′ generally rises to about 150 to 180 ° C., and becomes a high-temperature dry gas having a dew point of about −90 to −60 ° C. that hardly contains moisture. The treated gas G ′ containing moisture by regeneration of the moisture absorbent is discharged to the outside through the pressure control valve PV, and the pressure of the treated gas G ′ is released to atmospheric pressure. In this embodiment, all the processed gas G ′ released from the adsorption unit AD is used as a regeneration gas. However, a part of the processed gas G ′ released from the adsorption unit AD is used. May be used to cool the exhaust gas G supplied from the desulfurization section DS. For example, the flow path L6 is branched and connected so that a part of the treated gas G ′ is supplied directly to the dehumidifying part DH without going through the heat exchanging part EX. A heat exchanger for exchanging heat can be provided in the front stage of the moisture absorption tower. When the temperature of the exhaust gas G decreases, the water vapor condenses and separates due to a decrease in the saturated water vapor pressure, so the condensed water generated by cooling the exhaust gas G is separated from the exhaust gas G and discharged as waste water to the water sampling treatment unit WT. Since the cooled exhaust gas G is dehumidified by contact with the hygroscopic agent, the low temperature and low humidity exhaust gas G is supplied to the pressurizing part PR.

加圧部PRは、後続の吸着部ADにおいて二酸化炭素の吸着に要する圧力を排ガスGに付与するための装置であり、吸着圧(相対的高圧)PAの二酸化炭素分圧で排ガスを吸着部ADへ供給可能なように排ガスGに圧力を付与する。従って、吸着部ADで適用される吸着圧PAに排ガスGの二酸化炭素分圧を増加可能な加圧手段であればよい。加圧部PRによって排ガスGに付与される圧力は、前述の圧力制御弁PVによって、吸着部AD内において維持可能であり、圧力制御弁PCの制御によって排ガスGの圧力を調節することができる。本発明において吸着部ADで適用される吸着圧は、吸着剤の吸着等温線が示す閾値以上が好ましく、使用する吸着剤によって異なるが、概して0.3〜0.5MPa程度の吸着圧に設定することができる。従って、加圧部PRは、二酸化炭素分圧が適正な吸着圧となるように排ガスGを加圧可能な流動圧を発生し得る圧力付与手段であればよく、例えば、加圧ポンプ、圧縮器、ブロワー等が挙げられる。従来法に比べて付与圧力が比較的小さいものを使用でき、圧縮器やブロワーを好適に利用でき、圧縮器が最適である。加圧部PRにおいて付与する圧力は、排ガスGの二酸化炭素濃度と吸着圧とに基づいて決定される。つまり、吸着部ADで使用する吸着剤の二酸化炭素に対する吸着等温線において、閾値以上の圧力を吸着圧として適宜設定し、排ガスGの二酸化炭素濃度に応じて、排ガスGの二酸化炭素分圧が吸着圧となるような圧力に設定される。従って、加圧された排ガスGの圧力は、100×吸着圧/排ガスGの二酸化炭素濃度[%]、となる。加圧部PRでの加圧によって排ガスGの温度は上昇する。例えば、温度が40℃、二酸化炭素濃度が80%(容積率)の排ガスGを0.5MPa程度に加圧すると、二酸化炭素分圧(つまり吸着圧)は0.4MPa程度となり、この時、排ガスGの温度は190℃程度となる。このように、加圧部PRにおいて排ガスGの加圧圧力を二酸化炭素濃度に応じて適宜調整すると、圧力増加後の排ガスGの温度は概して180〜200℃程度に上昇する。   The pressurizing part PR is an apparatus for applying the pressure required for carbon dioxide adsorption to the exhaust gas G in the subsequent adsorption part AD, and adsorbs the exhaust gas with the carbon dioxide partial pressure of the adsorption pressure (relatively high pressure) PA. Pressure is applied to the exhaust gas G so that it can be supplied to the exhaust gas G. Therefore, any pressurization means that can increase the carbon dioxide partial pressure of the exhaust gas G to the adsorption pressure PA applied in the adsorption unit AD may be used. The pressure applied to the exhaust gas G by the pressurizing part PR can be maintained in the adsorption part AD by the pressure control valve PV described above, and the pressure of the exhaust gas G can be adjusted by the control of the pressure control valve PC. In the present invention, the adsorption pressure applied in the adsorption part AD is preferably equal to or greater than the threshold value indicated by the adsorption isotherm of the adsorbent, and is generally set to an adsorption pressure of about 0.3 to 0.5 MPa, although it varies depending on the adsorbent used. be able to. Therefore, the pressurizing part PR may be any pressure applying means capable of generating a fluid pressure capable of pressurizing the exhaust gas G so that the carbon dioxide partial pressure becomes an appropriate adsorption pressure. For example, a pressurizing pump, a compressor And blowers. A device having a relatively small applied pressure as compared with the conventional method can be used, and a compressor and a blower can be suitably used, and the compressor is optimal. The pressure applied in the pressurizing part PR is determined based on the carbon dioxide concentration of the exhaust gas G and the adsorption pressure. That is, in the adsorption isotherm for the carbon dioxide of the adsorbent used in the adsorption unit AD, a pressure equal to or higher than the threshold is appropriately set as the adsorption pressure, and the carbon dioxide partial pressure of the exhaust gas G is adsorbed according to the carbon dioxide concentration of the exhaust gas G. The pressure is set to be a pressure. Accordingly, the pressure of the pressurized exhaust gas G is 100 × adsorption pressure / carbon dioxide concentration of exhaust gas G [%]. The temperature of the exhaust gas G rises due to the pressurization in the pressurization part PR. For example, when the exhaust gas G having a temperature of 40 ° C. and a carbon dioxide concentration of 80% (volume ratio) is pressurized to about 0.5 MPa, the carbon dioxide partial pressure (that is, the adsorption pressure) is about 0.4 MPa. The temperature of G is about 190 ° C. Thus, when the pressurization pressure of the exhaust gas G is appropriately adjusted in accordance with the carbon dioxide concentration in the pressurizing part PR, the temperature of the exhaust gas G after the pressure increase generally rises to about 180 to 200 ° C.

熱交換部EXは、加圧部PRで加圧された高温の排ガスGと、吸着部ADから還流される処理後ガスG’とを間接接触によって熱交換するように設置される。高温の排ガスGは、熱交換部EXにおいて、50〜70℃程度に冷却されて吸着部ADへ圧送され、冷却温度は、熱交換部EXの熱交換率によって30〜40℃程度又はそれ以下に下げることも可能である。吸着部ADから還流される20〜40℃程度の処理後ガスG’は、150〜180℃程度に加熱されて除湿部DHへ再生用ガスとして供給される。熱交換部EXは、公知の気−気熱交換器を用いて構成すればよい。向流型、並流型、直交流式等の何れの形式でも良く、例えば、静止型熱交換器、回転再生式熱交換器、周期流蓄熱式熱交換器等から適宜選択することが可能である。   The heat exchanging unit EX is installed so as to exchange heat by indirect contact between the high-temperature exhaust gas G pressurized by the pressurizing unit PR and the treated gas G ′ recirculated from the adsorption unit AD. The high-temperature exhaust gas G is cooled to about 50 to 70 ° C. and pumped to the adsorption unit AD in the heat exchange part EX, and the cooling temperature is about 30 to 40 ° C. or lower depending on the heat exchange rate of the heat exchange part EX. It can also be lowered. The treated gas G ′ having a temperature of about 20 to 40 ° C. refluxed from the adsorption unit AD is heated to about 150 to 180 ° C. and supplied to the dehumidifying unit DH as a regeneration gas. What is necessary is just to comprise the heat exchange part EX using a well-known air-air heat exchanger. Any type such as a counter flow type, a parallel flow type, and a cross flow type may be used, and for example, a static heat exchanger, a rotary regenerative heat exchanger, a periodic heat storage heat exchanger, or the like can be appropriately selected. is there.

吸着部ADは、本発明の回収装置の主要部であって、金属−有機構造体を有する吸着剤を収容し、排ガスGの供給によって排ガスGに含まれる二酸化炭素を吸着剤が吸着して、二酸化炭素が減少した処理後ガスが放出される。具体的には、PSA法に従って排ガスから二酸化炭素を分離するための吸着剤が収容された1対の吸着塔を有し、各々、二酸化炭素を選択的に吸着可能な金属−有機構造体を吸着剤として内部に収容する。吸着塔の各々において、二酸化炭素分圧が吸着圧(相対的高圧)となる圧力で排ガスGが供給されると、排ガスGに含まれる二酸化炭素が吸着剤に吸着され、圧力が脱着圧(相対的低圧)に低下すると、吸着剤から二酸化炭素が脱着して放出される。従って、2つの吸着塔間で二酸化炭素の吸着と脱着とが互い違いに行われるように切り替えながら、排ガスGの供給及び圧力低下の一連の操作を繰り返すことによって、各吸着塔において排ガスGからの二酸化炭素の分離と回収とが交互に繰り返される(吸着部ADの具体的構成及び操作は、図3を参照して後述する)。加圧部PRから連続的に供給される排ガスGを用いて、吸着部ADの2つの吸着塔から二酸化炭素Cが交互に回収でき、回収される二酸化炭素Cは、液化部LQに供給される。二酸化炭素を除去した処理後ガスG’は、流路L6及び熱交換部EXを通じて除湿部DHへ還流され、再生用の高温ガスとして使用された後に排出される。つまり、処理後ガスG’は、加圧された排ガスGの熱エネルギーを除湿部DHへ運ぶ熱媒体としても作用する。   The adsorbing part AD is a main part of the recovery apparatus of the present invention, contains an adsorbent having a metal-organic structure, adsorbs the carbon dioxide contained in the exhaust gas G by supplying the exhaust gas G, The treated gas with reduced carbon dioxide is released. Specifically, it has a pair of adsorption towers containing an adsorbent for separating carbon dioxide from exhaust gas according to the PSA method, and each adsorbs a metal-organic structure capable of selectively adsorbing carbon dioxide. Housed inside as an agent. In each of the adsorption towers, when the exhaust gas G is supplied at a pressure at which the carbon dioxide partial pressure becomes the adsorption pressure (relatively high pressure), the carbon dioxide contained in the exhaust gas G is adsorbed by the adsorbent, and the pressure is desorbed (relative). Carbon dioxide is desorbed and released from the adsorbent. Therefore, by switching the two adsorption towers so that the adsorption and desorption of carbon dioxide are alternately performed, the series of operations of supplying the exhaust gas G and reducing the pressure is repeated, so that the dioxide dioxide from the exhaust gas G in each adsorption tower. Carbon separation and recovery are alternately repeated (the specific configuration and operation of the adsorption unit AD will be described later with reference to FIG. 3). Using the exhaust gas G continuously supplied from the pressurizing unit PR, carbon dioxide C can be alternately recovered from the two adsorption towers of the adsorption unit AD, and the recovered carbon dioxide C is supplied to the liquefaction unit LQ. . The treated gas G ′ from which carbon dioxide has been removed is refluxed to the dehumidifying part DH through the flow path L6 and the heat exchanging part EX, and is discharged after being used as a high-temperature gas for regeneration. That is, the treated gas G ′ also acts as a heat medium that carries the heat energy of the pressurized exhaust gas G to the dehumidifying part DH.

液化部LQは、二酸化炭素Cを圧縮するための圧縮装置と、熱交換器を用いて冷却する冷却装置とを有する。吸着部ADにおいて回収される濃縮又は精製された二酸化炭素Cは、液化部LQにおいて、沸騰線温度以下、好ましくは−20〜−50℃程度に冷却して加圧圧縮することによって液化する。液化した二酸化炭素Cは、好ましくは超臨界状態に調製し、概して95〜99%程度の純度に液化精製された二酸化炭素Cが得られる。   The liquefaction part LQ has a compression device for compressing the carbon dioxide C and a cooling device for cooling using a heat exchanger. The concentrated or purified carbon dioxide C recovered in the adsorption unit AD is liquefied in the liquefaction unit LQ by cooling to the boiling line temperature or lower, preferably about −20 to −50 ° C. and pressurizing and compressing. The liquefied carbon dioxide C is preferably prepared in a supercritical state, and carbon dioxide C liquefied and purified to a purity of about 95 to 99% is obtained.

上述のように、回収装置1に供給される排ガスGには、冷却処理、脱硫処理、除湿処理、分離処理及び液化処理が順次施され、分離処理においては、加圧処理、熱交換による排ガスGの冷却、吸着処理、脱着処理、及び、回収処理が行われる。加圧された排ガスGを冷却するための熱交換において加熱された処理後ガスG’は、除湿処理において用いる吸湿剤を再生するために利用される。   As described above, the exhaust gas G supplied to the recovery device 1 is sequentially subjected to a cooling process, a desulfurization process, a dehumidification process, a separation process, and a liquefaction process. In the separation process, the exhaust gas G by pressure treatment and heat exchange is used. Cooling, adsorption processing, desorption processing, and recovery processing are performed. The post-treatment gas G ′ heated in the heat exchange for cooling the pressurized exhaust gas G is used to regenerate the hygroscopic agent used in the dehumidification treatment.

図2の回収装置1における吸着部ADの具体的な構成を図3に示す。尚、図3中の破線は、電気的接続を示す。吸着部ADは、PSA法に従って混合ガスから二酸化炭素を吸着分離する分離装置の主要部として構成され、吸着剤Fを各々収容する第1吸着塔2a及び第2吸着塔2bからなる1対の吸着塔と、排ガスGを第1吸着塔2a及び第2吸着塔2bのうちの一方に交互に供給可能なガス供給システムと、第1吸着塔2a及び第2吸着塔2bのうちの排ガスGが供給されない他方において交互に圧力を相対的低圧に低下可能な圧力低下手段と、ガス供給システムによる排ガスGの供給先の切り替えを制御する制御システムと、脱着した二酸化炭素を回収する回収システムとを有する。   FIG. 3 shows a specific configuration of the adsorption unit AD in the recovery device 1 of FIG. In addition, the broken line in FIG. 3 shows electrical connection. The adsorption unit AD is configured as a main part of a separation device that adsorbs and separates carbon dioxide from a mixed gas according to the PSA method, and a pair of adsorption columns each composed of a first adsorption tower 2a and a second adsorption tower 2b each containing an adsorbent F. A tower, a gas supply system capable of alternately supplying exhaust gas G to one of the first adsorption tower 2a and the second adsorption tower 2b, and an exhaust gas G of the first adsorption tower 2a and the second adsorption tower 2b are supplied. On the other hand, it has pressure reducing means that can alternately reduce the pressure to a relatively low pressure, a control system that controls switching of the supply destination of the exhaust gas G by the gas supply system, and a recovery system that recovers the desorbed carbon dioxide.

具体的には、ガス供給システムは、吸着部ADの外部から排ガスGを導入する流路3と、流路3から分岐して各々第1吸着塔2a及び第2吸着塔2bに接続される流路4,5と、流路3と流路4,5との接続を切り替え可能な切替弁6とによって構成され、流路3の接続先を切替弁6によって流路4と流路5との間で切り替えることにより、排ガスGの供給先が第1吸着塔2aと第2吸着塔2bとの間で切り替えられる。排ガスGは、二酸化炭素分圧が吸着圧となるように加圧部PRにおいて加圧されるので、排ガスGが供給された吸着塔において、排ガスGに含まれる二酸化炭素が吸着剤へ吸着されて、二酸化炭素の濃度が低下した処理後ガスG’が放出される。従って、切替弁6の切り替えによって第1吸着塔2a及び第2吸着塔2bの一方に交互に排ガスGが供給されると、二酸化炭素の濃度が低下した処理後ガスG’が第1吸着塔2a及び第2吸着塔2bから交互に放出される。尚、流路3は、排ガスGを予め冷却して所定温度以下に維持するための冷却器7を有し、冷却温度は40℃程度以下、好ましくは30℃程度以下、より好ましくは20℃程度以下が好適であり、5〜25℃程度の冷却水を冷媒とする水冷式冷却器を冷却器7として好適に使用できる。この冷却器7は、熱交換部EXによる冷却を補完するためのもので、熱交換部EXによる冷却が十分である場合には省略可能である。   Specifically, the gas supply system includes a flow path 3 for introducing the exhaust gas G from the outside of the adsorption unit AD, and a flow branched from the flow path 3 and connected to the first adsorption tower 2a and the second adsorption tower 2b, respectively. It is comprised by the switching valve 6 which can switch the connection of the flow path 4 and 5 and the flow path 3 and the flow paths 4 and 5, and the connection destination of the flow path 3 is made into the flow path 4 and the flow path 5 by the switching valve 6. By switching between them, the supply destination of the exhaust gas G is switched between the first adsorption tower 2a and the second adsorption tower 2b. Since the exhaust gas G is pressurized in the pressurizing unit PR so that the carbon dioxide partial pressure becomes the adsorption pressure, the carbon dioxide contained in the exhaust gas G is adsorbed by the adsorbent in the adsorption tower to which the exhaust gas G is supplied. Then, the treated gas G ′ having a reduced carbon dioxide concentration is released. Accordingly, when the exhaust gas G is alternately supplied to one of the first adsorption tower 2a and the second adsorption tower 2b by switching the switching valve 6, the treated gas G ′ having a reduced carbon dioxide concentration is converted into the first adsorption tower 2a. And alternately discharged from the second adsorption tower 2b. The flow path 3 has a cooler 7 for cooling the exhaust gas G in advance and maintaining it at a predetermined temperature or lower, and the cooling temperature is about 40 ° C. or lower, preferably about 30 ° C. or lower, more preferably about 20 ° C. The following is suitable, and a water-cooled cooler using a coolant of about 5 to 25 ° C. as a refrigerant can be suitably used as the cooler 7. The cooler 7 is for supplementing the cooling by the heat exchanging unit EX, and can be omitted when the cooling by the heat exchanging unit EX is sufficient.

第1吸着塔及び第2吸着塔の流路4,5とは反対側には、処理後ガスG’を導出するための流路8及び二酸化炭素Cを導出するための流路9が設けられる。流路8は、流路10及び流路11によって第1吸着塔2a及び第2吸着塔2bの各々と接続され、切替弁12によって何れか一方の吸着塔に連通するように接続先を切り替え可能である。流路9は、流路13及び流路14によって各々第1吸着塔2a及び第2吸着塔2bの各々と接続され、切替弁15によって何れか一方の吸着塔に連通するように接続先を切り替え可能である。更に、第1吸着塔2aは、切替弁16によって流路10及び流路13の何れか一方と連通するように接続先を切り替え可能であり、第2吸着塔2bは、切替弁17によって流路11,14の何れか一方と連通するように接続先を切り替え可能である。流路8には排出される処理後ガスG’の二酸化炭素の濃度を検出する検出器として濃度センサー18が設けられる。切替弁6,12,15,16,17は、電磁弁等の電気的に作動制御が可能なものを使用し、濃度センサー18は、切替弁6,12,15,16,17と電気的に接続される。脱着圧は大気圧以上であるので、圧力を付与された排ガスから圧力を解放可能な圧力低下手段として圧力制御弁が設けられる。具体的には、流路9には、上流側の圧力を一定値以下に維持するための圧力制御弁19が設けられ、流路9に連通する吸着塔のガスの圧力が脱着圧になるように設定される。従って、第1吸着塔2a及び第2吸着塔2bにおいて、排ガスGを供給して二酸化炭素を吸着させた後に流路9と接続して圧力を脱着圧に低下させると、吸着した二酸化炭素Cが放出される。   On the opposite side to the flow paths 4 and 5 of the first adsorption tower and the second adsorption tower, a flow path 8 for deriving the treated gas G ′ and a flow path 9 for deriving the carbon dioxide C are provided. . The flow path 8 is connected to each of the first adsorption tower 2a and the second adsorption tower 2b by the flow path 10 and the flow path 11, and the connection destination can be switched by the switching valve 12 so as to communicate with one of the adsorption towers. It is. The flow path 9 is connected to each of the first adsorption tower 2a and the second adsorption tower 2b by the flow path 13 and the flow path 14, respectively, and the connection destination is switched by the switching valve 15 so as to communicate with one of the adsorption towers. Is possible. Further, the first adsorption tower 2a can switch the connection destination so as to communicate with either the flow path 10 or the flow path 13 by the switching valve 16, and the second adsorption tower 2b can be switched by the switching valve 17 to the flow path. The connection destination can be switched so as to communicate with either one of 11 and 14. The flow path 8 is provided with a concentration sensor 18 as a detector for detecting the concentration of carbon dioxide in the discharged processed gas G ′. The switching valves 6, 12, 15, 16, and 17 are those that can be electrically controlled such as electromagnetic valves, and the concentration sensor 18 is electrically connected to the switching valves 6, 12, 15, 16, and 17. Connected. Since the desorption pressure is equal to or higher than the atmospheric pressure, a pressure control valve is provided as a pressure reducing means capable of releasing the pressure from the exhaust gas to which the pressure is applied. Specifically, the flow path 9 is provided with a pressure control valve 19 for maintaining the upstream pressure below a certain value, so that the gas pressure of the adsorption tower communicating with the flow path 9 becomes the desorption pressure. Set to Therefore, in the first adsorption tower 2a and the second adsorption tower 2b, when the exhaust gas G is supplied to adsorb carbon dioxide and then connected to the flow path 9 to reduce the pressure to the desorption pressure, the adsorbed carbon dioxide C is Released.

切替弁6,12,15,16,17は、第1吸着塔2a及び第2吸着塔2bの一方が流路3及び流路8と連通する時に、他方は流路9に連通して流路3から遮断されるように接続切り替えが制御される。従って、排ガスGが流路3,4から第1吸着塔2aに供給されて二酸化炭素分圧が吸着圧(相対的高圧)となる時は、第1吸着塔2aから処理後ガスG’が流路10を通じて流路8に放出されると共に、第2吸着塔2bは排ガスGから遮断されて流路14を通じて流路9と連通し、これにより、第2吸着塔2b内部の圧力は脱着圧(相対的低圧)に低下して、吸着剤Fから脱着した二酸化炭素が流路9を通じて放出される。排ガスGが流路3,5から第2吸着塔2bに供給される時は、第2吸着塔2bから処理後ガスG’が流路11を通じて流路8に放出されると共に、第1吸着塔2aは排ガスGから遮断されて吸着剤Fから脱着した二酸化炭素が流路13を通じて流路8に放出される。   When one of the first adsorption tower 2a and the second adsorption tower 2b communicates with the flow path 3 and the flow path 8, the other of the switching valves 6, 12, 15, 16, and 17 communicates with the flow path 9 and communicates with the flow path. The connection switching is controlled so as to be disconnected from 3. Therefore, when the exhaust gas G is supplied from the flow paths 3 and 4 to the first adsorption tower 2a and the carbon dioxide partial pressure becomes the adsorption pressure (relatively high pressure), the treated gas G ′ flows from the first adsorption tower 2a. The second adsorption tower 2b is cut off from the exhaust gas G and communicated with the flow path 9 through the flow path 14 through the passage 10 and thereby the pressure inside the second adsorption tower 2b is desorbed ( The carbon dioxide desorbed from the adsorbent F is released through the flow path 9. When the exhaust gas G is supplied from the flow paths 3 and 5 to the second adsorption tower 2b, the treated gas G ′ is released from the second adsorption tower 2b to the flow path 8 through the flow path 11 and the first adsorption tower. The carbon dioxide 2 a that is blocked from the exhaust gas G and desorbed from the adsorbent F is released to the flow path 8 through the flow path 13.

第1吸着塔2aに排ガスGが供給される間に第1吸着塔2aから放出される処理後ガスG’は、吸着剤Fが破瓜する前においては二酸化炭素の濃度が低く維持されるが、吸着剤Fが破瓜に近づくと、二酸化炭素の濃度が急激に上昇して、処理前の排ガスGの二酸化炭素の濃度に達する。流路8の濃度センサー18は、検出される二酸化炭素の濃度情報に基づいて破瓜を検知し、吸着剤Fが破瓜した時、つまり、処理後ガスG’の二酸化炭素の濃度が排ガスの二酸化炭素濃度に達した時に、切替弁6、12,15,16,17へ制御信号を発し、排ガスGの供給先が第2吸着塔2bへ切り替わるように切替弁6、12,15,16,17の接続が制御される。従って、濃度センサー18及び切替弁6、12,15,16,17は、排ガスGの供給先の切り替えを制御する制御システムとして機能し、第1吸着塔2aの吸着剤Fが破瓜した時に排ガスGの供給先が第1吸着塔2aから第2吸着塔2bへ切り替わり、第2吸着塔2bの吸着剤Fが破瓜した時に排ガスGの供給先が第2吸着塔2bから第1吸着塔2aへ切り替わる。   The treated gas G ′ released from the first adsorption tower 2a while the exhaust gas G is supplied to the first adsorption tower 2a is kept at a low concentration of carbon dioxide before the adsorbent F breaks down. When the adsorbent F approaches rupture, the concentration of carbon dioxide rapidly increases and reaches the concentration of carbon dioxide in the exhaust gas G before treatment. The concentration sensor 18 in the flow path 8 detects breakage based on the detected carbon dioxide concentration information, and when the adsorbent F is broken, that is, the concentration of carbon dioxide in the treated gas G ′ is the carbon dioxide in the exhaust gas. When the concentration is reached, a control signal is issued to the switching valves 6, 12, 15, 16, 17, and the switching valves 6, 12, 15, 16, 17 are switched so that the supply destination of the exhaust gas G is switched to the second adsorption tower 2 b. Connection is controlled. Therefore, the concentration sensor 18 and the switching valves 6, 12, 15, 16, and 17 function as a control system that controls switching of the supply destination of the exhaust gas G, and the exhaust gas G when the adsorbent F of the first adsorption tower 2a is destroyed. Is switched from the first adsorption tower 2a to the second adsorption tower 2b, and when the adsorbent F in the second adsorption tower 2b is broken, the supply destination of the exhaust gas G is switched from the second adsorption tower 2b to the first adsorption tower 2a. .

第1吸着塔2aにおいて、吸着剤Fの破瓜によって排ガスGが遮断されて第1吸着塔1aが流路9に接続されると、塔内の排ガスGが圧力制御弁19を介して放出される間に党内のガス圧が脱着圧に低下する(二酸化炭素分圧は脱着圧より低くなる)。これと共に、吸着剤Fにおいて二酸化炭素Cの脱着が始まり、圧力制御弁19を介して二酸化炭素を放出しつつ圧力は脱着圧に維持される。吸着塔から放出されるガスの二酸化炭素濃度は、排ガスGの二酸化炭素の濃度から上昇して95%(容積率)以上に上昇可能である。例えば、排ガスGの二酸化炭素の濃度が60%程度以上の場合、概して90〜99%の濃度に濃縮又は精製された二酸化炭素Cの回収が可能である。この際、脱着初期の低濃度の二酸化炭素を回収せずに、脱着した二酸化炭素Cの濃度が所定濃度以上になった時に二酸化炭素Cを回収する回収システムとして、二酸化炭素の濃度を検出する検出器として流路9上に設けられる濃度センサー20と、流路9から分岐する還流路21と、流路9の分岐点に設けられる切替弁22とを有し、所定濃度未満の二酸化炭素Cは、回収せずに還流路21を通じてガス供給システムへ供給する。切替弁22は、電磁弁等の電気的に作動制御が可能なものを使用し、濃度センサー20は切替弁22と電気的に接続される。従って、第1吸着塔2aから放出される二酸化炭素Cの濃度が濃度センサー20によって検出されて、所定濃度未満の時は、切替弁22は流路9と還流路21を連通させて脱着した二酸化炭素をガス供給システムの流路3へ供給する。二酸化炭素Cの濃度が所定濃度に達すると、その濃度情報に基づいて切替弁22の接続を切り替える制御信号が発せられ、流路9から吸着部AD外へ放出されて液化部LQへ供給される。還流路21上には、ガス供給システムへ供給される二酸化炭素に圧力を付与するための加圧装置として圧縮器24が設けられ、脱着圧以下に低下した二酸化炭素Cは、圧縮器24によって再度加圧され、排ガスGの供給圧と同程度になるように、圧力制御弁23によって加圧制御される。圧縮器24は、ブロワー等の他の加圧手段で代用しても良い。還流路21上の流路3との合流点の近くには、流路3から還流路21へのガスの逆流を防止するための逆止弁25が設けられる。圧縮器24は、濃度センサー20と電気的に接続され、切替弁22の切り替えと、圧縮器24の作動とが連動するように制御される。切替弁22が還流路21と流路9とを接続することによって、所定濃度未満の二酸化炭素Cは、還流路21を通じて吸着処理中の第2吸着塔2bへ供給されて吸着剤Fに吸着される。   In the first adsorption tower 2a, when the exhaust gas G is blocked by the breach of the adsorbent F and the first adsorption tower 1a is connected to the flow path 9, the exhaust gas G in the tower is released via the pressure control valve 19. In the meantime, the gas pressure in the party falls to the desorption pressure (the carbon dioxide partial pressure is lower than the desorption pressure). At the same time, desorption of carbon dioxide C starts in the adsorbent F, and the pressure is maintained at the desorption pressure while releasing carbon dioxide through the pressure control valve 19. The carbon dioxide concentration of the gas released from the adsorption tower can be increased from the concentration of carbon dioxide in the exhaust gas G to 95% (volume ratio) or more. For example, when the concentration of carbon dioxide in the exhaust gas G is about 60% or more, it is possible to recover the carbon dioxide C concentrated or purified to a concentration of 90 to 99%. At this time, detection is performed to detect the concentration of carbon dioxide as a recovery system that recovers carbon dioxide C when the concentration of desorbed carbon dioxide C reaches or exceeds a predetermined concentration without recovering low-concentration carbon dioxide at the initial stage of desorption. A concentration sensor 20 provided on the flow path 9 as a vessel, a reflux path 21 branched from the flow path 9, and a switching valve 22 provided at a branch point of the flow path 9, and carbon dioxide C having a concentration lower than a predetermined concentration is Then, the gas is supplied to the gas supply system through the reflux path 21 without being collected. As the switching valve 22, a valve that can be electrically controlled such as an electromagnetic valve is used, and the concentration sensor 20 is electrically connected to the switching valve 22. Accordingly, when the concentration of carbon dioxide C released from the first adsorption tower 2a is detected by the concentration sensor 20 and is less than the predetermined concentration, the switching valve 22 communicates the flow path 9 and the reflux path 21 and is desorbed. Carbon is supplied to the flow path 3 of the gas supply system. When the concentration of the carbon dioxide C reaches a predetermined concentration, a control signal for switching the connection of the switching valve 22 is issued based on the concentration information, and the control signal is discharged from the flow path 9 to the outside of the adsorption unit AD and supplied to the liquefaction unit LQ. . On the reflux path 21, a compressor 24 is provided as a pressurizing device for applying pressure to the carbon dioxide supplied to the gas supply system, and the carbon dioxide C that has fallen below the desorption pressure is returned again by the compressor 24. The pressure is controlled by the pressure control valve 23 so that the pressure is increased and is approximately equal to the supply pressure of the exhaust gas G. The compressor 24 may be replaced with other pressurizing means such as a blower. A check valve 25 for preventing a backflow of gas from the flow path 3 to the reflux path 21 is provided near the junction with the flow path 3 on the reflux path 21. The compressor 24 is electrically connected to the concentration sensor 20 and is controlled so that the switching of the switching valve 22 and the operation of the compressor 24 are interlocked. When the switching valve 22 connects the reflux path 21 and the flow path 9, the carbon dioxide C having a concentration lower than the predetermined concentration is supplied to the second adsorption tower 2 b during the adsorption process through the reflux path 21 and is adsorbed by the adsorbent F. The

第2吸着塔2bにおいて吸着剤Fが破瓜すれば、ガス供給システムにおける接続が再度切り替えられ、第1吸着塔2aにおいて排ガスGの供給及び二酸化炭素の吸着が開始される。このようにして、第1吸着塔及び第2吸着塔のうちの一方に交互に排ガスGが供給されて処理後ガスG’が放出され、他方において吸着剤Fから二酸化炭素Cが脱着する。切替弁22の接続先を切り替える二酸化炭素の濃度設定によって、流路9から回収して液化部LQへ供給される二酸化炭素の純度が決定され、液化部LQにおける品質要件に応じて設定を適宜変更できる。   If the adsorbent F breaks in the second adsorption tower 2b, the connection in the gas supply system is switched again, and the supply of the exhaust gas G and the adsorption of carbon dioxide are started in the first adsorption tower 2a. In this way, the exhaust gas G is alternately supplied to one of the first adsorption tower and the second adsorption tower to release the treated gas G ′, and on the other hand, the carbon dioxide C is desorbed from the adsorbent F. The purity of carbon dioxide recovered from the flow path 9 and supplied to the liquefaction unit LQ is determined by the carbon dioxide concentration setting for switching the connection destination of the switching valve 22, and the setting is appropriately changed according to the quality requirements in the liquefaction unit LQ. it can.

第1吸着塔2a及び第2吸着塔2bに収容される吸着剤Fとして、金属−有機構造体が用いられる。例えば、[Cu(4,4’-ジヒドロキシビフェニル-3-カルボキシル)2(4,4’-ビピリジル)]n、[Cu(PF6 -)2(1,2-ビス(4-ピリジル)エタン)]n、[Cu(CF3SO3 -)2(1,3-ビス(4-ピリジル)プロパン)2n、{[Cu(PF6 -)(2,2-ビス(4-ピリジル))]PF6 -n、[Cu2(PF6 -)2(4,4’-ビピリジル)プロパン)2n、[Cu2(PF6 -)2(ピリジン)4n、[M2(2,5-ジオキシド-1,4-ベンゼンジカルボキシレート)](但し、式中のMは、Mg2+、Mn2+、Co2+、Ni2+、Fe2+又はZn2+)、[Cu(4,4’-ジオキシドビフェニル-3-カルボキシレート)2(4,4’-ビピリジル)]n、[Zn4O(4,4’,4”-(ベンゼン-1,3,5-トリイル-トリス(ベンゼン-4,1-ジイル)トリベンゾエート)]n等の金属−有機構造体が挙げられる。又、市販の金属−有機構造体から二酸化炭素に対して吸着性を示すものを適宜選択して利用しても良い。多段階の吸着処理を実施可能なように対の吸着塔を複数組用いる場合には、各組において異なる種類の金属−有機構造体を用いて種類に応じた吸着性能を発揮させるように構成しても良い。金属−有機構造体には、複数種のガスに対して吸着性を示すものもあるが、そのようなものにおいても、概して、吸着等温線における閾値の圧力はガスの種類によって異なり、適切な圧力設定によって二酸化炭素の選択吸着を好適に実施することができる。 A metal-organic structure is used as the adsorbent F accommodated in the first adsorption tower 2a and the second adsorption tower 2b. For example, [Cu (4,4′-dihydroxybiphenyl-3-carboxyl) 2 (4,4′-bipyridyl)] n , [Cu (PF 6 ) 2 (1,2-bis (4-pyridyl) ethane) ] N , [Cu (CF 3 SO 3 ) 2 (1,3-bis (4-pyridyl) propane) 2 ] n , {[Cu (PF 6 ) (2,2-bis (4-pyridyl)) ] PF 6 } n , [Cu 2 (PF 6 ) 2 (4,4′-bipyridyl) propane) 2 ] n , [Cu 2 (PF 6 ) 2 (pyridine) 4 ] n , [M 2 ( 2,5-dioxide-1,4-benzenedicarboxylate)] (wherein M is Mg 2+ , Mn 2+ , Co 2+ , Ni 2+ , Fe 2+ or Zn 2+ ), [Cu (4,4′-dioxidebiphenyl-3-carboxylate) 2 (4,4′-bipyridyl)] n , [Zn 4 O (4,4 ′, 4 ″-(benzene-1,3,5) -Triyl-tris (benzene-4,1-diyl) tribenzoate) ] A metal-organic structure such as n, etc. In addition, a commercially available metal-organic structure that exhibits adsorptivity to carbon dioxide may be appropriately selected and used. When a plurality of pairs of adsorption towers are used so as to be feasible, a different type of metal-organic structure may be used in each group so as to exhibit the adsorption performance according to the type. Some organic structures are adsorptive to multiple types of gases, but even in such cases, the threshold pressure in the adsorption isotherm generally depends on the type of gas and depends on the appropriate pressure setting. The selective adsorption of carbon dioxide can be suitably performed.

上述の構成において、切替弁6,12,15〜17,22及び濃度センサー18,20をCPU等の演算処理装置に接続して、濃度センサー18,20で得られる濃度情報を演算処理装置において管理しながら切替弁6,12,15〜17,22を自動制御するように構成しても良く、これにより、濃度情報の補正による作動修正や異常時の対応等の複雑な処理が可能になる。   In the above configuration, the switching valves 6, 12, 15 to 17, 22 and the concentration sensors 18, 20 are connected to an arithmetic processing device such as a CPU, and concentration information obtained by the concentration sensors 18, 20 is managed in the arithmetic processing device. However, the switching valves 6, 12, 15 to 17, 22 may be configured to be automatically controlled, and this makes it possible to perform complicated processing such as operation correction by correcting density information and handling in the event of an abnormality.

燃焼排ガスの組成は、燃料や燃焼形式によって異なり、酸素燃焼による排ガスは、概して、80%程度の二酸化炭素、10%程度の窒素及び10%程度の酸素を含有し(容積率)、その他に、少量の水蒸気と、不純物として硫黄酸化物、窒素酸化物、塩素、水銀等を含み得る。このような燃焼ガスを排ガスGとして処理すると、吸着部ADから98%程度以上の高濃度に濃縮された二酸化炭素が回収可能である。吸着部ADへ供給される排ガスGは、脱硫部DS及び除湿部DHを経て水蒸気及び硫黄酸化物が除去されているので、吸着部ADから排出される処理後ガスG’は、水蒸気を殆ど含まず、除湿部DHにおいて再生用ガスとして使用するのに好適である。この点を利用して、吸着部ADへ供給する排ガスGに付与する圧力から生じる熱エネルギーを回収して、除湿部DHにおける吸湿剤の再生に利用するように本発明は構成されるので、本発明の構成は、エネルギーの利用効率の点において優れている。   The composition of the combustion exhaust gas varies depending on the fuel and combustion type, and the exhaust gas by oxyfuel combustion generally contains about 80% carbon dioxide, about 10% nitrogen and about 10% oxygen (volume ratio). A small amount of water vapor and impurities such as sulfur oxide, nitrogen oxide, chlorine, mercury and the like may be included. When such a combustion gas is processed as the exhaust gas G, carbon dioxide concentrated at a high concentration of about 98% or more can be recovered from the adsorption part AD. Since the exhaust gas G supplied to the adsorption unit AD has the water vapor and sulfur oxide removed through the desulfurization unit DS and the dehumidification unit DH, the treated gas G ′ discharged from the adsorption unit AD contains almost no water vapor. It is suitable for use as a regeneration gas in the dehumidifying part DH. By utilizing this point, the present invention is configured to recover the heat energy generated from the pressure applied to the exhaust gas G supplied to the adsorption unit AD and use it for regeneration of the moisture absorbent in the dehumidification unit DH. The configuration of the invention is superior in terms of energy utilization efficiency.

本発明の二酸化炭素の回収方法において、図3の吸着部ADにおいて実施される分離処理について図4を参照して以下に説明する。図4は、二酸化炭素濃度が60%(容積率)の排ガスGを処理した場合に各吸着塔から放出されるガスの二酸化炭素濃度の掲示変化を示すタイムチャートであり、(a)は、第1吸着塔2aから放出されるガスの二酸化炭素濃度(容積%)の経時変化を示し、(b)は、第2吸着塔2bから放出されるガスの二酸化炭素濃度(容積%)の経時変化を示す。   In the carbon dioxide recovery method of the present invention, a separation process performed in the adsorption unit AD of FIG. 3 will be described below with reference to FIG. FIG. 4 is a time chart showing a change in posting of the carbon dioxide concentration of the gas released from each adsorption tower when the exhaust gas G having a carbon dioxide concentration of 60% (volume ratio) is processed. 1 shows the change over time in the carbon dioxide concentration (volume%) of the gas released from the first adsorption tower 2a, and (b) shows the change over time in the carbon dioxide concentration (volume%) of the gas released from the second adsorption tower 2b. Show.

分離処理では、金属−有機構造体を含有する吸着剤Fを各々収容する第1吸着塔2a及び第2吸着塔2bを用いて、圧力変動による二酸化炭素の吸着剤に対する吸着及び脱着を利用して排ガスから二酸化炭素を分離する。分離処理は、排ガスに圧力を付与する加圧処理と、加圧処理を経た排ガスGを用いて、相対的高圧の二酸化炭素分圧で排ガスGを吸着剤に接触させて、排ガスGに含まれる二酸化炭素を吸着剤に吸着させる吸着処理と、脱着圧に圧力を低下させて、二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して二酸化炭素を放出させる脱着処理と、脱着処理によって放出される脱着した二酸化炭素の濃度が所定濃度以上である時に、脱着した二酸化炭素を回収する回収処理とを有する。   In the separation process, the first adsorption tower 2a and the second adsorption tower 2b each containing the adsorbent F containing the metal-organic structure are used to utilize adsorption and desorption of carbon dioxide to the adsorbent due to pressure fluctuation. Separate carbon dioxide from exhaust gas. The separation treatment is included in the exhaust gas G by bringing the exhaust gas G into contact with the adsorbent at a relatively high pressure of carbon dioxide partial pressure using the pressure treatment for applying pressure to the exhaust gas and the exhaust gas G that has undergone the pressure treatment. It is released by an adsorption process that adsorbs carbon dioxide to the adsorbent, a desorption process that desorbs carbon dioxide from the adsorbent that adsorbs carbon dioxide and releases carbon dioxide by reducing the pressure to the desorption pressure, and a desorption process. A recovery process for recovering the desorbed carbon dioxide when the concentration of the desorbed carbon dioxide is equal to or higher than a predetermined concentration.

第1吸着塔及び第2吸着塔からなる1対の吸着塔を用いて分離処理を実施するので、上述の吸着処理及び脱着処理は、第1吸着塔2aに排ガスGを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、第2吸着塔2bを相対的低圧に調整して二酸化炭素を脱着させる第1処理(タイムチャートの時間taより前の期間)と、第2吸着塔2bに排ガスGを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、第1吸着塔2aを相対的低圧に調整して二酸化炭素を脱着させる第2処理(タイムチャートの時間taより後の期間)とによって実施される。前記分離処理は、更に、第1処理において第1吸着塔2aの吸着剤Fが破瓜した時に第1処理から第2処理へ切り替え(タイムチャートの時間ta)、第2処理において第2吸着塔2bの吸着剤Fが破瓜した時に第2処理から第1処理へ切り替える(図示省略)切り替え操作を有し、回収処理においては、切り替え操作後の第1処理及び第2処理の各々において、第2吸着塔2b又は第1吸着塔2aから放出される二酸化炭素の濃度が所定濃度以上の時に、放出される二酸化炭素を回収する(時間tb以降の期間、及び、時間ta以前の期間)。   Since the separation process is performed using a pair of adsorption towers including the first adsorption tower and the second adsorption tower, the above-described adsorption treatment and desorption treatment are performed by supplying the exhaust gas G to the first adsorption tower 2a and relatively high pressure. Carbon dioxide is adsorbed at the partial pressure of carbon dioxide, and the second adsorption tower 2b is adjusted to a relatively low pressure to desorb carbon dioxide (period before time ta in the time chart), and second adsorption. A second treatment (determined in the time chart) of supplying exhaust gas G to the tower 2b to adsorb carbon dioxide at a relatively high partial pressure of carbon dioxide and adjusting the first adsorption tower 2a to a relatively low pressure to desorb carbon dioxide. For a period after time ta). The separation process is further switched from the first process to the second process (time ta in the time chart) when the adsorbent F of the first adsorption tower 2a is broken in the first process, and the second adsorption tower 2b in the second process. When the adsorbent F is broken, it has a switching operation (not shown) for switching from the second process to the first process. In the recovery process, the second adsorption is performed in each of the first process and the second process after the switching operation. When the concentration of carbon dioxide released from the tower 2b or the first adsorption tower 2a is equal to or higher than a predetermined concentration, the released carbon dioxide is recovered (a period after time tb and a period before time ta).

金属−有機構造体における二酸化炭素の吸着反応は発熱反応であり、脱着反応は吸熱反応であるので、吸着及び脱着の繰り返しによって、温度は最大20℃程度変動し得る。二酸化炭素を素早く吸着させるには吸着時の温度を低温に維持することが望ましいので、第1処理及び第2処理の各々において第1吸着塔2a又は第2吸着塔2bに供給される排ガスGは、熱交換部EX及び冷却器7において予め冷却されて所定温度以下、具体的には40℃程度以下、好ましくは30℃程度以下、より好ましくは20℃程度以下に維持される。排ガスGの冷却方式は特に限定されず、水冷式、空冷式等の周知の冷媒冷却技術から適宜選択して冷却器7に適用すれば良く、水冷式によって良好に実施可能である。熱交換部EXにおいて十分に冷却可能である場合は、冷却器7における冷却は省略可能である。   Since the adsorption reaction of carbon dioxide in the metal-organic structure is an exothermic reaction, and the desorption reaction is an endothermic reaction, the temperature can fluctuate up to about 20 ° C. by repeated adsorption and desorption. Since it is desirable to maintain the temperature at the time of adsorption at a low temperature in order to adsorb carbon dioxide quickly, the exhaust gas G supplied to the first adsorption tower 2a or the second adsorption tower 2b in each of the first treatment and the second treatment is Then, it is cooled in advance in the heat exchanging unit EX and the cooler 7 and maintained at a predetermined temperature or lower, specifically about 40 ° C. or lower, preferably about 30 ° C. or lower, more preferably about 20 ° C. or lower. The cooling method of the exhaust gas G is not particularly limited, and may be appropriately selected from well-known refrigerant cooling techniques such as a water cooling method and an air cooling method and applied to the cooler 7, and can be satisfactorily performed by the water cooling method. If the heat exchanger EX can be sufficiently cooled, the cooling in the cooler 7 can be omitted.

例えば、二酸化炭素濃度60%、温度20℃、0.6MPaの排ガスGを供給して、分離処理の第1処理(時間ta以前の期間)を開始する(図4のタイムチャートでは、予め第2吸着塔2bに二酸化炭素を吸着させた状態で開始する)と、吸着側の第1吸着塔2aでは、0.36MPaの吸着圧で二酸化炭素の吸着が開始される。第1吸着塔2aから放出されるガスは、処理後ガスG’として流路8を通じて排出され、このガスの二酸化炭素濃度は、図4(a)のように、二酸化炭素量の吸着量が吸着剤Fの吸着容量に近づくまでは極めて低いが、吸着剤Fの破瓜(吸着飽和)が近づくと、吸着速度の低下によって放出ガスの二酸化炭素濃度が増加し始めて、排ガスGの二酸化炭素濃度(60%)に至り、吸着剤Fは破瓜する(時間ta)。この間、脱着側の第2吸着塔2bでは、圧力制御弁19によって圧力が0.2MPaの脱着圧に規制され、第2吸着塔2bから二酸化炭素が放出される。第2吸着塔2bから放出される二酸化炭素の濃度が所定濃度以上の時に(時間ta以前)、放出される二酸化炭素Cを回収する回収処理が実施される。尚、脱着時には吸熱反応によって吸着剤Fの温度が低下するので、供給する排ガスGを一定温度に冷却しても、吸着時の吸着剤F内部の温度は、脱着時より高くなる。このため、吸着剤Fが吸着時に二酸化炭素を取り込む速度は、脱着時に放出する速度より速く、概して1.2倍程度になり得る。従って、吸着側の吸着剤Fが破瓜に至る迄、脱着側の吸着剤Fからの二酸化炭素の放出が実質的に継続的される。   For example, an exhaust gas G having a carbon dioxide concentration of 60%, a temperature of 20 ° C., and 0.6 MPa is supplied to start the first separation process (period before time ta) (the second time chart in FIG. When the carbon dioxide is adsorbed on the adsorption tower 2b, the first adsorption tower 2a on the adsorption side starts adsorption of carbon dioxide at an adsorption pressure of 0.36 MPa. The gas released from the first adsorption tower 2a is discharged through the flow path 8 as the treated gas G ', and the carbon dioxide concentration of this gas is adsorbed by the amount of carbon dioxide adsorbed as shown in FIG. It is extremely low until it approaches the adsorption capacity of the adsorbent F, but when the adsorbent F is nearly broken (adsorption saturation), the carbon dioxide concentration of the released gas begins to increase due to the decrease in the adsorption speed, and the carbon dioxide concentration of the exhaust gas G (60 %) And the adsorbent F is destroyed (time ta). During this time, in the second adsorption tower 2b on the desorption side, the pressure is regulated to a desorption pressure of 0.2 MPa by the pressure control valve 19, and carbon dioxide is released from the second adsorption tower 2b. When the concentration of carbon dioxide released from the second adsorption tower 2b is equal to or higher than a predetermined concentration (before time ta), a recovery process for recovering the released carbon dioxide C is performed. In addition, since the temperature of the adsorbent F is reduced by the endothermic reaction during desorption, the temperature inside the adsorbent F during adsorption becomes higher than that during desorption even when the supplied exhaust gas G is cooled to a constant temperature. For this reason, the speed at which the adsorbent F takes in carbon dioxide at the time of adsorption is faster than the speed at which it is released at the time of desorption, and can generally be about 1.2 times. Accordingly, the release of carbon dioxide from the desorption side adsorbent F is substantially continued until the adsorption side adsorbent F is broken.

第1処理において第1吸着塔2aの吸着剤Fが破瓜した時に、第1処理から第2処理へ切り替える切り替え操作が行われる。この操作は、第1吸着塔から放出される処理後ガスG’の二酸化炭素濃度を濃度センサー18で検出し、検出される二酸化炭素濃度が供給される排ガスGの二酸化炭素濃度に達した時(時間ta)、吸着剤Fが破瓜したと判断して、切替弁6,12,15〜17の切り替えによって実行する。この切り替え操作により、第1吸着塔2aは流路9に接続されて圧力が脱着圧まで低下するので、吸着剤Fにおける脱着が始まり、第2吸着塔2bは、流路3と接続されて排ガスGが供給され、二酸化炭素分圧が吸着圧に達するので、吸着剤Fによる吸着が開始される。つまり、第2処理(経過時間t:taより後)が開始される。   When the adsorbent F in the first adsorption tower 2a is broken in the first process, a switching operation for switching from the first process to the second process is performed. This operation is performed when the concentration sensor 18 detects the carbon dioxide concentration of the treated gas G ′ released from the first adsorption tower, and the detected carbon dioxide concentration reaches the carbon dioxide concentration of the exhaust gas G to be supplied ( At time ta), it is determined that the adsorbent F has broken, and the process is executed by switching the switching valves 6, 12, 15 to 17. By this switching operation, the first adsorption tower 2a is connected to the flow path 9 and the pressure is reduced to the desorption pressure. Therefore, desorption in the adsorbent F starts, and the second adsorption tower 2b is connected to the flow path 3 and the exhaust gas. Since G is supplied and the carbon dioxide partial pressure reaches the adsorption pressure, the adsorption by the adsorbent F is started. That is, the second process (after the elapsed time t: ta) is started.

第2処理において、第1吸着塔2aの圧力は脱着圧に調整され、吸着剤Fから二酸化炭素が脱着されるので、第1吸着塔2aから放出されるガスの二酸化炭素濃度は、排ガスGの二酸化炭素から次第に増加する。この間に、第2吸着塔2bには排ガスGが供給され、二酸化炭素分圧が吸着圧に達して二酸化炭素が吸着されるので、第2吸着塔2bから放出されるガスの二酸化炭素濃度は減少して極めて低い濃度になる。   In the second treatment, the pressure of the first adsorption tower 2a is adjusted to the desorption pressure, and carbon dioxide is desorbed from the adsorbent F. Therefore, the carbon dioxide concentration of the gas released from the first adsorption tower 2a is It gradually increases from carbon dioxide. During this time, the exhaust gas G is supplied to the second adsorption tower 2b, and the carbon dioxide partial pressure reaches the adsorption pressure so that the carbon dioxide is adsorbed. Therefore, the carbon dioxide concentration of the gas released from the second adsorption tower 2b decreases. The concentration becomes extremely low.

第2処理において、切り替え操作の後に第1吸着塔2aから放出される二酸化炭素の濃度は増加して所定濃度(例えば98%)に達する。流路9の切替弁22は、濃度センサー20に検出される二酸化炭素濃度が所定濃度未満の時は、流路9を還流路21に接続し、検出される二酸化炭素濃度が所定濃度に達したら、流路9と外部とを接続するように、接続切り替えが設定される。従って、第1吸着塔2aから放出される二酸化炭素Cを回収する回収処理は、放出される二酸化炭素の濃度が所定濃度以上の時(時間tb以降)に実施される。第1吸着塔から放出される二酸化炭素Cの濃度が所定濃度未満である期間(時間ta〜時間tb)においては、放出される二酸化炭素Cは、流路9から還流路21を通って圧縮器24に送られ、排ガスGと同等になるように圧力を付与されて流路3へ導入される。従って、所定濃度未満の二酸化炭素Cは、吸着側の第2吸着塔2bへ供給され、二酸化炭素は吸着剤Fに吸着される。   In the second process, the concentration of carbon dioxide released from the first adsorption tower 2a after the switching operation increases and reaches a predetermined concentration (for example, 98%). When the carbon dioxide concentration detected by the concentration sensor 20 is less than a predetermined concentration, the switching valve 22 of the flow channel 9 connects the flow channel 9 to the reflux path 21 and when the detected carbon dioxide concentration reaches the predetermined concentration. The connection switching is set so as to connect the flow path 9 and the outside. Therefore, the recovery process for recovering the carbon dioxide C released from the first adsorption tower 2a is performed when the concentration of the released carbon dioxide is equal to or higher than a predetermined concentration (after time tb). During a period (time ta to time tb) in which the concentration of carbon dioxide C released from the first adsorption tower is less than a predetermined concentration, the released carbon dioxide C passes through the reflux path 21 from the flow path 9 and is compressed. The pressure is applied so as to be equivalent to the exhaust gas G and is introduced into the flow path 3. Accordingly, the carbon dioxide C having a concentration lower than the predetermined concentration is supplied to the second adsorption tower 2b on the adsorption side, and the carbon dioxide is adsorbed by the adsorbent F.

この後の状態は、図4のタイムチャートでは図示を省略するが、前述と同様に、第2処理において第2吸着塔2bの吸着剤Fが破瓜すると、第2吸着塔2bからの放出ガスの二酸化炭素濃度が、図4(a)の時間ta前のように上昇して排ガスGと同濃度に達するので、切り替え操作が実施されて第2処理から第1処理へ切り替わる。前述と同様に実施される第1処理において、切り替え操作の後の第2吸着塔2bから放出される二酸化炭素の濃度が所定濃度未満である間の二酸化炭素は、還流路21から流路3を通じて第1吸着塔2aへ供給される。二酸化炭素濃度が増加して所定濃度に達したら、切替弁22の接続切り替えによって、放出される二酸化炭素Cの回収処理が開始される。   The state after this is not shown in the time chart of FIG. 4, but if the adsorbent F of the second adsorption tower 2b breaks down in the second process, the release gas from the second adsorption tower 2b is not shown in the second process. Since the carbon dioxide concentration rises as before time ta in FIG. 4A and reaches the same concentration as the exhaust gas G, the switching operation is performed to switch from the second process to the first process. In the first process performed in the same manner as described above, carbon dioxide while the concentration of carbon dioxide released from the second adsorption tower 2b after the switching operation is less than a predetermined concentration passes from the reflux path 21 through the flow path 3. It is supplied to the first adsorption tower 2a. When the carbon dioxide concentration increases and reaches a predetermined concentration, recovery of the released carbon dioxide C is started by switching the connection of the switching valve 22.

このようにして、第1吸着塔2a及び第2吸着塔2bにおいて二酸化炭素の吸着と脱着とが交互に繰り返され、二酸化炭素濃度が減少した処理後ガスG’及び脱着した二酸化炭素Cが交互に繰り返し放出される。二酸化炭素の選択吸着性が高い金属−有機構造体を用いて二酸化炭素の吸着分離を行うことによって、図4のように高純度に濃縮又は精製された二酸化炭素を回収することができる。従って、本発明は、排ガス以外の二酸化炭素含有ガスに適用しても良く、高純度の二酸化炭素が得られる点を利用して二酸化炭素の精製に利用しても良い。排ガスGの二酸化炭素濃度が低い場合には、排ガスGの二酸化炭素分圧が好適な吸着圧になるように加圧部PRにおいて付与する圧力を高めることで対応可能である。但し、排ガスGの圧力を高めると、排ガスGに含まれる他成分(窒素、酸素等)の分圧も高まるので、他成分の吸着が進行する恐れがある。このため、排ガスGの圧力は、他成分の分圧における当該他成分の平衡吸着量が小さくなる範囲内で設定される。   In this way, the adsorption and desorption of carbon dioxide are alternately repeated in the first adsorption tower 2a and the second adsorption tower 2b, and the treated gas G ′ having a reduced carbon dioxide concentration and the desorbed carbon dioxide C are alternately taken. Released repeatedly. By performing adsorption separation of carbon dioxide using a metal-organic structure having a high selective adsorption property of carbon dioxide, it is possible to recover carbon dioxide concentrated or purified to a high purity as shown in FIG. Therefore, the present invention may be applied to a carbon dioxide-containing gas other than exhaust gas, and may be used to purify carbon dioxide by utilizing the point that high purity carbon dioxide is obtained. When the carbon dioxide concentration of the exhaust gas G is low, it can be dealt with by increasing the pressure applied in the pressurizing part PR so that the carbon dioxide partial pressure of the exhaust gas G becomes a suitable adsorption pressure. However, when the pressure of the exhaust gas G is increased, the partial pressure of other components (nitrogen, oxygen, etc.) contained in the exhaust gas G is also increased, so that the adsorption of other components may proceed. For this reason, the pressure of the exhaust gas G is set within a range where the equilibrium adsorption amount of the other component in the partial pressure of the other component becomes small.

図3の吸着部ADは、状況に応じて構成を適宜変更することができる。例えば、脱着側から放出される所定濃度未満の二酸化炭素については、還流路21から流路3へ還流させずに一時的に貯留容器に収集するように変更して、別途分離処理を施すようにしてもよい。又、使用する金属−有機構造体の二酸化炭素に対する選択吸着性が比較的低い場合、脱着によって得られる二酸化炭素は、図4のように高い濃度では得られないので、そのような場合には、第1吸着塔2a及び第2吸着塔2bからなる対になった吸着塔を複数対使用して、1回目の分離処理によって回収される二酸化炭素に分離処理を再度施すように多段階に構成することによって、二酸化炭素を濃縮又は精製して純度を上げることができる。或いは、第1吸着塔2a及び第2吸着塔2bからなる対になった吸着塔を複数対並列に配置して、排ガスの処理容量を増大させてもよい。   The configuration of the suction unit AD in FIG. 3 can be changed as appropriate according to the situation. For example, carbon dioxide having a concentration lower than a predetermined concentration released from the desorption side is changed to be temporarily collected in a storage container without being refluxed from the reflux path 21 to the flow path 3 and subjected to a separate separation process. May be. In addition, when the selective adsorption property to the carbon dioxide of the metal-organic structure to be used is relatively low, the carbon dioxide obtained by desorption cannot be obtained at a high concentration as shown in FIG. Using a plurality of pairs of adsorption towers composed of the first adsorption tower 2a and the second adsorption tower 2b, the separation process is performed again on the carbon dioxide recovered by the first separation process. Thus, the purity can be increased by concentrating or purifying carbon dioxide. Alternatively, a plurality of pairs of adsorption towers composed of the first adsorption tower 2a and the second adsorption tower 2b may be arranged in parallel to increase the exhaust gas treatment capacity.

又、吸着部ADは、吸着及び脱着による吸着剤Fの内部温度の変動に関連する変更を施すことも可能である。具体的には、第1吸着塔2a及び第2吸着塔2b内の吸着剤Fの内部に間接熱交換用の配管を配置して熱媒体を配管に流通させたり、吸着剤F内に蓄熱材を配設して、熱媒体による加熱又は冷却、或いは、蓄熱材による吸熱又は放熱によって吸着剤Fの温度変動を抑制することが可能である。或いは、吸着剤F内部に配管を配置する代わりに、吸着塔の外周を覆うジャケットを設けて、熱媒体をジャケットに流通させて外側から加熱又は冷却するように変更することも可能である。このように構成される吸着部ADは、急激な温度変動に対応することができ、例えば、比較的高濃度の二酸化炭素の精製に適用する場合に、吸着時の盛んな発熱による吸着剤Fの温度上昇を内部から抑制することができる。   Further, the adsorbing part AD can also make changes related to fluctuations in the internal temperature of the adsorbent F due to adsorption and desorption. Specifically, a pipe for indirect heat exchange is arranged inside the adsorbent F in the first adsorbing tower 2a and the second adsorbing tower 2b, and a heat medium is circulated through the pipe, or a heat storage material is contained in the adsorbent F. The temperature fluctuation of the adsorbent F can be suppressed by heating or cooling with a heat medium, or heat absorption or heat release by a heat storage material. Alternatively, instead of arranging the piping inside the adsorbent F, it is also possible to provide a jacket that covers the outer periphery of the adsorption tower and to change the heating medium to flow through the jacket and to heat or cool from the outside. The adsorption unit AD configured as described above can cope with a rapid temperature fluctuation. For example, when applied to the purification of a relatively high concentration of carbon dioxide, the adsorbent F generated by vigorous heat generation during adsorption. Temperature rise can be suppressed from the inside.

上記のような構成は、更に変更することが可能であり、例えば、排ガスGを吸着側の吸着塔に供給する前に、脱着側の熱交換用配管又はジャケットに流通させるように流路4,5の接続形態を変更すると、排ガスGは、脱着側の吸着塔において吸着剤Fの吸熱によって冷却された後に吸着側の吸着剤Fへ供給される。つまり、吸着剤F内の熱交換用配管又は吸着塔外周のジャケットに流通させる熱媒体として排ガスGが用いられ、排ガスGを冷却しつつ、脱着時の吸着剤の温度低下を抑制することができる。排ガスGは、脱着側の吸熱によって冷却されるので、冷却器7を省略するように構成することが可能な場合もある。このような変更によって、吸着剤F内部の温度変動は小さくなり、熱交換用配管又はジャケットにおける熱交換効率によって吸着剤F内部の温度変動を調整可能であるので、吸着剤Fの温度を20〜40℃に好適に維持できる。又、温度変動幅の調整を利用して、吸着剤Fにおける二酸化炭素の吸着/脱着時の速度差を変更・調節することができる。   The configuration as described above can be further changed, for example, before supplying the exhaust gas G to the adsorption tower on the adsorption side, the flow path 4, so as to circulate through the heat exchange pipe or jacket on the desorption side. When the connection form 5 is changed, the exhaust gas G is cooled by the heat absorption of the adsorbent F in the desorption side adsorption tower, and then supplied to the adsorption side adsorbent F. That is, the exhaust gas G is used as a heat medium to be circulated through the heat exchange pipe in the adsorbent F or the jacket on the outer periphery of the adsorption tower, and the temperature decrease of the adsorbent during desorption can be suppressed while cooling the exhaust gas G. . Since the exhaust gas G is cooled by heat absorption on the desorption side, it may be possible to configure the cooler 7 to be omitted. By such a change, the temperature fluctuation inside the adsorbent F becomes small, and the temperature fluctuation inside the adsorbent F can be adjusted by the heat exchange efficiency in the heat exchange pipe or jacket. It can maintain suitably at 40 degreeC. Further, by utilizing adjustment of the temperature fluctuation range, it is possible to change / adjust the speed difference during adsorption / desorption of carbon dioxide in the adsorbent F.

高濃度の窒素を含み、二酸化炭素濃度が比較的低いガスから二酸化炭素を分離する場合には、予め、窒素に対して選択吸着性を発揮する吸着剤、例えば、結晶性含水アルミノ珪酸アルカリ土類金属塩(ゼオライト)などを用いた吸着処理によってガス中の二酸化炭素濃度を高める前処理を施すように変更してもよい。   In the case where carbon dioxide is separated from a gas containing a high concentration of nitrogen and having a relatively low carbon dioxide concentration, an adsorbent that exhibits selective adsorptivity to nitrogen in advance, for example, a crystalline hydrous aluminosilicate alkaline earth You may change so that the pre-processing which raises the carbon dioxide concentration in gas by the adsorption process using metal salt (zeolite) etc. may be performed.

本発明は、PSA法によって燃焼排ガスやプロセス排ガス等の混合ガスに含まれる二酸化炭素を吸着分離して高濃度に濃縮又は精製した二酸化炭素を効率よく製造すると共に、装置構成に真空ポンプ等の負圧を発生させる手段を必要とせず、装置に耐久性を付与するための負担の軽減や稼動に要するエネルギーの削減が可能であるので、経済的に有利な技術である。従って、火力発電所や製鉄所、ボイラーなどの燃焼設備から排出される二酸化炭素含有ガスの処理に利用して、二酸化炭素放出量及び環境に与える影響の軽減に有用であり、省エネルギー及び環境保護に貢献可能な二酸化炭素の回収装置を提供できる。   The present invention efficiently produces carbon dioxide that is concentrated or purified to a high concentration by adsorbing and separating carbon dioxide contained in a mixed gas such as combustion exhaust gas and process exhaust gas by the PSA method. This is an economically advantageous technique because it does not require a means for generating pressure and can reduce the burden for imparting durability to the apparatus and reduce the energy required for operation. Therefore, it can be used for the treatment of carbon dioxide-containing gas discharged from combustion facilities such as thermal power plants, steelworks, boilers, etc., and it is useful for reducing the amount of carbon dioxide emission and the impact on the environment, and for energy saving and environmental protection. A carbon dioxide recovery device that can contribute can be provided.

1 回収装置、 2a 第1吸着塔、 2b 第2吸着塔、 3,4,5 流路、
7 冷却器、 8,9,10,11,13,14 流路、
6,12,15,16,17 切替弁、 18,20 濃度センサー、
19,23 圧力制御弁、 21 還流路、 24 圧縮器、 25 逆止弁、
26 圧力計、
CL 冷却部、 DS 脱硫部、 DH 除湿部、 PR 加圧部、
PV 圧力制御弁、 EX 熱交換部、 AD 吸着部、 LQ 液化部、
WT 水処理部、 L1〜L9 流路、
G 排ガス、 G’ 処理後ガス、 C 二酸化炭素、 F 吸着剤。
1 recovery device, 2a first adsorption tower, 2b second adsorption tower, 3, 4, 5 flow path,
7 cooler, 8, 9, 10, 11, 13, 14 flow path,
6, 12, 15, 16, 17 selector valve, 18, 20 concentration sensor,
19, 23 Pressure control valve, 21 Return path, 24 Compressor, 25 Check valve,
26 Pressure gauge,
CL cooling section, DS desulfurization section, DH dehumidification section, PR pressurization section,
PV pressure control valve, EX heat exchange part, AD adsorption part, LQ liquefaction part,
WT water treatment section, L1-L9 flow path,
G exhaust gas, G ′ treated gas, C carbon dioxide, F adsorbent.

Claims (10)

圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離装置を有する二酸化炭素の回収装置であって、前記分離装置は、
金属−有機構造体を有する吸着剤を収容し、ガスの供給によって前記ガスに含まれる二酸化炭素を前記吸着剤が吸着して、二酸化炭素が減少した処理後ガスが放出される吸着部と、
前記吸着部へ相対的高圧の二酸化炭素分圧でガスを供給可能なようにガスに圧力を付与する加圧部と
前記加圧部によって圧力を付与されたガスを前記吸着部に供給可能なガス供給システムと
を有し、前記吸着部は、二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して前記吸着部から放出するために、相対的低圧に圧力を低下させる圧力低下手段と、前記吸着部から放出される脱着した二酸化炭素の濃度が所定濃度以上である時に、脱着した二酸化炭素を回収する回収システムとを有し、
前記回収システムは、前記吸着部から放出される脱着した二酸化炭素が流通する流路と、前記流路に設けられて脱着した二酸化炭素の濃度を検出する検出器と、脱着した二酸化炭素を前記ガス供給システムへ供給するための、前記流路から分岐する還流路とを有し、前記検出器によって検出される二酸化炭素の濃度が所定濃度以上の時に、脱着した二酸化炭素を回収し、前記検出器によって検出される二酸化炭素の濃度が所定濃度未満の時に、脱着した二酸化炭素を前記還流路から前記ガス供給システムへ供給する二酸化炭素の回収装置。
A carbon dioxide recovery device having a separation device that separates carbon dioxide from gas using adsorption and desorption of carbon dioxide with respect to an adsorbent due to pressure fluctuation, wherein the separation device comprises:
An adsorbing part that contains an adsorbent having a metal-organic structure, adsorbs carbon dioxide contained in the gas by supplying gas, and adsorbs the released gas after treatment with reduced carbon dioxide;
A pressurizing unit that applies pressure to the gas so that the gas can be supplied to the adsorbing unit at a relatively high carbon dioxide partial pressure ;
A gas supply system capable of supplying gas adsorbed by the pressurizing unit to the adsorbing unit, and the adsorbing unit desorbs carbon dioxide from an adsorbent that has adsorbed carbon dioxide from the adsorbing unit. Pressure reducing means for reducing the pressure to a relatively low pressure for release, and a recovery system for recovering the desorbed carbon dioxide when the concentration of the desorbed carbon dioxide released from the adsorption unit is equal to or higher than a predetermined concentration. Have
The recovery system includes a flow path through which the desorbed carbon dioxide released from the adsorption unit circulates, a detector provided in the flow path for detecting the concentration of desorbed carbon dioxide, and the desorbed carbon dioxide as the gas. A reflux path branched from the flow path for supplying to the supply system, and when the concentration of carbon dioxide detected by the detector is equal to or higher than a predetermined concentration, the desorbed carbon dioxide is recovered, and the detector the concentration of carbon dioxide detected by the at less than a predetermined concentration, carbon dioxide recovery device for supplying the desorbed carbon dioxide from the return channel to the gas supply system.
前記圧力低下手段は、圧力を付与されたガスから圧力を解放可能な圧力制御弁を有して、前記相対的低圧は大気圧以上に設定され、
前記分離装置は、更に、前記吸着部に供給されるガスを予め冷却して所定温度以下に維持する冷却器を有する請求項1に記載の二酸化炭素の回収装置。
The pressure lowering means has a pressure control valve capable of releasing pressure from the gas to which pressure is applied, and the relative low pressure is set to atmospheric pressure or higher,
The carbon dioxide recovery device according to claim 1, wherein the separation device further includes a cooler that cools a gas supplied to the adsorption unit in advance and maintains the gas at a predetermined temperature or lower.
前記吸着部は、1対の第1吸着塔及び第2吸着塔を有して、前記吸着剤は、前記第1吸着塔及び前記第2吸着塔の各々に収容され、前記ガス供給システムは、前記加圧部によって圧力を付与されたガスを前記第1吸着塔及び前記第2吸着塔のうちの一方に交互に供給可能であり、前記第1吸着塔及び前記第2吸着塔のうちの一方において、圧力を付与されたガスに含まれる二酸化炭素が、相対的高圧の二酸化炭素分圧において吸着剤へ吸着されて、二酸化炭素の濃度が低下した処理後ガスが交互に放出され、前記圧力低下手段は、前記第1吸着塔及び第2吸着塔のうちのガスが供給されない他方において交互に圧力を低下させて、相対的低圧に低下した圧力で二酸化炭素が吸着剤から脱着して放出される請求項1又は2に記載の二酸化炭素の回収装置。 The adsorption unit includes a pair of first adsorption tower and second adsorption tower, the adsorbent is accommodated in each of the first adsorption tower and the second adsorption tower, and the gas supply system includes: It can be supplied alternately gas granted the pressure by the pressing in one of the first adsorption tower and the second adsorption tower, one of the first adsorption tower and the second adsorption tower , The carbon dioxide contained in the pressure-applied gas is adsorbed to the adsorbent at a relatively high carbon dioxide partial pressure, and the treated gas having a reduced carbon dioxide concentration is alternately released, and the pressure drop The means alternately reduces the pressure on the other side of the first adsorption tower and the second adsorption tower where the gas is not supplied, and carbon dioxide is desorbed and released from the adsorbent at the pressure reduced to a relatively low pressure. The carbon dioxide according to claim 1 or 2. Osamu apparatus. 前記回収システムの前記検出器は、前記第1吸着塔及び前記第2吸着塔から交互に放出される脱着した二酸化炭素の濃度を検出し、前記回収システムは、前記還流路によって前記ガス供給システムへ供給される二酸化炭素に圧力を付与するための加圧装置を有し、これにより、脱着した二酸化炭素は吸着剤に吸着される請求項3に記載の二酸化炭素の回収装置。 The detector of the recovery system, the first to detect the adsorption tower and the concentration of the desorbed carbon dioxide is released alternately from the second adsorption tower, wherein the recovery system, the gas supply system by prior Symbol return path has a pressurizing圧装location for applying pressure to the carbon dioxide is supplied to, thereby, the desorbed carbon dioxide carbon dioxide recovery device according to claim 3 which is adsorbed by the adsorbent. 前記吸着部は、更に、
前記第1吸着塔の吸着剤が破瓜した時にガスの供給先が前記第1吸着塔から前記第2吸着塔へ切り替わり、前記第2吸着塔の吸着剤が破瓜した時にガスの供給先が前記第2吸着塔から前記第1吸着塔へ切り替わるように、前記ガス供給システムによるガスの供給先の切り替えを制御する制御システム
を有する請求項3又は4に記載の二酸化炭素の回収装置。
The adsorbing part further includes
The gas supply destination is switched from the first adsorption tower to the second adsorption tower when the adsorbent of the first adsorption tower is broken, and the gas supply destination is the first when the adsorbent of the second adsorption tower is broken. The carbon dioxide recovery apparatus according to claim 3 or 4, further comprising: a control system that controls switching of a gas supply destination by the gas supply system so as to switch from a two adsorption tower to the first adsorption tower.
前記制御システムは、前記第1吸着塔及び前記第2吸着塔から交互に放出される処理後ガスの二酸化炭素の濃度を検出する検出器を有し、前記検出器によって検出される二酸化炭素の濃度が、供給されるガスの二酸化炭素濃度に達したらガスの供給先が切り替わるように、検出される二酸化炭素の濃度に基づいて制御する請求項5に記載の二酸化炭素の回収装置。   The control system has a detector that detects the concentration of carbon dioxide in the treated gas alternately discharged from the first adsorption tower and the second adsorption tower, and the concentration of carbon dioxide detected by the detector 6. The carbon dioxide recovery device according to claim 5, wherein control is performed based on the detected concentration of carbon dioxide so that the gas supply destination is switched when the carbon dioxide concentration of the supplied gas is reached. 更に、前記分離装置の前段に順次配設される、ガスを冷却する冷却部、ガスから硫黄酸化物を除去する脱硫部、及び、ガスから湿分を除去する吸湿剤を有する除湿部と、
前記分離装置の後段に配設されて、回収される二酸化炭素を圧縮して液化二酸化炭素を調製する液化部と
を有し、前記分離装置は、更に、
前記加圧部によって圧力を付与されたガスと前記第1吸着塔及び前記第2吸着塔から放出される処理後ガスとの間で熱交換する熱交換器と、
前記熱交換器を経た処理後ガスを前記除湿部の吸湿剤の再生に利用するために前記除湿部に接続される流路とを有する請求項3〜6の何れか1項に記載の二酸化炭素の回収装置。
A cooling unit for cooling the gas, a desulfurization unit for removing sulfur oxide from the gas, and a dehumidifying unit having a hygroscopic agent for removing moisture from the gas;
A liquefying section that is disposed downstream of the separation device and compresses the recovered carbon dioxide to prepare liquefied carbon dioxide, and the separation device further comprises:
A heat exchanger for exchanging heat between the gas applied with pressure by the pressurizing unit and the treated gas released from the first adsorption tower and the second adsorption tower;
The carbon dioxide according to any one of claims 3 to 6, further comprising a flow path connected to the dehumidifying unit in order to use the treated gas that has passed through the heat exchanger for regeneration of the moisture absorbent of the dehumidifying unit. Recovery equipment.
圧力変動による吸着剤に対する二酸化炭素の吸着及び脱着を利用してガスから二酸化炭素を分離する分離処理を有する二酸化炭素の回収方法であって、前記分離処理は、
ガスに圧力を付与する加圧処理と、
前記加圧処理を経たガスを用いて、金属−有機構造体を有する吸着剤に相対的高圧の二酸化炭素分圧でガスを接触させて、ガスに含まれる二酸化炭素を吸着剤に吸着させる吸着処理と、
二酸化炭素を吸着した吸着剤から二酸化炭素を脱着して二酸化炭素を放出するように、相対的低圧に圧力を低下させる脱着処理と、
前記脱着処理によって放出される脱着した二酸化炭素の濃度を検出し、検出される二酸化炭素の濃度が所定濃度以上である時に、脱着した二酸化炭素を回収する回収処理とを有し、検出される二酸化炭素の濃度が所定濃度未満である時に、脱着した二酸化炭素を前記吸着処理に供給する二酸化炭素の回収方法。
A method for recovering carbon dioxide having a separation process for separating carbon dioxide from a gas using adsorption and desorption of carbon dioxide with respect to an adsorbent due to pressure fluctuation, wherein the separation process includes:
Pressurizing treatment to apply pressure to the gas;
Using the gas subjected to the pressurization treatment, an adsorption treatment is performed in which the gas is brought into contact with the adsorbent having a metal-organic structure at a relatively high carbon dioxide partial pressure, and the carbon dioxide contained in the gas is adsorbed onto the adsorbent. When,
A desorption process that reduces the pressure to a relatively low pressure so as to desorb carbon dioxide from the adsorbent that has adsorbed carbon dioxide and release carbon dioxide;
It said desorbing process to detect the concentration of carbon dioxide desorbed is released by, dioxide concentration of carbon dioxide detected when the predetermined concentration or more, possess a recovery process for recovering the desorbed carbon dioxide, is detected when the concentration of carbon is less than a predetermined concentration, a method of recovering carbon dioxide supplying desorbed carbon dioxide to the adsorption treatment.
前記回収処理において、前記相対的低圧は大気圧以上に設定され、圧力制御弁を用いて圧力を解放することによって相対的低圧に低下させ、前記分離処理は、更に、前記吸着処理において用いるガスを、予め冷却して所定温度以下に維持する冷却処理を有する請求項8に記載の二酸化炭素の回収方法。   In the recovery process, the relative low pressure is set to be equal to or higher than the atmospheric pressure, and the pressure is reduced to a relatively low pressure by releasing the pressure using a pressure control valve. The separation process further includes a gas used in the adsorption process. The method for recovering carbon dioxide according to claim 8, further comprising a cooling process of cooling in advance and maintaining the temperature at a predetermined temperature or lower. 前記分離処理は、吸着剤を各々収容する第1吸着塔及び第2吸着塔を用いて実施され、前記吸着処理及び前記脱着処理は、
前記第1吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第2吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第1処理と、
前記第2吸着塔にガスを供給して相対的高圧の二酸化炭素分圧で二酸化炭素を吸着させると共に、前記第1吸着塔を相対的低圧に調整して二酸化炭素を脱着させる第2処理と
によって実施され、前記分離処理は、更に、前記第1処理において前記第1吸着塔の吸着剤が破瓜した時に前記第1処理から前記第2処理へ切り替え、前記第2処理において前記第2吸着塔の吸着剤が破瓜した時に前記第2処理から前記第1処理へ切り替える切り替え操作を有し、前記回収処理において、前記第1処理及び前記第2処理の各々における前記第2吸着塔又は前記第1吸着塔から放出される二酸化炭素の濃度が所定濃度以上の時に、放出される二酸化炭素を回収する請求項8又は9に記載の二酸化炭素の回収方法。
The separation process is carried out using a first adsorption tower and a second adsorption tower each containing an adsorbent, and the adsorption process and the desorption process are:
Supplying a gas to the first adsorption tower to adsorb carbon dioxide at a relatively high carbon dioxide partial pressure, and adjusting the second adsorption tower to a relatively low pressure to desorb carbon dioxide;
A second process of supplying gas to the second adsorption tower to adsorb carbon dioxide at a relatively high partial pressure of carbon dioxide and adjusting the first adsorption tower to a relatively low pressure to desorb carbon dioxide; The separation process is further carried out by switching from the first process to the second process when the adsorbent of the first adsorption tower is broken in the first process, and in the second process, the separation process of the second adsorption tower is performed. A switching operation for switching from the second process to the first process when the adsorbent breaks; in the recovery process, the second adsorption tower or the first adsorption in each of the first process and the second process; The method for recovering carbon dioxide according to claim 8 or 9, wherein the carbon dioxide released is recovered when the concentration of carbon dioxide released from the tower is equal to or higher than a predetermined concentration.
JP2014164072A 2014-08-12 2014-08-12 Carbon dioxide recovery method and recovery apparatus Active JP6575050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164072A JP6575050B2 (en) 2014-08-12 2014-08-12 Carbon dioxide recovery method and recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164072A JP6575050B2 (en) 2014-08-12 2014-08-12 Carbon dioxide recovery method and recovery apparatus

Publications (2)

Publication Number Publication Date
JP2016040025A JP2016040025A (en) 2016-03-24
JP6575050B2 true JP6575050B2 (en) 2019-09-18

Family

ID=55540616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164072A Active JP6575050B2 (en) 2014-08-12 2014-08-12 Carbon dioxide recovery method and recovery apparatus

Country Status (1)

Country Link
JP (1) JP6575050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107509A1 (en) 2020-11-20 2022-05-27 株式会社デンソー Carbon dioxide recovery system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743433B2 (en) * 2016-03-16 2020-08-19 株式会社Ihi Carbon dioxide recovery method and recovery device
JP6790403B2 (en) * 2016-03-25 2020-11-25 株式会社Ihi Carbon dioxide recovery method and recovery device
JP6728875B2 (en) * 2016-03-29 2020-07-22 株式会社Ihi Carbon dioxide recovery device and natural gas combustion system
CN105842035B (en) * 2016-06-07 2023-08-29 中国科学院地球环境研究所 Gas treatment system suitable for carbon dioxide on-line measurement
JP6787854B2 (en) * 2017-08-31 2020-11-18 フタバ産業株式会社 Carbon dioxide application device
JP7112063B2 (en) * 2018-03-20 2022-08-03 国立大学法人九州大学 Gas supply device and plant cultivation system
CN108579383A (en) * 2018-05-09 2018-09-28 中国能源建设集团广东省电力设计研究院有限公司 Carbon dioxide air source preliminary clearning system and purification system
CN109329393A (en) * 2018-11-30 2019-02-15 珠海格力电器股份有限公司 Controlled atmosphere device and Air-conditioning system
JP7243161B2 (en) * 2018-12-05 2023-03-22 栗田工業株式会社 Gas adsorption device and gas adsorption method
CN110559746B (en) * 2019-09-04 2023-10-20 北京国科环宇科技股份有限公司 Waste gas recovery experiment system and implementation method
CL2020001865A1 (en) * 2020-07-14 2020-09-04 Inst De Transferencia Tecnologica Y Emprendimiento Ltda System for the capture and purification of co2 and purification unit of said system
JP7277801B2 (en) * 2021-03-15 2023-05-19 ダイキン工業株式会社 adsorption system
CN113975950A (en) * 2021-11-04 2022-01-28 大连理工大学 System and method for synchronously recovering carbon dioxide and nitrogen in flue gas by chemical method and PSA (pressure swing adsorption) method
CN114100565B (en) * 2021-11-12 2023-09-26 中触媒新材料股份有限公司 A-type adsorbent synthesized by waste oxygen generator and activation method
WO2023095683A1 (en) * 2021-11-24 2023-06-01 株式会社Ihi Carbon dioxide recovering system and carbon dioxide recovering method
JP2023145852A (en) * 2022-03-29 2023-10-12 三菱重工業株式会社 Carbon dioxide recovery equipment, and carbon dioxide recovery method
JP7323227B1 (en) 2022-06-22 2023-08-08 株式会社フクハラ CO2 separation means in compressed air circuits
WO2023248609A1 (en) * 2022-06-24 2023-12-28 日本特殊陶業株式会社 Concentration measurement method, and recovery method and recovery device for carbon dioxide
JP7359991B1 (en) 2022-07-15 2023-10-11 三菱電機株式会社 carbon dioxide capture system
WO2024024572A1 (en) * 2022-07-26 2024-02-01 国立研究開発法人物質・材料研究機構 Co2 separation system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261616A (en) * 1985-09-11 1987-03-18 Nippon Steel Corp Method for separating high purity gas from gaseous mixture
JPH01317521A (en) * 1988-06-17 1989-12-22 Tokico Ltd Gas separation apparatus
JPH0699034A (en) * 1992-09-21 1994-04-12 Chubu Electric Power Co Inc Liquefying separation recovery method of carbon dioxide from waste combustion gas
JP3571672B2 (en) * 2001-06-19 2004-09-29 エア・ウォーター株式会社 Method for enriching carbon dioxide in flue gas
WO2007111738A2 (en) * 2005-12-21 2007-10-04 Uop Llc The use of mofs in pressure swing adsorption
JP2009262086A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Method of recovering carbon dioxide of coal boiler exhaust gas and system for recovering this carbon dioxide
JP2009269805A (en) * 2008-05-09 2009-11-19 Nippon Steel Corp Method and apparatus for recovering carbon dioxide
US8535417B2 (en) * 2008-07-29 2013-09-17 Praxair Technology, Inc. Recovery of carbon dioxide from flue gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107509A1 (en) 2020-11-20 2022-05-27 株式会社デンソー Carbon dioxide recovery system

Also Published As

Publication number Publication date
JP2016040025A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6743433B2 (en) Carbon dioxide recovery method and recovery device
US10543450B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6834515B2 (en) Carbon dioxide recovery method and recovery device
TWI480089B (en) Purification of air
JP6070851B2 (en) Exhaust gas treatment system and treatment method
JP5906074B2 (en) Hydrogen production system
JP6728875B2 (en) Carbon dioxide recovery device and natural gas combustion system
KR101781256B1 (en) Purification of air
WO2018179351A1 (en) Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
JP2010184229A (en) Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same
JP6671204B2 (en) Gas separation equipment
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
CA3230475A1 (en) A temperature vacuum swing adsorption process suited for carbon capture to regenerate sorbents using the co2 product gas as the heat transfer medium
JP2012071290A (en) Method and apparatus for recovering carbon dioxide
JP2018515327A (en) Apparatus and method for separating carbon dioxide from a gas stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R151 Written notification of patent or utility model registration

Ref document number: 6575050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151