JPH0864887A - Gaas hall element - Google Patents

Gaas hall element

Info

Publication number
JPH0864887A
JPH0864887A JP6200863A JP20086394A JPH0864887A JP H0864887 A JPH0864887 A JP H0864887A JP 6200863 A JP6200863 A JP 6200863A JP 20086394 A JP20086394 A JP 20086394A JP H0864887 A JPH0864887 A JP H0864887A
Authority
JP
Japan
Prior art keywords
film
hall element
gaas
substrate
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200863A
Other languages
Japanese (ja)
Inventor
Takeumi Muroga
岳海 室賀
Shigeki Yamada
茂樹 山田
Hisafumi Tate
尚史 楯
Shoji Kuma
彰二 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP6200863A priority Critical patent/JPH0864887A/en
Publication of JPH0864887A publication Critical patent/JPH0864887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To obtain a GaAs Hall element which can be manufactured by mass production and in which quality is stabilized and high performance and a reduced thickness are provided by using a chip in which the metal film of ferromagnetic material is formed on the front or rear surface or both of a GaAs substrate. CONSTITUTION: An Ni film 5 is evaporated on the front surface side of a GaAs substrate. Unnecessary Ni film is removed by lifting OFF. The film 5 using a ferromagnetic material can be easily formed with high yield to meet the object shape. Thereafter, an Ni film 5 is evaporated on the rear surface of the board. Thus, the Ni films of the ferromagnetic material can be formed on both surfaces of the substrate by a simple and stable process, and a GaAs Hall element of high sensitivity is obtained. Since the Ni film is formed by evaporating, a high sensitivity element with less thickness variation can be obtained and heat treatment that deteriorates electrodes is not needed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高感度ホール素子に係
り、特に、ガリウムヒ砒素半導体基板(GaAs基板と
いう)の両面にニッケル膜を形成させたホール素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-sensitivity Hall element, and more particularly to a Hall element in which a nickel film is formed on both sides of a gallium arsenide semiconductor substrate (referred to as a GaAs substrate).

【0002】[0002]

【従来の技術】一般に、ホール素子は、電子移動度の大
きい半導体ほど感度が大きくなるため、化合物半導体が
優れた材料として用いられている。ホール素子の性能と
しては、前記感度のほか、温度依存性が小さく、直線
性、製作の容易さ等が要求される。GaAsホール素子
は、温度特性、直線性がよいことから実用化されている
が、感度がやや小さい欠点があつた。
2. Description of the Related Art In general, a Hall element has a higher sensitivity as a semiconductor having a higher electron mobility, and therefore a compound semiconductor is used as an excellent material. As for the performance of the Hall element, in addition to the above-mentioned sensitivity, temperature dependency is small, linearity, and ease of manufacture are required. The GaAs Hall element has been put into practical use because of its excellent temperature characteristics and linearity, but it suffered from the drawback of having a slightly small sensitivity.

【0003】そこで、GaAsホール素子の高感度化の
ため手段として、磁束密度をあげるため、下記の方法が
取られている。
Therefore, as a means for increasing the sensitivity of the GaAs Hall element, the following method has been adopted to increase the magnetic flux density.

【0004】半絶縁性のGaAs基板にイオン注入法に
よりSiプラスイオンを選択的に注入し、アニールを行
うことにより、活性層を形成する。次に、AuGe系か
らなるメタルによりオーミック性電極を形成下後、Si
Nx膜によるカバー膜をP−CVD法により形成し、G
aAs基板を製作する。
Si positive ions are selectively implanted into a semi-insulating GaAs substrate by an ion implantation method and annealed to form an active layer. Next, after forming an ohmic electrode with a metal of AuGe system, Si
A cover film of Nx film is formed by P-CVD method, and G
An aAs substrate is manufactured.

【0005】次に、前記GaAs基板を400μmの厚
みのものを裏面ラッピングにより約100μmにしたの
ち、磁性材料であるフェライトを樹脂を用いて基板全体
に貼付る。次に、ダイシングによりチツプ化する。
Next, the GaAs substrate having a thickness of 400 μm is lapped on the back surface to have a thickness of about 100 μm, and ferrite, which is a magnetic material, is attached to the entire substrate by using a resin. Next, it is made into chips by dicing.

【0006】しかし、この方法では、GaAs基板を1
00μm程度にして使用するため、作業性が悪いこと、
基板の大広径化による割れ、磁束密度の増加率が小さ
く、基板厚さにより特性が変化する等の不具合があっ
た。
However, in this method, the GaAs substrate is
Since it is used with a diameter of about 00 μm, it has poor workability.
There were problems such as cracking due to the enlargement of the substrate diameter, the increase rate of the magnetic flux density was small, and the characteristics changed depending on the substrate thickness.

【0007】前記不具合を改良した次の方法が提案され
た。
The following method for improving the above-mentioned problems has been proposed.

【0008】上記SiNx膜によるカバー膜を形成した
GaAs基板に磁性材料を有機系溶媒に溶かし、50μ
m±5μm程度にスピンコートする。次に、熱処理によ
り、前記有機系溶媒の除去と密着製の強化を行なつたの
ち、レジストパターンを施し、フォトリソグラフィによ
り、ボンデイングパットおよびスクライブライン等を形
成する。次に、塩酸系の薬液を用いて選択的にフェライ
ト膜をエッチングする。次に、レジストパターンを剥離
し、基板厚みを300μmにラッピングし、ダイシング
によりチツプ化していた。これに関連するものとして特
開平6−61545号公報記載の技術がある。
A magnetic material is dissolved in an organic solvent on a GaAs substrate on which a cover film made of the above SiNx film is formed,
Spin coat to about m ± 5 μm. Then, the organic solvent is removed by heat treatment and the adhesion is strengthened, and then a resist pattern is formed, and a bonding pad and a scribe line are formed by photolithography. Next, the ferrite film is selectively etched using a hydrochloric acid-based chemical solution. Next, the resist pattern was peeled off, the substrate was lapped to a thickness of 300 μm, and dicing was performed to obtain chips. Related to this is the technique described in JP-A-6-61545.

【0009】[0009]

【発明が解決しようとする課題】一般に、ホール素子の
性能としては、上記の如く、高感度、温度依存性が小、
直線性良好が要求される。GaAsホール素子は、感度
がやや小さい欠点があつた。
Generally, the Hall element has high sensitivity and low temperature dependence as described above.
Good linearity is required. The GaAs Hall element has a drawback that its sensitivity is slightly low.

【0010】VH=RH I B/d VH ・・・・ホール電圧 RH ・・・・ホール係数 I ・・・・バイアス電流 B ・・・・磁束密度 d ・・・・活性層の厚さ 上記式よりわかる如く、ホール電圧VH を増加させる手
段として、磁束密度Bを増加させた上記改良方法は、下
記の点において配慮が足りなかつた。
V H = R H I B / d V H ... Hall voltage RH ... Hall coefficient I ... Bias current B ... Magnetic flux density d ... Active layer Thickness As can be seen from the above equation, the above-mentioned improvement method in which the magnetic flux density B is increased as a means for increasing the Hall voltage V H fails to be considered in the following points.

【0011】基板厚みを300μmとしたため、パッケ
ージの薄型化が困難である。また、フェライト膜のエッ
チングが難しく、効率よく生産ができず、歩留まりが悪
い。スピンコート後の熱処理を行うため、電極の接触抵
抗が増加し、電気特性不良、信頼性の低下等の問題があ
った。
Since the substrate thickness is 300 μm, it is difficult to make the package thinner. Further, it is difficult to etch the ferrite film, the production cannot be performed efficiently, and the yield is low. Since the heat treatment is performed after the spin coating, the contact resistance of the electrode is increased, and there are problems such as poor electrical characteristics and reduced reliability.

【0012】本発明は、上記従来技術の問題点を解決す
るためになされたもので、透磁率の大きい材料をGaA
s基板の表裏面に形成し、量産化ができ、品質が安定
し、高性能の薄型化したGaAsホール素子を提供する
ことをその目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and uses a material having a high magnetic permeability as GaA.
It is an object of the present invention to provide a thin GaAs Hall element that is formed on the front and back surfaces of an s substrate, can be mass-produced, has stable quality, and has high performance.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、GaAsホール素子に係る本発明の構成は、GaA
sホール素子において、GaAs基板の表面もしくは裏
面の双方またはいずれかに、強磁性体の金属膜を形成さ
せたチップを用いたことを特徴とするものである。
In order to achieve the above object, the structure of the present invention relating to a GaAs Hall element is GaA
The s-hole element is characterized by using a chip in which a ferromagnetic metal film is formed on either or both of the front surface and the back surface of a GaAs substrate.

【0014】前項記載のGaAsホール素子において、
前記強磁性体の金属膜としてニッケル膜を用いたことを
特徴とするものである。
In the GaAs Hall element described in the above paragraph,
A nickel film is used as the ferromagnetic metal film.

【0015】[0015]

【作用】上記各技術的手段の働きは次のとおりである。The function of each of the above technical means is as follows.

【0016】本発明の構成によれば、GaAsホール素
子において、GaAs基板表面の活性層直上に透磁率の
大きい強磁性体のニッケル膜を密着して形成させるた
め、磁束密度の増加率が大きくなる。さらに、前記Ga
As基板裏面にもニッケル膜を形成させるためより一層
前記の働きを高めることができる。
According to the structure of the present invention, in the GaAs Hall element, a nickel film of a ferromagnetic material having a large magnetic permeability is formed in close contact with the active layer on the surface of the GaAs substrate, so that the increase rate of the magnetic flux density becomes large. . Further, the Ga
Since the nickel film is also formed on the back surface of the As substrate, the above function can be further enhanced.

【0017】[0017]

【実施例】以下本発明の実施例を図1を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0018】図1は本発明の一実施例に係るGaAsホ
ール素子の略示工程図である。
FIG. 1 is a schematic process drawing of a GaAs Hall element according to an embodiment of the present invention.

【0019】図1において、1はGaAs基板、2はS
iO2膜、3はAu電極、4はレジストパターン、5は
ニツケル膜(以下、Ni膜という)である。
In FIG. 1, 1 is a GaAs substrate, 2 is S
An iO 2 film, 3 is an Au electrode, 4 is a resist pattern, and 5 is a nickel film (hereinafter referred to as a Ni film).

【0020】図1(a)に示す如く、半絶縁性のGaA
s基板1にイオン注入法によりSiを選択的に注入し、
アニールを行うことにより、活性層を形成する。次に、
AuGe系からなるメタルによりオーミック性のAu電
極3を形成する。カバー膜としてSiO2膜2をP−C
VD法により形成し、GaAs基板を製作する。
As shown in FIG. 1A, semi-insulating GaA
s Substrate 1 is selectively implanted with Si by an ion implantation method,
An active layer is formed by performing annealing. next,
The AuGe-based metal is used to form the ohmic Au electrode 3. The SiO 2 film 2 is used as a cover film for PC.
It is formed by the VD method and a GaAs substrate is manufactured.

【0021】図1(b)に示す如く、レジストパターン
4を施す。ついで、図1(c)に示す如く、GaAs基
板の表面側にNi膜5を0.5μm程度蒸着する。そし
て不要なNi膜5をリフトオフにより除去する。このリ
フトオフを用いることにより、強磁性体に用いたNi膜
5を、目的形状にあわせて容易に高歩留まりで形成でき
る。そののち、図1(d)に示す如く、前記基板の裏面
にNi膜5を0.5μm程度蒸着する。Ni膜5の厚さ
は10nm以上あれば十分である。
As shown in FIG. 1B, a resist pattern 4 is applied. Then, as shown in FIG. 1C, a Ni film 5 is vapor-deposited on the surface side of the GaAs substrate by about 0.5 μm. Then, the unnecessary Ni film 5 is removed by lift-off. By using this lift-off, the Ni film 5 used for the ferromagnetic material can be easily formed with a high yield in accordance with the target shape. After that, as shown in FIG. 1D, a Ni film 5 is vapor-deposited to a thickness of about 0.5 μm on the back surface of the substrate. It is sufficient for the Ni film 5 to have a thickness of 10 nm or more.

【0022】つぎに、図1(e)に示す如く、ダイシン
グによりチツプ化が行われる。
Next, as shown in FIG. 1E, chipping is performed by dicing.

【0023】このようにして、上記の如く、高感度、温
度依存性が小、直線性の良好なホール素子を得られるこ
とができる。
In this way, it is possible to obtain a Hall element having high sensitivity, small temperature dependence, and good linearity as described above.

【0024】なお、本発明は、上記実施例に限定される
ことなく、強磁性体であるNi膜の代わりに、CO、F
eもしくはこれらの合金膜を形成しても差し支えない。
The present invention is not limited to the above-mentioned embodiment, but CO, F or the like may be used instead of the Ni film which is a ferromagnetic material.
e or an alloy film of these may be formed.

【0025】また、Ni膜5の厚さは10nm以上あれば
十分である。さらに、本実施例においては、基板の両面
に金属膜を形成したが、片側だけでも効果がある。
It is sufficient that the Ni film 5 has a thickness of 10 nm or more. Further, in this embodiment, the metal films are formed on both sides of the substrate, but it is effective even if only one side is formed.

【0026】ホール素子は、モータの回転子位置測定セ
ンサに用いられ、本実施例の高感度GaAsホール素子
を用いることにより、モータの回転子磁石とセンサとの
距離を離すことができ、モータ設計の自由度が広がる。
The Hall element is used for a rotor position measuring sensor of a motor, and by using the high-sensitivity GaAs Hall element of this embodiment, the rotor magnet of the motor and the sensor can be separated from each other. The degree of freedom of

【0027】また、本実施例の高感度GaAsホール素
子を用いることにより、駆動電圧を低くすることができ
るので、省エネルギーもはかれる。
Further, since the driving voltage can be lowered by using the high-sensitivity GaAs Hall element of this embodiment, energy can be saved.

【0028】本実施例によれば、強磁性体であるNi膜
を簡単で安定したプロセスによりGaAs基板両面に形
成することにより、高感度のGaAsホール素子がえら
れる。
According to this embodiment, a highly sensitive GaAs Hall element can be obtained by forming the Ni film, which is a ferromagnetic material, on both surfaces of the GaAs substrate by a simple and stable process.

【0029】Ni膜を蒸着で形成させるため、密着度が
高く、厚さのばらつきが小さくなり、電極を劣化させる
熱処理が不要で、高感度のGaAsホール素子がえられ
る。また、Ni膜をリフトオフにより除去するので、エ
ッチング液による基板の影響がなくなり、GaAsホー
ル素子の歩留まりが向上する。
Since the Ni film is formed by vapor deposition, the degree of adhesion is high, the variation in thickness is small, and the heat treatment for deteriorating the electrodes is not necessary, and a highly sensitive GaAs Hall element can be obtained. Further, since the Ni film is removed by lift-off, the influence of the etching solution on the substrate is eliminated, and the yield of GaAs Hall devices is improved.

【0030】また、GaAs基板の両面に0.5μmの
Ni膜を蒸着させるだけなので、薄型化するのでパッケ
ージサイズに影響がない。
Since only 0.5 μm Ni film is vapor-deposited on both sides of the GaAs substrate, the thickness is reduced and the package size is not affected.

【0031】さらに、蒸着によりNi膜を形成させるの
で、数十枚の基板を同時に処理ができ、GaAsホール
素子の大量生産ができる。
Further, since the Ni film is formed by vapor deposition, several tens of substrates can be processed at the same time, and GaAs Hall devices can be mass-produced.

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明によ
れば、透磁率の大きい材料をGaAs基板の表裏面に形
成し、量産化ができ、品質が安定し、高性能の薄型化し
たGaAsホール素子を提供することができる。
As described in detail above, according to the present invention, a material having a large magnetic permeability is formed on the front and back surfaces of a GaAs substrate, which can be mass-produced, the quality is stable, and the performance is thin. A GaAs Hall element can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るGaAsホール素子の
略示工程図である。
FIG. 1 is a schematic process drawing of a GaAs Hall element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 SiO2 膜 3 Au電極 4 レジストパターン 5 Ni膜1 GaAs substrate 2 SiO 2 film 3 Au electrode 4 Resist pattern 5 Ni film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隈 彰二 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Kuma 3550, Kidayomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Ltd. Advanced Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】GaAsホール素子において、GaAs基
板の表面もしくは裏面の双方またはいずれかに、強磁性
体の金属膜を形成させたチップを用いたことを特徴とす
るGaAsホール素子。
1. A GaAs Hall element comprising a GaAs Hall element, wherein a chip having a ferromagnetic metal film formed on either or both of a front surface and a back surface of a GaAs substrate is used.
【請求項2】請求項1記載のGaAsホール素子におい
て、前記強磁性体の金属膜としてニッケル膜を用いたこ
とを特徴とするGaAsホール素子。
2. The GaAs Hall element according to claim 1, wherein a nickel film is used as the metal film of the ferromagnetic material.
JP6200863A 1994-08-25 1994-08-25 Gaas hall element Pending JPH0864887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200863A JPH0864887A (en) 1994-08-25 1994-08-25 Gaas hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200863A JPH0864887A (en) 1994-08-25 1994-08-25 Gaas hall element

Publications (1)

Publication Number Publication Date
JPH0864887A true JPH0864887A (en) 1996-03-08

Family

ID=16431483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200863A Pending JPH0864887A (en) 1994-08-25 1994-08-25 Gaas hall element

Country Status (1)

Country Link
JP (1) JPH0864887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058421A (en) * 2014-09-05 2016-04-21 ローム株式会社 Hall sensor substrate structure and hall sensor
CN113571632A (en) * 2021-09-23 2021-10-29 南开大学 Abnormal Hall element and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058421A (en) * 2014-09-05 2016-04-21 ローム株式会社 Hall sensor substrate structure and hall sensor
CN113571632A (en) * 2021-09-23 2021-10-29 南开大学 Abnormal Hall element and preparation method thereof
CN113571632B (en) * 2021-09-23 2021-12-10 南开大学 Abnormal Hall element and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS6110279A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPH0864887A (en) Gaas hall element
JP3332417B2 (en) Hall element and method of manufacturing the same
CN111883652A (en) Hall element and method for manufacturing Hall element
JPS59136971A (en) Manufacture of thin-film field-effect transistor
JPS6323669B2 (en)
CN212571040U (en) Hall element
JP3264962B2 (en) Manufacturing method of magnetoelectric conversion element
JPS609171A (en) Manufacture of semiconductor device
JPS6294981A (en) Formation of electrode for semiconductor device
KR100266560B1 (en) Fabrication method of thin-film transistor
JP2002026101A (en) Semiconductor evaluating element
JP2882442B2 (en) Method for manufacturing semiconductor device
JPS59218778A (en) Semiconductor device and manufacture thereof
JPS6261364A (en) Manufacture of thin film semiconductor device
JPH06267886A (en) Compound semiconductor element
JPS58148461A (en) Manufacture of field-effect transistor
JPS6352480A (en) Manufacture of semiconductor device
JPH04137683A (en) Magnetoelectric transducer
JPS6136983A (en) Semiconductor magnetic sensor
JPH07193122A (en) Production of semiconductor device
JPH0467794B2 (en)
JPS57120333A (en) Manufacture of semiconductor device
JPH0793319B2 (en) Method for manufacturing field effect transistor
JPH0738121A (en) Manufacture of semiconductor element