JPH0864875A - Manufacture of thermoelectric converter - Google Patents
Manufacture of thermoelectric converterInfo
- Publication number
- JPH0864875A JPH0864875A JP6200371A JP20037194A JPH0864875A JP H0864875 A JPH0864875 A JP H0864875A JP 6200371 A JP6200371 A JP 6200371A JP 20037194 A JP20037194 A JP 20037194A JP H0864875 A JPH0864875 A JP H0864875A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor elements
- thermoelectric conversion
- type
- electrode plate
- semiconductor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 124
- 229910000679 solder Inorganic materials 0.000 claims abstract description 37
- 238000005520 cutting process Methods 0.000 claims abstract description 33
- 239000000853 adhesive Substances 0.000 claims abstract description 19
- 230000001070 adhesive effect Effects 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 238000005476 soldering Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000003825 pressing Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003698 laser cutting Methods 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Dicing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷却装置、加熱装置あ
るいは冷却、加熱の両装置を兼ね備えた温度調節装置
や、冷却、過熱の両装置の温度差を利用した発電装置等
に応用可能な熱電変換装置の製造方法、特に、その組立
工程の効率化を図った熱電変換装置の製造方法に関する
ものである。INDUSTRIAL APPLICABILITY The present invention is applicable to a cooling device, a heating device or a temperature control device having both cooling and heating devices, a power generation device utilizing the temperature difference between cooling and overheating devices, and the like. The present invention relates to a method for manufacturing a thermoelectric conversion device, and particularly to a method for manufacturing a thermoelectric conversion device in which the efficiency of the assembly process is improved.
【0002】[0002]
【従来の技術】まず、熱電変換装置の基本構成について
図15を参照しながら説明する。図15は熱電変換装置
を用いて冷却等を行う機器の要部を示しており、該機器
は熱電変換装置1、冷却板2、放熱板3及び直流電源4
により構成されている。2. Description of the Related Art First, the basic structure of a thermoelectric converter will be described with reference to FIG. FIG. 15 shows a main part of a device that performs cooling and the like using the thermoelectric conversion device. The device includes the thermoelectric conversion device 1, the cooling plate 2, the heat dissipation plate 3, and the DC power supply 4.
It consists of.
【0003】熱電変換装置1は、熱電変換用の複数のN
型半導体素子5a及びP型半導体素子5bを交互に一定
の間隔で配設する一方、N型及びP型半導体素子5a、
5bの一方側で隣り合う逆極性の半導体素子5bまたは
5aの上面間、及び他方側で隣り合う逆極性の半導体素
子5bまたは5aの下面間に亙って電極板6を設けると
ともに、上下の電極板6と各半導体素子5a、5bとを
それぞれ半田7等により接続し、N型半導体素子5aと
P型半導体素子5bとを交互に電気的に直列接続する。
さらに、このようにして接続された半導体素子列を電気
絶縁性を有する基板8等により上下から挟み込んで支
持、固定している。The thermoelectric conversion device 1 includes a plurality of N for thermoelectric conversion.
Type semiconductor elements 5a and P type semiconductor elements 5b are alternately arranged at regular intervals, while N type and P type semiconductor elements 5a,
5b is provided between the upper surfaces of the opposite polarity semiconductor elements 5b or 5a adjacent on one side and between the lower surfaces of the opposite polarity semiconductor elements 5b or 5a adjacent on the other side, and the upper and lower electrodes are provided. The plate 6 and each of the semiconductor elements 5a and 5b are connected by solder 7 or the like, and the N-type semiconductor element 5a and the P-type semiconductor element 5b are alternately electrically connected in series.
Further, the semiconductor element rows connected in this way are sandwiched and supported and fixed from above and below by the electrically insulating substrate 8 and the like.
【0004】このようにして直列接続された両端、すな
わち下側電極板6の両端に直流電源4により電圧を印加
すると、ペルチェ効果により熱電変換装置1の上面側で
吸熱作用が生じ、その熱は熱電変換装置1を通って放熱
板3側へと運ばれる。この吸熱分と電気入力に相当する
熱量が熱電変換装置1の下面側で放熱されるように動作
する。よって、放熱板3の熱を効率よく放熱させると、
熱は冷却板2から放熱板3へ連続的に移動することにな
る。When a voltage is applied from the DC power source 4 to both ends of the series connection in this way, that is, both ends of the lower electrode plate 6, the Peltier effect causes an endothermic action on the upper surface side of the thermoelectric conversion device 1 to generate heat. It is conveyed to the heat sink 3 side through the thermoelectric converter 1. The heat absorption and the amount of heat corresponding to the electric input are radiated on the lower surface side of the thermoelectric conversion device 1. Therefore, if the heat of the heat sink 3 is efficiently dissipated,
The heat is continuously transferred from the cooling plate 2 to the heat dissipation plate 3.
【0005】したがって、冷却板2及び放熱板3はいず
れも熱抵抗を抑制する必要があり、この必要性から両者
2、3は熱伝導性グリス9を介して熱電変換装置1と接
触している。また、冷却板2、放熱板3の材料として
は、フィン付アルミニウム押出材等の金属材料が主とし
て使用されている。Therefore, both the cooling plate 2 and the heat radiating plate 3 need to suppress the thermal resistance, and for this reason, both 2 and 3 are in contact with the thermoelectric conversion device 1 via the heat conductive grease 9. . Further, as the material of the cooling plate 2 and the heat dissipation plate 3, a metal material such as a finned aluminum extruded material is mainly used.
【0006】従来、上記のような構成を有する熱電変換
装置を製造する方法としては、特開昭58−19957
8号公報等に開示されたものが挙げられる。図16及び
図17に、前記公報に記載されたものに代表される従来
の電極板の配置例を示し、図16は上側電極板6の配列
を、図17は下側電極板6の配列を示している。この従
来例においては、上下の電極板6はいずれも銅板をプレ
ス加工法により切断して成形した後、各銅片の表面全体
をバレルメッキ等の手法によりニッケルメッキしたもの
を使用している。Conventionally, as a method of manufacturing a thermoelectric conversion device having the above-mentioned structure, Japanese Patent Laid-Open No. 58-19957 has been proposed.
Those disclosed in Japanese Patent No. 8 and the like can be mentioned. 16 and 17 show examples of arrangement of conventional electrode plates typified by those described in the above publications. FIG. 16 shows an arrangement of upper electrode plates 6 and FIG. 17 shows an arrangement of lower electrode plates 6. Shows. In this conventional example, the upper and lower electrode plates 6 are each formed by cutting a copper plate by a press working method to form it, and then nickel plating the entire surface of each copper piece by a method such as barrel plating.
【0007】このような個別に形成された複数の電極板
6を用いた従来の熱電変換装置の組立工程では、電極板
6を1枚ずつ位置決め用の電極配列治具(図示せず)に
入れ、1枚ずつバキューム吸着することにより図16及
び図17に示すように、マトリクス状に固定し、その電
極板表面にペースト半田を印刷したうえで、その上に半
導体素子5a、5bを載置していくようにしている。In a conventional thermoelectric conversion device assembling process using such a plurality of individually formed electrode plates 6, the electrode plates 6 are placed one by one in an electrode array jig (not shown) for positioning. As shown in FIG. 16 and FIG. 17, the sheets are vacuum-adsorbed one by one to be fixed in a matrix form, and the solder paste is printed on the surface of the electrode plate, and then the semiconductor elements 5a and 5b are placed thereon. I am trying to keep going.
【0008】これらの半導体素子5a、5bの電極板6
上へのセットは、N型半導体素子5aとP型半導体素子
5bの位置ずれを防止するために、位置決め用の半導体
素子配列用治具(図示せず)を用い、その治具に各半導
体素子を1個ずつ入れていく。このようにして、半田ペ
ーストを塗布した電極板6上にN型半導体素子5aとP
型半導体素子5bを置き、上方から加圧しながらリフロ
ー半田付けを行う。Electrode plate 6 of these semiconductor elements 5a, 5b
In order to prevent the positional displacement between the N-type semiconductor element 5a and the P-type semiconductor element 5b, a semiconductor element arranging jig (not shown) for positioning is used for setting the semiconductor elements on the jig. Add one by one. In this way, the N-type semiconductor element 5a and the P-type semiconductor element are formed on the electrode plate 6 coated with the solder paste.
The mold semiconductor element 5b is placed, and reflow soldering is performed while applying pressure from above.
【0009】ところで、N型半導体素子5aとP型半導
体素子5bの切断については、特開平1−223781
号公報等に開示されたものが挙げられる。すなわち、こ
の従来例に見られるように、通常、半導体素子5a、5
bはウエハー材料をワックス等の接着剤により接着して
から切断し、その後、溶剤で接着剤を溶かし、脱脂す
る。半導体素子5a、5bを配列するためにはパーツフ
ィーダ等により整列させる必要がある。また、パーツフ
ィーダ等を用いず人手により行う場合は、ピンセット等
を用いて各半導体素子5a、5bの向きを整えて、前記
配列用治具に入れることになる。By the way, regarding the disconnection of the N-type semiconductor element 5a and the P-type semiconductor element 5b, JP-A-1-223781
Examples thereof include those disclosed in Japanese Patent Publication No. That is, as seen in this conventional example, the semiconductor elements 5a, 5
In b, the wafer material is bonded with an adhesive such as wax and then cut, and then the adhesive is melted with a solvent and degreased. In order to arrange the semiconductor elements 5a and 5b, it is necessary to align them with a parts feeder or the like. In the case of manual operation without using a parts feeder or the like, the orientation of each of the semiconductor elements 5a and 5b is adjusted using tweezers or the like, and the semiconductor elements 5a and 5b are put into the arranging jig.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記し
た先行技術例に見られるような組立プロセスを用いた場
合、次のような種々の問題点が生じる。まず、第1に、
従来では、上下の電極板6はいずれも銅板をプレス加工
法により切断した後、バレルメッキ等の手法によりニッ
ケルメッキすることにより製造されていたため、各電極
板6を所定の配置パターンに従って一定寸法に配置する
ための配列用治具が必要になる。However, when the assembly process as shown in the above-mentioned prior art example is used, the following various problems occur. First of all,
Conventionally, the upper and lower electrode plates 6 are all manufactured by cutting a copper plate by a press working method and then nickel-plating it by a method such as barrel plating. Therefore, each electrode plate 6 is formed into a certain size according to a predetermined arrangement pattern. An arrangement jig for arranging is required.
【0011】この点に関して、この種の熱電変換装置1
では一般に、電極板6を数十枚〜250枚程度並べる必
要があるため、大量生産する場合は、量産効率の観点か
ら電極板6の配列自動化装置等を導入するメリットがあ
ると言えるが、少量生産においてはそのメリットもない
ため、自動化が難しく、したがって組立に要する時間が
製造コストに占める割合が大きくなる。In this regard, this type of thermoelectric conversion device 1
In general, it is generally necessary to arrange several tens to 250 pieces of the electrode plates 6, and therefore, in mass production, it can be said that there is a merit of introducing an arrangement automation device for the electrode plates 6 from the viewpoint of mass production efficiency. Since there is no merit in production, automation is difficult, and therefore the time required for assembly accounts for a large proportion of the manufacturing cost.
【0012】なお、上記従来例のように、半導体素子5
a、5bと電極板6のみで直接接続するようにしたスケ
ルトン構造ではなく、絶縁基板8に予め電極板6を形成
させたダイレクトボンディングカッパー基板を用いたも
のも従来より実用化されているが、このダイレクトボン
ディングカッパー基板はその製造工程において電極板6
も同時に形成するものであるから電極配列のための工程
が不要となるメリットはあるが、当然のことながらスケ
ルトン構造にはできないため製造効率の低下は免れな
い。また、基板自体のコストも高くつく。As in the above-mentioned conventional example, the semiconductor element 5
Although a skeleton structure in which a and 5b are directly connected to only the electrode plate 6 is used instead of the skeleton structure in which a direct bonding copper substrate in which the electrode plate 6 is formed in advance on the insulating substrate 8 is used, This direct bonding copper substrate has an electrode plate 6 in its manufacturing process.
Since it is formed at the same time, there is an advantage that the step for arranging the electrodes is not necessary, but naturally, the manufacturing efficiency cannot be reduced because the skeleton structure cannot be formed. In addition, the cost of the substrate itself is high.
【0013】第2に、上記従来例において、上下の電極
板6を構成する銅板を切断したうえで、1枚ずつメッキ
しているのは、銅板に半田7が接触しないようにするた
めである。この場合、電極板6を連続させたものとし、
これを接続部で切断するものとすると、半田付け時に半
田7が電極板6の周囲、特に、切断面である銅板側面に
付着または接触する虞れがある。Secondly, in the above conventional example, the copper plates constituting the upper and lower electrode plates 6 are cut and plated one by one in order to prevent the solder 7 from coming into contact with the copper plates. . In this case, it is assumed that the electrode plate 6 is continuous,
If this is cut at the connecting portion, there is a risk that the solder 7 may adhere to or contact the periphery of the electrode plate 6, particularly the side surface of the copper plate that is the cut surface during soldering.
【0014】第3に、従来例では、N型半導体素子5a
とP型半導体素子5bを一定寸法に配置し、半田付けす
る場合に、位置決め用の半導体素子配列用治具を必要と
するが、生産工程においては、生産数量に見合うだけの
個数の配列用治具が必要となり、その分製造コスト高を
招くという問題点がある。また、仮にこの配列用治具を
用いない場合は、図20に示すように、半田ペーストを
塗布した電極板6上にN型半導体素子5aとP型半導体
素子5bを載置し、上方から加圧しながらリフロー半田
付けを行うときに、N型半導体素子5aとP型半導体素
子5bが所定位置から横方向に位置ずれしてしまうこと
になる。Thirdly, in the conventional example, the N-type semiconductor element 5a is used.
When arranging the P-type semiconductor element 5b and the P-type semiconductor element 5b in a certain size and soldering them, a semiconductor element arranging jig for positioning is required. However, there is a problem in that the manufacturing cost is increased accordingly. Further, if this arranging jig is not used, as shown in FIG. 20, the N-type semiconductor element 5a and the P-type semiconductor element 5b are placed on the electrode plate 6 coated with the solder paste and applied from above. When reflow soldering is performed while applying pressure, the N-type semiconductor element 5a and the P-type semiconductor element 5b are laterally displaced from a predetermined position.
【0015】第4に、従来例では、半導体素子5a、5
bの電極板6への半田付け後に、電極板6を切断するこ
とは構造的に困難なため、先に単体の電極板6を配列す
る必要があった。また、半導体素子5a、5bを半田付
けした状態の電極板6を切断する方法として、レーザー
光等の熱切断を挙げることができるが、この方法を用い
た場合、半田7の溶融や電極板6の焼け等が生じる危険
性があるため、瞬時に行わなければならないという技術
的課題が生じる。Fourth, in the conventional example, the semiconductor elements 5a, 5a
Since it is structurally difficult to cut the electrode plate 6 after soldering b of the electrode plate 6 to the electrode plate 6, it was necessary to arrange the single electrode plates 6 first. Further, as a method of cutting the electrode plate 6 in a state where the semiconductor elements 5a and 5b are soldered, thermal cutting with a laser beam or the like can be mentioned. When this method is used, melting of the solder 7 and the electrode plate 6 are performed. Since there is a risk of burns, etc., there is a technical problem that it must be done in an instant.
【0016】第5に、従来例では、N型半導体素子5a
とP型半導体素子5bの自動配列化のためにボウルフィ
ーダやリニアフィーダ等の振動式パーツフィーダ等の設
備が別に必要となる。また、パーツフィーダは半導体素
子5a、5bに振動を与えて送りながら整列させるよう
に動作するものであるため、本願の対象に含まれる熱電
材料のように脆くて破損しやすい材料の整列に用いる場
合、その材料が破損しないように細心の注意を払う必要
がある。Fifth, in the conventional example, the N-type semiconductor element 5a is used.
In order to automatically arrange the P-type semiconductor elements 5b, separate equipment such as a bowl feeder, a linear feeder, and a vibrating parts feeder is required. In addition, since the parts feeder operates so as to align the semiconductor elements 5a and 5b while sending them by vibrating, the parts feeder is used when aligning a brittle and easily damaged material such as a thermoelectric material included in the object of the present application. , You need to be very careful not to damage the material.
【0017】本発明は、上記のような種々の問題点を解
決するためになされたもので、熱電変換装置の組立工程
の大幅な簡素化を行うことを第1の目的とし、また、半
導体素子を整列させる際の素子の破損を確実に防止する
ことを第2の目的とするものである。The present invention has been made to solve the above-mentioned various problems, and a first object thereof is to greatly simplify the assembling process of a thermoelectric conversion device, and a semiconductor element. The second object is to surely prevent the damage of the elements when aligning.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
に本発明の熱電変換装置の製造方法では、熱電変換用の
複数のN型及びP型半導体素子を電極板を用いて交互に
電気的に直列接続する熱電変換装置の製造方法におい
て、前記電極板として、互いに接続されるべく配置され
た各半導体素子に対応して設けられた複数の電極部がそ
れぞれ継手部を介して結合された一体型電極板を用いる
とともに、該一体型電極板と各半導体素子との接続後、
前記継手部を切断、分離するようにしている。In order to achieve the above object, in a method for manufacturing a thermoelectric conversion device of the present invention, a plurality of N-type and P-type semiconductor elements for thermoelectric conversion are electrically connected alternately by using an electrode plate. In the method for manufacturing a thermoelectric conversion device connected in series with each other, as the electrode plate, a plurality of electrode portions provided corresponding to the respective semiconductor elements arranged to be connected to each other are connected via joint portions. While using the body type electrode plate, after connecting the integrated type electrode plate and each semiconductor element,
The joint portion is cut and separated.
【0019】より具体的には、前記N型及びP型半導体
素子を交互に間隔をおいて配置し、それぞれの半導体素
子の一方側で隣り合う逆極性の半導体素子の上面間、及
び他方側で隣り合う逆極性の半導体素子の下面間に亙っ
て、銅板表面にメッキ処理を施してなる電極板を半田付
けすることにより前記複数のN型及びP型半導体素子を
交互に電気的に直列接続する。More specifically, the N-type and P-type semiconductor elements are alternately arranged at intervals, and between the upper surfaces of the opposite-polarity semiconductor elements adjacent to each other on one side of each semiconductor element and on the other side. The plurality of N-type and P-type semiconductor elements are alternately electrically connected in series by soldering an electrode plate formed by plating a copper plate surface between the lower surfaces of adjacent semiconductor elements of opposite polarities. To do.
【0020】そして、前記電極板には、互いに接続され
るべく配置された各半導体素子に対応して設けられ且つ
周辺部に半田レジスト層及び位置決め突起を有する複数
の電極部と、隣り合う電極部間にこれら電極部と一体に
形成され且つ切断用溝を有する継手部とを有し、全半導
体素子に対して共通となる一体型電極板を用いる。ま
た、上下2枚の一体型電極板と各半導体素子との接続後
において、前記上下の一体型電極板を互いに対して独立
して、前記継手部を切断、分離するようにしている。The electrode plate is provided with a plurality of electrode portions provided corresponding to the respective semiconductor elements arranged to be connected to each other and having a solder resist layer and positioning protrusions in the peripheral portion, and adjacent electrode portions. An integrated electrode plate that has a joint portion integrally formed with these electrode portions and having a cutting groove therebetween and is common to all semiconductor elements is used. Further, after connecting the upper and lower two integrated electrode plates and each semiconductor element, the upper and lower integrated electrode plates are independently cut from each other and the joint portion is cut and separated.
【0021】また、各半導体素子には、半導体ウエハー
を粘着シート上に接着したものからダイシングソーによ
り素子形状に切断されたものを用いることが望ましい。Further, it is desirable to use, as each semiconductor element, one obtained by adhering a semiconductor wafer on an adhesive sheet and then cutting it into an element shape by a dicing saw.
【0022】[0022]
【作用】上記熱電変換装置の製造方法によると、まず、
一体型電極板を用いたことにより、継手部で電極板中の
各電極部が寸法規定されているため、従来のような配列
作業は不要となる。また、この継手部の存在により電極
板はプレス抜きの手法を用いるようにすれば、一度に全
部の電極部を同時成形することができる。According to the method of manufacturing the thermoelectric conversion device, first,
By using the integral type electrode plate, the size of each electrode portion in the electrode plate is regulated by the joint portion, so that the conventional arrangement work is unnecessary. Moreover, if the electrode plate is formed by a press-pressing method due to the presence of this joint portion, all the electrode portions can be simultaneously molded at the same time.
【0023】この場合に、一体型電極板は継手部を切断
した後、電極板を構成する銅板がその切断面に露出する
ため、半田と再接触する虞れがあるが、半田レジスト層
を設けたことにより、継手部側面の電極切断面まで半田
が濡れて広がるのを阻止でき、これにより電極板断面と
接触することが確実に防止することができる。In this case, since the copper plate forming the electrode plate is exposed at the cut surface after the joint portion of the integrated electrode plate is cut, there is a risk of re-contact with solder, but a solder resist layer is provided. As a result, it is possible to prevent the solder from getting wet and spreading up to the electrode cutting surface on the side surface of the joint portion, and thus it is possible to reliably prevent contact with the electrode plate cross section.
【0024】また、位置決め突起を設けたことにより、
N型及びP型半導体素子を半田付けする際、これらの素
子を上方から押さえたときに電極板上の所定位置から位
置ずれすることを規制することができる。また、従来必
要とした配列用治具が不要となる。Further, by providing the positioning protrusion,
When soldering N-type and P-type semiconductor elements, it is possible to prevent the elements from being displaced from a predetermined position on the electrode plate when these elements are pressed from above. In addition, the arrangement jig that has been conventionally required is not required.
【0025】そして最終的に、上下2枚の一体型電極板
と各半導体素子との接続後において、前記上下の一体型
電極板を互いに対して独立して、前記継手部を切断、分
離するのであるが、この場合、レーザー光を利用して熱
切断することができ、そのときレーザーのレンズ焦点を
浅くして一方の電極板の切断すべき面にのみパワーを集
中させ、他方の電極板にはパワーが分散するようにして
切断することにより、半導体素子と半田との接合部に生
じる切断ストレスを可及的に小さくすることができる。Finally, after connecting the upper and lower two integrated electrode plates and the respective semiconductor elements, the upper and lower integrated electrode plates are cut and separated from each other independently of each other. However, in this case, it is possible to perform thermal cutting using laser light, at which time the lens focus of the laser is made shallow and the power is concentrated only on the surface to be cut of one electrode plate and the other electrode plate is cut. By cutting so as to disperse the power, the cutting stress generated at the joint between the semiconductor element and the solder can be minimized.
【0026】このように上記製造方法によると、N型と
P型の半導体素子間を接続する電極として一体型電極板
を用いることにより、特に、絶縁基板を用いない半導体
素子と電極のみによる効率のよいスケルトン構造の熱電
変換装置の組立工程の大幅な簡素化が可能となる。As described above, according to the above-described manufacturing method, by using the integrated electrode plate as the electrode for connecting the N-type and P-type semiconductor elements, the efficiency of only the semiconductor element and the electrode without the insulating substrate is improved. It is possible to greatly simplify the assembly process of a thermoelectric conversion device having a good skeleton structure.
【0027】また、シート接着による切断により、N型
半導体素子とP型半導体素子をマウントするための再整
列が不要となり、整列のために加えられた振動による半
導体素子の破損の危険性も解消される。Further, the cutting by sheet bonding eliminates the need for realignment for mounting the N-type semiconductor element and the P-type semiconductor element, and eliminates the risk of damage to the semiconductor element due to vibration applied for alignment. It
【0028】[0028]
【実施例】以下、本発明の実施例を図面を参照しながら
説明する。なお、本実施例方法が対象とする熱電変換装
置は、既述した図15に示す熱電変換装置1、すなわち
熱電変換用の複数のN型及びP型半導体素子5a、5b
を交互に間隔をおいて配置し、それぞれの半導体素子5
a、5bの一方側で隣り合う逆極性の半導体素子5aま
たは5bの上面間、及び他方側で隣り合う逆極性の半導
体素子5bまたは5aの下面間に亙って、銅板表面にメ
ッキ処理を施してなる上下の電極を半田付けすることに
より複数のN型及びP型半導体素子5a、5bを交互に
電気的に直列接続する装置である。また、本実施例にお
いて、前記従来例と共通する構成には共通の符号を付す
こととする。Embodiments of the present invention will be described below with reference to the drawings. The thermoelectric conversion device targeted by the method of this embodiment is the thermoelectric conversion device 1 shown in FIG. 15 described above, that is, a plurality of N-type and P-type semiconductor elements 5a and 5b for thermoelectric conversion.
Are alternately arranged at intervals and each semiconductor element 5
a, the copper plate surface is plated between the upper surfaces of the opposite-polarity semiconductor elements 5a or 5b adjacent on one side and between the lower surfaces of the opposite-polarity semiconductor elements 5b or 5a adjacent on the other side. This is a device in which a plurality of N-type and P-type semiconductor elements 5a, 5b are alternately electrically connected in series by soldering the upper and lower electrodes formed by. In addition, in the present embodiment, the same components as those of the conventional example will be denoted by the same reference numerals.
【0029】図1は本発明に係る熱電変換装置の実施例
における上側の一体型電極板の構造を、図2は同じく下
側の一体型電極板を示している。これらの一体型電極板
11は互いに接続されるべく配置されたN型及びP型半
導体素子5a、5bに対応して設けられた複数の電極部
12を、それぞれ位置固定用の継手部13(幅0.3〜0.4m
m程度)を介してマトリクス状に結合してなり、厚み0.3
〜0.5mmの銅板をプレス金型で抜いて成形加工したもの
である。また、抜いた銅板は無電解ニッケルメッキを2
μm程度施し、更にその上に酸化防止膜としての金・パ
ラジウムコート、あるいは半田プリコート等を施してい
る。FIG. 1 shows the structure of the upper integrated electrode plate in the embodiment of the thermoelectric converter according to the present invention, and FIG. 2 shows the lower integrated electrode plate. These integrated electrode plates 11 have a plurality of electrode portions 12 provided corresponding to the N-type and P-type semiconductor elements 5a and 5b arranged to be connected to each other, respectively, and a joint portion 13 (width 0.3-0.4m
(about m) and connected in a matrix, thickness 0.3
It is a 0.5 mm copper plate that is punched out with a press die and then processed. In addition, the removed copper plate has 2 electroless nickel plating.
About μm is applied, and gold / palladium coating as an anti-oxidation film, or solder pre-coating, etc. is further applied thereon.
【0030】本実施例では、このような一体型電極板1
1を用いたことにより、継手部13で一体型電極板11
中の各電極部12が寸法規定されているため、従来、必
要とした個別に形成された電極板6を配列する作業は不
要であり、また、細い継手部13により一体型電極板1
1はプレス抜きの手法を用いるようにすれば、一度に全
部の電極部12を同時成形することができる。In this embodiment, such an integrated electrode plate 1 as described above is used.
By using 1, the integral electrode plate 11
Since the respective electrode portions 12 in the inside are dimensionally regulated, the work of arranging the individually formed electrode plates 6 which is conventionally required is unnecessary, and the thin joint portion 13 allows the integrated electrode plate 1 to be formed.
In the case of No. 1, if the method of press punching is used, all the electrode portions 12 can be simultaneously molded at one time.
【0031】図3及び図4に示すように、一体型電極板
11の上面周縁部には半田レジスト塗料を印刷してなる
半田レジスト層14を形成する。具体的には、一体型電
極板11の各電極部12とN型及びP型半導体素子5
a、5bとの接触面より若干大きい寸法の四角形部分を
半田接合面12aとして残し、その部分以外の斜線部分
について半田レジスト塗料をスクリーン印刷することに
より半田レジスト層14を形成する。As shown in FIGS. 3 and 4, a solder resist layer 14 formed by printing a solder resist coating is formed on the peripheral portion of the upper surface of the integrated electrode plate 11. Specifically, each electrode portion 12 of the integrated electrode plate 11 and the N-type and P-type semiconductor element 5 are
The solder resist layer 14 is formed by screen-printing the solder resist coating on the shaded portion other than the square portion having a size slightly larger than the contact surface with a and 5b as the solder joint surface 12a.
【0032】図5及び図6に、半田レジスト層14を設
けた一体型電極板11にN型及びP型半導体素子5a、
5bを半田付けした状態を示す。これらの図から明らか
なように、半田レジスト層14を施した場合、図中、右
上がり斜線部分で示す半田7はレジスト層14にを越え
て濡れ広がることはないので、電極切断面13aに達す
る虞れはなくなる。したがって、半田を構成する錫と一
体型電極板11を構成する銅の金属拡散が防止される。5 and 6, the N-type and P-type semiconductor elements 5a are formed on the integrated electrode plate 11 provided with the solder resist layer 14.
The state where 5b is soldered is shown. As is clear from these figures, when the solder resist layer 14 is applied, the solder 7 shown by the diagonally upward-sloping line in the figure does not spread beyond the resist layer 14 and thus spreads to the electrode cutting surface 13a. There is no fear. Therefore, the metal diffusion of tin forming the solder and copper forming the integrated electrode plate 11 is prevented.
【0033】これに対し、図18及び図19に示すよう
に、電極板6の表面に半田レジストを行うための手段が
施されていない従来例を適用した場合、想像線で示す継
手部で切断した場合、N型半導体素子5aとP型半導体
素子5bの端面から右上がり斜線部分で示すように半田
7が濡れて広がり、電極切断面6aに達する虞れが大き
い。On the other hand, as shown in FIGS. 18 and 19, when the conventional example in which the means for solder resist is not applied to the surface of the electrode plate 6 is applied, cutting is performed at the joint portion shown by the imaginary line. In that case, there is a great possibility that the solder 7 gets wet and spreads from the end faces of the N-type semiconductor element 5a and the P-type semiconductor element 5b, as shown by the hatched portion, and reaches the electrode cutting surface 6a.
【0034】図7〜図9に示すように、一体型電極板1
1とN型及びP型半導体素子5a、5bとが接触する部
分の周囲各4カ所にプレスによる位置決め突起15を設
ける。この場合、前述の図20に示す従来例のように、
電極板6に突起15が存在しないものでは、半田ペース
ト10を塗布した電極板6上にN型半導体素子5aとP
型半導体素子5bを載置し、上方から加圧しながらリフ
ロー半田付けを行うときに、N型半導体素子5aとP型
半導体素子5bが所定位置から横方向に位置ずれする虞
れが生じる。As shown in FIGS. 7 to 9, the integrated electrode plate 1
Positioning protrusions 15 are provided by pressing at four positions around the contacting portion between the 1 and the N-type and P-type semiconductor elements 5a and 5b. In this case, as in the conventional example shown in FIG.
If the electrode plate 6 does not have the protrusions 15, the N-type semiconductor elements 5a and P
When the type semiconductor element 5b is placed and reflow soldering is performed while applying pressure from above, the N type semiconductor element 5a and the P type semiconductor element 5b may be laterally displaced from a predetermined position.
【0035】これに対し、本実施例のように位置決め突
起15を設けるようにすれば、図9に示すように、N型
及びP型半導体素子5a、5bのずれを防止しながら矢
印で示す上方から加圧しつつ半田付けすることが可能と
なり、素子の配列用治具を準備することなく、半田付け
時の半導体素子5a、5bの位置ずれを防止することが
できる。On the other hand, if the positioning protrusions 15 are provided as in the present embodiment, as shown in FIG. 9, the N-type and P-type semiconductor elements 5a and 5b are prevented from being displaced from each other, and the upper direction shown by the arrow is shown. Therefore, it is possible to solder while applying pressure, and it is possible to prevent the displacement of the semiconductor elements 5a and 5b during soldering without preparing an element arranging jig.
【0036】このようにして上下2枚の一体型電極板1
1とN型及びP型半導体素子5a、5bとを接続した
後、上下の一体型電極板11を片方毎に別々に、それぞ
れ継手部13を切断、分離するのであるが、本実施例で
は図10に示すように、一体型電極板11をレーザー切
断機16により切断加工するようにしている。In this way, the upper and lower two integrated electrode plates 1
After connecting the 1 and the N-type and P-type semiconductor elements 5a and 5b, the upper and lower integrated electrode plates 11 are separately cut into the joint portions 13 for each one. As shown in FIG. 10, the integrated electrode plate 11 is cut by a laser cutting machine 16.
【0037】この場合、2種類の一体型電極板11のう
ち、上側の一体型電極板を11Aとし、下側の一体型電
極板を11Bとすると、N型及びP型半導体素子5a、
5bはこの両者11A、11B間に挟み込まれた形とな
る。そして、N型及びP型半導体素子5a、5bを半田
付けされた組品の上側の一体型電極板11Aに対し、レ
ーザー切断機16のレーザー光を集光するレンズ17の
焦点深度を浅くして上側の一体型電極板11Aの電極
面、つまり継手部13上面にパワーを集中させて瞬間切
断する。In this case, of the two kinds of integrated electrode plates 11, if the upper integrated electrode plate is 11A and the lower integrated electrode plate is 11B, the N-type and P-type semiconductor elements 5a,
5b is sandwiched between the two 11A and 11B. Then, with respect to the upper integrated electrode plate 11A of the assembly to which the N-type and P-type semiconductor elements 5a and 5b are soldered, the depth of focus of the lens 17 that focuses the laser light of the laser cutting machine 16 is made shallow. The power is concentrated on the electrode surface of the upper integrated electrode plate 11A, that is, the upper surface of the joint portion 13, and instantaneously cut.
【0038】このとき、下側の一体型電極板11Bの電
極面に対してはレーザー光が分散しパワーが低下するた
め、切断の影響が及ばない。なお、下側の一体型電極板
11Bについても、レーザー切断機16と組品との相対
位置を調整した後、上側の一体型電極板11Aと同様に
して瞬間切断する。At this time, since the laser light is dispersed and the power is reduced to the electrode surface of the lower integrated electrode plate 11B, the influence of cutting is not exerted. The lower integrated electrode plate 11B is also instantaneously cut in the same manner as the upper integrated electrode plate 11A after adjusting the relative position between the laser cutting machine 16 and the assembly.
【0039】ところで、この場合、図11及び図12に
示すように、継手部13の切断を容易にするために切断
用V型溝18を設けるようにすることが望ましい。この
V型溝18は一体型電極板6の各継手部13のそれぞれ
にプレス装置により形成する。このV型溝18を設けた
ものでは、レーザー切断機16等によって継手部13を
切断するとき、V型溝18を狙って切断すれば、その部
分の厚みが薄いので短時間で切断することができる。By the way, in this case, as shown in FIGS. 11 and 12, it is desirable to provide a V-shaped groove 18 for cutting in order to facilitate the cutting of the joint portion 13. The V-shaped groove 18 is formed in each of the joint portions 13 of the integrated electrode plate 6 by a pressing device. In the case where the V-shaped groove 18 is provided, when the joint portion 13 is cut by the laser cutting machine 16 or the like, if the V-shaped groove 18 is cut aiming, the thickness of the portion is thin, so that it can be cut in a short time. it can.
【0040】次に、一体型電極板11への半田付けに先
立って行う半導体素子5a、5bのウエハーからの切断
について説明する。図13はそのプロセスを説明するた
めの模式図であって、同図(A)は平面を、(B)は側面
を、(C)はダイシングソーを、(D)は切断後の状態の平
面を、(E)はその側面をそれぞれ示している。Next, the cutting of the semiconductor elements 5a and 5b from the wafer prior to soldering to the integrated electrode plate 11 will be described. 13A and 13B are schematic diagrams for explaining the process. FIG. 13A is a plane, FIG. 13B is a side surface, FIG. 13C is a dicing saw, and FIG. (E) shows the respective side surfaces.
【0041】この図に示す方法は接着シートを用いた半
導体素子5a、5bの切断方法の一例であって、図13
(A)(B)に示すように、固定リング19に貼り付けた紫
外線硬化性粘着シート20上に板状の半導体ウエハー2
1を接着し、ダイシングソー22にセットして高速回転
ブレード(円盤状カッター)23によってX方向・Y方向
に粘着シート20の一部まで切り込んで切断する。The method shown in this figure is an example of a method of cutting the semiconductor elements 5a and 5b using an adhesive sheet.
As shown in (A) and (B), the plate-shaped semiconductor wafer 2 is placed on the ultraviolet curable pressure sensitive adhesive sheet 20 attached to the fixing ring 19.
1 is bonded, set on a dicing saw 22, and cut by cutting a part of the adhesive sheet 20 in the X and Y directions by a high-speed rotating blade (disc-shaped cutter) 23.
【0042】但し、このままでは粘着シート20の接着
力が強いため、切断された半導体素子5a、5bは簡単
に剥がれない。したがって、粘着シート20に紫外線光
を照射し、粘着シート20の接着力を弱らせる。これに
よりバキュームピンセット等により粘着シート20より
素子を簡単に取り上げることが可能となる。切断された
半導体素子5a、5bは粘着シート20上で整列してい
るため、振動式のボウルフィーダやリニアフィーダ等を
利用して再整列させる必要がなく、一体型電極板11へ
自動配置することが可能となる。However, since the adhesive force of the adhesive sheet 20 is strong as it is, the cut semiconductor elements 5a and 5b cannot be easily peeled off. Therefore, the adhesive sheet 20 is irradiated with ultraviolet light to weaken the adhesive force of the adhesive sheet 20. This allows the element to be easily picked up from the adhesive sheet 20 by vacuum tweezers or the like. Since the cut semiconductor elements 5a and 5b are aligned on the adhesive sheet 20, there is no need to re-align them by using a vibrating bowl feeder, a linear feeder, or the like, and the semiconductor elements 5a and 5b can be automatically placed on the integrated electrode plate 11. Is possible.
【0043】なお、粘着シート20は紫外線硬化性粘着
シートに限定されるものではなく、例えば図14(A)に
示すように、接着力の弱い一般粘着シート20を用いて
板状の半導体ウエハー21を図13(E)のもののよう
にフルカットするのではなく、厚み方向に数十μm程度
残して切断し、その切断後に図14(B)に示すように、
粘着シート20を外方向にエキスパンドする、つまり引
っ張ることにより、数十μm切断残の部分を分離し、半
導体素子5a、5bを取り上げることも可能となる。以
上のような切断方法を採用することにより、半導体製造
装置であるシリコンチップ用マウンターを応用した一体
型電極板11上への高速実装も可能となる。The pressure-sensitive adhesive sheet 20 is not limited to the UV-curable pressure-sensitive adhesive sheet. For example, as shown in FIG. 14 (A), the general pressure-sensitive adhesive sheet 20 having a weak adhesive force is used to form a plate-shaped semiconductor wafer 21. 13 (E) is not full-cut as shown in FIG. 13 (E), but is cut with a thickness of several tens of μm left, and after cutting, as shown in FIG. 14 (B),
By expanding the adhesive sheet 20 in the outward direction, that is, by pulling it, it is possible to separate the remaining portion after cutting by several tens of μm and pick up the semiconductor elements 5a and 5b. By adopting the cutting method as described above, high-speed mounting is possible on the integrated electrode plate 11 to which the mounter for silicon chip, which is a semiconductor manufacturing apparatus, is applied.
【0044】[0044]
【発明の効果】以上説明したように本発明の請求項1に
よるときは、一体型電極板を用いたことにより、継手部
で電極板中の各電極部が寸法規定されているため、従来
のような電極板の配列作業は不要となる。また、この継
手部の存在により電極板はプレス抜きの手法を用いるよ
うにすれば、一度に全部の電極部を同時成形することが
できる。したがって、効率のよいスケルトン構造の熱電
変換装置の組立工程の大幅な簡素化を実現することがで
きる。As described above, according to claim 1 of the present invention, since the size of each electrode part in the electrode plate is defined by the joint part by using the integral type electrode plate, the conventional electrode plate is used. The work of arranging such electrode plates becomes unnecessary. Moreover, if the electrode plate is formed by a press-pressing method due to the presence of this joint portion, all the electrode portions can be simultaneously molded at the same time. Therefore, it is possible to significantly simplify the assembly process of the thermoelectric conversion device having an efficient skeleton structure.
【0045】請求項2によるときは、一体型電極板は継
手部を切断した後、電極板を構成する銅板がその切断面
に露出するため、半田と再接触する虞れがあるが、半田
レジスト層を設けたことにより、継手部側面の電極切断
面まで半田が濡れて広がるのを阻止できる。したがっ
て、半田接合部分のニッケルメッキを後処理することな
く錫(半田)と銅の金属拡散を防止することができ、コス
トをかけることなく、信頼性を確保できる。According to the second aspect, after the joint portion of the integrated type electrode plate is cut, the copper plate forming the electrode plate is exposed on the cut surface, so that there is a risk of re-contact with solder. By providing the layer, it is possible to prevent the solder from getting wet and spreading to the electrode cutting surface on the side surface of the joint portion. Therefore, it is possible to prevent metal diffusion of tin (solder) and copper without post-processing the nickel plating of the solder joint portion, and it is possible to secure reliability without increasing cost.
【0046】また、位置決め突起を設けたことにより、
N型及びP型半導体素子を半田付けする際、これらの素
子を上方から押さえたときに電極板上の所定位置から位
置ずれすることを規制することができる。したがって、
素子の配列用治具を用意することなく、半田付け時の素
子の位置ずれを防止することができ、組立工程の簡素化
と設備治具コストの削減が可能となる。Further, since the positioning protrusion is provided,
When soldering N-type and P-type semiconductor elements, it is possible to prevent the elements from being displaced from a predetermined position on the electrode plate when these elements are pressed from above. Therefore,
It is possible to prevent displacement of the elements during soldering without preparing an element arranging jig, which simplifies the assembly process and reduces equipment jig costs.
【0047】そして最終的に、上下2枚の一体型電極板
と各半導体素子との接続後において、前記上下の一体型
電極板を互いに対して独立して、前記継手部を切断、分
離するのであるが、この場合、レーザー光を利用して熱
切断することができ、そのときレーザーのレンズ焦点を
浅くして一方の電極板の切断すべき面にのみパワーを集
中させ、他方の電極板にはパワーが分散するようにして
切断することにより、半導体素子と半田との接合部に生
じる切断ストレスを可及的に小さくすることができる。Finally, after connecting the upper and lower two integrated electrode plates and each semiconductor element, the upper and lower integrated electrode plates are independently cut from each other to cut and separate the joint portion. However, in this case, it is possible to perform thermal cutting using laser light, at which time the lens focus of the laser is made shallow and the power is concentrated only on the surface to be cut of one electrode plate and the other electrode plate is cut. By cutting so as to disperse the power, the cutting stress generated at the joint between the semiconductor element and the solder can be minimized.
【0048】このように上記製造方法によると、N型と
P型の半導体素子間を接続する電極として一体型電極板
を用いることにより、特に、絶縁基板を用いない半導体
素子と電極のみによる効率のよいスケルトン構造の熱電
変換装置の組立工程の大幅な簡素化が可能となる。As described above, according to the above-mentioned manufacturing method, by using the integrated electrode plate as the electrode for connecting the N-type and P-type semiconductor elements, the efficiency of only the semiconductor element and the electrode without the insulating substrate is improved. It is possible to greatly simplify the assembly process of a thermoelectric conversion device having a good skeleton structure.
【0049】請求項3によるときは、素子をマウントす
るための再整列が不要となり、整列のために加えられた
振動による素子の破損の心配も不要となり、設備コスト
の削減と、組立信頼性の向上、さらに大型高速マウンタ
ーとのドッキング等も容易になる。According to the third aspect, the re-alignment for mounting the elements is not necessary, and there is no need to worry about the damage of the elements due to the vibration applied for the alignment, which reduces the equipment cost and the assembly reliability. Improvements and easier docking with large high-speed mounters.
【図1】 本発明に係る熱電変換装置の実施例における
上側の一体型電極板を示す平面図。FIG. 1 is a plan view showing an upper integrated electrode plate in an embodiment of a thermoelectric conversion device according to the present invention.
【図2】 同じく下側の一体型電極板を示す平面図。FIG. 2 is a plan view showing the lower integrated electrode plate of the same manner.
【図3】 半田レジスト層を印刷形成した状態の一体型
電極板を示す要部平面図。FIG. 3 is a main part plan view showing the integrated electrode plate in a state where a solder resist layer is formed by printing.
【図4】 その要部側面図。FIG. 4 is a side view of the main part.
【図5】 半田レジスト層を設けた一体型電極板に半導
体素子を半田付けした状態を示す平面図。FIG. 5 is a plan view showing a state in which a semiconductor element is soldered to an integrated type electrode plate provided with a solder resist layer.
【図6】 その側面図。FIG. 6 is a side view thereof.
【図7】 一体型電極板に位置決め突起を設けた状態を
示す要部平面図。FIG. 7 is a plan view of an essential part showing a state where a positioning protrusion is provided on the integrated electrode plate.
【図8】 その要部側面図。FIG. 8 is a side view of the main part.
【図9】 その上に半導体素子をセットした状態を示す
要部側面図。FIG. 9 is a side view of essential parts showing a state in which a semiconductor element is set thereon.
【図10】 レーザー切断装置による電極板切断加工時
の状態を示す要部概略側面図。FIG. 10 is a schematic side view of an essential part showing a state during cutting of an electrode plate by a laser cutting device.
【図11】 継手部の切断を容易にするためのV型溝を
設けた態様を示す要部平面図。FIG. 11 is a plan view of relevant parts showing a mode in which a V-shaped groove is provided to facilitate cutting of the joint.
【図12】 その要部側面図。FIG. 12 is a side view of the main part.
【図13】 接着シートを用いた半導体素子の一つの切
断プロセスを説明するための模式図。FIG. 13 is a schematic diagram for explaining one cutting process of a semiconductor element using an adhesive sheet.
【図14】 接着シートを用いた半導体素子の他の切断
プロセスを説明するための模式図。FIG. 14 is a schematic diagram for explaining another cutting process of the semiconductor element using the adhesive sheet.
【図15】 電極にN型半導体素子及びP型半導体素子
を半田付けした熱電変換装置の基本構造を示す概略断面
図。FIG. 15 is a schematic cross-sectional view showing the basic structure of a thermoelectric conversion device in which N-type semiconductor elements and P-type semiconductor elements are soldered to electrodes.
【図16】 従来の上側電極板の配置例を示す平面図。FIG. 16 is a plan view showing an arrangement example of a conventional upper electrode plate.
【図17】 従来の下側電極板の配置例を示す平面図。FIG. 17 is a plan view showing an arrangement example of a conventional lower electrode plate.
【図18】 半田レジストを施していない場合の電極に
素子を半田付けした状態を示す平面図。FIG. 18 is a plan view showing a state in which an element is soldered to an electrode when a solder resist is not applied.
【図19】 その側面図。FIG. 19 is a side view thereof.
【図20】 突起が設けられていない電極板に半導体素
子を半田付けした従来例を示す側面図。FIG. 20 is a side view showing a conventional example in which a semiconductor element is soldered to an electrode plate having no protrusion.
1 熱電変換装置 5a N型半導体素子 5b P型半導体素子 7 半田 11 一体型電極板 12 電極部 13 継手部 14 半田レジスト層 15 位置決め突起 18 切断用V型溝 20 粘着シート 21 半導体ウエハー 22 ダイシングソー DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion device 5a N-type semiconductor element 5b P-type semiconductor element 7 Solder 11 Integrated electrode plate 12 Electrode part 13 Joint part 14 Solder resist layer 15 Positioning protrusion 18 Cutting V-shaped groove 20 Adhesive sheet 21 Semiconductor wafer 22 Dicing saw
Claims (3)
素子を電極を用いて交互に電気的に直列接続する熱電変
換装置の製造方法において、前記電極として、互いに接
続されるべく配置された各半導体素子に対応して設けら
れた複数の電極部がそれぞれ継手部を介して結合された
一体型電極を用いるとともに、該一体型電極と各半導体
素子との接続後、前記継手部を切断、分離することを特
徴とする熱電変換装置の製造方法。1. A method of manufacturing a thermoelectric conversion device in which a plurality of N-type and P-type semiconductor elements for thermoelectric conversion are electrically connected alternately in series by using electrodes, wherein the electrodes are arranged to be connected to each other. In addition to using an integrated electrode in which a plurality of electrode portions provided corresponding to each semiconductor element are respectively coupled via a joint portion, the joint portion is disconnected after the integrated electrode and each semiconductor element are connected. And a method for manufacturing a thermoelectric conversion device, characterized by separating.
素子を交互に間隔をおいて配置し、それぞれの半導体素
子の一方側で隣り合う逆極性の半導体素子の上面間、及
び他方側で隣り合う逆極性の半導体素子の下面間に亙っ
て、銅板表面にメッキ処理を施してなる上下の電極を半
田付けすることにより前記複数のN型及びP型半導体素
子を交互に電気的に直列接続する熱電変換装置の製造方
法において、前記上下の電極として、互いに接続される
べく配置された各半導体素子に対応して設けられ且つ周
辺部に半田レジスト層及び位置決め突起を有する複数の
電極部と、隣り合う電極部間にこれら電極部と一体に形
成され且つ切断用溝を有する継手部とを有し、全半導体
素子に対して共通となる一体型電極を用いるとともに、
上下2枚の一体型電極と各半導体素子との接続後、前記
上下の一体型電極を片方毎別々に、前記継手部を切断、
分離することを特徴とする熱電変換装置の製造方法。2. A plurality of N-type and P-type semiconductor elements for thermoelectric conversion are alternately arranged at intervals, and one side of each semiconductor element has an upper surface of adjacent semiconductor elements of opposite polarity and the other side. In order to electrically connect the plurality of N-type and P-type semiconductor elements alternately by soldering the upper and lower electrodes plated on the copper plate surface between the lower surfaces of the adjacent semiconductor elements of opposite polarities. In the method of manufacturing a thermoelectric conversion device connected in series, a plurality of electrode portions provided as the upper and lower electrodes corresponding to the respective semiconductor elements arranged to be connected to each other and having a solder resist layer and a positioning protrusion in the peripheral portion. And a joint part that is integrally formed with these electrode parts and has a groove for cutting between adjacent electrode parts, and uses an integrated electrode that is common to all semiconductor elements,
After connecting the upper and lower two integrated electrodes and each semiconductor element, the upper and lower integrated electrodes are separately separated from each other, and the joint portion is cut.
A method for manufacturing a thermoelectric conversion device, characterized by separating.
素子を電極を用いて交互に電気的に直列接続する熱電変
換装置の製造方法において、前記各半導体素子として、
半導体ウエハーを粘着シート上に接着したものからダイ
シングソーにより素子形状に切断されたものが用いられ
ることを特徴とする熱電変換装置の製造方法。3. A method for manufacturing a thermoelectric conversion device in which a plurality of N-type and P-type semiconductor elements for thermoelectric conversion are electrically connected in series alternately by using electrodes, wherein each of the semiconductor elements is:
A method for manufacturing a thermoelectric conversion device, characterized in that a semiconductor wafer bonded to an adhesive sheet and cut into an element shape with a dicing saw is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6200371A JPH0864875A (en) | 1994-08-25 | 1994-08-25 | Manufacture of thermoelectric converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6200371A JPH0864875A (en) | 1994-08-25 | 1994-08-25 | Manufacture of thermoelectric converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0864875A true JPH0864875A (en) | 1996-03-08 |
Family
ID=16423203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6200371A Pending JPH0864875A (en) | 1994-08-25 | 1994-08-25 | Manufacture of thermoelectric converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0864875A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045882A1 (en) * | 1996-05-28 | 1997-12-04 | Matsushita Electric Works, Ltd. | Method for manufacturing thermoelectric module |
JPH09321351A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Electrode plate |
JPH09321356A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Thermoelectric module and its manufacture |
JPH09321354A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Metal pattern plate |
FR2775123A1 (en) * | 1997-12-05 | 1999-08-20 | Matsushita Electric Works Ltd | THERMOELECTRIC MODULE AND MANUFACTURING METHOD THEREOF |
JP2009117645A (en) * | 2007-11-07 | 2009-05-28 | Showa Denko Kk | Electrode for thermoelectric element, and thermoelectric module |
JP2009206201A (en) * | 2008-02-26 | 2009-09-10 | Kyocera Corp | Segment type thermoelectric element, thermoelectric module, electric power generator, and temperature regulator |
CN103531554A (en) * | 2013-08-05 | 2014-01-22 | 日月光半导体制造股份有限公司 | Semiconductor component and manufacturing method thereof |
CN104064667A (en) * | 2013-03-19 | 2014-09-24 | 罗伯特·博世有限公司 | Method And Pre-product For Producing Thermoelectric Module |
JP2017098282A (en) * | 2015-11-18 | 2017-06-01 | 日東電工株式会社 | Semiconductor device manufacturing method |
JP2018022784A (en) * | 2016-08-04 | 2018-02-08 | 日立金属株式会社 | Thermoelectric conversion module and manufacturing method thereof |
WO2018137926A1 (en) * | 2017-01-27 | 2018-08-02 | Mahle International Gmbh | Method for producing peltier elements and a thermoelectric heat exchanger |
WO2018162438A3 (en) * | 2017-03-07 | 2018-11-22 | Mahle International Gmbh | Method for producing thermoelectric modules |
EP2317577B1 (en) * | 2009-10-28 | 2018-12-12 | Robert Bosch GmbH | Method for producing a Seebeck module |
CN112563361A (en) * | 2020-12-11 | 2021-03-26 | 常州时创能源股份有限公司 | Connecting piece and application thereof |
EP3866212A4 (en) * | 2018-10-10 | 2022-07-06 | Humott Co., Ltd. | Bulk thermoelectric device preparation method |
-
1994
- 1994-08-25 JP JP6200371A patent/JPH0864875A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045882A1 (en) * | 1996-05-28 | 1997-12-04 | Matsushita Electric Works, Ltd. | Method for manufacturing thermoelectric module |
JPH09321351A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Electrode plate |
JPH09321356A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Thermoelectric module and its manufacture |
JPH09321354A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Metal pattern plate |
CN1104746C (en) * | 1996-05-28 | 2003-04-02 | 松下电工株式会社 | Method for manufacturing thermoelectric module |
US6400013B1 (en) | 1997-05-12 | 2002-06-04 | Matsushita Electric Works, Ltd. | Thermoelectric module with interarray bridges |
FR2775123A1 (en) * | 1997-12-05 | 1999-08-20 | Matsushita Electric Works Ltd | THERMOELECTRIC MODULE AND MANUFACTURING METHOD THEREOF |
US6391676B1 (en) | 1997-12-05 | 2002-05-21 | Matsushita Electric Works, Ltd. | Thermoelectric module and a method of fabricating the same |
CN1109366C (en) * | 1997-12-05 | 2003-05-21 | 松下电工株式会社 | Thermoelectric module and its producing method |
JP2009117645A (en) * | 2007-11-07 | 2009-05-28 | Showa Denko Kk | Electrode for thermoelectric element, and thermoelectric module |
JP2009206201A (en) * | 2008-02-26 | 2009-09-10 | Kyocera Corp | Segment type thermoelectric element, thermoelectric module, electric power generator, and temperature regulator |
EP2317577B1 (en) * | 2009-10-28 | 2018-12-12 | Robert Bosch GmbH | Method for producing a Seebeck module |
CN104064667A (en) * | 2013-03-19 | 2014-09-24 | 罗伯特·博世有限公司 | Method And Pre-product For Producing Thermoelectric Module |
US20140287549A1 (en) * | 2013-03-19 | 2014-09-25 | Robert Bosch Gmbh | Method and Pre-Product for Producing a Thermoelectric Module |
CN106098661A (en) * | 2013-08-05 | 2016-11-09 | 日月光半导体制造股份有限公司 | Semiconductor subassembly and manufacture method thereof |
CN103531554A (en) * | 2013-08-05 | 2014-01-22 | 日月光半导体制造股份有限公司 | Semiconductor component and manufacturing method thereof |
JP2017098282A (en) * | 2015-11-18 | 2017-06-01 | 日東電工株式会社 | Semiconductor device manufacturing method |
US10998484B2 (en) | 2015-11-18 | 2021-05-04 | Nitto Denko Corporation | Semiconductor device manufacturing method |
JP2018022784A (en) * | 2016-08-04 | 2018-02-08 | 日立金属株式会社 | Thermoelectric conversion module and manufacturing method thereof |
WO2018137926A1 (en) * | 2017-01-27 | 2018-08-02 | Mahle International Gmbh | Method for producing peltier elements and a thermoelectric heat exchanger |
WO2018162438A3 (en) * | 2017-03-07 | 2018-11-22 | Mahle International Gmbh | Method for producing thermoelectric modules |
CN110678993A (en) * | 2017-03-07 | 2020-01-10 | 马勒国际有限公司 | Method for producing a thermoelectric module |
EP3866212A4 (en) * | 2018-10-10 | 2022-07-06 | Humott Co., Ltd. | Bulk thermoelectric device preparation method |
CN112563361A (en) * | 2020-12-11 | 2021-03-26 | 常州时创能源股份有限公司 | Connecting piece and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0864875A (en) | Manufacture of thermoelectric converter | |
US8217257B2 (en) | Solar cell module and method for its production | |
JP5426188B2 (en) | Thermoelectric conversion module and thermoelectric semiconductor element | |
JP3787705B2 (en) | Semiconductor laser diode device and manufacturing method thereof | |
JP4395733B2 (en) | Thermoelectric conversion element module manufacturing method and electrode structure used in thermoelectric conversion element module manufacturing method | |
JP2012079803A (en) | Thermoelectric module | |
JP5713526B2 (en) | Thermoelectric conversion module, cooling device, power generation device and temperature control device | |
JP2000349353A (en) | Peltier module and module for optical communication equipped with the same | |
JP4284589B2 (en) | Thermoelectric semiconductor manufacturing method, thermoelectric conversion element manufacturing method, and thermoelectric conversion device manufacturing method | |
KR20100096593A (en) | Manufacturing method of heat exchanger using thermoelectric module | |
EP3513442A1 (en) | Heatsink including thick film layer for uv led arrays, and methods of forming uv led arrays | |
JP2007243050A (en) | Thermoelectric module, and its manufacturing method | |
JP2006269572A (en) | Thermoelectric conversion module, and method of manufacturing the same and circuit substrate | |
JP3350299B2 (en) | Manufacturing method of thermoelectric converter | |
JP2011119584A (en) | Substrate for power module and method of manufacturing the same | |
US20160111556A1 (en) | High temperature solar cell mount | |
JP4701780B2 (en) | Thermoelectric conversion module | |
JPH1187787A (en) | Production of thermoelectrtc module | |
JP5131205B2 (en) | Power module substrate manufacturing method | |
JPH08186298A (en) | Manufacture of thermoelectric conversion device | |
JP4275938B2 (en) | Method for manufacturing thermoelectric conversion module | |
JPS62128573A (en) | Connecting device in solar battery cell | |
US20240186427A1 (en) | Back-side solar cell soldering | |
JP4314973B2 (en) | Solar cell heat dissipation structure | |
JP3603675B2 (en) | Thermoelectric module and manufacturing method thereof |