JPH0864869A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0864869A
JPH0864869A JP20247694A JP20247694A JPH0864869A JP H0864869 A JPH0864869 A JP H0864869A JP 20247694 A JP20247694 A JP 20247694A JP 20247694 A JP20247694 A JP 20247694A JP H0864869 A JPH0864869 A JP H0864869A
Authority
JP
Japan
Prior art keywords
layer
type
type layer
gallium nitride
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20247694A
Other languages
Japanese (ja)
Other versions
JP3504976B2 (en
Inventor
Yukio Shakuda
幸男 尺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP20247694A priority Critical patent/JP3504976B2/en
Priority to US08/515,569 priority patent/US5825052A/en
Publication of JPH0864869A publication Critical patent/JPH0864869A/en
Application granted granted Critical
Publication of JP3504976B2 publication Critical patent/JP3504976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Abstract

PURPOSE: To provide a semiconductor light emitting element having a small interelectrode resistance and high luminous efficiency by increasing carrier concentration and decreasing contact resistance of a semiconductor layer with an electrode metal. CONSTITUTION: A semiconductor light emitting element comprises gallium nitride compound semiconductor layers 4, 6 having at least n-type layer and a p-type layer laminated on a substrate 1, and n-type side and p-type side electrodes 9, 8 connected to the semiconductor layers of the n-type layer and the p-type layer. Accordingly, two or more types of Be, Mn, or Mg, Zn, Cd, Be and Mn are used as the dopant of the p-type layer, and two or more types of Se, S, Ge, Te, or Si, Ge, Sn, S, Se and Te are used as the dopant of the n-type layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に関す
る。さらに詳しくは、青色発光に好適なチッ化ガリウム
系化合物半導体を用いた半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device. More specifically, it relates to a semiconductor light emitting device using a gallium nitride based compound semiconductor suitable for blue light emission.

【0002】ここにチッ化ガリウム系化合物半導体と
は、III 族元素のGaとV族元素のNとの化合物または
III 族元素のGaの一部がAl、Inなど他のIII 族元
素と置換したものおよび/またはV族元素のNの一部が
P、Asなど他のV族元素と置換した化合物からなる半
導体をいう。
Here, a gallium nitride compound semiconductor is a compound of a group III element Ga and a group V element N or
A semiconductor made of a compound in which a part of Ga of the group III element is replaced with another group III element such as Al and In and / or a part of N of the group V element is replaced with another group V element such as P and As. Say.

【0003】また、半導体発光素子とは、pn接合また
はpinなどダブルヘテロ接合を有する発光ダイオード
(以下、LEDという)、スーパルミネッセントダイオ
ード(SLD)または半導体レーザダイオード(LD)
などの光を発生する半導体素子をいう。
A semiconductor light emitting device is a light emitting diode (hereinafter referred to as LED) having a double heterojunction such as a pn junction or a pin, a super luminescent diode (SLD) or a semiconductor laser diode (LD).
A semiconductor element that emits light.

【0004】[0004]

【従来の技術】従来青色のLEDは赤色や緑色に比べて
輝度が小さく実用化に難点があったが、近年チッ化ガリ
ウム系化合物半導体を用い、Mgをドーパントした低抵
抗のp型半導体層がえられたことにより、輝度が向上し
脚光をあびている。
2. Description of the Related Art Conventionally, blue LEDs have a lower brightness than red and green and are difficult to put into practical use. In recent years, however, gallium nitride compound semiconductors have been used, and a low resistance p-type semiconductor layer doped with Mg has been formed. As a result, the brightness is improved and it is in the limelight.

【0005】従来のチッ化ガリウム系化合物半導体のL
EDの製法はつぎに示されるような工程で行われ、その
完成したチッ化ガリウム系化合物半導体の斜視図を図2
に示す。
L of a conventional gallium nitride-based compound semiconductor
The ED is manufactured by the following steps, and a perspective view of the completed gallium nitride based compound semiconductor is shown in FIG.
Shown in

【0006】まず、サファイア(Al2 3 単結晶)な
どからなる基板21に400〜700℃の低温で有機金
属化合物気相成長法(以下、MOCVD法という)によ
りキャリアガスH2 とともに有機金属化合物ガスである
トリメチルガリウム(以下、TMGという)、アンモニ
ア(NH3 )およびドーパントとしてのSiH4 などを
供給し、n型のGaN層からなる低温バッファ層22を
形成し、ついで700〜1200℃の高温で同じガスを
供給し同じ組成のn型のGaNからなる高温バッファ層
23を形成する。
First, a substrate 21 made of sapphire (Al 2 O 3 single crystal) or the like is used at a low temperature of 400 to 700 ° C. at a low temperature of 400 to 700 ° C. with a carrier gas H 2 together with a carrier gas H 2 by an organometallic compound vapor phase growth method (hereinafter referred to as MOCVD method). Trimethylgallium (hereinafter referred to as TMG) which is a gas, ammonia (NH 3 ) and SiH 4 as a dopant are supplied to form a low temperature buffer layer 22 composed of an n-type GaN layer, and then a high temperature of 700 to 1200 ° C. Then, the same gas is supplied to form the high temperature buffer layer 23 made of n-type GaN having the same composition.

【0007】ついで前述のガスにさらにトリメチルアル
ミニウム(以下、TMAという)の原料ガスを加え、n
型ドーパントのSiを含有したn型Alx Ga1-x
(0<x<1)層を成膜し、ダブルヘテロ接合形成のた
めのn型クラッド層24を形成する。
Then, a raw material gas of trimethylaluminum (hereinafter referred to as TMA) is further added to the above gas, and n
N - type Al x Ga 1-x N containing Si as a type dopant
A (0 <x <1) layer is formed to form an n-type clad layer 24 for forming a double heterojunction.

【0008】つぎにバンドギャップエネルギーがクラッ
ド層のそれより小さくなる材料、たとえば前述の原料ガ
スのTMAに代えてトリメチルインジウム(以下、TM
Iという)を導入し、Gay In1-y N(0<y≦1)
からなる活性層25を形成する。
Next, a material having a bandgap energy smaller than that of the clad layer, for example, trimethylindium (hereinafter TM
I) is introduced, and Ga y In 1-y N (0 <y ≦ 1)
An active layer 25 made of is formed.

【0009】さらに、n型クラッド層24の形成に用い
たガスと同じ原料のガスで不純物原料ガスをSiH4
代えてp型不純物としてのMgまたはZnのためのビス
シクロペンタジエニルマグネシウム(以下、Cp2 Mg
という)またはジメチル亜鉛(以下、DMZnという)
を加えて反応管に導入し、p型クラッド層26であるp
型Alx Ga1-x N層を気相成長させる。これによりn
型クラッド層24と活性層25とp型クラッド層26と
によりダブルヘテロ接合が形成される。
Further, biscyclopentadienyl magnesium for Mg or Zn as a p-type impurity (hereinafter referred to as "gas" used as the gas for forming the n-type cladding layer 24) is used instead of SiH 4 as the impurity source gas. , Cp 2 Mg
Or dimethyl zinc (hereinafter referred to as DMZn)
Is added to the reaction tube, and the p-type cladding layer 26 of p
A type Al x Ga 1-x N layer is vapor-grown. This makes n
The type clad layer 24, the active layer 25, and the p-type clad layer 26 form a double heterojunction.

【0010】ついでキャップ層27形成のため、前述の
バッファ層23と同様のガスで不純物原料ガスとしてC
2 MgまたはDMZnを供給してp型のGaN層を成
長させる。
Next, to form the cap layer 27, a gas similar to that used for the buffer layer 23 is used as an impurity source gas, ie, C.
P 2 Mg or DMZn is supplied to grow a p-type GaN layer.

【0011】そののちSiO2 などの保護膜を半導体層
の成長層表面全面に設け、400〜800℃、20〜6
0分間程度のアニールを行い、p型クラッド層26およ
びキャップ層27の活性化を図る。
After that, a protective film such as SiO 2 is provided on the entire surface of the growth layer of the semiconductor layer, and the temperature is 400-800 ° C. and 20-6.
Annealing is performed for about 0 minutes to activate the p-type cladding layer 26 and the cap layer 27.

【0012】ついで、保護膜を除去したのち、n側の電
極を形成するため、レジストを塗布してパターニングを
行い、成長した各半導体層の一部をドライエッチングに
より除去してn型GaN層であるバッファ層23を露出
させる。ついで、Pt、Ni、Auなどからなる金属膜
をスパッタリングなどにより形成してp側電極29を、
また、Alなどからなる金属膜を同様の方法で形成して
n側の電極30を形成し、ダイシングすることによりL
EDチップを形成している。
After removing the protective film, a resist is applied and patterned to form an n-side electrode, and a part of each grown semiconductor layer is removed by dry etching to form an n-type GaN layer. A certain buffer layer 23 is exposed. Then, a metal film made of Pt, Ni, Au, or the like is formed by sputtering or the like to form the p-side electrode 29.
In addition, a metal film made of Al or the like is formed by the same method to form the n-side electrode 30 and is diced.
It forms an ED chip.

【0013】つぎに、電極金属のAlなどとチッ化ガリ
ウム系化合物半導体とのあいだをオーミック接触にする
ため、H2 雰囲気中で300℃程度の熱処理をして合金
化する。
Next, in order to make ohmic contact between the electrode metal such as Al and the gallium nitride based compound semiconductor, heat treatment is performed at about 300 ° C. in an H 2 atmosphere to form an alloy.

【0014】[0014]

【発明が解決しようとする課題】従来のチッ化ガリウム
系化合物半導体を用いた半導体発光素子では、p型ドー
パントとしてMgまたはZn、n型ドーパントとしてS
iを用いているが、これらのドーパントはそれぞれGa
Nへの溶けやすさをもっているため、ある程度以上にキ
ャリア濃度をあげることができない。さらにアニールな
どを行うときにドーパントが動き易く、相互に拡散して
pn接合の急峻性がなくなったり、pn接合の位置がず
れ、動作電圧が高くなったり、キャリアが発光部から漏
れて無効電流となり、発光効率が低下するという問題が
ある。
In a conventional semiconductor light emitting device using a gallium nitride based compound semiconductor, Mg or Zn is used as a p-type dopant and S is used as an n-type dopant.
i is used, but these dopants are Ga
Since it is easily dissolved in N, the carrier concentration cannot be increased beyond a certain level. Further, when annealing is performed, the dopants are likely to move, diffuse each other and lose the steepness of the pn junction, the position of the pn junction is displaced, the operating voltage becomes high, carriers leak from the light emitting part and become a reactive current. However, there is a problem that the luminous efficiency is reduced.

【0015】さらに、電極として従来はp側にはPt、
Ni、Auなどが用いられているが、これらはp型ドー
パントのMgとは反応しにくく、またn側にはAlなど
が用いられているが、これもn型ドーパントのSiとは
反応しにくく、電極金属と半導体層との接触抵抗が大き
くなり、発光素子の動作電圧が高くなり、発光効率が低
下するという問題がある。
Further, as an electrode, Pt is conventionally used on the p-side,
Ni, Au, etc. are used, but they are hard to react with p-type dopant Mg, and Al, etc. are used on the n-side, but they are also hard to react with n-type dopant Si. However, there is a problem that the contact resistance between the electrode metal and the semiconductor layer increases, the operating voltage of the light emitting element increases, and the light emission efficiency decreases.

【0016】本発明はこのような問題を解決し、キャリ
ア濃度を高くし、低い動作電圧で作動する半導体発光素
子を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a semiconductor light emitting device which has a high carrier concentration and operates at a low operating voltage.

【0017】本発明の他の目的は、アニールなどの熱処
理を行ってもpn接合が移動したり、ダレたりしないで
キャリアの漏れを防止して安定した発光特性がえられる
チッ化ガリウム系化合物半導体からなる半導体発光素子
を提供することにある。
Another object of the present invention is to prevent gallium nitride-based compound semiconductors from leaking carriers without causing the pn junction to move or sag even when a heat treatment such as annealing is performed, and to obtain stable light emission characteristics. Another object of the present invention is to provide a semiconductor light emitting device comprising.

【0018】また、本発明のさらに他の目的は電極金属
と半導体層との接触抵抗を低減して動作電圧を低減し、
発光効率を向上することができる半導体発光素子を提供
することである。
Still another object of the present invention is to reduce the contact resistance between the electrode metal and the semiconductor layer to reduce the operating voltage.
It is an object of the present invention to provide a semiconductor light emitting device capable of improving light emitting efficiency.

【0019】[0019]

【課題を解決するための手段】本発明者は前述のp側電
極とn側電極間の抵抗分をできるだけ減少させるととも
に無効電流を減らして発光効率を向上させるため鋭意検
討を重ねた結果、p型ドーパントおよびn型ドーパント
を選定することによりキャリア濃度を高くすることがで
き抵抗損を減らすことができたり、pn接合のダレを防
いで無効電流を減らすことができ、発光効率を向上させ
ることができることを見出した。さらに電極材料をその
電極材料が接触する半導体層のドーパントを含む合金材
料とすることにより、電極と半導体材料間の接触抵抗を
減少させることができることを見出して本発明を完成す
るに至った。
As a result of extensive studies, the present inventor has conducted extensive studies in order to reduce the resistance between the p-side electrode and the n-side electrode as much as possible and reduce the reactive current to improve the luminous efficiency. By selecting the type dopant and the n-type dopant, the carrier concentration can be increased and the resistance loss can be reduced, and the sag of the pn junction can be prevented to reduce the reactive current, thereby improving the light emission efficiency. I found that I could do it. Furthermore, they have found that the contact resistance between the electrode and the semiconductor material can be reduced by using an alloy material containing a dopant of the semiconductor layer with which the electrode material is in contact, and have completed the present invention.

【0020】請求項1〜6記載の半導体発光素子は、基
板上に少なくともn型層およびp型層を有するチッ化ガ
リウム系化合物半導体層が積層され、前記n型層のチッ
化ガリウム系化合物半導体層に接続されたn側電極、お
よび前記p型層のチッ化ガリウム系化合物半導体層に接
続されたp側電極がそれぞれ設けられてなる半導体発光
素子であって、n型層およびp型層のドーパントを種々
選定したもので、請求項1記載の発明では、前記p型層
のドーパントがBeであり、請求項2記載の発明では前
記p型層のドーパントがMnであり、請求項3記載の発
明ではn型層のドーパントがSeまたはSであり、請求
項4記載の発明ではn型層のドーパントがGe、Teお
よびSnよりなる群から選ばれた1種の元素であり、請
求項5記載の発明では、前記p型層のドーパントがM
g、Zn、Cd、BeおよびMnよりなる群から選ばれ
た少なくとも2種の元素が混在しているものであり、請
求項6記載の発明では、前記n型層のドーパントはS
i、Ge、Sn、S、SeおよびTeよりなる群から選
ばれた少なくとも2種の元素が混在しているものであ
る。
In the semiconductor light emitting device according to any one of claims 1 to 6, a gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate, and the gallium nitride based compound semiconductor of the n-type layer. A semiconductor light-emitting device comprising an n-side electrode connected to a layer and a p-side electrode connected to the gallium nitride based compound semiconductor layer of the p-type layer, wherein Various dopants are selected. In the invention of claim 1, the dopant of the p-type layer is Be, in the invention of claim 2, the dopant of the p-type layer is Mn, and in claim 3 In the invention, the dopant of the n-type layer is Se or S, and in the invention of claim 4, the dopant of the n-type layer is one element selected from the group consisting of Ge, Te and Sn. Invention of , The dopant of the p-type layer is M
At least two elements selected from the group consisting of g, Zn, Cd, Be and Mn are mixed, and in the invention of claim 6, the dopant of the n-type layer is S.
At least two elements selected from the group consisting of i, Ge, Sn, S, Se and Te are mixed.

【0021】また、請求項7記載の発明は、基板上に少
なくともn型層およびp型層を有するチッ化ガリウム系
化合物半導体層が積層され、前記n型層およびp型層の
チッ化ガリウム系化合物半導体層にそれぞれ接続された
n側およびp側電極が設けられてなる半導体発光素子で
あって、前記n側および/またはp側電極は、それぞれ
が接続されるn型層およびp型層のチッ化ガリウム系化
合物半導体層のドーパントの少なくとも一種の元素を含
有する合金である。
According to a seventh aspect of the present invention, a gallium nitride-based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate, and the n-type layer and the p-type layer are gallium nitride-based compound semiconductor layers. A semiconductor light emitting device comprising n-side and p-side electrodes respectively connected to a compound semiconductor layer, wherein the n-side and / or p-side electrodes are of an n-type layer and a p-type layer to which they are respectively connected. It is an alloy containing at least one element of the dopant of the gallium nitride based compound semiconductor layer.

【0022】[0022]

【作用】請求項1記載の発明によれば、p型ドーパント
としてBeを用いているため、BeはMgより軽い元素
で高濃度にドーピングすることができる。その結果、キ
ャリア濃度を高くすることができ、電極間抵抗を減少さ
せることができる。
According to the first aspect of the present invention, since Be is used as the p-type dopant, Be can be doped at a high concentration with an element lighter than Mg. As a result, the carrier concentration can be increased and the interelectrode resistance can be reduced.

【0023】請求項2記載の発明によれば、p型ドーパ
ントとしてMnを用いているため、MnはMgよりも重
い元素なので、アニールなどの熱処理によっても動きに
くく、pn接合が拡散によって移動せず、pn接合のダ
レも少ない。
According to the second aspect of the invention, since Mn is used as the p-type dopant, Mn is an element heavier than Mg, so it is difficult to move even by heat treatment such as annealing, and the pn junction does not move due to diffusion. , The pn junction has little sagging.

【0024】請求項3記載の発明によれば、n型ドーパ
ントとしてSeまたはSを用いているので、Seまたは
SはVI族の元素であり、GaN系のN原子の位置に入
ってn型ドーパントとして働く。その結果、より高濃度
にドーピングすることができ、キャリア濃度を高くする
ことができて電極間抵抗を減少させることができる。
According to the third aspect of the present invention, since Se or S is used as the n-type dopant, Se or S is a group VI element, and enters the position of the N atom of the GaN-based n-type dopant. Work as. As a result, the doping can be performed at a higher concentration, the carrier concentration can be increased, and the inter-electrode resistance can be reduced.

【0025】請求項4記載の発明によれば、n型ドーパ
ントとしてGe、SnまたはTeを用いているので、こ
れらの元素はSiより重く、アニールなどの熱処理によ
っても動きにくく、pn接合が拡散によって動いたり、
ダレたりすることも少ない。とくにTeはVI族の元素
でSやSeよりも重く、請求項3のキャリア濃度を高く
することができるとともにpn接合のズレを防止するこ
とができる。
According to the fourth aspect of the invention, since Ge, Sn or Te is used as the n-type dopant, these elements are heavier than Si and difficult to move by heat treatment such as annealing, and the pn junction is diffused. Move,
There is not much sagging. In particular, Te is a group VI element and is heavier than S and Se, so that the carrier concentration of claim 3 can be increased and deviation of the pn junction can be prevented.

【0026】請求項5または6記載の発明によれば、p
型ドーパントまたはn型ドーパントとしてそれぞれ少な
くとも2種の元素がドーピングされるため、それぞれの
ドーパントの特徴を併せもつことができ、キャリア濃度
を高くするとともにpn接合のズレを防止した高特性の
チッ化ガリウム系化合物半導体からなる発光素子がえら
れる。
According to the invention of claim 5 or 6, p
Since at least two kinds of elements are each doped as a n-type dopant or a n-type dopant, the characteristics of each dopant can be combined, and high-performance gallium nitride having high carrier concentration and preventing deviation of pn junction can be obtained. A light emitting device made of a compound semiconductor is obtained.

【0027】請求項7記載の発明によれば、n側および
/またはp側電極に、それぞれが接続されるn型層およ
びp型層のチッ化ガリウム系化合物半導体層のドーパン
トの少なくとも1種の元素を含有する合金を用いている
ので、電極と前記チッ化ガリウム系化合物半導体層とに
同種元素があるために電極材料と半導体層とが合金化さ
れやすく接触抵抗を低減することができる。
According to the invention of claim 7, at least one dopant of the gallium nitride based compound semiconductor layers of the n-type layer and the p-type layer, which is connected to the n-side and / or p-side electrodes, respectively, is used. Since the alloy containing the element is used, since the electrode and the gallium nitride-based compound semiconductor layer have the same element, the electrode material and the semiconductor layer are easily alloyed and the contact resistance can be reduced.

【0028】[0028]

【実施例】つぎに添付図面を参照しながら本発明の半導
体発光素子の製法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor light emitting device of the present invention will be described below with reference to the accompanying drawings.

【0029】実施例1 図1は本発明の半導体発光素子の一実施例の工程断面説
明図である。
Example 1 FIG. 1 is a process cross-sectional explanatory view of an example of a semiconductor light emitting device of the present invention.

【0030】まず、図1(a)に示されるように、サフ
ァイアなどからなる基板1を反応管内に設置して、キャ
リアガスのH2 とともにTMGを150sccm、NH
3 を10000sccm、ドーパントとしてのH2 で希
釈した濃度が100ppmのSiH4 を10sccm導
入して、MOCVD法によりたとえばn型GaNなどの
チッ化ガリウム系化合物半導体層からなる低温バッファ
層2および高温バッファ層3をそれぞれ0.01〜0.
2μm、2〜5μm程度成長する。
[0030] First, as shown in FIG. 1 (a), by installing a substrate 1 made of sapphire into the reaction tube, the TMG with of H 2 carrier gas 150 sccm, NH
3 10000 sccm, and SiH 4 concentration diluted with H 2 is 100ppm as a dopant to 10sccm introduced, the low temperature buffer layer 2 and the high-temperature buffer layer composed of a gallium nitride based compound semiconductor layer, such as for example n-type GaN by MOCVD 3 is 0.01 to 0.
It grows about 2 μm, 2 to 5 μm.

【0031】そののち、前述のガスにさらにTMAを1
0〜100sccmの流量で加え、n型Alx Ga1-x
N(0<x<1)からなるn型クラッド層4を0.1〜
0.3μm成長し、ついでSiH4 をとめ、TMAに代
えてTMIを50〜200sccmの流量で導入し、ク
ラッド層4よりバンドギャップエネルギーが小さいノン
ドープのGay In1-y Nからなる活性層5を0.05
〜0.1μmの厚さ成長する。
After that, 1 more TMA is added to the above-mentioned gas.
N-type Al x Ga 1-x added at a flow rate of 0 to 100 sccm
The n-type clad layer 4 made of N (0 <x <1) is 0.1 to
After growth of 0.3 μm, SiH 4 is stopped, TMI is introduced at a flow rate of 50 to 200 sccm instead of TMA, and the active layer 5 made of non-doped Ga y In 1 -y N having a smaller bandgap energy than the cladding layer 4 is introduced. To 0.05
It grows to a thickness of ˜0.1 μm.

【0032】さらにn型クラッド層4の形成に用いた原
料ガスと同じ原料のガスで不純物原料ガスをSiH4
代えてp型不純物としてのBeをビスメチルシクロペン
タジエニルベリリウム(以下、(MeCp)2 Beとい
う)ガスで10〜1000sccm程度加えて反応管に
導入し、不純物濃度が1017〜1019/cm3 程度のB
e含有のAlx Ga1-x Nからなるp型クラッド層6を
0.1〜0.3μmの厚さに気相成長させる。
Further, with the same source gas as the source gas used for forming the n-type cladding layer 4, the impurity source gas was replaced with SiH 4 and Be as a p-type impurity was replaced with bismethylcyclopentadienylberyllium (hereinafter referred to as (MeCp 2 ) Be) gas is added to the reaction tube at about 10 to 1000 sccm, and the impurity concentration of B is about 10 17 to 10 19 / cm 3.
A p-type cladding layer 6 made of e-containing Al x Ga 1-x N is vapor-phase grown to a thickness of 0.1 to 0.3 μm.

【0033】ついでキャップ層7形成のため、前述のバ
ッファ層3と同様のガスで不純物原料ガスとしてSiH
4 に代えて(MeCp)2 Beを供給してp型のGaN
層を0.3〜2μm程度成長させる。
Then, for forming the cap layer 7, SiH is used as an impurity source gas with the same gas as the above-mentioned buffer layer 3.
P-type GaN by supplying (MeCp) 2 Be instead of 4
The layer is grown about 0.3-2 μm.

【0034】そののちSiO2 などの保護膜を半導体層
の成長層表面全面に設け、400〜800℃、20〜6
0分間程度のアニールを行い、p型クラッド層6および
キャップ層7の活性化を図る。
After that, a protective film such as SiO 2 is provided on the entire surface of the growth layer of the semiconductor layer, and the temperature is 400-800 ° C. and 20-6.
Annealing is performed for about 0 minutes to activate the p-type cladding layer 6 and the cap layer 7.

【0035】ついで、保護膜を除去したのちn側の電極
を形成するため、レジストを塗布してパターニングを行
い、成長した各半導体層の一部をドライエッチングによ
り除去してn型GaN層であるバッファ層3を露出させ
る。ついで、Au、Alなどからなる金属膜をスパッタ
リングなどにより形成して、積層された化合物半導体層
の表面でp型層に電気的に接続されるp側電極8、露出
した高温バッファ層3の表面でn型層に電気的に接続さ
れるn側電極9を形成し、ダイシングすることによりL
EDチップが完成する。
Next, in order to form the n-side electrode after removing the protective film, a resist is applied and patterned, and a part of each grown semiconductor layer is removed by dry etching to form an n-type GaN layer. The buffer layer 3 is exposed. Then, a metal film made of Au, Al, or the like is formed by sputtering or the like, and the p-side electrode 8 electrically connected to the p-type layer on the surface of the stacked compound semiconductor layers, the exposed surface of the high temperature buffer layer 3 are formed. By forming an n-side electrode 9 electrically connected to the n-type layer by dicing and
The ED chip is completed.

【0036】本実施例によれば、20mAの電流を流す
のに従来3.0V必要であったのが2.8〜2.9Vの
印加電圧でよく、消費電力の低減がえられた。
According to the present embodiment, 3.0 V was conventionally required to pass a current of 20 mA, but an applied voltage of 2.8 to 2.9 V was sufficient, and power consumption was reduced.

【0037】実施例2 本実施例では実施例1の半導体発光素子でp型クラッド
層6およびキャップ層7のドーパントをBeに代えてM
nを用いるもので、その他の構造は実施例1と同様であ
る。
Example 2 In this example, in the semiconductor light emitting device of Example 1, the dopant for the p-type cladding layer 6 and the cap layer 7 was replaced with Be, and M was added.
n is used, and other structures are the same as those in the first embodiment.

【0038】p型クラッド層6およびキャップ層7の形
成は、実施例1のドーパントガスである(MeCp)2
Beに代えてMnをビスメチルシクロペンタジエニルマ
ンガン(以下、(MeCp)2 Mnという)ガスとして
10〜1000sccm程度反応管に導入し、不純物濃
度が1017〜1019/cm3 程度のMn含有のAlx
1-x N(0<x<1)からなるp型クラッド層6を
0.1〜0.3μm程度気相成長させるもので、他の製
法は実施例1と同じである。
The p-type cladding layer 6 and the cap layer 7 are formed using the dopant gas of Example 1 (MeCp) 2.
Instead of Be, Mn was introduced into the reaction tube as bismethylcyclopentadienyl manganese (hereinafter, referred to as (MeCp) 2 Mn) gas at about 10 to 1000 sccm, and the Mn content was about 10 17 to 10 19 / cm 3. Al x G
The p-type clad layer 6 made of a1 -xN (0 <x <1) is vapor-phase grown to a thickness of about 0.1 to 0.3 μm, and the other manufacturing method is the same as that of the first embodiment.

【0039】本実施例によればアニールしたのちに、も
ともとドーピングしていない層が拡散によるキャリア濃
度変化は小さく、pn接合の移動が生じていないことが
わかる。
According to this example, it can be seen that, after annealing, the originally undoped layer has a small change in carrier concentration due to diffusion and no pn junction movement occurs.

【0040】実施例3 本実施例では、実施例1のn型クラッド層4およびバッ
ファ層2、3のn型ドーパントをSiに代えてSeまた
はSを用いたもので、その他の構造は実施例1と同様で
ある。SeまたはSをドーパントとして使用するばあ
い、それぞれセレン化水素(H2 Se)ガスまたはH2
SガスとしてH2 で希釈し、濃度が100ppmのガス
を1〜100sccm程度加えて反応管に導入し、Ga
N層からなるバッファ層2、3およびn型クラッド層4
であるn型Alx Ga1-x N(0<x<1)層を不純物
濃度が1017〜1019/cm3 程度になるように気相成
長させる。
Example 3 In this example, Se or S was used instead of Si as the n-type dopant of the n-type cladding layer 4 and the buffer layers 2 and 3 of Example 1, and the other structures were the same as those of Example 1. The same as 1. When Se or S is used as a dopant, hydrogen selenide (H 2 Se) gas or H 2 respectively
Dilute it with H 2 as S gas, add a gas with a concentration of 100 ppm to about 1 to 100 sccm, and introduce it into the reaction tube.
Buffer layers 2 and 3 composed of N layers and n-type cladding layer 4
The n-type Al x Ga 1-x N (0 <x <1) layer is vapor-grown so that the impurity concentration becomes about 10 17 to 10 19 / cm 3 .

【0041】また、p型Alx Ga1-x N(0<x<
1)層であるp型クラッド層6およびp型GaN層であ
るキャップ層7のドーパントは従来と同様のMgを使用
したが実施例1または2で用いたBeやMnであっても
よい。
Further, p-type Al x Ga 1-x N (0 <x <
As the dopant of the p-type cladding layer 6 which is the layer 1) and the cap layer 7 which is the p-type GaN layer, the same Mg as the conventional one was used, but Be or Mn used in Example 1 or 2 may be used.

【0042】p型ドーパントにMgを用い、n型ドーパ
ントにSeまたはSを用いた本実施例によれば、n型ク
ラッド層4の不純物としてSiを用いる従来の半導体発
光素子に比べて同じ20mAの電流をうるのに従来は
3.0V必要であったのが2.8〜2.9Vの印加電圧
でよく、従来よりも低消費電力がえられた。
According to the present embodiment in which Mg is used as the p-type dopant and Se or S is used as the n-type dopant, the current of 20 mA is the same as that of the conventional semiconductor light emitting device using Si as the impurity of the n-type cladding layer 4. Conventionally, 3.0 V was required to obtain a current, but an applied voltage of 2.8 to 2.9 V was sufficient, and lower power consumption than that in the past was obtained.

【0043】実施例4 本実施例では、実施例3の半導体発光素子でn型の不純
物SeまたはSに代えてGe、SnまたはTeを用いる
ものであり、その他の構造は実施例3と同じである。ド
ーパントGe、Sn、Teをドーピングするには、それ
ぞれH2 希釈で濃度が100ppmのモノゲルマン(G
eH4 )ガス、水素化スズ(SnH4 )ガス、テルル化
水素(TeH4 )ガスとして1〜100sccm程度加
えて反応管に導入し、実施例3と同様にn型クラッド層
4の不純物濃度が1017〜1019/cm3 程度のn型A
x Ga1-x N(0≦x<1)層を気相成長させる。
Example 4 In this example, Ge, Sn or Te is used in place of the n-type impurity Se or S in the semiconductor light emitting device of Example 3, and other structures are the same as in Example 3. is there. Dopant Ge, Sn, the doping of Te, the concentration 100ppm of monogermane with H 2 dilution, respectively (G
eH 4 ) gas, tin hydride (SnH 4 ) gas, hydrogen telluride (TeH 4 ) gas of about 1 to 100 sccm was added to the reaction tube, and the impurity concentration of the n-type cladding layer 4 was changed as in Example 3. N-type A of about 10 17 to 10 19 / cm 3
An l x Ga 1-x N (0 ≦ x <1) layer is vapor-grown.

【0044】前記実施例3と同様にp型クラッド層6で
あるp型Alx Ga1-x N層およびキャップ層7のドー
パントにはMgに代えてBeやMnであってもよい。
As in the third embodiment, the p-type Al x Ga 1 -x N layer which is the p-type cladding layer 6 and the cap layer 7 may be replaced by Be or Mn instead of Mg.

【0045】実施例5 本実施例では実施例1の半導体発光素子のp型クラッド
層6のドーパントをBeに代えてMg、Zn、Cd、B
eまたはMnのうち少なくとも2種の金属を用いるもの
で、その他の構造は実施例1と同様である。
Example 5 In this example, the dopant of the p-type cladding layer 6 of the semiconductor light emitting device of Example 1 was replaced with Be, and Mg, Zn, Cd, B were used.
At least two kinds of metals are used among e and Mn, and other structures are the same as those in the first embodiment.

【0046】たとえばBeとMnをそれぞれのドーパン
ト原料ガスが(MeCp)2 Beを10〜1000sc
cm、(MeCp)2 Mnを10〜1000sccmで
導入して気層成長させるとある条件でBeとMnが同程
度の量だけ半導体層にドーピングされ、不純物濃度が1
17〜1019/cm3 程度のBeとMnがドーピングさ
れたAlx Ga1-x N(0≦x<1)からなるp型クラ
ッド層6が気相成長される。
For example, for Be and Mn, the respective dopant source gases are (MeCp) 2 Be for 10 to 1000 sc.
cm, (MeCp) 2 Mn is introduced at 10 to 1000 sccm for vapor phase growth, and under certain conditions, Be and Mn are doped in the semiconductor layer in the same amount, and the impurity concentration is 1
A p-type clad layer 6 made of Al x Ga 1-x N (0 ≦ x <1) doped with Be and Mn of about 0 17 to 10 19 / cm 3 is vapor-phase grown.

【0047】本実施例ではp型クラッド層6の不純物原
料ガスを少なくとも2種導入しているため、不純物原料
ガスが1種のばあいに比べてキャリア濃度が高くなると
ともに急峻性のあるpn接合がえられ、pn接合の半導
体発光素子にとくに有効である。
In this embodiment, since at least two kinds of impurity source gas for the p-type cladding layer 6 are introduced, the carrier concentration is higher and the pn junction has a steepness than in the case of one kind of impurity source gas. Therefore, it is particularly effective for a semiconductor light emitting device having a pn junction.

【0048】実施例6 本実施例では、実施例3の半導体発光素子のn型クラッ
ド層4のn型ドーパントとしてSi、Ge、Sn、S、
SeまたはTeのうち少なくとも2種の元素を用いるも
のであり、その他の構造は実施例3と同じである。ドー
パントSi、Ge、Sn、S、Se、Teをドーピング
するためには、それぞれH2 希釈で濃度が100ppm
のSiH4 ガス、GeH4 ガス、SnH4 ガス、H2
ガス、H2 Seガス、TeH4 ガスとして半導体層の気
相成長時に反応管内に導入すればよく、これらのガスの
うちから少なくとも2種、たとえばSとTeなどを選
び、それぞれ流量10sccm、10sccm程度で反
応管に導入し、n型GaNからなる高温バッファ層3や
n型Alx Ga1-x Nからなるn型クラッド層4を気相
成長させる。
Example 6 In this example, Si, Ge, Sn, S, and n are used as n-type dopants of the n-type cladding layer 4 of the semiconductor light emitting device of Example 3.
At least two elements of Se or Te are used, and the other structures are the same as in Example 3. In order to dope the dopants Si, Ge, Sn, S, Se, Te, the concentration is 100 ppm when diluted with H 2.
SiH 4 gas, GeH 4 gas, SnH 4 gas, H 2 S
Gas, H 2 Se gas, and TeH 4 gas may be introduced into the reaction tube during vapor phase growth of the semiconductor layer. At least two kinds of these gases, for example, S and Te, are selected and the flow rate is about 10 sccm and 10 sccm, respectively. Then, the high temperature buffer layer 3 made of n-type GaN and the n - type cladding layer 4 made of n - type Al x Ga 1 -x N are vapor-deposited.

【0049】本実施例によれば、バッファ層を低抵抗な
ドーパントS、クラッド層はドーパントTeを用いてp
n接合は動きにくく発光効率が増加した。
According to this embodiment, the buffer layer is made of the low-resistance dopant S, and the cladding layer is made of the dopant Te by using p.
The n-junction was difficult to move and the luminous efficiency was increased.

【0050】前記実施例3と同様、p型クラッド層6で
あるp型Alx Ga1-x N層のドーパントには従来と同
様のMgの代わりに実施例1、2または実施例5で用い
たものであってもよい。
As in Example 3, the p-type Al x Ga 1 -x N layer, which is the p-type clad layer 6, is used as a dopant in Examples 1, 2 or 5 instead of the conventional Mg. It may be the one that you had.

【0051】実施例7 本実施例は、半導体発光素子のn側電極9およびp側電
極8(図1(d)参照)の少なくとも片方がそれぞれの
接続されるn型層およびp型層のチッ化ガリウム系化合
物半導体層のドーパントの元素を含有する合金であるこ
とを特徴とする。
Example 7 In this example, at least one of the n-side electrode 9 and the p-side electrode 8 (see FIG. 1 (d)) of the semiconductor light emitting device is a chip of the n-type layer and the p-type layer to which they are respectively connected. The alloy is characterized by being an alloy containing a dopant element of the gallium nitride-based compound semiconductor layer.

【0052】たとえば、p型層のドーパントとしてMg
を使用すると、MgとAuの合金ができず、電極はA
u、Ti、Ni、Ptなどを組み合わせて使用せざるを
えないが、ドーパントとしてMgとともにZnを混入す
ることにより、ZnとAuの合金を作ることは可能で、
半導体層とのオーミック接触をえ易い。
For example, Mg as a p-type layer dopant
, The alloy of Mg and Au cannot be formed, and the electrode is A
Although it is unavoidable to use u, Ti, Ni, Pt, etc. in combination, it is possible to make an alloy of Zn and Au by mixing Zn with Mg as a dopant.
It is easy to make ohmic contact with the semiconductor layer.

【0053】[0053]

【発明の効果】本発明の半導体発光素子によれば、チッ
化ガリウム系化合物半導体のドーパントを選定すること
によりキャリア濃度を高濃度にできるため、抵抗が低く
なり、従来より低い電圧で従来と同じ輝度の発光をする
ことができる。すなわち、従来と同じ電圧を加えること
で高輝度をうることができる。
According to the semiconductor light emitting device of the present invention, since the carrier concentration can be made high by selecting the dopant of the gallium nitride based compound semiconductor, the resistance becomes low, and the voltage is lower than the conventional one and the same as the conventional one. It can emit light with brightness. That is, high brightness can be obtained by applying the same voltage as the conventional one.

【0054】また、ドーパントをMgやSiよりも重い
元素にすることによりpn接合の接合位置が移動しにく
くなり、発光位置の安定した信頼性の高いLEDやLD
などの半導体発光素子をうることができる。
Further, by making the dopant an element heavier than Mg or Si, the junction position of the pn junction becomes difficult to move, and a highly reliable LED or LD whose emission position is stable is provided.
It is possible to obtain a semiconductor light emitting device such as.

【0055】さらに、電極材料とドーパントを合わせる
ことができ、n型層またはp型層と電極金属との接触抵
抗を小さくすることができ、発光効率の改善された半導
体発光素子をうることができる。
Furthermore, the electrode material and the dopant can be combined, the contact resistance between the n-type layer or the p-type layer and the electrode metal can be reduced, and a semiconductor light emitting device with improved luminous efficiency can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体発光素子の製法の一実施例を示
す工程断面図である。
FIG. 1 is a process sectional view showing an example of a method for manufacturing a semiconductor light emitting device of the present invention.

【図2】従来の半導体発光素子の一例を示す斜視図であ
る。
FIG. 2 is a perspective view showing an example of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 2 低温バッファ層 3 高温バッファ層 4 n型クラッド層 5 活性層 6 p型クラッド層 7 キャップ層 8 p側電極 9 n側電極 1 substrate 2 low temperature buffer layer 3 high temperature buffer layer 4 n-type clad layer 5 active layer 6 p-type clad layer 7 cap layer 8 p-side electrode 9 n-side electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記p型層のチッ化ガ
リウム系化合物半導体層のドーパントがBeである半導
体発光素子。
1. A gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. A semiconductor light emitting device in which the dopant of the gallium nitride based compound semiconductor layer of the p-type layer is Be.
【請求項2】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記p型層のチッ化ガ
リウム系化合物半導体層のドーパントがMnである半導
体発光素子。
2. A gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. A semiconductor light emitting device in which the dopant of the gallium nitride based compound semiconductor layer of the p-type layer is Mn.
【請求項3】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記n型層のチッ化ガ
リウム系化合物半導体層のドーパントがSeまたはSで
ある半導体発光素子。
3. A gallium nitride-based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. A semiconductor light emitting device in which the dopant of the gallium nitride based compound semiconductor layer of the n-type layer is Se or S.
【請求項4】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記n型層のチッ化ガ
リウム系化合物半導体層のドーパントがGe、Teおよ
びSnよりなる群から選ばれた1種の元素である半導体
発光素子。
4. A gallium nitride-based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. A semiconductor light emitting device, wherein the dopant of the gallium nitride based compound semiconductor layer of the n-type layer is one element selected from the group consisting of Ge, Te and Sn.
【請求項5】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記p型層のチッ化ガ
リウム系化合物半導体層のドーパントはMg、Zn、C
d、BeおよびMnよりなる群から選ばれた少なくとも
2種の元素が混在している半導体発光素子。
5. A gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. The dopant of the gallium nitride based compound semiconductor layer of the p-type layer is Mg, Zn, C
A semiconductor light emitting device in which at least two elements selected from the group consisting of d, Be and Mn are mixed.
【請求項6】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記n型層のチッ化ガ
リウム系化合物半導体層のドーパントはSi、Ge、S
n、S、SeおよびTeよりなる群から選ばれた少なく
とも2種の元素が混在している半導体発光素子。
6. A gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. The dopant for the gallium nitride based compound semiconductor layer of the n-type layer is Si, Ge, S
A semiconductor light emitting device in which at least two elements selected from the group consisting of n, S, Se and Te are mixed.
【請求項7】 基板上に少なくともn型層およびp型層
を有するチッ化ガリウム系化合物半導体層が積層され、
前記n型層のチッ化ガリウム系化合物半導体層に接続さ
れたn側電極、および前記p型層のチッ化ガリウム系化
合物半導体層に接続されたp側電極がそれぞれ設けられ
てなる半導体発光素子であって、前記n側および/また
はp側電極の材料は、それぞれが接続されるn型層およ
びp型層のチッ化ガリウム系化合物半導体層のドーパン
トの少なくとも1種の元素を含有する合金である半導体
発光素子。
7. A gallium nitride-based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate,
A semiconductor light emitting device comprising an n-side electrode connected to the gallium nitride-based compound semiconductor layer of the n-type layer and a p-side electrode connected to the gallium nitride-based compound semiconductor layer of the p-type layer, respectively. The material of the n-side and / or p-side electrode is an alloy containing at least one element of the dopants of the gallium nitride-based compound semiconductor layers of the n-type layer and the p-type layer to which they are respectively connected. Semiconductor light emitting device.
JP20247694A 1994-08-26 1994-08-26 Semiconductor light emitting device Expired - Fee Related JP3504976B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20247694A JP3504976B2 (en) 1994-08-26 1994-08-26 Semiconductor light emitting device
US08/515,569 US5825052A (en) 1994-08-26 1995-08-16 Semiconductor light emmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20247694A JP3504976B2 (en) 1994-08-26 1994-08-26 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0864869A true JPH0864869A (en) 1996-03-08
JP3504976B2 JP3504976B2 (en) 2004-03-08

Family

ID=16458152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20247694A Expired - Fee Related JP3504976B2 (en) 1994-08-26 1994-08-26 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3504976B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288886A (en) * 1998-04-03 1999-10-19 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor
JP2001210863A (en) * 1999-11-17 2001-08-03 Lumileds Lighting Us Llc Semiconductor device having selectively doped iii-v nitride layers
KR100365583B1 (en) * 2001-07-18 2002-12-26 이엘코리아 주식회사 Phosphors and method for fabricating the same
US7167489B2 (en) 2001-09-21 2007-01-23 Sharp Kabushiki Kaisha GaN-based semiconductor laser device
JP2007053376A (en) * 2005-08-15 2007-03-01 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Structure for reducing operating voltage of semiconductor element
JP2007281387A (en) * 2006-04-12 2007-10-25 Mitsubishi Electric Corp Semiconductor light emitting element, and manufacturing method of semiconductor light emitting element
US7479448B2 (en) 2002-12-03 2009-01-20 Nec Corporation Method of manufacturing a light emitting device with a doped active layer
JP2015005534A (en) * 2013-06-18 2015-01-08 学校法人立命館 Vertical type light-emitting diode, and crystal growth method
CN106856296A (en) * 2016-12-27 2017-06-16 中国科学院半导体研究所 A kind of long-wavelength vertical cavity surface emitting laser

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288886A (en) * 1998-04-03 1999-10-19 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor
JP2001210863A (en) * 1999-11-17 2001-08-03 Lumileds Lighting Us Llc Semiconductor device having selectively doped iii-v nitride layers
KR100365583B1 (en) * 2001-07-18 2002-12-26 이엘코리아 주식회사 Phosphors and method for fabricating the same
US7167489B2 (en) 2001-09-21 2007-01-23 Sharp Kabushiki Kaisha GaN-based semiconductor laser device
US7479448B2 (en) 2002-12-03 2009-01-20 Nec Corporation Method of manufacturing a light emitting device with a doped active layer
KR101242933B1 (en) * 2005-08-15 2013-03-12 아바고 테크놀로지스 이씨비유 아이피 (싱가포르) 피티이 리미티드 Structures for reducing operating voltage in a semiconductor device
US7473941B2 (en) 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
EP1755173A3 (en) * 2005-08-15 2007-06-20 Avago Technologies ECBU IP (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
JP2007053376A (en) * 2005-08-15 2007-03-01 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Structure for reducing operating voltage of semiconductor element
JP2007281387A (en) * 2006-04-12 2007-10-25 Mitsubishi Electric Corp Semiconductor light emitting element, and manufacturing method of semiconductor light emitting element
JP2015005534A (en) * 2013-06-18 2015-01-08 学校法人立命館 Vertical type light-emitting diode, and crystal growth method
CN106856296A (en) * 2016-12-27 2017-06-16 中国科学院半导体研究所 A kind of long-wavelength vertical cavity surface emitting laser
CN106856296B (en) * 2016-12-27 2019-07-05 中国科学院半导体研究所 A kind of long-wavelength vertical cavity surface emitting laser

Also Published As

Publication number Publication date
JP3504976B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
US5959401A (en) Light-emitting semiconductor device using group III nitride compound
US5825052A (en) Semiconductor light emmitting device
US20070122994A1 (en) Nitride semiconductor light emitting element
US8716048B2 (en) Light emitting device and method for manufacturing the same
JPH0897471A (en) Group-iii nitride semiconductor light emitting device
JP4119501B2 (en) Semiconductor light emitting device
KR100586955B1 (en) Method of producing nitride semconductor light emitting diode
JP3504976B2 (en) Semiconductor light emitting device
JP3458007B2 (en) Semiconductor light emitting device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3325713B2 (en) Manufacturing method of semiconductor light emitting device
JPH08255929A (en) Fabrication of semiconductor light emitting element
JP2012129388A (en) Semiconductor light-emitting device
JP3788444B2 (en) Light emitting diode and manufacturing method thereof
JPH0883956A (en) Semiconductor light-emitting device
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JPH0897469A (en) Semiconductor light emitting device
JP2001313441A (en) Semiconductor light-emitting element
KR20010008570A (en) GaN Semiconductor Device of Quantum Well structure
JPH06260681A (en) Gallium nitride compound semiconductor light-emitting element
JP2003008061A (en) Method for producing nitride semiconductor
JP2001320083A (en) AlGaInP LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
US20030205718A1 (en) Light-emitting semiconductor device using group III nitride compound

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

LAPS Cancellation because of no payment of annual fees