JPH0864678A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH0864678A
JPH0864678A JP21950494A JP21950494A JPH0864678A JP H0864678 A JPH0864678 A JP H0864678A JP 21950494 A JP21950494 A JP 21950494A JP 21950494 A JP21950494 A JP 21950494A JP H0864678 A JPH0864678 A JP H0864678A
Authority
JP
Japan
Prior art keywords
interlayer insulating
film
insulating film
upper layer
layer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21950494A
Other languages
Japanese (ja)
Inventor
Masakazu Muroyama
雅和 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21950494A priority Critical patent/JPH0864678A/en
Publication of JPH0864678A publication Critical patent/JPH0864678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To obtain a convenient planarization method applicable to a case where the interval of wiring in a semiconductor chip is wide. CONSTITUTION: After forming an interlayer insulating film 15 on a substrate having level difference, an upper layer film 16 is formed and then the interlayer insulating film 15 is planarized through the upper layer film 16 by heating. The lower interlayer insulating 15 is composed of polyhydrogen silosesquioxane whereas the upper layer film 16 is composed of a low melting point metal. When it is heated at a temperature higher than the softening points of the upper and lower layers, the viscosity of the interlayer insulating film 15 decreases to fluidized the film 15 such that the surface energy is minimized. It is accelerated by the self weight of the upper layer film 16 and a sufficient planarity can be ensured even for a wide space wiring. The heating temperature is optimally set between 200 deg.C, at which the interlayer insulating film 15 is softened, and 400 deg.C at which the film 15 is changed to have a perfect three- dimensional mesh structure. This method improves planarity of the lower layer film 15 and ensures a good planarity even in case of wide wiring space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造に関
する。本発明は例えば、高度に微細化高集積化したメモ
リー素子などの集積半導体回路の製造の際に利用するこ
とができる。
FIELD OF THE INVENTION The present invention relates to the manufacture of semiconductor devices. INDUSTRIAL APPLICABILITY The present invention can be utilized, for example, in manufacturing integrated semiconductor circuits such as highly miniaturized and highly integrated memory devices.

【0002】[0002]

【従来の技術】半導体デバイスの高度化に伴って配線技
術は、微細化、多層化の方向に進んでいる。しかし、半
導体デバイスの高集積化は配線の信頼性を低下させる要
因になる場合がある。これは、配線の微細化と多層化の
進展によって層間絶縁膜の段差は大きく、かつ急峻とな
り、その上に形成される配線の加工精度、信頼性を低下
させるためである。このためアルミニウム(Al)配線
の段差被覆性の大幅な改善ができない現在、層間絶縁膜
の平坦性を向上させる技術の開発が必要がある。これま
でに、各種の絶縁膜の形成技術および平坦化技術が開発
されてきたが、微細化、多層化した配線層に適用した場
合、配線間隔が広い場合の平坦化の不足や配線間隔にお
ける層間膜での“す”の発生により配線間における接続
不良などが重要な問題になっている。
2. Description of the Related Art With the advancement of semiconductor devices, wiring technology has been progressing toward miniaturization and multilayering. However, high integration of semiconductor devices may cause a decrease in wiring reliability. This is because the step of the interlayer insulating film becomes large and steep due to the miniaturization of wiring and the progress of multi-layering, and the processing accuracy and reliability of the wiring formed thereon are lowered. For this reason, it is necessary to develop a technique for improving the flatness of the interlayer insulating film at present when the step coverage of aluminum (Al) wiring cannot be significantly improved. Until now, various insulating film forming technologies and flattening technologies have been developed. However, when applied to miniaturized and multi-layered wiring layers, lack of flattening when the wiring spacing is wide and interlayer spacing in the wiring spacing Due to the occurrence of "stain" in the film, poor connection between wirings has become an important issue.

【0003】そこで、配線間隔における層間膜での
“す”の発生により配線間における接続不良などの問題
を改善する手段としてポリハイドロジェンシルセスキオ
キサンにより高アスペクト比のAl配線間を埋め込む技
術が注目されている。本材料は200℃付近に軟化点を
有しているため、この温度を保持しておくことで流動性
が発生し、埋め込みおよび平坦性が向上することが報告
されている。この種の技術については例えば、1993
年6月8〜9日の「VMIC Conference」
のレポート329頁に記載がある。
Therefore, as a means for improving the problems such as connection failure between wirings due to the occurrence of "su" in the interlayer film in the wiring space, there is a technique of filling the space between Al wirings of high aspect ratio with polyhydrogensilsesquioxane. Attention has been paid. Since this material has a softening point near 200 ° C., it has been reported that keeping this temperature causes fluidity and improves embedding and flatness. For this kind of technology, for example, 1993.
"VMIC Conference" June 8-9, 2014
Report, page 329.

【0004】[0004]

【発明が解決しようとする課題】前記ポリハイドロジェ
ンシルセスキオキサンを用いる方法は配線間隔における
層間膜での“す”の発生により配線間における接続不良
の問題を改善することはできたが、リソグラフィー工程
でのDOFの確保を目的としたチップ内の配線間隔が広
い場合の平坦化を行うことができない。そのため、ダミ
ーパターンを用いてチップ内の配線間隔が広い部分を狭
くすることにより平坦性を向上する試みが提案されてい
る。ダミーパターンを形成する手法としては、Al配線
形成時にAlダミー層を形成する場合と新たに層間絶縁
膜などを用いてダミー層を形成する手法があるが、前者
ではAlダミーパターンによる層間の容量の増加が問題
となり、後者ではダミー層を新たに形成するために工程
が複雑になるという問題がある。本発明は、半導体装置
内の配線間隔が広い場合の平坦化を簡便に行う平坦化方
法を提供することを目的としている。
The method using polyhydrogensilsesquioxane has been able to improve the problem of connection failure between wirings due to the generation of "su" in the interlayer film in the wiring space. It is not possible to perform flattening in the case where the wiring interval in the chip is wide for the purpose of securing DOF in the lithography process. Therefore, there has been proposed an attempt to improve flatness by using a dummy pattern to narrow a portion having a large wiring interval in a chip. As a method of forming a dummy pattern, there are a method of forming an Al dummy layer when forming an Al wiring and a method of newly forming a dummy layer using an interlayer insulating film or the like. The increase is a problem, and the latter has a problem that the process is complicated because a dummy layer is newly formed. It is an object of the present invention to provide a planarization method that facilitates planarization when the wiring interval in a semiconductor device is wide.

【0005】[0005]

【課題を解決するための手段】本発明は上述の目的を達
成するために鋭意検討を行う過程で、半導体装置の製造
工程で軟化点を有する層間絶縁膜を形成した後、低融点
の上層膜を形成し、その後上下層膜の軟化点以上の温度
に保持することにより下層膜の平坦性を向上する方法を
見いだした。すなわち、本発明は段差基体上に層間絶縁
膜を形成した後、上層膜を形成し、その後加熱により上
層膜を介して層間絶縁膜の粘性を低下させる処理を行う
半導体装置の製造方法、または、段差基体上に層間絶縁
膜を形成した後、上層膜を形成し、加熱により上層膜を
介して層間絶縁膜の粘性を低下させて層間絶縁膜を平坦
化させた後、上層膜を剥離する半導体装置の製造方法で
ある。
In order to achieve the above-mentioned object, the present invention is an intensive study to form an interlayer insulating film having a softening point in a manufacturing process of a semiconductor device, and then form an upper layer film having a low melting point. Then, the inventors have found a method of improving the flatness of the lower layer film by forming the film and then maintaining the temperature above the softening point of the upper and lower film. That is, the present invention is a method for manufacturing a semiconductor device, in which after forming an interlayer insulating film on a stepped substrate, forming an upper layer film, and then performing a process of lowering the viscosity of the interlayer insulating film through the upper layer film by heating, or A semiconductor in which an interlayer insulating film is formed on a stepped substrate, an upper layer film is formed, and the viscosity of the interlayer insulating film is lowered by heating to planarize the interlayer insulating film, and then the upper layer film is peeled off. It is a method of manufacturing a device.

【0006】本発明の半導体装置の製造方法において、
下層層間絶縁膜と上層膜の各々の軟化点が所定の範囲内
にあるようにそれぞれ膜形成用の材料を選択することが
望ましい。前記所定の範囲内とは50℃〜400℃程度
の範囲である。また、下層層間絶縁膜の粘性を低下させ
る加熱温度は、下層の層間絶縁膜が軟化し完全な3次元
綱目構造に変化する200℃から400℃の間とするこ
とが望ましい。本発明の下層層間絶縁膜として少なくと
もポリハイドロジェンシルセスキオキサンまたはポリア
ルキルシルセスキオキサンを用い、上層膜として50℃
〜400℃程度の低融点を持つ金属膜を用いることがで
きる。前記低融点の金属膜として少なくとも銀、鉛、ス
ズ、銅およびカドミウムを含有するものである。本発明
の半導体装置の製造方法においては、通常汎用されてい
る熱処理装置を使用すればかかるプロセスは十分に実施
可能である。
In the method of manufacturing a semiconductor device of the present invention,
It is desirable to select the film forming materials so that the softening points of the lower interlayer insulating film and the upper film are within a predetermined range. The above-mentioned predetermined range is a range of about 50 ° C to 400 ° C. The heating temperature for lowering the viscosity of the lower interlayer insulating film is preferably between 200 ° C. and 400 ° C. at which the lower interlayer insulating film softens and changes into a complete three-dimensional structure. At least polyhydrogensilsesquioxane or polyalkylsilsesquioxane is used as the lower interlayer insulating film of the present invention, and 50 ° C. is used as the upper film.
A metal film having a low melting point of about 400 ° C. can be used. The low melting point metal film contains at least silver, lead, tin, copper, and cadmium. In the method of manufacturing a semiconductor device of the present invention, such a process can be sufficiently carried out by using a heat treatment device which is generally used.

【0007】[0007]

【作用】本発明の半導体装置の製造方法において、軟化
点を有する層間絶縁膜を形成した後、低融点の上層膜を
形成し、その後、上下層膜の軟化点以上の温度に保持す
ることにより下層膜の平坦性が向上し、広い配線スペー
スにおいても良好な平坦性を確保することができる。本
発明の下層の層間絶縁膜としてポリハイドロジェンシル
セスキオキサン、上層膜として低融点金属を用い、上下
層の各軟化点温度以上に加熱保持することにより、下層
膜の粘性低下により表面エネルギーが最小になるよう層
間絶縁膜が流動する。この層間絶縁膜の流動は、上層膜
の自重により加速され、スペースの広い配線間において
も十分な平坦性が得られる。加熱温度としては、下層の
層間絶縁膜が軟化する200℃から下層膜が完全な3次
元綱目構造に変化する400℃の間が最適である。ま
た、上層膜には下層の層間絶縁膜の軟化点温度領域で軟
化し、しかも下層の層間絶縁膜と反応することの無い低
融点金属膜を用いることにより本発明の目的が達成可能
となる。
In the method for manufacturing a semiconductor device of the present invention, after forming an interlayer insulating film having a softening point, an upper layer film having a low melting point is formed, and thereafter, a temperature higher than the softening point of the upper and lower layer films is maintained. The flatness of the lower layer film is improved, and good flatness can be secured even in a wide wiring space. Polyhydrogensilsesquioxane as the lower interlayer insulating film of the present invention, using a low-melting point metal as the upper layer film, and by heating and holding at each softening point temperature of the upper and lower layers, the surface energy due to the lowering of the viscosity of the lower layer film The interlayer insulating film flows so as to be minimized. This flow of the interlayer insulating film is accelerated by the weight of the upper layer film, and sufficient flatness can be obtained even between the wirings having a large space. The optimum heating temperature is between 200 ° C. at which the lower interlayer insulating film is softened and 400 ° C. at which the lower film changes to a complete three-dimensional structure. The object of the present invention can be achieved by using, as the upper layer film, a low melting point metal film that is softened in the softening temperature range of the lower interlayer insulating film and does not react with the lower interlayer insulating film.

【0008】[0008]

【実施例】本発明の実施例を図面と共に説明する。 実施例1 本実施例は、半導体集積回路製造の際に、段差を有する
基体であるシリコン半導体ウェーハ上に絶縁膜を形成す
る場合に本発明を適用したものである。特に、本実施例
は無機系層間絶縁膜をAl配線上に形成した場合の例で
ある。図1(a)に示したようにシリコンなどからなる
半導体基板11上に酸化シリコンなどからなる層間絶縁
膜12およびAl配線層13が形成されたウェーハを用
意した。次いで図1(b)に示したように次工程で形成
する層間絶縁膜の膜質を補う目的で層間膜14を形成し
た。次いで図1(c)に示したように層間絶縁膜15を
以下の条件で形成した。 材料 溶質 ポリハイドロジェンシルセスキオキサン(HSi
3/2)n 溶媒 メチルイソブチルケトン 固形分 14% 形成条件 回転数 4000rpm 加熱条件 150℃、60sec
Embodiments of the present invention will be described with reference to the drawings. Example 1 In this example, the present invention is applied to the case where an insulating film is formed on a silicon semiconductor wafer, which is a base having steps, during the manufacture of semiconductor integrated circuits. In particular, the present embodiment is an example of the case where the inorganic interlayer insulating film is formed on the Al wiring. As shown in FIG. 1A, a wafer was prepared in which an interlayer insulating film 12 made of silicon oxide and an Al wiring layer 13 were formed on a semiconductor substrate 11 made of silicon. Next, as shown in FIG. 1B, an interlayer film 14 was formed for the purpose of supplementing the film quality of the interlayer insulating film formed in the next step. Next, as shown in FIG. 1C, the interlayer insulating film 15 was formed under the following conditions. Material Solute Polyhydrogensilsesquioxane (HSi
O 3/2 ) n solvent Methyl isobutyl ketone Solid content 14% Forming condition Rotation speed 4000 rpm Heating condition 150 ° C., 60 sec

【0009】次いで、低融点金属層16を形成した後、
300℃、窒素中でアニールを行うことにより図2
(a)に示したように平坦化を行った。低融点金属とし
て、融点225℃のAg9.5%−Sn96.5%合金
を用いて上層膜(低融点金属層)16とした。その後、
図2(b)に示したように上層膜(低融点金属層)16
を酸溶液により除去した。最後に、必要な膜厚にするよ
うに層間絶縁膜17を常法で形成し、図2(c)に示し
たように層間絶縁膜15、17の平坦化が完成する。
Next, after forming the low melting point metal layer 16,
By annealing at 300 ° C. in nitrogen, as shown in FIG.
Planarization was performed as shown in (a). As the low melting point metal, an Ag 9.5% -Sn 96.5% alloy having a melting point of 225 ° C. was used to form the upper layer film (low melting point metal layer) 16. afterwards,
As shown in FIG. 2B, the upper layer film (low melting point metal layer) 16
Was removed by acid solution. Finally, the interlayer insulating film 17 is formed by a conventional method so as to have a required film thickness, and the planarization of the interlayer insulating films 15 and 17 is completed as shown in FIG.

【0010】実施例2 本実施例は、半導体集積回路製造の際に、段差を有する
基体であるシリコン半導体ウェーハ上に絶縁膜を形成す
る場合に本発明を適用したものである。特に、本実施例
は有機系層間絶縁膜をAl配線上に形成した場合であ
る。本実施例は実施例1の場合の層間絶縁膜15と低融
点金属層16の材料が異なるのみで実施例1と同一の手
順で行われるので、図1〜図2を用いて説明する。図1
(a)に示したようにシリコンなどからなる半導体基板
11上に酸化シリコンなどからなる層間絶縁膜12およ
びAl配線層13が形成されたウェーハを用意した。次
いで図1(b)に示したように次工程で形成する層間絶
縁膜の膜質を補う目的で層間膜14を形成した。次いで
図1(c)に示したように層間絶縁膜15を以下の条件
で形成した。 材料 溶質 ポリメチルシルセスキオキサン(CH3Si
3/2)n 溶媒 メチルイソブチルケトン 固形分 14% 形成条件 回転数 3000rpm 加熱条件 150℃、60sec
Embodiment 2 In this embodiment, the present invention is applied to the case where an insulating film is formed on a silicon semiconductor wafer which is a substrate having a step during the manufacture of a semiconductor integrated circuit. Particularly, the present embodiment is a case where the organic interlayer insulating film is formed on the Al wiring. This example is performed in the same procedure as in Example 1 except that the materials for the interlayer insulating film 15 and the low-melting point metal layer 16 in Example 1 are different, and will be described with reference to FIGS. FIG.
As shown in (a), a wafer was prepared in which an interlayer insulating film 12 made of silicon oxide and an Al wiring layer 13 were formed on a semiconductor substrate 11 made of silicon. Next, as shown in FIG. 1B, an interlayer film 14 was formed for the purpose of supplementing the film quality of the interlayer insulating film formed in the next step. Next, as shown in FIG. 1C, the interlayer insulating film 15 was formed under the following conditions. Material Solute Polymethylsilsesquioxane (CH 3 Si
O 3/2 ) n solvent Methyl isobutyl ketone Solid content 14% Forming condition Rotation speed 3000 rpm Heating condition 150 ° C., 60 sec

【0011】次いで、低融点金属層16を形成した後、
250℃で窒素中でアニールを行うことにより図2
(a)に示したように平坦化を行った。低融点金属とし
て、融点200℃のSn64%−Pb36%合金を用い
て上層膜(低融点金属層)16とした。その後、図2
(b)に示したように上層膜(低融点金属層)16を酸
溶液により除去した。最後に、必要な膜厚にするように
層間絶縁膜17を常法で形成し図2(c)に示したよう
に層間絶縁膜15、17の平坦化が完成する。なお、上
記実施例1、2では上層膜(低融点金属層)16として
Ag−SnおよびSn−Pb合金を用いたが、本材料に
限定されることなく本発明の主旨を逸脱しない範囲で構
造、条件などは適宜変更可能である。例えば、上層膜と
してはAg5%−Pb95%、Ag3.5%−Cu10
%−Sn86.5%、Ag5%−Cd80%−Zn15
%などを用いることができる。
Next, after forming the low melting point metal layer 16,
By annealing in nitrogen at 250 ° C., FIG.
Planarization was performed as shown in (a). An Sn64% -Pb36% alloy having a melting point of 200 ° C. was used as the low melting point metal to form the upper layer film (low melting point metal layer) 16. After that, Figure 2
As shown in (b), the upper layer film (low melting point metal layer) 16 was removed with an acid solution. Finally, the interlayer insulating film 17 is formed by a conventional method so as to have a required film thickness, and the planarization of the interlayer insulating films 15 and 17 is completed as shown in FIG. Although Ag-Sn and Sn-Pb alloys were used as the upper layer film (low melting point metal layer) 16 in Examples 1 and 2 above, the structure is not limited to this material and does not depart from the gist of the present invention. The conditions can be changed as appropriate. For example, as the upper layer film, Ag5% -Pb95%, Ag3.5% -Cu10
% -Sn 86.5%, Ag 5% -Cd 80% -Zn15
%, Etc. can be used.

【0012】[0012]

【発明の効果】本発明によって微細化と多層化した配線
の段差被覆性の大幅な改善ができ、平坦性が高い層間絶
縁膜の形成が可能になった。
As described above, according to the present invention, it is possible to greatly improve the step coverage of miniaturized and multi-layered wiring and to form an interlayer insulating film having high flatness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の半導体装置の製造プロセ
スを説明する図である。
FIG. 1 is a diagram illustrating a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【図2】 本発明の一実施例の半導体装置の製造プロセ
スを説明する図である。
FIG. 2 is a diagram illustrating a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…半導体基板、12…層間絶縁膜、13…Al配線
層、14、15、17…層間絶縁膜、16…上層膜(低
融点金属層)
11 ... Semiconductor substrate, 12 ... Interlayer insulating film, 13 ... Al wiring layer, 14, 15, 17 ... Interlayer insulating film, 16 ... Upper layer film (low melting point metal layer)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/3205 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/3205

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 段差基体上に層間絶縁膜を形成した後、
上層膜を形成し、その後加熱により上層膜を介して層間
絶縁膜の粘性を低下させる処理を行うことを特徴とする
半導体装置の製造方法。
1. After forming an interlayer insulating film on a stepped substrate,
A method for manufacturing a semiconductor device, comprising: forming an upper layer film; and then performing a treatment to reduce the viscosity of the interlayer insulating film through the upper layer film by heating.
【請求項2】 段差基体上に層間絶縁膜を形成した後、
上層膜を形成し、加熱により上層膜を介して層間絶縁膜
の粘性を低下させて層間絶縁膜を平坦化させた後、上層
膜を剥離することを特徴とする半導体装置の製造方法。
2. After forming an interlayer insulating film on the stepped substrate,
A method for manufacturing a semiconductor device, comprising: forming an upper layer film, lowering the viscosity of the interlayer insulating film through the upper layer film by heating to flatten the interlayer insulating film, and then peeling the upper layer film.
【請求項3】 下層層間絶縁膜と上層膜の各軟化点が5
0℃〜400℃の範囲内にあることを特徴とする請求項
1または2記載の半導体装置の製造方法。
3. The softening points of the lower interlayer insulating film and the upper film are 5 respectively.
3. The method for manufacturing a semiconductor device according to claim 1, wherein the temperature is in the range of 0 [deg.] C. to 400 [deg.] C.
【請求項4】 下層層間絶縁膜の粘性を低下させる加熱
温度は、200℃から400℃の間であることを特徴と
する請求項1または2記載の半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the heating temperature for lowering the viscosity of the lower interlayer insulating film is between 200 ° C. and 400 ° C.
【請求項5】 下層層間絶縁膜としてポリハイドロジェ
ンシルセスキオキサンまたはポリアルキルシルセスキオ
キサンを用いることを特徴とする請求項1ないし4のい
ずれかに記載の半導体装置の製造方法。
5. The method for manufacturing a semiconductor device according to claim 1, wherein polyhydrogensilsesquioxane or polyalkylsilsesquioxane is used as the lower interlayer insulating film.
【請求項6】 上層膜として400℃以下の融点を持つ
金属膜を用いることを特徴とする請求項1ないし5のい
ずれかに記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 1, wherein a metal film having a melting point of 400 ° C. or lower is used as the upper layer film.
【請求項7】 400℃以下の融点を持つ金属膜として
少なくとも銀、鉛、スズ、銅およびカドミウムを含有す
ることを特徴とする請求項6記載の半導体装置の製造方
法。
7. The method of manufacturing a semiconductor device according to claim 6, wherein the metal film having a melting point of 400 ° C. or lower contains at least silver, lead, tin, copper and cadmium.
JP21950494A 1994-08-22 1994-08-22 Fabrication of semiconductor device Pending JPH0864678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21950494A JPH0864678A (en) 1994-08-22 1994-08-22 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21950494A JPH0864678A (en) 1994-08-22 1994-08-22 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0864678A true JPH0864678A (en) 1996-03-08

Family

ID=16736494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21950494A Pending JPH0864678A (en) 1994-08-22 1994-08-22 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0864678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340882B1 (en) * 2000-06-30 2002-06-20 박종섭 Method for manufacturing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340882B1 (en) * 2000-06-30 2002-06-20 박종섭 Method for manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
US11244916B2 (en) Low temperature bonded structures
CN117954388A (en) Low-temperature combination structure
JP2943805B1 (en) Semiconductor device and manufacturing method thereof
JP3182608B2 (en) Method of forming contact plug of semiconductor device having contact holes of different sizes
EP0939436B1 (en) Manufacture of flip-chip devices
JPH0689919A (en) Electric internal connection substrate provided with both wire bond and solder connection and manufacture
CN1129180C (en) Semiconductor device and manufacturing method of same
JPH0745616A (en) Manufacture of semiconductor device
US3918148A (en) Integrated circuit chip carrier and method for forming the same
US7012335B2 (en) Semiconductor device wiring and method of manufacturing the same
US5573171A (en) Method of thin film patterning by reflow
JPS6260242A (en) Manufacture of semiconductor device
JPH0864678A (en) Fabrication of semiconductor device
Caterer et al. Processing thick multilevel polyimide films for 3-D stacked memory
CN109346419B (en) Semiconductor device and method for manufacturing the same
JP2001345325A (en) Wiring formation method of semiconductor device
TW201239987A (en) Protection of reactive metal surfaces of semiconductor devices during shipping by providing an additional protection layer
US20050136645A1 (en) Semiconductor device and fabrication method thereof
JP2001176872A (en) Method for manufacturing semiconductor device
JPH06314690A (en) Semiconductor device and its manufacture
JP3064454B2 (en) Method for manufacturing semiconductor device
JPH08236478A (en) Semiconductor device and its manufacture
KR100440470B1 (en) Fabrication method of semiconductor device
JPH0621236A (en) Semiconductor device and manufacture thereof
KR940005707B1 (en) Method of flattening aluminium electrode connectors