JPH0862616A - Reflection type liquid crystal element and projection type display device using this element - Google Patents

Reflection type liquid crystal element and projection type display device using this element

Info

Publication number
JPH0862616A
JPH0862616A JP6199250A JP19925094A JPH0862616A JP H0862616 A JPH0862616 A JP H0862616A JP 6199250 A JP6199250 A JP 6199250A JP 19925094 A JP19925094 A JP 19925094A JP H0862616 A JPH0862616 A JP H0862616A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
reflection
reflective
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6199250A
Other languages
Japanese (ja)
Inventor
Tetsuya Nagata
徹也 永田
Hideo Sato
秀夫 佐藤
Minoru Hoshino
稔 星野
Tsunenori Yamamoto
恒典 山本
Shoichi Hirota
昇一 廣田
Yojiro Miyahara
養治侶 宮原
Ichiro Katsuyama
一郎 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Process Computer Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Process Computer Engineering Inc filed Critical Hitachi Ltd
Priority to JP6199250A priority Critical patent/JPH0862616A/en
Publication of JPH0862616A publication Critical patent/JPH0862616A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/42Arrangements for providing conduction through an insulating substrate

Abstract

PURPOSE: To reduce the size of a silicon chip which is a reflection substrate, etc., and to improve the yield at the time of production by having connecting terminals to external circuits on a surface opposite to a surface having the active elements and reflection pixel electrodes of a reflection substrate. CONSTITUTION: This reflection type liquid crystal element consists of a transparent substrate 1 having transparent electrodes 2, liquid crystals 3, a sealant 11 and the reflection substrate 7 and is provided with the connecting terminal parts 8 to the external circuits on the surface opposite to the surface provided with the reflection pixel electrodes 4 from wiring parts 10 for power source supply, control signals, etc., via through-holes 9 on the reflection substrate 7 formed with the active elements 5 and the reflection pixel electrodes 4 on the silicon substrate 6, etc. Then, the connecting terminal parts 8 are arranged without being restricted by the pixel parts, peripheral circuits, etc., and since wire bonding is executable on the surface opposite to a surface facing dichroic prisms, the reliability at the time of packaging is improved. The positions of wire bonding pads are no longer restricted to the outer side of the positions of the reflection pixel electrodes 4 and, therefore, the size reduction of the silicon substrate 6 is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶を用いた反射型表示
素子の実装方法にかかわるものであり、またそれを用い
た投射型表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of mounting a reflection type display element using liquid crystal, and a projection type display device using the same.

【0002】[0002]

【従来の技術】反射型液晶素子を用いた投射型表示装置
は、例えば、特開平4−194921 号公報がある。本従来例
における投射型表示装置の構成を図2に示す。ここで、
反射型液晶素子19R,19G,19Bは、電圧印加に
より散乱状態から透過状態へ変化する、たとえば、ポリ
マ分散型液晶を用いている。そしてこの液晶をアクティ
ブ素子に接続した反射画素電極と一定の電圧を印加した
透明電極との間に配置する構成とすることにより、本反
射型液晶素子は、画素電極の印加電圧に応じて、散乱,
反射の状態による画像を表示する素子として機能する。
電圧本投射型表示装置において、光源12からの光束は
ミラー13によりほぼ平行光に変換されコンデンサレン
ズ14により折り返しミラー10の近傍に集光された
後、レンズ17により、再度、平行光に変換され、クロ
スダイクロイックプリズム18により赤,緑,青の各色
に分離され、反射型液晶素子19R,19G,19Bに
照射される。ここで反射型液晶素子は、前述のように所
望の画像に応じて散乱,反射の状態を各画素毎にとって
いる。従って反射状態の画素に照射された光束は、反射
画素電極により正反射されほぼ平行光として反射された
後、クロスダイクロイックミラー18で赤,緑,青の色
を合成され、レンズ17により、再度、集光された後、
投射レンズ21によりスクリーン22へ投射画像として
投射される。一方、散乱状態の画素に照射された光束
は、散乱光と反射されるためレンズ17により集光され
ず、そのほとんどが遮断マスク20と折り返しミラー1
0と遮光部15とで遮られスクリーン22には至らな
い。
2. Description of the Related Art A projection type display device using a reflection type liquid crystal element is disclosed in, for example, Japanese Patent Laid-Open No. 4-194921. FIG. 2 shows the configuration of the projection type display device in this conventional example. here,
The reflective liquid crystal elements 19R, 19G, and 19B use, for example, polymer dispersed liquid crystal that changes from a scattering state to a transmissive state when a voltage is applied. By configuring this liquid crystal between the reflective pixel electrode connected to the active element and the transparent electrode to which a constant voltage is applied, the reflective liquid crystal element can be scattered according to the voltage applied to the pixel electrode. ,
It functions as an element that displays an image depending on the state of reflection.
In the voltage main projection display device, the light flux from the light source 12 is converted into substantially parallel light by the mirror 13 and condensed near the folding mirror 10 by the condenser lens 14, and then converted again into parallel light by the lens 17. The cross dichroic prism 18 separates each color into red, green, and blue and irradiates the reflective liquid crystal elements 19R, 19G, and 19B. Here, in the reflective liquid crystal element, the scattering and reflecting states are set for each pixel in accordance with a desired image as described above. Therefore, the light flux applied to the pixel in the reflective state is specularly reflected by the reflective pixel electrode and reflected as substantially parallel light, and then the red, green, and blue colors are combined by the cross dichroic mirror 18, and again by the lens 17, After being focused,
It is projected as a projection image on the screen 22 by the projection lens 21. On the other hand, the light flux applied to the pixels in the scattered state is not condensed by the lens 17 because it is reflected by the scattered light, and most of the light flux is blocked by the blocking mask 20 and the folding mirror 1.
It is blocked by 0 and the light shielding portion 15 and does not reach the screen 22.

【0003】一方、アクティブ駆動素子を有する反射型
液晶素子のさらに具体的な構成は、例えば、Japan Disp
lay '83、第408〜411頁記載のものがある。そ
の構成は、図3に示すように、透明電極24を表面に形
成した透明基板23と反射基板28との間に液晶25を
挟持しており、周辺を封止剤31で封止し、その全体は
セラミック基板29の上に装着されている。ここで、反
射基板28は反射画素電極27とその印加電圧を制御す
るアクティブ素子としてMOSトランジスタを形成した
シリコン基板26とから成っている。素子外部から反射
基板上のアクティブ素子及び透明基板上の透明電極への
電源電圧や画像信号の供給は、図には示していないセラ
ミック基板上の接続端子へなされ、さらにセラミック基
板上のワイヤボンディングパッド32,ワイヤ34,シ
リコン基板上のワイヤボンディングパッド33を用いて
ワイヤボンディングにより反射基板に電気的に接続され
る。透明電極へは更に導電ペースト30を介して電圧が
供給される。
On the other hand, a more specific structure of the reflection type liquid crystal element having an active driving element is, for example, Japan Disp.
lay '83, pp. 408-411. As shown in FIG. 3, the structure is such that a liquid crystal 25 is sandwiched between a transparent substrate 23 having a transparent electrode 24 formed on its surface and a reflective substrate 28, and the periphery thereof is sealed with a sealant 31. The whole is mounted on a ceramic substrate 29. Here, the reflective substrate 28 is composed of a reflective pixel electrode 27 and a silicon substrate 26 on which a MOS transistor is formed as an active element for controlling the applied voltage. Supply of power supply voltage and image signal from the outside of the device to the active device on the reflective substrate and the transparent electrode on the transparent substrate is done to the connection terminals on the ceramic substrate (not shown), and the wire bonding pad on the ceramic substrate. 32, the wires 34, and the wire bonding pads 33 on the silicon substrate are used to electrically connect to the reflective substrate by wire bonding. A voltage is further supplied to the transparent electrode via the conductive paste 30.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来方法では
下記のような問題が有った。すなわち、投射型表示装置
で反射型液晶素子を装着する際、反射型液晶素子の光軸
に対するあおりを防ぐには、高い機械精度で製作された
クロスダイクロイックプリズムに密着させることが有効
である。また装置全体を小型にするため反射型液晶素子
とクロスダイクロイックプリズムとの間の距離は短いほ
うが望ましい。さらに、反射型液晶素子を用いる構成
上、液晶以外からの余分な反射光は投射画像のコントラ
ストを低下させるため、極力低減しなければならない。
その対策として反射型液晶素子とクロスダイクロイック
プリズム間にエチレングリコール水溶液のような媒体を
介在させることにより、クロスダイクロイックプリズム
と透明電極を有する透明基板との間の屈折率マッチング
を行い界面での反射を低減する方法が有効で有る。この
ような方策をとるためにも反射型液晶素子はクロスダイ
クロイックプリズムにほぼ密着した構成をとることが必
要となる。
However, the conventional method has the following problems. That is, when the reflection type liquid crystal element is mounted in the projection type display device, in order to prevent the reflection type liquid crystal element from tilting with respect to the optical axis, it is effective to bring it into close contact with a cross dichroic prism manufactured with high mechanical accuracy. In addition, it is desirable that the distance between the reflective liquid crystal element and the cross dichroic prism is short in order to reduce the size of the entire device. Further, in the structure using the reflective liquid crystal element, extra reflected light from other than the liquid crystal lowers the contrast of the projected image, and therefore must be reduced as much as possible.
As a countermeasure, by interposing a medium such as an ethylene glycol aqueous solution between the reflective liquid crystal element and the cross dichroic prism, the refractive index matching is performed between the cross dichroic prism and the transparent substrate having the transparent electrode to prevent reflection at the interface. The method of reducing is effective. In order to take such measures, it is necessary for the reflective liquid crystal element to have a structure in which it is almost in close contact with the cross dichroic prism.

【0005】しかし、従来の反射型液晶素子では、反射
基板及び透明基板とセラミック基板との間の接続のワイ
ヤボンディングのワイヤのループの高さが透明電極の上
の面に近くなってしまい、クロスダイクロイックプリズ
ムに密着した際にワイヤが接触し応力を受けてボンディ
ング部で断線する恐れが大きい。即ち、ワイヤのループ
の高さは良好なボンディング強度を確保するためにセラ
ミック基板面から1.5mm程度は必要であり、一般的な透
明基板とシリコン基板の厚さがそれぞれ1mm,0.8m
m,計1.8mm程度であるため、ほとんど裕度が無い。こ
れはワイヤボンディング部を保護するために樹脂等で被
っても同様であり、また樹脂の厚さの分だけ実質的な高
さが大きくなり、特に固い樹脂を用いると、透明基板が
ダイクロイック基板に密着するのを妨げる恐れもあっ
た。これを防ぐには透明基板の厚さを厚くすることが考
えられるが、これはボンディング作業時の制約から、シ
リコン基板上のボンディングパッド位置を透明基板の端
面から離すことが必要となり、シリコン基板サイズの増
加、ひいては、ウエハから取得可能な基板枚数の低下に
つながり、コスト増となる。
However, in the conventional reflection type liquid crystal element, the height of the loop of the wire bonding of the connection between the reflective substrate and the transparent substrate and the ceramic substrate is close to the upper surface of the transparent electrode, which causes a cross. When the wires are in close contact with the dichroic prism, the wires are likely to come into contact with each other and receive stress, resulting in breakage at the bonding portion. That is, the height of the loop of the wire needs to be about 1.5 mm from the surface of the ceramic substrate in order to secure good bonding strength, and the thickness of the general transparent substrate and the thickness of the silicon substrate are 1 mm and 0.8 m, respectively.
m, 1.8 mm in total, so there is almost no margin. This is the same even if it is covered with resin to protect the wire bonding part, and the substantial height increases by the thickness of the resin.If a hard resin is used, the transparent substrate becomes a dichroic substrate. There was also a risk of hindering close contact. To prevent this, it is possible to increase the thickness of the transparent substrate, but it is necessary to separate the position of the bonding pad on the silicon substrate from the end face of the transparent substrate due to restrictions during bonding work. Of the number of substrates that can be obtained from the wafer, resulting in an increase in cost.

【0006】また、ワイヤボンディングパッドを設ける
こと自体、シリコン基板の大きさを表示に必要な大きさ
以上に大きくする原因になっている。
Further, the provision of the wire bonding pad itself causes the size of the silicon substrate to become larger than the size required for display.

【0007】このように従来技術では、反射型液晶素子
の実装に関し、投射型表示装置に適用するための考慮が
なされていなかった。
As described above, in the prior art, the mounting of the reflection type liquid crystal element has not been considered for application to the projection type display device.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するた
め、本発明による手段は、図1に示すように、透明電極
2を有する透明基板1,液晶3,シール剤11,反射基
板7から成るから反射型液晶素子で、シリコン基板6等
の上にアクティブ素子5及び反射画素電極4を形成した
反射基板7に、電源供給及び制御信号等のための配線部
10からスルーホール9を介して反射画素電極4を設け
た面とは反対の面に外部回路との接続端子部8を設け
る。
In order to solve the above problems, the means according to the present invention comprises, as shown in FIG. 1, a transparent substrate 1 having a transparent electrode 1, a liquid crystal 3, a sealant 11 and a reflective substrate 7. Is a reflective liquid crystal element, and is reflected from a wiring portion 10 for supplying power and control signals through a through hole 9 to a reflective substrate 7 in which an active element 5 and a reflective pixel electrode 4 are formed on a silicon substrate 6 or the like. A connection terminal portion 8 for connecting to an external circuit is provided on the surface opposite to the surface on which the pixel electrode 4 is provided.

【0009】[0009]

【作用】上記手段により、ワイヤボンディングがダイク
ロイックプリズム対向面と反対の面で行えるため前述し
た問題が解決され、実装時の信頼性が向上する。また、
ワイヤボンディングパッドの位置も反射電極の位置の外
側に限定されることがなくなるため、シリコン基板の大
きさを小さくできる。
By the above means, the wire bonding can be performed on the surface opposite to the surface facing the dichroic prism, so that the above-mentioned problem is solved and the reliability at the time of mounting is improved. Also,
Since the position of the wire bonding pad is not limited to the outside of the position of the reflective electrode, the size of the silicon substrate can be reduced.

【0010】また同じ理由により、接続部の面積を大き
くとれるようになるため、ワイヤボンディングに限ら
ず、異方性導電膜を用いたフレキシブルケーブル等他の
接続手段を用いることができる。
For the same reason, since the area of the connecting portion can be increased, not only wire bonding but also other connecting means such as a flexible cable using an anisotropic conductive film can be used.

【0011】[0011]

【実施例】本発明を実施例により更に詳しく説明する。EXAMPLES The present invention will be described in more detail by way of examples.

【0012】(実施例1)図4は反射基板上のアクティ
ブ素子の回路図である。本回路は周辺回路を内蔵した構
成で、更に具体的には、画素回路35,サンプル回路3
6,水平走査回路37,垂直走査回路38,ANDゲー
ト38より成る。画素回路35は、複数の走査信号線4
2、これと交差する複数の映像信号線43及び複数の基
板給電線44,走査信号線と映像信号線の交差部に設け
たMOSトランジスタ45,保持容量47から成り、さ
らに液晶の等価回路として液晶容量46を示してある。
一組のMOSトランジスタ45,保持容量47,液晶容
量46で一つの画素を形成し、全体では水平方向にM
個,垂直方向にN個、マトリクス状に配置されている。
このMOSトランジスタ45のゲート電極には走査信号
線42を介して走査信号Vg1〜VgNが、ドレイン電
極には映像信号線を介して輝度信号Vd1〜VdMが、
またソース電極には保持容量47の一方の電極及び液晶
容量46の一方の電極(反射画素電極)が接続されてい
る。さらに、保持容量47の他方の電極は基板給電線4
4を介して基板電圧VSSを給電するための基板給電端
子44につながっている。液晶容量46は、画素回路3
5を形成する反射基板とこれに対向する透明電極付きの
透明基板との間に挟持される液晶の等価回路である。
(Embodiment 1) FIG. 4 is a circuit diagram of an active element on a reflective substrate. This circuit has a configuration in which peripheral circuits are built in, and more specifically, the pixel circuit 35 and the sample circuit 3
6, a horizontal scanning circuit 37, a vertical scanning circuit 38, and an AND gate 38. The pixel circuit 35 includes a plurality of scanning signal lines 4
2. A plurality of video signal lines 43 and a plurality of substrate power supply lines 44 intersecting with this, a MOS transistor 45 provided at the intersection of the scanning signal line and the video signal line, and a storage capacitor 47, and a liquid crystal as an equivalent circuit of the liquid crystal. The capacity 46 is shown.
One set of MOS transistor 45, storage capacitor 47, and liquid crystal capacitor 46 forms one pixel, and as a whole, M is arranged in the horizontal direction.
, N in the vertical direction are arranged in a matrix.
The scanning signals Vg1 to VgN are applied to the gate electrode of the MOS transistor 45 via the scanning signal line 42, and the luminance signals Vd1 to VdM are applied to the drain electrode via the video signal line.
Further, one electrode of the storage capacitor 47 and one electrode (reflection pixel electrode) of the liquid crystal capacitor 46 are connected to the source electrode. Further, the other electrode of the storage capacitor 47 is connected to the substrate feeding line 4
4 to a substrate power supply terminal 44 for supplying the substrate voltage VSS. The liquid crystal capacitor 46 is the pixel circuit 3
5 is an equivalent circuit of a liquid crystal sandwiched between a reflective substrate forming 5 and a transparent substrate with a transparent electrode facing the reflective substrate.

【0013】水平走査回路37は、水平走査タイミング
信号端子43に外部より印加される水平走査タイミング
信号HTIMを基にM相の多相信号PH1〜PHMを出
力する。サンプル回路36は、MOSスイッチで構成さ
れており、MOSスイッチのゲート電極は出力信号PH
1からPHMを、MOSスイッチのドレイン電極は二つ
の映像信号端子65a,65bを介して外部から互いに
極性の異なる映像信号VI1またはVI2を供給され、
MOSスイッチのソース電極に輝度信号Vd1からVd
Mを出力する。またこの水平走査回路37とサンプル回
路36は遮光層40で、垂直走査回路38とANDゲー
ト39は遮光層41で覆われ、遮光層40,41は共に
透明電極と共にコモン電圧供給端子66に接続されてい
る。映像信号VI1,VI2はコモン電圧COMを基準
に変化する信号であり、その極性を逆極性とすることに
よりフリッカを低減している。
The horizontal scanning circuit 37 outputs M-phase multiphase signals PH1 to PHM based on the horizontal scanning timing signal HTIM externally applied to the horizontal scanning timing signal terminal 43. The sample circuit 36 is composed of a MOS switch, and the gate electrode of the MOS switch has an output signal PH.
1 to PHM, and the drain electrode of the MOS switch is supplied with video signals VI1 or VI2 having different polarities from the outside via two video signal terminals 65a and 65b.
Luminance signals Vd1 to Vd are applied to the source electrodes of the MOS switches.
Output M. The horizontal scanning circuit 37 and the sample circuit 36 are covered with a light shielding layer 40, the vertical scanning circuit 38 and the AND gate 39 are covered with a light shielding layer 41, and both the light shielding layers 40 and 41 are connected to a common voltage supply terminal 66 together with a transparent electrode. ing. The video signals VI1 and VI2 are signals that change with the common voltage COM as a reference, and flicker is reduced by making their polarities opposite.

【0014】垂直走査回路38は垂直走査タイミング信
号端子67に外部から印加される垂直走査タイミング信
号に応じて、多相信号PV1〜PVNを出力する。AN
Dゲート39は、多相信号PV1〜PVNと、垂直走査
制御信号端子48を介して外部から供給される垂直走査
制御信号CNTとを基に、画素回路の垂直走査信号Vg
1〜VgNを出力する。
The vertical scanning circuit 38 outputs multi-phase signals PV1 to PVN according to the vertical scanning timing signal externally applied to the vertical scanning timing signal terminal 67. AN
The D gate 39 receives the vertical scanning signal Vg of the pixel circuit based on the multi-phase signals PV1 to PVN and the vertical scanning control signal CNT supplied from the outside through the vertical scanning control signal terminal 48.
1 to VgN is output.

【0015】輝度信号Vd1〜VdMは、マトリクス状
に配置された画素回路35に列ごとに入力される。この
時、垂直走査信号Vg1〜VgNで選択された画素回路
35のMOSトランジスタだけがオン状態となり、選択
された行の画素回路の保持容量47,液晶容量46に輝
度信号Vd1〜VdMが書き込まれ、液晶には輝度信号
に応じた大きさの電圧が印加され、映像信号に応じた映
像が表示される。尚、図4でロジック電圧VCC供給端
子は省略してある。
The brightness signals Vd1 to VdM are input to the pixel circuits 35 arranged in a matrix for each column. At this time, only the MOS transistors of the pixel circuit 35 selected by the vertical scanning signals Vg1 to VgN are turned on, and the luminance signals Vd1 to VdM are written in the holding capacitors 47 and the liquid crystal capacitors 46 of the pixel circuits in the selected row, A voltage corresponding to the luminance signal is applied to the liquid crystal, and an image corresponding to the image signal is displayed. The logic voltage VCC supply terminal is omitted in FIG.

【0016】この回路を単結晶シリコン基板上に形成し
た反射基板を用いた反射型液晶素子の画素部の断面図を
図5に示す。基本的には透明電極2を有する透明基板1
と、シリコン基板6上にn+領域であるソース領域53
とドレイン領域55及びポリシリコンゲート54から成
るMOSトランジスタ45と反射画素電極4を有する反
射基板7との間に、液晶3として本実施例では高分子分
散型液晶を挟持している。図には示していないが、ポリ
シリコンゲート54とp型半導体層52との間には酸化
シリコン層が介在している。またポリシリコン層58と
p型半導体層52との間には酸化シリコン層が介在して
おり、保持容量47を構成している。ドレイン領域55
は第一の層間絶縁層57中のコンタクトホール56,ア
ルミ配線層51,第二の層間絶縁層50中のスルーホー
ル49等を介して反射画素電極4と接続している。
FIG. 5 shows a cross-sectional view of a pixel portion of a reflective liquid crystal element using a reflective substrate having this circuit formed on a single crystal silicon substrate. Basically, a transparent substrate 1 having a transparent electrode 2
And a source region 53 which is an n + region on the silicon substrate 6.
In this embodiment, a polymer dispersed liquid crystal is sandwiched as the liquid crystal 3 between the MOS transistor 45 including the drain region 55 and the polysilicon gate 54 and the reflective substrate 7 having the reflective pixel electrode 4. Although not shown in the figure, a silicon oxide layer is interposed between the polysilicon gate 54 and the p-type semiconductor layer 52. In addition, a silicon oxide layer is interposed between the polysilicon layer 58 and the p-type semiconductor layer 52 to form the storage capacitor 47. Drain region 55
Are connected to the reflective pixel electrode 4 through the contact hole 56 in the first interlayer insulating layer 57, the aluminum wiring layer 51, the through hole 49 in the second interlayer insulating layer 50, and the like.

【0017】また反射基板の接続端子部の断面構成は図
1に示す。図4における各種信号端子,電圧供給端子等
からの配線部10はそれぞれ反射画素電極と反対の面に
スルーホール9を介して引き出され、接続端子部8を構
成している。このスルーホールは、例えば、特開平5−2
67469 号公報に記載のように、ガリウムイオンビームを
所定の所に照射し表面から順にエッチングを行い形成す
る。次に配線部10及び接続端子部8を形成する表面と
スルーホールの壁面には常圧CVD法やレーザCVD法
により絶縁膜を形成する。次いでW(CO2)ガス中で
ガリウムイオンビームを照射し、ガス分解で形成される
タングステンをスルーホール9に付着させ、配線部10
及び接続端子部8間の接続を行う。
The sectional structure of the connection terminal portion of the reflective substrate is shown in FIG. The wiring portions 10 from various signal terminals, voltage supply terminals, etc. in FIG. 4 are respectively drawn out through the through holes 9 on the surface opposite to the reflective pixel electrode to form the connection terminal portion 8. This through hole is disclosed in, for example, Japanese Patent Laid-Open No. 5-2
As described in Japanese Patent No. 67469, a gallium ion beam is applied to a predetermined place and etching is performed in order from the surface. Next, an insulating film is formed by atmospheric pressure CVD method or laser CVD method on the surface on which the wiring portion 10 and the connection terminal portion 8 are formed and the wall surface of the through hole. Then, a gallium ion beam is irradiated in W (CO2) gas to deposit tungsten formed by gas decomposition in the through hole 9, and the wiring portion 10 is formed.
And the connection terminal portions 8 are connected.

【0018】外部回路との接続方法を図6に示す。反射
基板の裏面に引き出した接続端子部8と透明基板1の液
晶と対向する面に形成した透明電極端子部61とを異方
性導電膜を有するフレキ59より接続する。そして透明
基板上の透明電極端子部からさらに異方性導電膜を有す
るフレキ60により外部回路へ接続を行う。なお、透明
電極端子部61の中には、透明基板上で、反射画素電極
に対向する透明電極2からの引出線も含んでいる。
FIG. 6 shows a method of connecting to an external circuit. The connection terminal portion 8 drawn out on the back surface of the reflective substrate and the transparent electrode terminal portion 61 formed on the surface of the transparent substrate 1 facing the liquid crystal are connected by a flexible cable 59 having an anisotropic conductive film. Then, the transparent electrode terminal portion on the transparent substrate is further connected to an external circuit by the flexible film 60 having an anisotropic conductive film. The transparent electrode terminal portion 61 also includes a lead line from the transparent electrode 2 facing the reflective pixel electrode on the transparent substrate.

【0019】この反射型液晶素子三枚19R,19G,
19Bを図7に示すよう配置でクロスダイクロイックプ
リズム18の三面にオプティカルカップリング用のエチ
レングリコール水溶液等を介在させて密着させる。反射
型液晶素子19R,19G,19Bを固定するための治
具は、透明基板8R,8G,8Bの周辺部をクロスダイ
クロイックプリズムに押しつけるような構造とすること
により、機械的強度に劣る単結晶シリコン製の反射基板
を破損することを防ぐことができる。そして図2に示す
ような投射光学装置を構成することができる。
The three reflective liquid crystal elements 19R, 19G,
19B is arranged in close contact with the three surfaces of the cross dichroic prism 18 with an ethylene glycol aqueous solution for optical coupling or the like interposed therebetween as shown in FIG. The jig for fixing the reflective liquid crystal elements 19R, 19G, and 19B has a structure in which the peripheral portions of the transparent substrates 8R, 8G, and 8B are pressed against the cross dichroic prism, so that single crystal silicon having poor mechanical strength is used. It is possible to prevent damage to the reflective substrate made of. Then, a projection optical device as shown in FIG. 2 can be constructed.

【0020】(実施例2)他の実施例として、図9にセ
ラミック製の支持基板64を用いた反射型液晶素子の接
続部の断面図を示す。実施例1におけると同じ構造の反
射基板7の接続端子部8と、支持基板64上の接続端子
部63とを対向させ、導電ペースト62により両者の接
続を行っている。この導電ペーストは、たとえば、銀−
鉛系の導電ペーストが使用できる。支持基板64上の接
続端子部63からは実施例1におけると同様に、異方性
導電膜のついたフレキ等により外部回路と接続する。ま
た、透明基板1上の透明電極2は図示していない個所
で、同じく導電ペーストにより支持基板64上の接続端
子部63に接続して、他の接続端子と一括して外部回路
と接続されている。
(Embodiment 2) As another embodiment, FIG. 9 shows a sectional view of a connection portion of a reflection type liquid crystal element using a supporting substrate 64 made of ceramics. The connection terminal portion 8 of the reflective substrate 7 having the same structure as in the first embodiment and the connection terminal portion 63 on the support substrate 64 are opposed to each other, and the both are connected by the conductive paste 62. This conductive paste is, for example, silver-
Lead-based conductive paste can be used. Similar to the first embodiment, the connection terminal portion 63 on the support substrate 64 is connected to an external circuit by flexing with an anisotropic conductive film or the like. The transparent electrode 2 on the transparent substrate 1 is also connected to the connection terminal portion 63 on the support substrate 64 by a conductive paste at a location not shown in the figure, and is connected to an external circuit together with other connection terminals. There is.

【0021】尚、本発明における反射基板は、実施例に
おける単結晶シリコン基板を用いたものに限定されるも
のではなく、例えば、ガラスや石英等の上に薄膜トラン
ジスタと反射画素電極を形成した構成の物でもよい。
The reflective substrate in the present invention is not limited to the one using the single crystal silicon substrate in the embodiment, and may be, for example, a structure in which a thin film transistor and a reflective pixel electrode are formed on glass or quartz. It may be a thing.

【0022】[0022]

【発明の効果】本発明によれば、アクティブ素子を有す
る反射基板の電気信号及び電圧供給接続部が光学装着面
と反対側に配置したため、接続端子部を画素部,周辺回
路部等にとらわれずに配置でき、反射基板であるシリコ
ンチップ等の大きさを小さくでき、製造時の歩留まりが
向上する。
According to the present invention, since the electric signal and voltage supply connection portion of the reflective substrate having the active element is arranged on the side opposite to the optical mounting surface, the connection terminal portion is not restricted by the pixel portion, the peripheral circuit portion or the like. , The size of the silicon substrate or the like, which is a reflective substrate, can be reduced, and the yield in manufacturing is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における反射型液晶素子の接続
部の断面図。
FIG. 1 is a cross-sectional view of a connection portion of a reflective liquid crystal element according to an embodiment of the present invention.

【図2】投射型表示装置の説明図。FIG. 2 is an explanatory diagram of a projection display device.

【図3】反射型液晶素子の従来例を示す断面図。FIG. 3 is a cross-sectional view showing a conventional example of a reflective liquid crystal element.

【図4】本発明の実施例における反射基板の回路図。FIG. 4 is a circuit diagram of a reflective substrate according to an embodiment of the present invention.

【図5】本発明の実施例における反射型液晶素子の画素
部の断面図。
FIG. 5 is a cross-sectional view of a pixel portion of a reflective liquid crystal element according to an example of the present invention.

【図6】本発明の実施例における反射型液晶素子の接続
方法を示す説明図。
FIG. 6 is an explanatory diagram showing a method for connecting reflective liquid crystal elements in an example of the present invention.

【図7】本発明の実施例における反射型液晶素子のクロ
スダイクロイックプリズムへの実装方法を示す説明図。
FIG. 7 is an explanatory diagram showing a method of mounting a reflective liquid crystal element on a cross dichroic prism according to an embodiment of the present invention.

【図8】本発明の他の実施例における反射型液晶素子の
接続部の断面図。
FIG. 8 is a cross-sectional view of a connection portion of a reflective liquid crystal element according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…透明基板、2…透明電極、3…液晶、4…反射画素
電極、5…アクティブ素子、6…シリコン基板、7…反
射基板、8…接続端子部、9…スルーホール、10…配
線部、11…シール剤。
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2 ... Transparent electrode, 3 ... Liquid crystal, 4 ... Reflection pixel electrode, 5 ... Active element, 6 ... Silicon substrate, 7 ... Reflection substrate, 8 ... Connection terminal part, 9 ... Through hole, 10 ... Wiring part , 11 ... Sealing agent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 秀夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 星野 稔 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山本 恒典 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 廣田 昇一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮原 養治侶 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 勝山 一郎 茨城県日立市大みか町五丁目2番1号 日 立プロセスコンピュータエンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Sato Inventor Hide 1-1 Satoshi Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Minoru Hoshino 7-chome Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Tsunenori Yamamoto 7-1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Shoichi Hirota Hitachi City, Ibaraki Prefecture 7-1, Omika-cho, Hitachi, Ltd., Hitachi Research Laboratory, Inc. (72) Inventor, Youji Miyahara, 5-2-1 Omika-cho, Hitachi, Hitachi, Ibaraki Prefecture, Ltd., Omika, Hitachi, Ltd. (72) Inventor, Katsuyama Ichiro 52-1 Omika-cho, Hitachi-shi, Ibaraki Hiritsu Process Computer Engineering Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】透明基板と、液晶と、アクティブ素子と反
射電極を有する反射基板とから成る反射型液晶素子にお
いて、前記反射基板の前記アクティブ素子と前記反射電
極とを有する面と反対の面に外部回路との接続端子を有
することを特徴とする反射型液晶素子。
1. A reflective liquid crystal device comprising a transparent substrate, liquid crystal, and a reflective substrate having an active element and a reflective electrode, wherein the reflective substrate has a surface opposite to a surface having the active element and the reflective electrode. A reflection type liquid crystal device having a connection terminal to an external circuit.
【請求項2】透明基板と、液晶と、アクティブ素子と反
射電極を有する反射基板とから成る反射型液晶素子にお
いて、前記反射基板は両面に配線領域を有し、前記配線
経路が電気的に接続されていることを特徴とする反射型
液晶素子。
2. A reflective liquid crystal device comprising a transparent substrate, liquid crystal, and a reflective substrate having an active element and a reflective electrode, wherein the reflective substrate has wiring regions on both sides, and the wiring route is electrically connected. A reflective liquid crystal device characterized by being provided.
【請求項3】透明基板と、液晶と、アクティブ素子と反
射電極を有する反射基板と、表面に配線層を有し前記反
射基板を装着する保持基板とから成る反射型液晶素子に
おいて、前記反射基板の前記アクティブ素子と前記反射
電極とを有する面から反対の面に至るスルーホールを介
して前記アクティブ素子と前記支持基板とが電気的に接
続されていることを特徴とする反射型液晶素子。
3. A reflection type liquid crystal element comprising a transparent substrate, a liquid crystal, a reflection substrate having an active element and a reflection electrode, and a holding substrate having a wiring layer on the surface and on which the reflection substrate is mounted. 2. The reflective liquid crystal element, wherein the active element and the support substrate are electrically connected to each other through a through hole extending from a surface having the active element and the reflective electrode to an opposite surface.
【請求項4】透明基板と、液晶と、アクティブ素子と反
射電極を有する反射基板と、表面に配線層を有し前記反
射基板を装着する保持基板とから成る反射型液晶素子に
おいて、前記透明基板と前記反射基板とが電気的に接続
されていることを特徴とする反射型液晶素子。
4. A reflection type liquid crystal element comprising a transparent substrate, a liquid crystal, a reflection substrate having an active element and a reflection electrode, and a holding substrate having a wiring layer on its surface and on which the reflection substrate is mounted. A reflective liquid crystal device, wherein the reflective substrate and the reflective substrate are electrically connected.
【請求項5】透明基板と、液晶と、アクティブ素子と反
射電極を有する反射基板と、表面に配線層を有し前記反
射基板を装着する保持基板とから成る反射型液晶素子に
おいて、外部回路との接続端子が前記透明基板上に形成
してあることを特徴とする反射型液晶素子。
5. A reflection type liquid crystal element comprising a transparent substrate, a liquid crystal, a reflection substrate having an active element and a reflection electrode, and a holding substrate having a wiring layer on the surface and on which the reflection substrate is mounted. 2. A reflective liquid crystal device, wherein the connection terminal is formed on the transparent substrate.
【請求項6】請求項1,2,3,4または5において、
前記アクティブ素子がMOSトラスジスタであり、前記
反射基板がシリコン基板である反射型液晶素子。
6. The method according to claim 1, 2, 3, 4 or 5.
A reflective liquid crystal device in which the active element is a MOS transistor and the reflective substrate is a silicon substrate.
【請求項7】請求項1,2,3,4または5に記載の前
記反射型液晶素子を用いた投射型表示装置。
7. A projection type display device using the reflection type liquid crystal element according to claim 1, 2, 3, 4 or 5.
【請求項8】請求項1,2,3,4または5に記載の前
記反射型液晶素子と、ダイクロイックプリズムと、光源
と、投射レンズとを有する投射型表示装置。
8. A projection type display device comprising the reflection type liquid crystal element according to claim 1, 2, 3, 4 or 5, a dichroic prism, a light source, and a projection lens.
JP6199250A 1994-08-24 1994-08-24 Reflection type liquid crystal element and projection type display device using this element Pending JPH0862616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199250A JPH0862616A (en) 1994-08-24 1994-08-24 Reflection type liquid crystal element and projection type display device using this element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199250A JPH0862616A (en) 1994-08-24 1994-08-24 Reflection type liquid crystal element and projection type display device using this element

Publications (1)

Publication Number Publication Date
JPH0862616A true JPH0862616A (en) 1996-03-08

Family

ID=16404671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199250A Pending JPH0862616A (en) 1994-08-24 1994-08-24 Reflection type liquid crystal element and projection type display device using this element

Country Status (1)

Country Link
JP (1) JPH0862616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1079258A2 (en) * 1999-08-23 2001-02-28 Agilent Technologies Inc Electro-optical material-based display device
JP2001343665A (en) * 2000-06-02 2001-12-14 Citizen Watch Co Ltd Liquid crystal display device
WO2001079921A3 (en) * 2000-04-18 2002-07-25 Digital Reflection Inc Microdisplay packaging
US6690032B1 (en) 1999-07-22 2004-02-10 Seiko Epson Corporation Electro-optical device and method of manufacture thereof, and electronic instrument
CN113419385A (en) * 2021-05-31 2021-09-21 北海惠科光电技术有限公司 Display panel, preparation method thereof and display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690032B1 (en) 1999-07-22 2004-02-10 Seiko Epson Corporation Electro-optical device and method of manufacture thereof, and electronic instrument
EP1079258A2 (en) * 1999-08-23 2001-02-28 Agilent Technologies Inc Electro-optical material-based display device
EP1079258A3 (en) * 1999-08-23 2001-10-10 Agilent Technologies, Inc. (a Delaware corporation) Electro-optical material-based display device
US6721029B2 (en) 1999-08-23 2004-04-13 Agilent Technologies, Inc. Electro-optical material-based display device
WO2001079921A3 (en) * 2000-04-18 2002-07-25 Digital Reflection Inc Microdisplay packaging
JP2001343665A (en) * 2000-06-02 2001-12-14 Citizen Watch Co Ltd Liquid crystal display device
CN113419385A (en) * 2021-05-31 2021-09-21 北海惠科光电技术有限公司 Display panel, preparation method thereof and display device
CN113419385B (en) * 2021-05-31 2022-09-27 北海惠科光电技术有限公司 Display panel, preparation method thereof and display device

Similar Documents

Publication Publication Date Title
US4838654A (en) Liquid crystal display device having display and driver sections on a single board
KR100439784B1 (en) Semiconductor device, substrate for electro-optical device, electro-optical device, electronic device, and projection display
US7973868B2 (en) Active matrix substrate, reflection type liquid crystal display apparatus and liquid crystal projector system
US6900861B2 (en) Electric optical apparatus using a composite substrate formed by bonding a semiconductor substrate and manufacturing method of the same, projection display, and electronic instrument
US6836302B2 (en) Active matrix substrate, electro-optical device and electronic equipment
KR19980033030A (en) Liquid crystal panel substrate, liquid crystal panel, electronics and projection display device using the same
JPH10288797A (en) Reflection type liquid crystal panel and device using the same
US6483560B2 (en) Liquid crystal device having metal light shielding layer with portions at different potentials
JP5532899B2 (en) Electro-optical device and electronic apparatus
US6437839B1 (en) Liquid crystal on silicon (LCOS) display pixel with multiple storage capacitors
JP2010079038A (en) Electro-optical apparatus, electronic device, and transistor
KR100781104B1 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP5298480B2 (en) Electro-optical device and electronic apparatus
JP5125140B2 (en) Reflective liquid crystal device and electronic apparatus
JPH0862616A (en) Reflection type liquid crystal element and projection type display device using this element
JPH08286202A (en) Liquid crystal display device
JPH1039332A (en) Liquid crystal panel and substrate for liquid crystal panel as well as projection type display device
JP2006139092A (en) Electrooptical device and electronic equipment
JP2009122305A (en) Liquid crystal device and electronic device
US11598999B2 (en) Electro-optical device and electronic apparatus
JPS6145221A (en) Device for image display and its manufacture
JPH07199215A (en) Display device and liquid crystal display
JP3187736B2 (en) Active matrix panel, drive circuit for active matrix panel, viewfinder, and projection display device
JP2004206134A (en) Substrate for liquid crystal panel, liquid crystal panel, and electronic appliance and projection display apparatus using the same
JP2003084307A (en) Electro-optical device, manufacturing method therefor, and projection type display device