JPH0862339A - Underground survey method and underground survey device - Google Patents

Underground survey method and underground survey device

Info

Publication number
JPH0862339A
JPH0862339A JP20095594A JP20095594A JPH0862339A JP H0862339 A JPH0862339 A JP H0862339A JP 20095594 A JP20095594 A JP 20095594A JP 20095594 A JP20095594 A JP 20095594A JP H0862339 A JPH0862339 A JP H0862339A
Authority
JP
Japan
Prior art keywords
underground
data
electromagnetic wave
ground
exploration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20095594A
Other languages
Japanese (ja)
Other versions
JP3423948B2 (en
Inventor
Hiroshi Tomita
洋 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO SAAC KK
Original Assignee
GEO SAAC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO SAAC KK filed Critical GEO SAAC KK
Priority to JP20095594A priority Critical patent/JP3423948B2/en
Priority to PCT/JP1995/001660 priority patent/WO1996006367A1/en
Priority to AU32644/95A priority patent/AU3264495A/en
Publication of JPH0862339A publication Critical patent/JPH0862339A/en
Application granted granted Critical
Publication of JP3423948B2 publication Critical patent/JP3423948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE: To three-dimensionally grasp the underground state with one survey by driving an electromagnetic wave into the ground, receiving the reflected wave in a plurality of positions on the plane, and performing a three-dimensional analysis on the basis of the received data. CONSTITUTION: A transmitter 1 is arranged keeping a distance from a receiver group 2 to drive an electromagnetic wave obliquely into the ground. The electromagnetic wave is driven obliquely into the ground from the transmitting antenna of one transmitter 1, thereby the reflecting area of the electromagnetic wave reflected from the ground sufficiently covers the receiving area of the receiver group 2 arranged in a matrix of m×n column, and also surveys the state in the ground. The line directional and column directional data of the ground obtained from each receiver 2a are connected together, whereby, a three- dimensional underground data can be provided. The data obtained by the receiver group 2 is subjected to image processing, thereby, the underground state in this area can be three-dimensionally displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、地中に向けて発射した
電磁波を受信し、地中の状態を地面と平行なスライスレ
ベルで探知でき、さらに例えば地中に形成された空洞等
を三次元的に把握することができる地中探査方法および
地中探査装置に関する。
BACKGROUND OF THE INVENTION The present invention can detect electromagnetic waves emitted toward the ground and detect the state of the ground at a slice level parallel to the ground. The present invention relates to an underground exploration method and an underground exploration device that can be grasped from the beginning.

【従来の技術】従来、地中の探査、特に地面より比較的
浅い部分における探査としては、舗装道路下における空
洞探査が知られている。この舗装道路下における空洞探
査には、地中に向けて電磁波を発射する一つの発信アン
テナと、地中からの反射波を受信する受信アンテナと、
該受信アンテナで受信した反射波を処理してCRT上あ
るいは紙面上に可視像化する信号処理装置とから構成さ
れた地中探査装置を使用し、一般に該発信アンテナと該
受信アンテナとは地面上を走行可能とする走行体にユニ
ット化して設けられている。このような構成の走行体を
探査車に取り付け、該探査車を一般の車両と同じように
道路を走行させながら地中の探査を行い、得られたデー
タを解析し、その中で例えば空洞が生じていると思われ
る箇所があると、その周辺領域を詳細に調査する。つま
り、探査車による一次調査は、探査車の走行方向におけ
る道路下の縦断面を波形データとして得るもので、空洞
が生じていると思われる道路の周辺領域を手押し式の走
行体でメッシュ状に調査することで、もしも空洞があれ
ば平面的にそれを知ることができることになる。
2. Description of the Related Art Conventionally, cavity exploration under a paved road has been known as an exploration in the ground, especially in an area relatively shallower than the ground. For cavity exploration under this paved road, one transmitting antenna that emits electromagnetic waves toward the ground, and a receiving antenna that receives reflected waves from the ground,
An underground exploration device including a signal processing device that processes a reflected wave received by the receiving antenna and visualizes it on a CRT or a paper surface is used. Generally, the transmitting antenna and the receiving antenna are grounded. It is provided as a unit in a traveling body that can travel above. A traveling body having such a structure is attached to an exploration vehicle, the exploration vehicle is searched for in the ground while traveling on a road like a general vehicle, and the obtained data is analyzed. If there is any area that seems to be occurring, investigate the surrounding area in detail. In other words, in the primary survey by the exploration vehicle, the longitudinal section under the road in the traveling direction of the exploration vehicle is obtained as waveform data. By investigating, if there is a cavity, it will be possible to know it in a plane.

【発明が解決しようとする課題】ところで、このような
従来の舗装道路下の空洞探査に代表される地中探査は、
走行体の移動方向に沿った縦断面の様子を波形として得
る一次調査と、該一次調査によって得られた波形データ
を後日解析するという解析作業と、該解析作業の結果に
より再調査を要すると判定された場合に行われる二次調
査とを要し、一度に所定の領域における舗装道路下の空
洞の有無および大きさを知ることができないという問題
があった。また、二次調査で得られるデータは、空洞の
平面的な大きさだけであって、空洞の容積を知ることは
できないものであった。さらに、舗装道路下の空洞は、
一定の厚さに舗装されたアスファルト下で生じることか
ら、路面から舗装部分下までのデータは元来不要であ
り、その長さのデータをキャンセルできれば、データ処
理の時間も短縮でき、一方において空洞のできる路面下
の距離が予め分かっていれば、その深さを指定し、該深
さ以下よりデータを得るようにできれば便利である。本
発明の第1の目的は、舗装道路下等の地中の状態を一度
の探査で三次元的に知ることができる地中探査方法を提
供することを目的とする。本発明の第2の目的は、地中
の任意の深さのデータを取得することができる地中探査
方法を提供することにある。本発明の第3の目的は、第
1および第2の目的を有効に実現できる地中探査装置を
提供することにある。
By the way, the underground exploration typified by the conventional cavity exploration under the paved road is as follows.
A primary survey to obtain the waveform of the longitudinal cross section along the moving direction of the traveling body, an analysis work to analyze the waveform data obtained by the primary survey at a later date, and a re-survey is determined based on the result of the analysis work. In that case, it is necessary to carry out a secondary survey, and there is a problem that it is not possible to know the presence or absence and the size of a cavity under the paved road in a predetermined area at a time. Moreover, the data obtained in the secondary survey was only the planar size of the cavity, and it was not possible to know the volume of the cavity. In addition, the cavity under the paved road is
Since it occurs under the asphalt paved with a certain thickness, the data from the road surface to the bottom of the paved portion is originally unnecessary, and if the data of that length can be canceled, the data processing time can be shortened and the cavity It is convenient if the depth under the road surface is known in advance so that the depth can be specified and data can be obtained from the depth or less. A first object of the present invention is to provide an underground exploration method capable of three-dimensionally knowing the underground condition under a paved road or the like by one exploration. A second object of the present invention is to provide an underground exploration method capable of acquiring data at an arbitrary depth in the ground. A third object of the present invention is to provide an underground exploration device that can effectively realize the first and second objects.

【課題を解決するための手段および作用】本発明の第1
の目的を実現する構成は、請求項1に記載のように、電
磁波発信手段より地中に向けて打ち込まれた電磁波に対
して、その反射波を平面上の複数の箇所で受信手段によ
り受信し、各受信手段で受信した受信データに基づき探
査領域の地中の状態を三次元的に解析することを特徴と
する。この構成によれば、平面的な広がりでの地中状態
のデータを得ることができるので、深度方向でのデータ
を加えることで三次元での地中状態を一度の探査で得る
ことが可能となる。また、請求項2に記載のように、請
求項1に加えて、三次元的に解析したデータを画像情報
として表示手段に出力させることにより、地中状態を立
体的に目視することが可能となる。本発明の第2の目的
を実現する構成は、請求項3に記載のように、請求項1
または2において、三次元的に解析したデータを地中深
度毎に出力させることを特徴とする。この構成では、任
意の深度における平面的な地中データを出力することが
できるので、例えば指定した深度での地中状態を直ちに
知ることができ、他の深度のデータ表示が不要であると
いうような場合に有効となる。本発明の第3の目的を実
現する構成は、請求項4に記載のように、電磁波を地中
にむけて打ち込む電磁波発信手段と、探査領域に対して
平面的に複数配置され、該電磁波発信手段から地中に向
けて打ち込まれた電磁波の反射を受信する受信手段と、
該複数の受信手段で受信した各データと時系列的なデー
タに基づいて探査領域の地中状態を三次元的に解析する
データ解析手段とを有することを特徴とする。この構成
によれば、例えばマトリックス上に配置した複数の受信
手段により一度に地中で反射した電磁波を受信させると
いう従来の地中探査装置では考えられなかった方式を採
用することにより、地中状態を三次元的に把握すること
ができることとなる。そして、この地中探査装置の構成
としては、請求項5に記載のように、電磁波発信手段は
一の発信アンテナのみ有する方式、あるいは請求項6に
記載のように、電磁波発信手段の発信アンテナを各受信
手段と一体的に構成し、発振器からの電磁波を分配手段
により選択可能に該各発信アンテナに送る方式等があ
り、前者の方式では発信手段が少なくて済、後者の方式
では小出力で高精度に地中の三次元的探査が可能とな
る。また、データ解析手段により解析した地中データを
任意の深度毎に画像表示させる表示手段を有することに
より、任意の深度での地中状態を目視することが可能と
なる。
Means and Actions for Solving the Problems First of the Invention
The structure for achieving the above object is, as described in claim 1, for an electromagnetic wave driven toward the ground by the electromagnetic wave transmitting means, the reflected wave is received by the receiving means at a plurality of points on the plane. The three-dimensional analysis of the underground condition of the exploration area is performed based on the received data received by each receiving means. According to this configuration, it is possible to obtain the underground state data in a two-dimensional spread, so by adding the data in the depth direction, it is possible to obtain the three-dimensional underground state with a single exploration. Become. Further, as described in claim 2, in addition to claim 1, by outputting the three-dimensionally analyzed data as image information to the display means, it is possible to stereoscopically visually check the underground condition. Become. According to a third aspect of the present invention, there is provided a configuration that achieves the second object of the present invention.
Alternatively, in 2, the data analyzed three-dimensionally is output for each underground depth. With this configuration, it is possible to output planar underground data at any depth, so it is possible to immediately know the underground condition at the specified depth, and it is unnecessary to display data at other depths. It is effective in all cases. According to a fourth aspect of the present invention, there is provided an electromagnetic wave transmitting means for driving an electromagnetic wave into the ground and a plurality of electromagnetic wave transmitting means arranged in a plane with respect to an exploration area. Receiving means for receiving the reflection of electromagnetic waves driven from the means toward the ground,
It is characterized by comprising data analysis means for three-dimensionally analyzing the underground condition of the exploration region based on each data received by the plurality of reception means and time-series data. According to this configuration, for example, by adopting a method that is not conceivable in the conventional underground exploration device, in which the electromagnetic waves reflected in the ground at one time are received by a plurality of receiving means arranged on the matrix, Can be grasped in three dimensions. As for the structure of this underground exploration device, as described in claim 5, the electromagnetic wave transmitting means has only one transmitting antenna, or as described in claim 6, the electromagnetic wave transmitting means has an transmitting antenna. There is a method, etc. that is configured integrally with each receiving means and sends the electromagnetic wave from the oscillator to each transmitting antenna in a selectable manner by the distributing means.The former method requires less transmitting means, and the latter method has a small output. It enables highly accurate three-dimensional underground survey. Further, by having the display unit for displaying the underground data analyzed by the data analyzing unit at each arbitrary depth, it becomes possible to visually check the underground condition at the arbitrary depth.

【実施例】図1は本発明における地中探査方法の第1の
実施例を示す概略図である。1は地中探査に用いられる
電磁波を地面に向けて発射する発信アンテナ及び発振器
をユニット化したトランスミッター、2はトランスミッ
ター1の発信アンテナから発射され地中から反射した電
磁波を受信するレシーバー群で、このレシーバー群2は
m×n列にレシーバー2aを配置した構成としており、
レシーバー2aは受信アンテナと受信機とをユニット化
されている。トランスミッター1はレシーバー群2とは
離れて配置され、電磁波を地面に対して斜めに打ち込
む。1つのトランスミッター1の発信アンテナから電磁
波を斜めに向けて地面に打ち込むことにより、地中より
反射する電磁波の反射領域はm×n列のマトリックスに
配置されたレシーバー群2の受信領域を充分カバーし、
したがってレシーバー群2のm×n列の平面的領域で同
時に地中の状態を探査することができる。各レシーバー
1aから得られる地中のデータは深度方向における断面
的な波形データである一次データであるが、列方向にn
個並ぶレシーバーの一次データをつなぎ合わせると深度
(H)×nの大きさの断面でのデータ(二次データ)が
得られ、さらにこの二次データを行方向にm個並ぶレシ
ーバー列の二次データとつなぎ合わせれば、H×n×m
の大きさの立体的な地中データが得られることになる。
このようなm×n個のレシーバーからなるレシーバー群
により得られたデータを画像処理することにより、その
領域の地中状態を立体的に表示させることができ、また
タイムスライス処理を行うことにより、図2に示すよう
に、指定の深度(Hn )毎の平面データも得ることがで
きる。さらに、立体的な地中データを図3の(a)に示
すように斜視図として画像処理することもでき、図3の
(b)のように断面的な地中データしか得られなかった
従来の探査方法に比べ、例えば地下に埋設されているガ
ス管や水道管等の埋設管の配管状態を知ることができる
ことになる。このようなトランスミッター1とレシーバ
ー群2とは、例えば車輪を有する手押し式の走行体(不
図示)に取り付けられ、一つの領域の探査を終えると、
例えば隣の領域に走行体を移動させて探査を続ける。地
中の状態を立体的に知り得ることができ、これを画像処
理等の処理を施すことにより、例えば地下に形成されて
いる空洞の容積を算出することができ、したがって、道
路の陥没を防ぐ為に空洞を埋める補修作業に要するセメ
ント等の充填材料の量を即座に知ることができることに
なる。また、舗装道路の陥没の原因となる舗装道路下の
空洞の形状は必ずしも一定ではなく、空洞上部の形状に
よって、舗装道路の陥没の危険性が非常に高いものから
比較的低いものまである程度特定することができる。こ
のため、立体的に得られた空洞上部の形状から舗装道路
の陥没の危険性について順位を付けることで、実際に即
応した空洞の補修作業を実施することができる。さら
に、舗装道路下の空洞探査に際し、コンクリートやアス
ファルト等の舗装部分の厚さは予め知ることができるの
で、画像処理の際に該舗装部分の厚さを除き、それ以下
の地中データについて処理を行うようにすれば、画像処
理に要する時間を短縮することができる。また、舗装道
路下において空洞のできる範囲はある程度決まっている
ので、この深度での平面的データで空洞の存在の有無を
判断し、空洞が存在しなければ、その領域での探査を中
止し、これをブザー、ランプ等で操作者に知らせ、空洞
があれば探査を続行するようにすることもできる。図4
は本発明の第2の実施例を示す。本実施例は、送信用の
アンテナと受信用のアンテナおよび受信機をユニット化
したモジュール11aをm×n列のマトリックス状に配
置し、全体として平板な形状とした送受信部11に分配
器12を接続し、発振器13からの電磁波を分配器12
を介して送受信部11の各モジュール11aに送る。こ
の分配器12は、例えば行毎のn個のモジュール11
a、あるいは列毎のm個のモジュール11a、さらには
任意のモジュール11aの各送信用のアンテナに一度に
電磁波を送ることができるようにしており、例えば行毎
のn個のモジュール11aに電磁波を送りモードを選択
すると、順次他の行のモジュールに電磁波を送るように
切り替え、その都度送信の行われたモジュールの受信機
により地中から反射した電磁波を受信する。本実施例で
は、図4の(c)に示すように、電磁波を送信アンテナ
より略真下に向けて発射することができると共に、地中
からの反射波も略真上で受信することができることにな
り、図1に示す第1の実施例の場合に比較して地中の探
査精度が飛躍的に向上し、また小出力で高精度のデータ
を取得することができる。本実施例の場合も第1の実施
例と同様に、各モジュール11aにおいて受信した受信
データがm×nの平面において深度方向において時系列
的に得られるので、これらのデータに対して三次元処理
を施すことにより、図2あるいは図3のような画像デー
タを得ることが可能となる。また、発振器13には、図
4の(c)に示すように、高周波用発振器13a、中周
波用発振器13b、低周波用発振器13cの電磁波発振
器を用意することにより、探査目的に応じて最適周波数
での探査を行える。例えば、浅い深度での探査を目的と
する場合には高周波用発振器13a、深い深度での探査
を目的とする場合には低周波用発振器13cを使用する
ことにより、高精度での探査を維持することができる。
FIG. 1 is a schematic view showing a first embodiment of the underground exploration method according to the present invention. 1 is a transmitter that unitizes a transmitting antenna and an oscillator that emits electromagnetic waves used for underground exploration toward the ground, and 2 is a group of receivers that receive electromagnetic waves emitted from the transmitting antenna of transmitter 1 and reflected from the ground. The receiver group 2 has a configuration in which the receivers 2a are arranged in m × n rows,
The receiver 2a has a receiving antenna and a receiver as a unit. The transmitter 1 is arranged apart from the receiver group 2 and emits electromagnetic waves obliquely to the ground. By radiating an electromagnetic wave obliquely from the transmitting antenna of one transmitter 1 to the ground, the reflection area of the electromagnetic wave reflected from the ground sufficiently covers the reception area of the receiver group 2 arranged in a matrix of m × n rows. ,
Therefore, the state of the ground can be simultaneously searched in the m × n array of planar regions of the receiver group 2. The underground data obtained from each receiver 1a is primary data which is sectional waveform data in the depth direction.
When the primary data of the receivers that are lined up are connected together, the data (secondary data) in the cross section of the size of depth (H) × n is obtained, and the secondary data of the receiver row in which the secondary data are lined up by m H × n × m if connected to data
Three-dimensional underground data of the size will be obtained.
By image-processing the data obtained by such a receiver group consisting of m × n receivers, it is possible to stereoscopically display the underground state of the area, and by performing the time slice processing, As shown in FIG. 2, plane data for each designated depth (H n ) can also be obtained. Further, three-dimensional underground data can be image-processed as a perspective view as shown in FIG. 3 (a), and only conventional cross-sectional underground data can be obtained as shown in FIG. 3 (b). Compared with the exploration method described in (1), it is possible to know the piping condition of a buried pipe such as a gas pipe or a water pipe buried underground. Such a transmitter 1 and a receiver group 2 are attached to, for example, a hand-held traveling body (not shown) having wheels, and when exploration of one area is completed,
For example, the traveling body is moved to the adjacent area to continue the exploration. The state of the ground can be known three-dimensionally, and by performing processing such as image processing, it is possible to calculate the volume of the cavity formed in the underground, thus preventing the collapse of the road. Therefore, it becomes possible to immediately know the amount of the filling material such as cement required for the repair work for filling the cavity. In addition, the shape of the cavity under the paved road that causes the paved road to collapse is not always constant, and the shape of the upper part of the cavity identifies the risk of the paved road from being extremely high to relatively low. be able to. Therefore, it is possible to carry out the repair work of the cavity which is immediately adapted by ranking the danger of the depression of the paved road from the three-dimensionally obtained shape of the cavity upper part. Furthermore, the thickness of the pavement such as concrete and asphalt can be known in advance when exploring cavities under the pavement, so the thickness of the pavement is excluded during image processing, and the underground data below that is processed. By doing so, the time required for image processing can be shortened. In addition, since the range of cavities under the paved road is determined to some extent, the presence or absence of cavities is determined from the planar data at this depth. If no cavities exist, the exploration in that area is stopped, The operator can be notified of this by a buzzer, lamp, etc., and if there is a cavity, the exploration can be continued. FIG.
Shows a second embodiment of the present invention. In this embodiment, modules 11a each including a transmitting antenna, a receiving antenna, and a receiver as a unit are arranged in a matrix of m × n rows, and a distributor 12 is provided in a transmitting / receiving unit 11 having a flat plate shape as a whole. Connect to connect the electromagnetic wave from the oscillator 13 to the distributor 12
To each module 11a of the transmission / reception unit 11 via. The distributor 12 may include, for example, n modules 11 for each row.
a, or m modules 11a for each column, and further, an electromagnetic wave can be sent at once to each antenna for transmission of any module 11a. For example, electromagnetic waves can be sent to n modules 11a for each row. When the sending mode is selected, switching is performed so as to sequentially send the electromagnetic waves to the modules of other rows, and the electromagnetic waves reflected from the ground are received by the receiver of the module that transmitted each time. In the present embodiment, as shown in FIG. 4C, the electromagnetic wave can be emitted substantially downward from the transmitting antenna, and the reflected wave from the ground can be received almost directly above. In comparison with the case of the first embodiment shown in FIG. 1, the underground survey accuracy is dramatically improved, and high-accuracy data can be acquired with a small output. Also in the case of the present embodiment, as in the first embodiment, since the reception data received by each module 11a is obtained in time series in the depth direction on the m × n plane, three-dimensional processing is performed on these data. It becomes possible to obtain the image data as shown in FIG. 2 or FIG. Further, as shown in FIG. 4C, the oscillator 13 is provided with an electromagnetic wave oscillator such as a high-frequency oscillator 13a, a medium-frequency oscillator 13b, and a low-frequency oscillator 13c, so that the optimum frequency can be obtained according to the search purpose. You can search in. For example, by using the high-frequency oscillator 13a for the purpose of exploration at a shallow depth and by using the low-frequency oscillator 13c for the purpose of exploration at a deep depth, high-precision exploration is maintained. be able to.

【発明の効果】請求項1に記載の発明によれば、平面的
な広がりでの地中状態のデータを得ることができるの
で、深度方向でのデータを加えることで三次元での地中
状態を一度の探査で得ることが可能となる。請求項2に
記載の発明によれば、三次元的に解析したデータを画像
情報として表示手段に出力させることにより、地中状態
を立体的に目視することが可能となる。請求項3に記載
の発明によれば、任意の深度における平面的な地中デー
タを出力することができるので、例えば指定した深度で
の地中状態を直ちに知ることができ、他の深度のデータ
表示が不要であるというような場合に有効となる。請求
項4に記載の発明によれば、例えばマトリックス上に配
置した複数の受信手段により一度に地中で反射した電磁
波を受信させるという従来の地中探査装置では考えられ
なかった方式を採用することにより、地中状態を三次元
的に把握することができることとなる。請求項5および
6に記載の発明によれば、発信手段が少なくて済、また
小出力で高精度に地中の三次元的探査が可能となる。請
求項7に記載の発明によれば、データ解析手段により解
析した地中データを任意の深度毎に画像表示させる表示
手段を有することにより、任意の深度での地中状態を目
視することが可能となる。
According to the first aspect of the present invention, it is possible to obtain the data of the underground condition in a two-dimensional spread. Therefore, by adding the data in the depth direction, the underground condition in three dimensions can be obtained. Can be obtained in a single exploration. According to the second aspect of the present invention, the three-dimensionally analyzed data is output to the display means as image information, so that the underground condition can be visually observed in three dimensions. According to the invention described in claim 3, since it is possible to output the planar underground data at an arbitrary depth, for example, it is possible to immediately know the underground condition at the designated depth, and the data of other depths can be obtained. This is effective when the display is unnecessary. According to the invention described in claim 4, for example, a method, which is not considered in the conventional underground exploration device, is adopted in which the electromagnetic waves reflected in the ground at a time are received by a plurality of receiving means arranged on the matrix. By this, it becomes possible to grasp the underground condition three-dimensionally. According to the invention described in claims 5 and 6, it is possible to reduce the number of transmitting means, and it is possible to perform a three-dimensional underground survey with high accuracy and a small output. According to the invention as set forth in claim 7, since the underground data analyzed by the data analyzing means is provided with a display means for displaying an image for each arbitrary depth, the underground condition at any depth can be visually observed. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示し、(a)は探査装
置の概略平面図、(b)はその概略断面図を示す。
FIG. 1 shows a first embodiment of the present invention, in which (a) is a schematic plan view of an exploration device and (b) is a schematic sectional view thereof.

【図2】第1の実施例により得られたデータをタイムス
ライスレベルで解析した状態を示す図。
FIG. 2 is a diagram showing a state in which data obtained by the first embodiment is analyzed at a time slice level.

【図3】複雑に入り組んだ地中配管を示す概略図で、
(a)は三次元状態での地中配管、(b)は従来方式で
解析した地中配管の状態を示す。
FIG. 3 is a schematic view showing a complicated underground pipe,
(A) shows the underground pipe in a three-dimensional state, and (b) shows the state of the underground pipe analyzed by the conventional method.

【図4】第2の実施例を示し、(a)は探査装置の概略
平面図、(b)は発振器、分配器および各モジュールと
の関係を示す概略図、(c)は(a)の断面図を示して
いる。
4A and 4B show a second embodiment, FIG. 4A is a schematic plan view of an exploration device, FIG. 4B is a schematic view showing the relationship between an oscillator, a distributor and each module, and FIG. A sectional view is shown.

【符号の説明】[Explanation of symbols]

1 トランスミッター 2 レシーバー群 2a レシーバー 11 送受信部 11a モジュール 12 分配器 13 発振器 1 transmitter 2 receiver group 2a receiver 11 transmitter / receiver 11a module 12 distributor 13 oscillator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電磁波発信手段より地中に向けて打ち込
まれた電磁波に対して、その反射波を平面上の複数の箇
所で受信手段により受信し、各受信手段で受信した受信
データに基づき探査領域の地中の状態を三次元的に解析
することを特徴とする地中探査方法。
1. An electromagnetic wave emitted from an electromagnetic wave transmitting means toward the ground, reflected waves thereof are received by a receiving means at a plurality of points on a plane, and a search is performed based on the received data received by each receiving means. An underground exploration method characterized by three-dimensionally analyzing the underground condition of a region.
【請求項2】 請求項1において、三次元的に解析した
データを画像情報として表示手段に出力させることを特
徴とする地中探査方法。
2. The underground exploration method according to claim 1, wherein the three-dimensionally analyzed data is output to the display means as image information.
【請求項3】 請求項1または2において、三次元的に
解析したデータを地中深度毎に出力させることを特徴と
する地中探査方法。
3. The underground exploration method according to claim 1, wherein the three-dimensionally analyzed data is output for each underground depth.
【請求項4】 電磁波を地中にむけて打ち込む電磁波発
信手段と、探査領域に対して平面的に複数配置され、該
電磁波発信手段から地中に向けて打ち込まれた電磁波の
反射を受信する受信手段と、該複数の受信手段で受信し
た各データと時系列的なデータに基づいて探査領域の地
中状態を三次元的に解析するデータ解析手段とを有する
ことを特徴とする地中探査装置。
4. An electromagnetic wave transmitting means for injecting an electromagnetic wave toward the ground and a plurality of receiving means arranged in a plane with respect to the exploration area and receiving the reflection of the electromagnetic wave driven toward the ground from the electromagnetic wave transmitting means. Means, and data analysis means for three-dimensionally analyzing the underground condition of the exploration region based on each data received by the plurality of receiving means and time-series data. .
【請求項5】 請求項4において、電磁波発信手段は一
の発信アンテナのみ有することを特徴とする地中探査装
置。
5. The underground exploration device according to claim 4, wherein the electromagnetic wave transmission means has only one transmission antenna.
【請求項6】 請求項4において、電磁波発信手段の発
信アンテナを各受信手段と一体的に構成し、発振器から
の電磁波を分配手段により選択可能に該各発信アンテナ
に送ることを特徴とする地中探査装置。
6. The ground according to claim 4, wherein the transmitting antenna of the electromagnetic wave transmitting means is integrally formed with each receiving means, and the electromagnetic wave from the oscillator is selectively sent to each transmitting antenna by the distributing means. Medium exploration device.
【請求項7】 請求項4、5または6において、データ
解析手段により解析した地中データを任意の深度毎に画
像表示させる表示手段を有することを特徴とする地中探
査装置。
7. The underground exploration device according to claim 4, 5 or 6, further comprising display means for displaying an image of the underground data analyzed by the data analysis means for each arbitrary depth.
JP20095594A 1994-08-25 1994-08-25 Underground exploration method and underground exploration device Expired - Lifetime JP3423948B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20095594A JP3423948B2 (en) 1994-08-25 1994-08-25 Underground exploration method and underground exploration device
PCT/JP1995/001660 WO1996006367A1 (en) 1994-08-25 1995-08-23 Method and device for investigating underground
AU32644/95A AU3264495A (en) 1994-08-25 1995-08-23 Method and device for investigating underground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20095594A JP3423948B2 (en) 1994-08-25 1994-08-25 Underground exploration method and underground exploration device

Publications (2)

Publication Number Publication Date
JPH0862339A true JPH0862339A (en) 1996-03-08
JP3423948B2 JP3423948B2 (en) 2003-07-07

Family

ID=16433092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20095594A Expired - Lifetime JP3423948B2 (en) 1994-08-25 1994-08-25 Underground exploration method and underground exploration device

Country Status (3)

Country Link
JP (1) JP3423948B2 (en)
AU (1) AU3264495A (en)
WO (1) WO1996006367A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023762A1 (en) * 1998-10-21 2000-04-27 Omron Corporation Mine detector and inspection apparatus
JP2001183469A (en) * 1999-12-24 2001-07-06 Osaka Gas Co Ltd Antenna for underground detection radar
JP2002323459A (en) * 2001-04-27 2002-11-08 Mitsui Eng & Shipbuild Co Ltd Multipath three-dimensional imaging radar apparatus
JP2012184624A (en) * 2011-03-08 2012-09-27 Geo Search Co Ltd Evaluation method for soundness of pavement
JP2014098597A (en) * 2012-11-13 2014-05-29 Geo Search Co Ltd Method for evaluating the risk of subsidence

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2304483B (en) * 1995-08-18 2000-03-29 London Electricity Plc System for and method of determining the location of an object in a medium
GB2307611B (en) * 1995-11-01 2000-03-22 British Gas Plc Measurement arrangement
GB9818875D0 (en) 1998-08-28 1998-10-21 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
GB0002422D0 (en) 2000-02-02 2000-03-22 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
WO2002014906A1 (en) 2000-08-14 2002-02-21 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs
GB2383133A (en) 2001-08-07 2003-06-18 Statoil Asa Investigation of subterranean reservoirs
GB2413188B (en) 2001-08-07 2006-01-11 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
GB2434868B (en) 2006-02-06 2010-05-12 Statoil Asa Method of conducting a seismic survey
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
CN117233755B (en) * 2023-11-08 2024-01-26 江苏筑升土木工程科技有限公司 Rapid automatic detection system for road subgrade diseases and underground disease bodies

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427140A (en) * 1977-08-02 1979-03-01 Nissan Motor Co Ltd Multiple antenna and radar system
JPS60108750A (en) * 1983-11-11 1985-06-14 シユラムバ−ガ− オ−バ−シ−ズ ソシエテ アノニム Diffraction tomography device and method
JPS61258182A (en) * 1985-05-10 1986-11-15 Omron Tateisi Electronics Co Three-dimensional video device
JPS61262673A (en) * 1985-05-16 1986-11-20 Central Res Inst Of Electric Power Ind Method for searching underground embedded article
JPH01280277A (en) * 1988-05-06 1989-11-10 Komatsu Ltd Underground buried body survey device
JPH02257082A (en) * 1989-03-30 1990-10-17 Komatsu Ltd Underground searching device
JP2959220B2 (en) * 1991-07-24 1999-10-06 日本電気株式会社 Electronic scanning antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023762A1 (en) * 1998-10-21 2000-04-27 Omron Corporation Mine detector and inspection apparatus
GB2360891A (en) * 1998-10-21 2001-10-03 Omron Tateisi Electronics Co Mine detector and inspection apparatus
GB2360891B (en) * 1998-10-21 2004-02-11 Omron Tateisi Electronics Co Mine detector and inspection apparatus
JP2001183469A (en) * 1999-12-24 2001-07-06 Osaka Gas Co Ltd Antenna for underground detection radar
JP2002323459A (en) * 2001-04-27 2002-11-08 Mitsui Eng & Shipbuild Co Ltd Multipath three-dimensional imaging radar apparatus
JP4709421B2 (en) * 2001-04-27 2011-06-22 三井造船株式会社 Multipath 3D visualization radar system
JP2012184624A (en) * 2011-03-08 2012-09-27 Geo Search Co Ltd Evaluation method for soundness of pavement
JP2014098597A (en) * 2012-11-13 2014-05-29 Geo Search Co Ltd Method for evaluating the risk of subsidence

Also Published As

Publication number Publication date
WO1996006367A1 (en) 1996-02-29
AU3264495A (en) 1996-03-14
JP3423948B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JPH0862339A (en) Underground survey method and underground survey device
CN104698498B (en) Estimate the system and method away from P-S wave velocity ratio (Vp/Vs) in well region
JP3996367B2 (en) Exploration radar device for manual tool equipment
JP3768101B2 (en) Landmine detection device and inspection device
EP1813966B1 (en) Seabed resource exploration system and seabed resource exploration method
US20140104979A1 (en) Ground-Penetrating Tunnel-Detecting Active Sonar
JP2005503566A (en) Subsurface radar imaging
EP2023159A1 (en) Method and system for echo localisations of objects
US20200116555A1 (en) Heterogeneous subsurface imaging systems and methods
EP3570069A1 (en) Method of compressing beamformed sonar data
US20030053373A1 (en) Acoustical imaging interferometer for detection of buried underwater objects
JP3936472B2 (en) Underground exploration method
EP2734868B1 (en) Apparatus and method for non-invasive real-time subsoil inspection
JP2017040547A (en) Buried object prospecting method and buried object prospecting apparatus
JP3717835B2 (en) Buried object exploration equipment
KR101932883B1 (en) Estimation method of cavity volume from GPR data by C-scan contour, reflex response and diffraction response
JP6734612B1 (en) Cavity thickness estimation method and device
JP5200987B2 (en) Method and apparatus for exploring and classifying objects under water
JP6478557B2 (en) Exploration method
US6690617B2 (en) Application of sonic signals to detect buried, underground utilities
JP4365058B2 (en) Railroad track inspection method and apparatus
KR20020036472A (en) 3D Color Mobile Ground RADAR and Method for Managing it
Lebedev et al. Coherent seismoacoustics
RU2180446C2 (en) Seismic wave generator
JP2003107164A (en) Aperture synthesys survey device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term