WO1996006367A1 - Method and device for investigating underground - Google Patents

Method and device for investigating underground Download PDF

Info

Publication number
WO1996006367A1
WO1996006367A1 PCT/JP1995/001660 JP9501660W WO9606367A1 WO 1996006367 A1 WO1996006367 A1 WO 1996006367A1 JP 9501660 W JP9501660 W JP 9501660W WO 9606367 A1 WO9606367 A1 WO 9606367A1
Authority
WO
WIPO (PCT)
Prior art keywords
underground
data
dimensionally
electromagnetic wave
ground
Prior art date
Application number
PCT/JP1995/001660
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tomita
Original Assignee
Geo Search Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geo Search Co., Ltd. filed Critical Geo Search Co., Ltd.
Priority to AU32644/95A priority Critical patent/AU3264495A/en
Publication of WO1996006367A1 publication Critical patent/WO1996006367A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Definitions

  • the present invention can receive electromagnetic waves emitted toward the ground, detect the state of the ground at a slice level parallel to the ground, and further three-dimensionally grasp, for example, a cavity formed in the ground.
  • the present invention relates to an underground exploration method and an underground exploration device that can be used. Background art
  • one transmitting antenna that emits electromagnetic waves toward the ground, a receiving antenna that receives reflected waves from the ground, and a reflected wave received by the receiving antenna are processed.
  • the transmitting antenna and the receiving antenna are mounted on a vehicle capable of traveling on the ground using an underground exploration device composed of a signal processing device for visualizing the image on a CRT or on paper. It is provided as a standard.
  • a vehicle with such a configuration is attached to a rover, and the rover is driven underground while traveling on the road in the same way as a general vehicle, and the obtained data is analyzed. If there is a place that seems to have occurred, investigate the surrounding area in detail.
  • the longitudinal section under the road in the traveling direction of the rover is obtained as waveform data, and the area around the road where a cavity is considered to be formed is meshed with a hand-held traveling body.
  • the underground exploration typified by such a conventional underground exploration under a paved road is obtained by a primary investigation for obtaining a waveform of a longitudinal section along a moving direction of a vehicle, and the primary investigation.
  • a secondary investigation is performed when it is determined that re-investigation is required based on the results of the analysis work.
  • the data obtained in the secondary survey was only the planar size of the cavity, and the volume of the cavity could not be known.
  • cavities under paved roads occur under asphalt paved to a certain thickness, so data from the road surface to under the pavement is essentially unnecessary, and if data of that length can be canceled, The data processing time can be shortened.
  • the distance below the road where a cavity can be formed is known in advance, it is convenient if the depth can be specified and data can be obtained from the depth or less.
  • a first object of the present invention is to provide an underground exploration method capable of three-dimensionally knowing the state of the underground under a paved road or the like by a single exploration.
  • a second object of the present invention is to provide an underground exploration method capable of acquiring data at an arbitrary depth in the ground.
  • a third object of the present invention is to provide an underground exploration device that can effectively realize the first and second objects. Disclosure of the invention
  • a reflected wave of the electromagnetic wave is transmitted to a plurality of planes. It is characterized in that it is received by the receiving means at a location and the underground state of the search area is three-dimensionally analyzed based on the data received by each receiving means.
  • the configuration for realizing the second object of the present invention is, as described in claim 3, the same as in claim 1. Or 2) to output data analyzed three-dimensionally at each depth in the ground.
  • an electromagnetic wave transmitting means for driving an electromagnetic wave into the ground, and a plurality of electromagnetic wave transmitting means arranged in a plane with respect to an exploration area.
  • a data analysis means for performing analysis.
  • the electromagnetic wave transmitting means has only one transmitting antenna, or as described in claim 6, a transmitting antenna of the electromagnetic wave transmitting means is used.
  • a transmitting antenna of the electromagnetic wave transmitting means is used.
  • electromagnetic waves from an oscillator are integrated with each receiving means, and the electromagnetic waves from the oscillator can be selectively sent to each transmitting antenna by a distribution means.
  • the former method requires less transmitting means, and the latter method requires a small output. This enables three-dimensional underground exploration with high accuracy.
  • FIG. 1 shows a first embodiment of the present invention.
  • FIG. 1 (a) is a schematic plan view of an exploration device
  • FIG. 1 (b) is a schematic sectional view thereof.
  • FIG. 2 shows the data obtained from the first embodiment. The figure which shows the state which analyzed at the time slice level.
  • Fig. 3 is a schematic diagram showing a complicated and complicated underground pipe, (a) shows the underground pipe in a three-dimensional state, and (b) shows the state of the underground pipe analyzed by the conventional method.
  • Fig. 4 shows the second embodiment, (a) is a schematic plan view of the search device, (b) is a schematic diagram showing the relationship between the oscillator, distributor and each module, and (c) is ( The cross section of a) is shown.
  • FIG. 1 is a schematic view showing a first embodiment of the underground exploration method according to the present invention.
  • the receiver 1 is a transmitter that unites a transmitting antenna and oscillator that emits electromagnetic waves used for underground exploration toward the ground, and 2 is a receiver that receives electromagnetic waves emitted from the transmitting antenna of transmitter 1 and reflected from the ground.
  • the receiver group 2 has a configuration in which the receivers 2a are arranged in mxn rows, and the receiver 1a is united with a receiving antenna and a receiver.
  • the transmitter 1 is located away from the receiver group 2 and emits electromagnetic waves at an angle to the ground.
  • the reflection area of the electromagnetic waves reflected from the ground becomes the reception area of the receiver group 2 arranged in a matrix of mxn columns , So that the underground condition can be simultaneously probed in the planar area of m x n rows of the receiver group 2.
  • data of ground obtained from each receiver 1 a is a primary data is a sectional waveform data in the depth direction
  • X n size (Secondary data) is obtained at the cross section of the image, and if this secondary data is combined with the secondary data of m rows of receivers in a row direction, a three-dimensional underground of HX nxm size can be obtained. Data will be obtained.
  • Image processing of data obtained by such a receiver group consisting of m X n receivers enables the underground state of the area to be displayed three-dimensionally, and also performs time slice processing Thereby, as shown in FIG. 2, plane data for each specified depth (H n ) can also be obtained. Furthermore, three-dimensional underground data can be image-processed as a perspective view as shown in Fig. 3 (a), and only cross-sectional underground data can be obtained as shown in Fig. 3 (b). Compared with the conventional exploration method, it is possible to know the piping condition of buried pipes such as gas pipes and water pipes buried underground.
  • Such a transmitter 1 and a group of receivers 2 are attached to, for example, a hand-held traveling body (not shown) having wheels, and when the exploration of one area is completed, the traveling body is moved to, for example, an adjacent area. Let the exploration continue.
  • Underground conditions can be known three-dimensionally, and image processing and other processing can be performed to calculate the volume of the cavity formed underground, for example. It will be possible to immediately know the amount of cement and other filling materials required for repair work to fill the cavities in order to prevent the collapse.
  • the shape of the cavity under the paved road that causes the collapse of the paved road is not always constant, and depending on the shape of the upper part of the cavity, the risk of collapse of the paved road is extremely high to relatively low. Can be specified to some extent.
  • the thickness of the pavement such as concrete asphalt can be known in advance, so the thickness of the pavement is excluded during image processing, and If processing is performed on data, the time required for image processing can be reduced.
  • the extent to which cavities can be formed under paved roads is determined to some extent, so the presence or absence of cavities is determined based on planar data at this depth, and if there are no cavities, exploration in that area is stopped. However, this can be notified to the operator by a buzzer, lamp, etc., and if there is a cavity, the exploration can be continued.
  • FIG. 4 shows a second embodiment of the present invention.
  • a module 11a in which a transmitting antenna, a receiving antenna, and a receiver are united is arranged in a matrix of mxn rows, and a flat plate is formed as a whole.
  • the distributor 12 is connected to the transmission / reception unit 11 having the shape, and the electromagnetic wave from the oscillator 13 is transmitted to each module 11 a of the transmission / reception unit 11 via the distributor 12.
  • This distributor 12 transmits electromagnetic waves to the transmitting antennas of, for example, n modules 11 a per row, m modules 11 a per column, and any module 11 a at a time.
  • the mode is selected by sending an electromagnetic wave to n modules 11a in each row and selecting the mode, switching is performed so that electromagnetic waves are sent to the modules in other rows sequentially, and transmission is performed each time Receives electromagnetic waves reflected from the ground by the receiver of the module where the operation was performed.
  • an oscillator 13 for high frequency oscillator 13a, medium frequency oscillator 13b, and low frequency oscillator 13c is prepared for oscillator 13. Therefore, it is possible to search at the optimal frequency according to the purpose of the search.
  • the high-frequency oscillator 13a is used for searching at a shallow depth
  • the low-frequency oscillator 13c is used for searching at a deep depth. Exploration can be maintained.
  • the first aspect of the present invention it is possible to obtain data of the underground state in a plane spread, so that by adding data in the depth direction, the three-dimensional underground state can be obtained once. Can be obtained by exploration.
  • data analyzed three-dimensionally is used as image information.
  • the underground state can be viewed three-dimensionally.
  • the third aspect of the invention it is possible to output planar underground data at an arbitrary depth, so that it is possible to immediately know the underground state at a specified depth, This is effective when data display is unnecessary.
  • a method that is not considered in a conventional underground exploration apparatus in which electromagnetic waves reflected in the ground are received at once by a plurality of receiving means arranged on a matrix, is adopted. As a result, the underground condition can be grasped three-dimensionally.
  • the number of transmitting means is small, and a three-dimensional underground exploration with low output and high accuracy is possible.

Abstract

Electromagnetic waves are emitted toward the ground by an electromagnetic wave emitting means (1), and reflected waves are received by receiving means (2a) dispersed on a plane. The underground state of an area is three-dimensionally analyzed based on the data received by the receiving means (2a). The three-dimensionally analyzed data are outputted for every underground depth. Therefore, the underground state can be grasped three-dimensionally.

Description

明細書  Specification
地中探査方法及び地中探査装置 技術分野  Underground exploration method and underground exploration equipment
本発明は、 地中に向けて発射した電磁波を受信し、 地中の状態を地面と平行な スライスレベルで探知でき、 さらに例えば地中に形成された空洞等を三次元的に 把握することができる地中探査方法および地中探査装置に関する。 背景技術  The present invention can receive electromagnetic waves emitted toward the ground, detect the state of the ground at a slice level parallel to the ground, and further three-dimensionally grasp, for example, a cavity formed in the ground. The present invention relates to an underground exploration method and an underground exploration device that can be used. Background art
従来、 地中の探査、 特に地面より比較的浅い部分における探査としては、 舗装 道路下における空洞探査が知られている。  Conventionally, as an underground exploration, particularly in a portion relatively shallower than the ground, a cavity exploration under a paved road has been known.
この舗装道路下における空洞探査には、 地中に向けて電磁波を発射する一つの 発信アンテナと、 地中からの反射波を受信する受信アンテナと、 該受信アンテナ で受信した反射波を処理して C R T上あるいは紙面上に可視像化する信号処理装 置とから構成された地中探査装置を使用し、 一般に該発信アンテナと該受信アン テナとは地面上を走行可能とする走行体にュニッ ト化して設けられている。 このような構成の走行体を探査車に取り付け、 該探査車を一般の車両と同じよ うに道路を走行させながら地中の探査を行い、 得られたデータを解析し、 その中 で例えば空洞が生じていると思われる箇所があると、 その周辺領域を詳細に調査 する。  In the exploration of cavities under this paved road, one transmitting antenna that emits electromagnetic waves toward the ground, a receiving antenna that receives reflected waves from the ground, and a reflected wave received by the receiving antenna are processed. In general, the transmitting antenna and the receiving antenna are mounted on a vehicle capable of traveling on the ground using an underground exploration device composed of a signal processing device for visualizing the image on a CRT or on paper. It is provided as a standard. A vehicle with such a configuration is attached to a rover, and the rover is driven underground while traveling on the road in the same way as a general vehicle, and the obtained data is analyzed. If there is a place that seems to have occurred, investigate the surrounding area in detail.
つまり、 探査車による一次調査は、 探査車の走行方向における道路下の縦断面 を波形データとして得るもので、 空洞が生じていると思われる道路の周辺領域を 手押し式の走行体でメッシュ状に調査することで、 もしも空洞があれば平面的に それを知ることができることになる。  In other words, in the primary survey using the rover, the longitudinal section under the road in the traveling direction of the rover is obtained as waveform data, and the area around the road where a cavity is considered to be formed is meshed with a hand-held traveling body. By investigating, if there is a cavity, it will be possible to know it planarly.
ところで、 このような従来の舗装道路下の空洞探査に代表される地中探査は、 走行体の移動方向に沿った縱断面の様子を波形として得る一次調査と、 該一次調 査によって得られた波形データを後日解析するという解析作業と、 該解析作業の 結果により再調査を要すると判定された場合に行われる二次調査とを要し、 一度 に所定の領域における舗装道路下の空洞の有無および大きさを知ることができな いという問題があった。 By the way, the underground exploration typified by such a conventional underground exploration under a paved road is obtained by a primary investigation for obtaining a waveform of a longitudinal section along a moving direction of a vehicle, and the primary investigation. Once analysis work is required to analyze the waveform data at a later date, and a secondary investigation is performed when it is determined that re-investigation is required based on the results of the analysis work. There was a problem in that it was not possible to know the presence and size of a cavity under a paved road in a predetermined area.
また、 二次調査で得られるデータは、 空洞の平面的な大きさだけであって、 空 洞の容積を知ることはできないものであった。  In addition, the data obtained in the secondary survey was only the planar size of the cavity, and the volume of the cavity could not be known.
さらに、 舗装道路下の空洞は、 一定の厚さに舗装されたアスファルト下で生じ ることから、 路面から舗装部分下までのデータは元来不要であり、 その長さのデー 夕をキャンセルできれば、 データ処理の時間も短縮でき、 一方において空洞ので きる路面下の距離が予め分かっていれば、 その深さを指定し、 該深さ以下よりデー タを得るようにできれば便利である。  Furthermore, cavities under paved roads occur under asphalt paved to a certain thickness, so data from the road surface to under the pavement is essentially unnecessary, and if data of that length can be canceled, The data processing time can be shortened. On the other hand, if the distance below the road where a cavity can be formed is known in advance, it is convenient if the depth can be specified and data can be obtained from the depth or less.
本発明の第 1の目的は、 舗装道路下等の地中の状態を一度の探査で三次元的に 知ることができる地中探査方法を提供することを目的とする。  A first object of the present invention is to provide an underground exploration method capable of three-dimensionally knowing the state of the underground under a paved road or the like by a single exploration.
本発明の第 2の目的は、 地中の任意の深さのデータを取得することができる地 中探査方法を提供することにある。  A second object of the present invention is to provide an underground exploration method capable of acquiring data at an arbitrary depth in the ground.
本発明の第 3の目的は、 第 1および第 2の目的を有効に実現できる地中探査装 置を提供することにある。 発明の開示  A third object of the present invention is to provide an underground exploration device that can effectively realize the first and second objects. Disclosure of the invention
本発明の第 1の目的を実現する構成は、 請求項 1に記載のように、 電磁波発 信手段より地中に向けて打ち込まれた電磁波に対して、 その反射波を平面上の複 数の箇所で受信手段により受信し、 各受信手段で受信した受信データに基づき探 査領域の地中の状態を三次元的に解析することを特徴とする。  According to a configuration for realizing the first object of the present invention, as described in claim 1, with respect to an electromagnetic wave driven into the ground from an electromagnetic wave transmitting means, a reflected wave of the electromagnetic wave is transmitted to a plurality of planes. It is characterized in that it is received by the receiving means at a location and the underground state of the search area is three-dimensionally analyzed based on the data received by each receiving means.
この構成によれば、 平面的な広がりでの地中状態のデータを得ることができる ので、 深度方向でのデータを加えることで三次元での地中状態を一度の探査で得 ることが可能となる。  According to this configuration, it is possible to obtain data of the underground state in a plane spread, so that by adding data in the depth direction, it is possible to obtain a three-dimensional underground state with a single exploration Becomes
また、 請求項 2に記載のように、 請求項 1に加えて、 三次元的に解析したデー 夕を画像情報として表示手段に出力させることにより、 地中状態を立体的に目視 することが可能となる。  In addition, as described in claim 2, in addition to claim 1, by outputting the three-dimensionally analyzed data to the display means as image information, it is possible to view the underground state three-dimensionally. Becomes
本発明の第 2の目的を実現する構成は、 請求項 3に記載のように、 請求項 1ま たは 2において、 三次元的に解析したデータを地中深度毎に出力させることを特 徵とする。 The configuration for realizing the second object of the present invention is, as described in claim 3, the same as in claim 1. Or 2) to output data analyzed three-dimensionally at each depth in the ground.
この構成では、 任意の深度における平面的な地中データを出力することができ るので、 例えば指定した深度での地中状態を直ちに知ることができ、 他の深度の データ表示が不要であるというような場合に有効となる。  With this configuration, it is possible to output planar underground data at an arbitrary depth. For example, it is possible to immediately know the underground state at a specified depth, and there is no need to display data at other depths. This is effective in such cases.
本発明の第 3の目的を実現する構成は、 請求項 4に記載のように、 電磁波を地 中にむけて打ち込む電磁波発信手段と、 探査領域に対して平面的に複数配置され、 該電磁波発信手段から地中に向けて打ち込まれた電磁波の反射を受信する受信手 段と、 該複数の受信手段で受信した各データと時系列的なデータに基づいて探査 領域の地中状態を三次元的に解析するデータ解析手段とを有することを特徴とす る。  According to a fourth aspect of the present invention, there is provided an electromagnetic wave transmitting means for driving an electromagnetic wave into the ground, and a plurality of electromagnetic wave transmitting means arranged in a plane with respect to an exploration area. Means for receiving the reflection of electromagnetic waves struck into the ground from the means, and three-dimensionally changing the underground state of the exploration area based on each data and time-series data received by the plurality of receiving means. And a data analysis means for performing analysis.
この構成によれば、 例えばマトリックス上に配置した複数の受信手段により一 度に地中で反射した電磁波を受信させるという従来の地中探査装置では考えられ なかつた方式を採用することにより、 地中状態を三次元的に把握することができ ることとなる。  According to this configuration, for example, by adopting a method that is not conceivable in a conventional underground exploration device in which electromagnetic waves reflected in the ground are received at once by a plurality of receiving means arranged on a matrix, The state can be grasped three-dimensionally.
そして、 この地中探査装置の構成としては、 請求項 5に記載のように、 電磁波 発信手段は一の発信ァンテナのみ有する方式、 あるいは請求項 6に記載のように、 電磁波発信手段の発信アンテナを各受信手段と一体的に構成し、 発振器からの電 磁波を分配手段により選択可能に該各発信ァンテナに送る方式等があり、 前者の方式では発信手段が少なくて済、 後者の方式では小出力で高精度に地中 の三次元的探査が可能となる。  And, as a configuration of the underground exploration device, as described in claim 5, the electromagnetic wave transmitting means has only one transmitting antenna, or as described in claim 6, a transmitting antenna of the electromagnetic wave transmitting means is used. There is a method in which electromagnetic waves from an oscillator are integrated with each receiving means, and the electromagnetic waves from the oscillator can be selectively sent to each transmitting antenna by a distribution means.The former method requires less transmitting means, and the latter method requires a small output. This enables three-dimensional underground exploration with high accuracy.
また、 データ解析手段により解析した地中デ一タを任意の深度毎に画像表示さ せる表示手段を有することにより、 任意の深度での地中状態を目視することが可 能となる。 図面の簡単な説明  In addition, by providing a display means for displaying an image of the underground data analyzed by the data analyzing means at an arbitrary depth, it becomes possible to visually check the underground state at an arbitrary depth. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例を示し、 (a ) は探査装置の概略平面図、 ( b ) はその概略断面図を示す。 第 2図は、 第 1の実施例により得られたデータ をタイムスライスレベルで解析した状態を示す図。 第 3図は、 複雑に入り組んだ 地中配管を示す概略図で、 (a ) は三次元状態での地中配管、 (b ) は従来方式 で解析した地中配管の状態を示す。 第 4図は、 第 2の実施例を示し、 (a ) は探 査装置の概略平面図、 (b ) は発振器、 分配器および各モジュールとの関係を示 す概略図、 (c ) は (a ) の断面図を示している。 FIG. 1 shows a first embodiment of the present invention. FIG. 1 (a) is a schematic plan view of an exploration device, and FIG. 1 (b) is a schematic sectional view thereof. FIG. 2 shows the data obtained from the first embodiment. The figure which shows the state which analyzed at the time slice level. Fig. 3 is a schematic diagram showing a complicated and complicated underground pipe, (a) shows the underground pipe in a three-dimensional state, and (b) shows the state of the underground pipe analyzed by the conventional method. Fig. 4 shows the second embodiment, (a) is a schematic plan view of the search device, (b) is a schematic diagram showing the relationship between the oscillator, distributor and each module, and (c) is ( The cross section of a) is shown.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は本発明における地中探査方法の第 1の実施例を示す概略図である。 FIG. 1 is a schematic view showing a first embodiment of the underground exploration method according to the present invention.
1は地中探査に用いられる電磁波を地面に向けて発射する発信アンテナ及び発 振器をュニッ ト化したトランスミ ッター、 2は トランスミ ッター 1の発信アンテ ナから発射され地中から反射した電磁波を受信するレシーバ一群で、 このレシ一 バー群 2は m x n列にレシーバー 2 aを配置した構成としており、 レシーバ一 2 a は受信アンテナと受信機とをュニッ ト化されている。 トランスミ ッター 1はレシ一 バー群 2とは離れて配置され、 電磁波を地面に対して斜めに打ち込む。 1 is a transmitter that unites a transmitting antenna and oscillator that emits electromagnetic waves used for underground exploration toward the ground, and 2 is a receiver that receives electromagnetic waves emitted from the transmitting antenna of transmitter 1 and reflected from the ground. The receiver group 2 has a configuration in which the receivers 2a are arranged in mxn rows, and the receiver 1a is united with a receiving antenna and a receiver. The transmitter 1 is located away from the receiver group 2 and emits electromagnetic waves at an angle to the ground.
1つのトランスミ ッター 1の発信ァンテナから電磁波を斜めに向けて地面に打 ち込むことにより、 地中より反射する電磁波の反射領域は m x n列のマトリ ック スに配置されたレシーバー群 2の受信領域を充分カバーし、 したがってレシーバー 群 2の m X n列の平面的領域で同時に地中の状態を探査することができる。 各レシーバー 1 aから得られる地中のデータは深度方向における断面的な波形 データである一次データであるが、 列方向に n個並ぶレシーバーの一次データを つなぎ合わせると深度 (H ) X nの大きさの断面でのデータ (二次データ) が得 られ、 さらにこの二次データを行方向に m個並ぶレシーバ一列の二次データとつ なぎ合わせれば、 H X n x mの大きさの立体的な地中データが得られることにな る。 By reflecting the electromagnetic waves obliquely from the transmitting antenna of one transmitter 1 and hitting the ground, the reflection area of the electromagnetic waves reflected from the ground becomes the reception area of the receiver group 2 arranged in a matrix of mxn columns , So that the underground condition can be simultaneously probed in the planar area of m x n rows of the receiver group 2. Although data of ground obtained from each receiver 1 a is a primary data is a sectional waveform data in the depth direction, when joining the primary data of n arranged receivers in the column direction of the depth (H) X n size (Secondary data) is obtained at the cross section of the image, and if this secondary data is combined with the secondary data of m rows of receivers in a row direction, a three-dimensional underground of HX nxm size can be obtained. Data will be obtained.
このような m X n個のレシーバーからなるレシ一バー群により得られたデータ を画像処理することにより、 その領域の地中状態を立体的に表示させることがで き、 またタイムスライス処理を行うことにより、 第 2図に示すように、 指定の深 度 (Hn ) 毎の平面データも得ることができる。 さらに、 立体的な地中データを第 3図の (a ) に示すように斜視図として画像 処理することもでき、 第 3図の (b ) のように断面的な地中データしか得られな かった従来の探査方法に比べ、 例えば地下に埋設されているガス管や水道管等の 埋設管の配管状態を知ることができることになる。 Image processing of data obtained by such a receiver group consisting of m X n receivers enables the underground state of the area to be displayed three-dimensionally, and also performs time slice processing Thereby, as shown in FIG. 2, plane data for each specified depth (H n ) can also be obtained. Furthermore, three-dimensional underground data can be image-processed as a perspective view as shown in Fig. 3 (a), and only cross-sectional underground data can be obtained as shown in Fig. 3 (b). Compared with the conventional exploration method, it is possible to know the piping condition of buried pipes such as gas pipes and water pipes buried underground.
このような トランスミ ッター 1とレシーバ一群 2とは、 例えば車輪を有する手 押し式の走行体 (不図示) に取り付けられ、 一つの領域の探査を終えると、 例え ば隣の領域に走行体を移動させて探査を続ける。  Such a transmitter 1 and a group of receivers 2 are attached to, for example, a hand-held traveling body (not shown) having wheels, and when the exploration of one area is completed, the traveling body is moved to, for example, an adjacent area. Let the exploration continue.
地中の状態を立体的に知り得ることができ、 これを画像処理等の処理を施すこ とにより、 例えば地下に形成されている空洞の容積を算出することができ、 した がって、 道路の陥没を防ぐ為に空洞を埋める補修作業に要するセメント等の充填 材料の量を即座に知ることができることになる。  Underground conditions can be known three-dimensionally, and image processing and other processing can be performed to calculate the volume of the cavity formed underground, for example. It will be possible to immediately know the amount of cement and other filling materials required for repair work to fill the cavities in order to prevent the collapse.
また、 鋪装道路の陷没の原因となる舗装道路下の空洞の形状は必ずしも一定で はなく、 空洞上部の形状によって、 舗装道路の陥没の危険性が非常に高いものか ら比較的低いものまである程度特定することができる。  In addition, the shape of the cavity under the paved road that causes the collapse of the paved road is not always constant, and depending on the shape of the upper part of the cavity, the risk of collapse of the paved road is extremely high to relatively low. Can be specified to some extent.
このため、 立体的に得られた空洞上部の形状から舗装道路の陥没の危険性につ いて順位を付けることで、 実際に即応した空洞の補修作業を実施することができ る。  For this reason, by prioritizing the risk of collapse of the paved road based on the three-dimensionally obtained shape of the upper part of the cavity, it is possible to carry out the repair work on the cavity in a timely manner.
さらに、 舗装道路下の空洞探査に際し、 コンク リートゃァスフアルト等の舗装 部分の厚さは予め知ることができるので、 画像処理の際に該誧装部分の厚さを除 き、 それ以下の地中データについて処理を行うようにすれば、 画像処理に要する 時間を短縮することができる。  In addition, when exploring cavities under paved roads, the thickness of the pavement such as concrete asphalt can be known in advance, so the thickness of the pavement is excluded during image processing, and If processing is performed on data, the time required for image processing can be reduced.
また、 舗装道路下において空洞のできる範囲はある程度決まっているので、 こ の深度での平面的データで空洞の存在の有無を判断し、 空洞が存在しなければ、 その領域での探査を中止し、 これをブザー、 ランプ等で操作者に知らせ、 空洞が あれば探査を続行するようにすることもできる。  In addition, the extent to which cavities can be formed under paved roads is determined to some extent, so the presence or absence of cavities is determined based on planar data at this depth, and if there are no cavities, exploration in that area is stopped. However, this can be notified to the operator by a buzzer, lamp, etc., and if there is a cavity, the exploration can be continued.
第 4図は本発明の第 2の実施例を示す。  FIG. 4 shows a second embodiment of the present invention.
本実施例は、 送信用のアンテナと受信用のアンテナおよび受信機をュニッ ト化 したモジュール 1 1 aを m x n列のマトリ ックス状に配置し、 全体として平板な 形状とした送受信部 1 1に分配器 1 2を接続し、 発振器 1 3からの電磁波を分配 器 1 2を介して送受信部 1 1の各モジュール 1 1 aに送る。 この分配器 1 2は、 例えば行毎の n個のモジュール 1 1 a、 あるいは列毎の m個のモジュール 1 1 a、 さらには任意のモジュール 1 1 aの各送信用のアンテナに一度に電磁波を送るこ とができるようにしており、 例えば行毎の n個のモジュール 1 1 aに電磁波を送 りモ一ドを選択すると、 順次他の行のモジュールに電磁波を送るように切り替え、 その都度送信の行われたモジュールの受信機により地中から反射した電磁波を受 信する。 In this embodiment, a module 11a in which a transmitting antenna, a receiving antenna, and a receiver are united is arranged in a matrix of mxn rows, and a flat plate is formed as a whole. The distributor 12 is connected to the transmission / reception unit 11 having the shape, and the electromagnetic wave from the oscillator 13 is transmitted to each module 11 a of the transmission / reception unit 11 via the distributor 12. This distributor 12 transmits electromagnetic waves to the transmitting antennas of, for example, n modules 11 a per row, m modules 11 a per column, and any module 11 a at a time. For example, if the mode is selected by sending an electromagnetic wave to n modules 11a in each row and selecting the mode, switching is performed so that electromagnetic waves are sent to the modules in other rows sequentially, and transmission is performed each time Receives electromagnetic waves reflected from the ground by the receiver of the module where the operation was performed.
本実施例では、 第 4図の (c ) に示すように、 電磁波を送信アンテナより略真 下に向けて発射することができると共に、 地中からの反射波も略真上で受信する ことができることになり、 第 1図に示す第 1の実施例の場合に比較して地中の探 査精度が飛躍的に向上し、 また小出力で高精度のデータを取得することができる。 本実施例の場合も第 1の実施例と同様に、 各モジュール 1 1 aにおいて受信し た受信デー夕が m X nの平面において深度方向において時系列的に得られるので、 これらのデータに対して三次元処理を施すことにより、 第 2図あるいは第 3図の ような画像データを得ることが可能となる。  In this embodiment, as shown in (c) of FIG. 4, it is possible to emit an electromagnetic wave almost directly below the transmitting antenna and to receive a reflected wave from the ground almost directly above. As a result, the accuracy of underground exploration is dramatically improved as compared with the case of the first embodiment shown in FIG. 1, and high-precision data can be obtained with a small output. In the case of the present embodiment, similarly to the first embodiment, the received data received by each module 11a is obtained in a time-series manner in the depth direction on the mxn plane. By performing the three-dimensional processing, image data as shown in FIG. 2 or FIG. 3 can be obtained.
また、 発振器 1 3には、 第 4図の (c ) に示すように、 高周波用発振器 1 3 a、 中周波用発振器 1 3 b、 低周波用発振器 1 3 cの電磁波発振器を用意することに より、 探査目的に応じて最適周波数での探査を行える。 例えば、 浅い深度での探 査を目的とする場合には高周波用発振器 1 3 a、 深い深度での探査を目的とする 場合には低周波用発振器 1 3 cを使用することにより、 高精度での探査を維持す ることができる。 産業上の利用可能性  As shown in Fig. 4 (c), an oscillator 13 for high frequency oscillator 13a, medium frequency oscillator 13b, and low frequency oscillator 13c is prepared for oscillator 13. Therefore, it is possible to search at the optimal frequency according to the purpose of the search. For example, the high-frequency oscillator 13a is used for searching at a shallow depth, and the low-frequency oscillator 13c is used for searching at a deep depth. Exploration can be maintained. Industrial applicability
請求項 1に記載の発明によれば、 平面的な広がりでの地中状態のデ—夕を得る ことができるので、 深度方向でのデータを加えることで三次元での地中状態を一 度の探査で得ることが可能となる。  According to the first aspect of the present invention, it is possible to obtain data of the underground state in a plane spread, so that by adding data in the depth direction, the three-dimensional underground state can be obtained once. Can be obtained by exploration.
請求項 2に記載の発明によれば、 三次元的に解析したデータを画像情報として 表示手段に出力させることにより、 地中状態を立体的に目視することが可能とな る。 According to the invention described in claim 2, data analyzed three-dimensionally is used as image information. By outputting the data to the display means, the underground state can be viewed three-dimensionally.
請求項 3に記載の発明によれば、 任意の深度における平面的な地中データを出 力することができるので、 例えば指定した深度での地中状態を直ちに知ることが でき、 他の深度のデータ表示が不要であるというような場合に有効となる。 請求項 4に記載の発明によれば、 例えばマトリ ックス上に配置した複数の受信 手段により一度に地中で反射した電磁波を受信させるという従来の地中探査装置 では考えられなかった方式を採用することにより、 地中状態を三次元的に把握す ることができることとなる。  According to the third aspect of the invention, it is possible to output planar underground data at an arbitrary depth, so that it is possible to immediately know the underground state at a specified depth, This is effective when data display is unnecessary. According to the invention described in claim 4, for example, a method that is not considered in a conventional underground exploration apparatus, in which electromagnetic waves reflected in the ground are received at once by a plurality of receiving means arranged on a matrix, is adopted. As a result, the underground condition can be grasped three-dimensionally.
請求項 5および 6に記載の発明によれば、 発信手段が少なくて済、 また小出力 で高精度に地中の三次元的探査が可能となる。  According to the fifth and sixth aspects of the present invention, the number of transmitting means is small, and a three-dimensional underground exploration with low output and high accuracy is possible.
請求項 7に記載の発明によれば、 データ解析手段により解析した地中データを 任意の深度毎に画像表示させる表示手段を有することにより、 任意の深度での地 中状態を目視することが可能となる。  According to the invention as set forth in claim 7, it is possible to visually check the underground state at an arbitrary depth by having the display means for displaying the underground data analyzed by the data analysis means at each arbitrary depth. Becomes

Claims

請求の範囲 . 電磁波発信手段より地中に向けて打ち込まれた電磁波に対して、 その反射波 を平面上の複数の箇所で受信手段により受信し、 各受信手段で受信した受信デー 夕に基づき探査領域の地中の状態を三次元的に解析することを特徴とする地中 探査方法。Claims. For electromagnetic waves that are injected into the ground from the electromagnetic wave transmitting means, the reflected waves are received by the receiving means at a plurality of locations on the plane, and exploration is performed based on the received data received by each receiving means. An underground exploration method characterized by three-dimensionally analyzing the underground state of an area.
. 請求項 1において、 三次元的に解析したデータを画像情報として表示手段に 出力させることを特徴とする地中探査方法。3. The underground exploration method according to claim 1, wherein the three-dimensionally analyzed data is output as image information to a display means.
. 請求項 1または 2において、 三次元的に解析したデータを地中深度毎に出力 させることを特徴とする地中探査方法。3. The underground exploration method according to claim 1 or 2, wherein the three-dimensionally analyzed data is output for each underground depth.
. 電磁波を地中にむけて打ち込む電磁波発信手段と、 探査領域に対して平面的 に複数配置され、 該電磁波発信手段から地中に向けて打ち込まれた電磁波の反 射を受信する受信手段と、 該複数の受信手段で受信した各データと時系列的な データに基づいて探査領域の地中状態を三次元的に解析するデータ解析手段と を有することを特徴とする地中探査装置。An electromagnetic wave transmitting means for projecting electromagnetic waves toward the ground, a plurality of receiving means for receiving electromagnetic waves reflected from the electromagnetic wave transmitting means toward the ground, which are arranged two-dimensionally with respect to the search area; An underground exploration apparatus, comprising: data analysis means for three-dimensionally analyzing the underground state of the search area based on each data received by the plurality of reception means and time-series data.
. 請求項 4において、 電磁波発信手段は一の発信アンテナのみ有することを特 徴とする地中探査装置。5. The underground exploration apparatus according to claim 4, wherein the electromagnetic wave transmitting means has only one transmitting antenna.
. 請求項 4において、 電磁波発信手段の発信アンテナを各受信手段と一体的に 構成し、 発振器からの電磁波を分配手段により選択可能に該各発信ァンテナに 送ることを特徴とする地中探査装置。5. The underground exploration apparatus according to claim 4, wherein the transmitting antenna of the electromagnetic wave transmitting means is integrally formed with each receiving means, and the electromagnetic wave from the oscillator is selectively transmitted to each transmitting antenna by the distribution means.
. 請求項 4、 5または 6において、 データ解析手段により解析した地中データ を任意の深度毎に画像表示させる表示手段を有することを特徴とする地中探査 装置。 7. The underground exploration apparatus according to claim 4, 5 or 6, further comprising display means for displaying an image of the underground data analyzed by the data analysis means at an arbitrary depth.
PCT/JP1995/001660 1994-08-25 1995-08-23 Method and device for investigating underground WO1996006367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32644/95A AU3264495A (en) 1994-08-25 1995-08-23 Method and device for investigating underground

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20095594A JP3423948B2 (en) 1994-08-25 1994-08-25 Underground exploration method and underground exploration device
JP6/200955 1994-08-25

Publications (1)

Publication Number Publication Date
WO1996006367A1 true WO1996006367A1 (en) 1996-02-29

Family

ID=16433092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001660 WO1996006367A1 (en) 1994-08-25 1995-08-23 Method and device for investigating underground

Country Status (3)

Country Link
JP (1) JP3423948B2 (en)
AU (1) AU3264495A (en)
WO (1) WO1996006367A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2304483A (en) * 1995-08-18 1997-03-19 London Electricity Plc Determining location of object in a medium
GB2307811A (en) * 1995-11-01 1997-06-04 British Gas Plc Thickness measurement
US6628119B1 (en) 1998-08-28 2003-09-30 Den Norske Stats Oljeselskap A.S. Method and apparatus for determining the content of subterranean reservoirs
US6696839B2 (en) 2001-08-07 2004-02-24 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US6717411B2 (en) 2001-08-07 2004-04-06 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US6859038B2 (en) 2000-02-02 2005-02-22 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US7202669B2 (en) 2000-08-14 2007-04-10 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
US8913463B2 (en) 2006-10-12 2014-12-16 Electromagnetic Geoservices Asa Positioning system
US9030909B2 (en) 2006-02-06 2015-05-12 Statoil Petroleum As Method of conducting a seismic survey
CN117233755A (en) * 2023-11-08 2023-12-15 江苏筑升土木工程科技有限公司 Rapid automatic detection system for road subgrade diseases and underground disease bodies

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023762A1 (en) * 1998-10-21 2000-04-27 Omron Corporation Mine detector and inspection apparatus
JP4376391B2 (en) * 1999-12-24 2009-12-02 大阪瓦斯株式会社 Underground radar system
JP4709421B2 (en) * 2001-04-27 2011-06-22 三井造船株式会社 Multipath 3D visualization radar system
JP5701109B2 (en) * 2011-03-08 2015-04-15 ジオ・サーチ株式会社 Evaluation method of pavement soundness
JP2014098597A (en) * 2012-11-13 2014-05-29 Geo Search Co Ltd Method for evaluating the risk of subsidence

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427140A (en) * 1977-08-02 1979-03-01 Nissan Motor Co Ltd Multiple antenna and radar system
JPS61258182A (en) * 1985-05-10 1986-11-15 Omron Tateisi Electronics Co Three-dimensional video device
JPS61262673A (en) * 1985-05-16 1986-11-20 Central Res Inst Of Electric Power Ind Method for searching underground embedded article
JPH01280277A (en) * 1988-05-06 1989-11-10 Komatsu Ltd Underground buried body survey device
JPH02257082A (en) * 1989-03-30 1990-10-17 Komatsu Ltd Underground searching device
JPH0527008A (en) * 1991-07-24 1993-02-05 Nec Corp Electronic scanning antenna
JPH0522877B2 (en) * 1983-11-11 1993-03-30 Schlumberger Overseas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427140A (en) * 1977-08-02 1979-03-01 Nissan Motor Co Ltd Multiple antenna and radar system
JPH0522877B2 (en) * 1983-11-11 1993-03-30 Schlumberger Overseas
JPS61258182A (en) * 1985-05-10 1986-11-15 Omron Tateisi Electronics Co Three-dimensional video device
JPS61262673A (en) * 1985-05-16 1986-11-20 Central Res Inst Of Electric Power Ind Method for searching underground embedded article
JPH01280277A (en) * 1988-05-06 1989-11-10 Komatsu Ltd Underground buried body survey device
JPH02257082A (en) * 1989-03-30 1990-10-17 Komatsu Ltd Underground searching device
JPH0527008A (en) * 1991-07-24 1993-02-05 Nec Corp Electronic scanning antenna

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2304483A (en) * 1995-08-18 1997-03-19 London Electricity Plc Determining location of object in a medium
US6002357A (en) * 1995-08-18 1999-12-14 London Electricity Plc System for and method of determining the location of an object in a medium
GB2304483B (en) * 1995-08-18 2000-03-29 London Electricity Plc System for and method of determining the location of an object in a medium
GB2307811A (en) * 1995-11-01 1997-06-04 British Gas Plc Thickness measurement
GB2307811B (en) * 1995-11-01 1999-12-08 British Gas Plc Measurement arrangement
US6628119B1 (en) 1998-08-28 2003-09-30 Den Norske Stats Oljeselskap A.S. Method and apparatus for determining the content of subterranean reservoirs
US7026819B2 (en) 1998-08-28 2006-04-11 Statoil Asa Electromagnetic surveying for mapping the content of subterranean reservoirs
US6859038B2 (en) 2000-02-02 2005-02-22 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US7145341B2 (en) 2000-02-02 2006-12-05 Electromagnetic Geoservices As Method and apparatus for recovering hydrocarbons from subterranean reservoirs
US7202669B2 (en) 2000-08-14 2007-04-10 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
US6717411B2 (en) 2001-08-07 2004-04-06 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US6864684B2 (en) 2001-08-07 2005-03-08 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US6900639B2 (en) 2001-08-07 2005-05-31 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US6696839B2 (en) 2001-08-07 2004-02-24 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US9030909B2 (en) 2006-02-06 2015-05-12 Statoil Petroleum As Method of conducting a seismic survey
US8913463B2 (en) 2006-10-12 2014-12-16 Electromagnetic Geoservices Asa Positioning system
CN117233755A (en) * 2023-11-08 2023-12-15 江苏筑升土木工程科技有限公司 Rapid automatic detection system for road subgrade diseases and underground disease bodies
CN117233755B (en) * 2023-11-08 2024-01-26 江苏筑升土木工程科技有限公司 Rapid automatic detection system for road subgrade diseases and underground disease bodies

Also Published As

Publication number Publication date
JP3423948B2 (en) 2003-07-07
AU3264495A (en) 1996-03-14
JPH0862339A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
WO1996006367A1 (en) Method and device for investigating underground
US9354346B2 (en) Acoustic source for generating an acoustic beam
RU2175368C2 (en) System for detection of drilling tool position, system of trenchless underground drilling and method of determination of drilling tool position
EP1813966B1 (en) Seabed resource exploration system and seabed resource exploration method
JP3996367B2 (en) Exploration radar device for manual tool equipment
US20140104979A1 (en) Ground-Penetrating Tunnel-Detecting Active Sonar
JP2005503566A (en) Subsurface radar imaging
KR101267016B1 (en) Singnal apparatus for the survey of buriedstructures by used gpr unit
EP2734868B1 (en) Apparatus and method for non-invasive real-time subsoil inspection
JPS5979871A (en) Radar for detecting underground object
US5432305A (en) Penetrometer acoustic soil sensor
JP2003156571A (en) Buried object searching device
US6690617B2 (en) Application of sonic signals to detect buried, underground utilities
JPS60157065A (en) Soil monitoring device for shield drilling machine
JP2003107169A (en) Method and device for inspecting under railroad bed
KR200188711Y1 (en) Antenna structure of detection apparatus for the survey of buried structures by used gpr system
KR200194862Y1 (en) Uniformity detection apparatus for the survey of buried structures by used gpr system
KR200194861Y1 (en) Receive signal analysis device of detection apparatus for the survey of buried structures by used gpr system
KR200194863Y1 (en) Detection apparatus for the survey of buried structures having receive signal saved device by used gpr system
JP3476785B2 (en) Equipment for investigating the embedding of rocks on slopes
JP2003107164A (en) Aperture synthesys survey device
JP2002286850A (en) Object searching system for no-cut and no-cover tunneling method using different kinds of propagated waves
RU2180446C2 (en) Seismic wave generator
KR200194860Y1 (en) Receive pre-amplifier of detection apparatus for the survey of buried structures by used gpr system
Bernold et al. Ground penetrating radar technology to locate plastic pipes and lava tubes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase