JP2003107164A - Aperture synthesys survey device - Google Patents

Aperture synthesys survey device

Info

Publication number
JP2003107164A
JP2003107164A JP2001305310A JP2001305310A JP2003107164A JP 2003107164 A JP2003107164 A JP 2003107164A JP 2001305310 A JP2001305310 A JP 2001305310A JP 2001305310 A JP2001305310 A JP 2001305310A JP 2003107164 A JP2003107164 A JP 2003107164A
Authority
JP
Japan
Prior art keywords
exploration
aperture
transmitter
velocity
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001305310A
Other languages
Japanese (ja)
Inventor
Hiroichi Karasawa
博一 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001305310A priority Critical patent/JP2003107164A/en
Publication of JP2003107164A publication Critical patent/JP2003107164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aperture synthesys survey device having a good resolution by correctly estimating the speed of a propagation wave even when the speed thereof is changed in internally surveying underground or concrete. SOLUTION: The survey device is provided with a transmitter-receiver accommodating a transmitter and receiver of propagation waves, a moving position detecting sensor provided with the transmitter-receiver, and a display device for displaying the results of signal processing using a detected position signal. Based on reflection echo data obtained by transmitting and receiving a propagation wave whenever the transmitter-receiver moves a given distance and a position signal of the transmitter-receiver measured at the same time of transmission-reception, a plurality of images obtained by modifying the speed of the propagation wave as a parameter are compared with each other. Then, the speed of propagation wave is estimated based on the degree of concentration and strength of image data, thereby good survey images can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建物のコンクリー
ト内部の空洞、コールドジョイント、鉄筋腐食やひび割
れの探査、地中内部の埋設物、空洞や断層などの位置・
形状を弾性波や電磁波で可視化する開口合成探査装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the locations of cavities inside concrete in buildings, cold joints, corrosion of reinforcing bars and cracks, underground buried objects, cavities and faults, etc.
The present invention relates to an aperture synthetic exploration device that visualizes a shape with elastic waves or electromagnetic waves.

【0002】[0002]

【従来の技術】従来の弾性波によるコンクリートの内部
探査では、欠陥境界面で反射した波の伝播時間と伝播速
度データから内部を可視化する際に、弾性波の音速がコ
ンクリートの品質によって変動するため、正確な測定が
困難であった。
2. Description of the Related Art In the conventional internal exploration of concrete using elastic waves, the acoustic velocity of elastic waves varies depending on the quality of concrete when the inside is visualized from the propagation time and propagation velocity data of the waves reflected at the defect boundary surface. , Accurate measurement was difficult.

【0003】また、コンクリートや地中では高周波での
減衰が大きいため、コンクリート探査の場合で数十KH
z、地中の場合で1KHz以下という低周波領域の弾性
波を用いざるを得ないことや、元々伝播波の速度が高速
であることから、波長が長く指向性に欠けるため、送受
信器の正面に探査対象があるという前提でコンクリート
や地中断面を画像化する従来の探査手法では、解像度が
不十分で探査対象の形状の把握が困難であった。
[0003] In addition, since high-frequency attenuation is large in concrete and underground, it is several tens of KH in the case of concrete exploration.
z, in the case of underground, the elastic wave in the low frequency region of 1 KHz or less must be used, and since the propagation wave is originally high in speed, the wavelength is long and directivity is lacking. With conventional exploration methods that image concrete and underground cross-sections on the assumption that there is an exploration target, it was difficult to grasp the shape of the exploration target due to insufficient resolution.

【0004】さらに、電磁波での探査では、作業効率が
良く測定結果を視覚的に表示できる特長があるとされて
いるが、含水率により電磁波の伝播速度が著しく影響を
受けるため深さの測定精度に問題が残されている。
Further, in the exploration with electromagnetic waves, it is said that there is a feature that the measurement results can be visually displayed with good working efficiency, but since the propagation speed of electromagnetic waves is significantly affected by the water content, the depth measurement accuracy is improved. Is left with a problem.

【0005】[0005]

【発明が解決しようとする課題】上記したように、弾性
波や電磁波を用いた反射法による探査では、探査対象の
媒体中を伝播する波の速度変動が大きいことから、探査
で得られた反射波データから伝播波の速度を推定でき
ず、正確な探査を行うことが困難であった。
As described above, in the exploration by the reflection method using elastic waves or electromagnetic waves, the velocity fluctuation of the wave propagating in the medium to be explored is large, and hence the reflection obtained by the exploration is performed. Since the velocity of the propagating wave could not be estimated from the wave data, it was difficult to make an accurate survey.

【0006】また、弾性波や電磁波を用いた反射法によ
る探査では、波長が比較的長いことから送信ビームが広
がり、送受信器の正面に探査対象があるという前提でコ
ンクリートや地中断面を画像化する従来の探査手法で
は、コンクリート内や地中の埋設物、空洞、境界面など
の形状把握が困難であった。
[0006] Further, in the exploration by the reflection method using elastic waves or electromagnetic waves, the transmission beam spreads because the wavelength is relatively long, and the concrete or underground section is imaged on the assumption that the exploration target is in front of the transceiver. It has been difficult to grasp the shapes of buried objects, cavities, and boundary surfaces in concrete and underground by the conventional exploration method.

【0007】本発明は上記状況に鑑みてなされたもの
で、その課題は、弾性波や電磁波などの伝播波を用いた
反射法により地中やコンクリートの内部を探査する際
に、伝播波の速度が状況によって変動しても、速度を正
確に推定することができ、解像度が良好な開口合成探査
装置を提供することにある。
[0007] The present invention has been made in view of the above situation, and its problem is the velocity of a propagating wave when exploring the ground or the inside of concrete by a reflection method using a propagating wave such as an elastic wave or an electromagnetic wave. The present invention is to provide an aperture synthetic surveying device that can accurately estimate the velocity even when fluctuates depending on the situation and has good resolution.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は、伝播波の送信器と受信器を収
納した移動可能な送受信装置と、前記送受信装置に設置
された位置検出センサと、検出された位置信号を用いた
信号処理の結果を表示する表示装置とを備えた開口合成
探査装置において、前記送受信装置が所定量移動する毎
に伝播波を送受信することにより得られる反射エコーデ
ータと、送受信と同時に計測された前記送受信装置の位
置信号から、伝播波の伝播速度をパラメータとして変更
することにより得られた複数の画像を比較し、画像デー
タの集中度と強度に基づいて伝播波の速度を推定するこ
とを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is a movable transmitter / receiver housing a transmitter and receiver of a propagating wave, and a position installed in the transmitter / receiver. In an aperture synthesis exploration device including a detection sensor and a display device that displays a result of signal processing using the detected position signal, the synthetic aperture device is obtained by transmitting and receiving a propagating wave each time the transceiver device moves by a predetermined amount. Reflected echo data and position signals of the transmitter / receiver measured at the same time as transmission / reception are compared to compare a plurality of images obtained by changing the propagation velocity of a propagating wave as a parameter, and based on the degree of concentration and intensity of the image data. It is characterized by estimating the velocity of a propagating wave.

【0009】請求項2記載の発明は、請求項1記載の開
口合成探査装置において、前記送受信器の送受信感度を
最大にした状態で反射エコーデータから媒質の断面を画
像化したBスコープ画像化結果から、反射指向角の大き
な反射点の位置を画像中のローカスカーブにより判断
し、このローカスカーブの頂点位置から探査対象位置を
推定することを特徴とする。
According to a second aspect of the present invention, in the aperture synthetic exploration apparatus according to the first aspect, a B-scope imaging result is obtained by imaging the cross section of the medium from the reflection echo data in a state where the transmission / reception sensitivity of the transceiver is maximized. Therefore, the position of the reflection point having a large reflection directivity angle is determined by the locus curve in the image, and the search target position is estimated from the apex position of this locus curve.

【0010】請求項3記載の発明は、請求項2記載の開
口合成探査装置において、反射指向角の大きな反射点位
置の近傍を画像化領域とし、前記ローカスカーブを表示
するために用いた反射エコーデータを用いて伝播波の速
度をパラメータとして開口合成処理することにより得ら
れた複数の画像を直接観察することにより最も画像が集
中する伝播波速度を判定し、前記速度データを用いて全
体の探査画像を合成することを特徴とする。
According to a third aspect of the present invention, in the aperture synthetic exploration apparatus according to the second aspect, the reflection echo used for displaying the locus curve is defined as an imaging region near a reflection point position having a large reflection directivity angle. By directly observing a plurality of images obtained by performing aperture synthesis processing using the velocity of the propagating wave as a parameter using the data, the propagating wave velocity at which the image is most concentrated is determined, and the entire exploration is performed using the velocity data. It is characterized by synthesizing images.

【0011】請求項1ないし請求項3によると、微小含
有物や検査対象のエッジ部の近傍の限定領域の画像を伝
播波の速度をパラメータとして連続的に表示し、その結
果に基づき判断した真の速度データを用いて全体画像を
合成し表示することで解像度が良好で鮮明な画像を表示
装置上に表示することができる。
According to the first to third aspects of the present invention, an image of a limited area in the vicinity of an edge portion of an object to be inspected or an object to be inspected is continuously displayed by using a velocity of a propagating wave as a parameter, and a true judgment is made based on the result. By combining and displaying the entire image using the speed data of 1, the clear image with good resolution can be displayed on the display device.

【0012】請求項4記載の発明は、請求項1ないし請
求項3のいずれかに記載の開口合成探査装置において、
均質な媒質が明瞭な境界をなして構成されている地中の
内部に伝播波を送信器より送信し、送受信器に近い均質
媒質部の可視化で得られた境界部の形状データに基づ
き、伝播波の屈折計算を行い、境界部に接する前記送受
信器から遠い領域における伝播波速度をパラメータとし
た画像化結果を比較し、最も画像が集中する伝播波速度
を判定し、前記速度データを用いて全体の探査画像を合
成することを特徴とする。請求項4によると、画像デー
タの集中を比較することにより真の速度を求めることが
できる。
According to a fourth aspect of the present invention, in the aperture synthetic exploration apparatus according to any one of the first to third aspects,
Propagation waves are transmitted from the transmitter to the inside of the ground where a homogeneous medium is formed with clear boundaries, and propagated based on the boundary shape data obtained by visualization of the homogeneous medium near the transceiver. The wave refraction calculation is performed, and the imaging results are compared using the propagation wave velocity in the region far from the transceiver that is in contact with the boundary as a parameter, the propagation wave velocity at which the image is most concentrated is determined, and the velocity data is used. It is characterized by synthesizing the whole search image. According to the fourth aspect, the true speed can be obtained by comparing the concentration of the image data.

【0013】請求項5記載の発明は、請求項1記載の開
口合成探査装置において、複数の送信器と、複数の受信
器を所定位置に配置し、伝播波の送受信を切替回路で切
り替えることにより、可視化のための受信エコーデータ
を収集するとともに、複数の送信器と受信器から得られ
た受信エコーデータを用いることにより、探査深度を増
大させることを特徴とする。請求項5によると、地中や
コンクリート等の比較的均質な媒質中の探査対象の形状
や位置をより正確に把握することができる。
According to a fifth aspect of the present invention, in the aperture synthetic survey apparatus according to the first aspect, a plurality of transmitters and a plurality of receivers are arranged at predetermined positions, and transmission / reception of propagating waves is switched by a switching circuit. , It collects the received echo data for visualization, and increases the exploration depth by using the received echo data obtained from a plurality of transmitters and receivers. According to claim 5, it is possible to more accurately grasp the shape and position of the exploration target in a relatively homogeneous medium such as underground or concrete.

【0014】請求項6記載の発明は、請求項5記載の開
口合成探査装置において、電磁波を送信波として用い、
送信と受信を同じアンテナで行うことができる送受信器
を複数配置し、任意に送受信器を切り替えられる切替回
路により、複数の送受信器から得られた受信エコーデー
タを用いることにより、探査深度を増大させることを特
徴とする。請求項6によると、送受信器を任意に切り替
えて送受信することにより、探査画像の改善を図ること
ができる。
According to a sixth aspect of the present invention, in the aperture synthetic exploration apparatus according to the fifth aspect, an electromagnetic wave is used as a transmitted wave,
Increase the search depth by arranging multiple transceivers that can perform transmission and reception with the same antenna, and by using the received echo data obtained from multiple transceivers by the switching circuit that can arbitrarily switch the transceivers. It is characterized by According to the sixth aspect, it is possible to improve the exploration image by arbitrarily switching the transmitter / receiver and transmitting / receiving.

【0015】本発明で用いられる開口合成法による可視
化は、広指向性の送受信器を移動したり、平面配置した
多数の送受信器を用いることにより、様々な位置で送受
信された弾性波や電磁波の反射エコーデータと媒質中の
伝播波の速度値から反射の位置を統計的に求める手法で
ある。そのために、反射エコー波形データを送受信器の
位置に応じた等伝播時間の曲線(または曲面)を伝播距
離方向に多層に重ね、同曲線(曲面)上に伝播時間に応
じた波形振幅データを対応させて画像化空間に展開し、
それらの値を画像化空間の中で送受信器の全ての組合せ
について加算処理することにより精細な画像を表示する
ことができる。但し、伝播波の速度が正確でないと、本
来の探査対象の位置に焦点が合わなくなる。
Visualization by the aperture synthesis method used in the present invention is performed by moving a wide directional transceiver or by using a large number of transceivers arranged in a plane to detect elastic waves and electromagnetic waves transmitted and received at various positions. This is a method of statistically obtaining the position of reflection from the reflected echo data and the velocity value of the propagating wave in the medium. For that purpose, the reflected echo waveform data is layered in layers of equal propagation time (or curved surface) according to the position of the transceiver in the propagation distance direction, and waveform amplitude data corresponding to the propagation time is applied on the same curve (curved surface). And deploy it in the imaging space,
A fine image can be displayed by subjecting these values to addition processing for all combinations of transmitters and receivers in the imaging space. However, if the velocity of the propagating wave is not accurate, the original position of the object to be searched cannot be focused.

【0016】本発明は、上記の現象を逆に利用すること
により、伝播波の速度を推定する方法である。特に、媒
体中に含まれる微小な含有物等の点反射源や鋭いエッジ
部からの反射エコーは広い反射指向性を有するため、送
受信器の感度を最大にした状態で、送受信器の正面に探
査対象があるという前提でコンクリートや地中断面を画
像化することにより、ローカスカーブと呼ばれる上に凸
状の曲線が大きく現れることでその位置を確認できる。
The present invention is a method for estimating the velocity of a propagating wave by reversely utilizing the above phenomenon. In particular, point reflection sources such as minute inclusions contained in the medium and reflection echoes from sharp edges have a wide reflection directivity. By imaging a concrete or underground section on the assumption that there is an object, the position can be confirmed by the large convex curve called the locus curve appearing.

【0017】このローカスカーブの頂点が点反射源や鋭
いエッジ部の位置と一致することから、この位置の近傍
の小領域(計算時間短縮化のため)で、伝播波の速度を
変更しながら直接開口合成による画像化(特に立体画像
化)を行い、点反射源や鋭いエッジ部の画像を伝播速度
をパラメータとして表示し観察することで伝播波の速度
を特定することが可能である。
Since the apex of this locus curve coincides with the position of the point reflection source or the sharp edge portion, the velocity of the propagating wave is directly changed in a small region (for shortening the calculation time) near this position. It is possible to specify the velocity of the propagating wave by performing image formation by aperture synthesis (in particular, stereoscopic image formation), and displaying and observing an image of a point reflection source or a sharp edge portion with the propagation velocity as a parameter.

【0018】以上のことから、従来の探査法では送信波
の指向性が広いために精細な探査が不可能であったが、
開口合成探査法は、広い開口を確保することにより広指
向角を有する送受信波を統計的に加算処理することによ
り、S/Nを改善し高解像度の画像が得られるという特
徴があり、しかも複数の送受信器を平面配置することに
より立体的な画像化を行えることから、コンクリート内
や地中の埋設物、空洞、境界面などの形状把握を行うこ
とが可能となる。
From the above, the conventional search method cannot perform a fine search because the directivity of the transmitted wave is wide.
The synthetic aperture exploration method is characterized in that the transmitted / received waves having a wide directivity angle are statistically added by securing a wide aperture to improve the S / N and obtain a high-resolution image. Since three-dimensional imaging can be performed by arranging the transmitters and receivers in a plane, it becomes possible to grasp the shape of buried objects, cavities, boundaries, etc. in concrete and underground.

【0019】また、断層等のように比較的明瞭な境界を
なしている地中内部を弾性波や電磁波で可視化するため
に、送受信器に近い均質媒質部の可視化で得られた境界
線(または境界面)の形状と境界より手前の伝播波の速
度データに基づき、弾性波または電磁波の屈折計算を行
うことにより得られた等伝播時間の曲線(または曲面)
を伝播距離方向に多層に重ね、同曲線(曲面)上に伝播
時間に応じた波形振幅データを対応させて画像化空間に
展開することにより、伝播波の速度をパメータとして境
界面の向こう側の点反射源や鋭いエッジ部と思われる画
像を比較観察し、断層等の境界面を介した領域で良好な
探査画像を得ることが可能となる。
Further, in order to visualize the inside of the earth, which has a relatively clear boundary such as a fault, with an elastic wave or an electromagnetic wave, the boundary line (or the boundary line obtained by the visualization of the homogeneous medium portion near the transmitter / receiver) Curve (or curved surface) of equal propagation time obtained by calculating refraction of elastic wave or electromagnetic wave based on the shape of (boundary surface) and velocity data of the propagating wave before the boundary
Are layered in the propagation distance direction, and the waveform amplitude data corresponding to the propagation time is mapped on the same curve (curved surface) and developed in the imaging space. By comparing and observing images that seem to be point reflection sources and sharp edge portions, it is possible to obtain a good exploration image in an area through a boundary surface such as a tomographic section.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は、本発明の第1実施形態(請
求項1ないし請求項3対応)の開口合成探査装置の構成
図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an aperture synthetic exploration device according to a first embodiment (corresponding to claims 1 to 3) of the present invention.

【0021】図1に示すように、弾性波や電磁波などの
伝播波を送受信する送信器11と受信器12が移動式の
送受信装置13に収納されている。送受信装置13に
は、その移動位置を連続計測する移動位置検出センサ1
4が設置されており、検出した移動位置信号を計測装置
15に出力している。
As shown in FIG. 1, a transmitter 11 and a receiver 12 for transmitting and receiving propagating waves such as elastic waves and electromagnetic waves are housed in a mobile transmitting / receiving device 13. The transmitter / receiver 13 includes a moving position detection sensor 1 for continuously measuring the moving position.
4 is installed and outputs the detected movement position signal to the measuring device 15.

【0022】一方、計測装置15は、送受信装置13の
移動位置が所定量変化する度に発信器11に発信指令を
出力し伝播波の送信ビームEを送信し、比較的均質な媒
質1中の探査対象2で反射された反射波を受信器12で
受けて増幅した後に、計測装置15に出力する構成とし
ている。
On the other hand, the measuring device 15 outputs a transmission command to the transmitter 11 and transmits a transmission beam E of a propagating wave each time the moving position of the transmitting / receiving device 13 changes by a predetermined amount, so that the medium 1 in the relatively homogeneous medium 1 is transmitted. The reflected wave reflected by the search target 2 is received by the receiver 12, amplified, and then output to the measuring device 15.

【0023】図中の破線は、送受信装置13が移動した
状態での送受信を示しており、送信ビームEが広指向角
を有していることから、実線で示した送受信装置13の
位置から破線で示した送受信装置13の位置まで移動し
ている間、受信器12には常に探査対象2からの反射波
を受信することができる。図中のP1は、移動前の送受
信波の伝播経路、PNは、破線で示した移動後の送受信
装置13の位置でのN回目の送受信波の伝播経路を示し
ている。
The broken line in the figure shows transmission / reception when the transmitter / receiver 13 is moved. Since the transmission beam E has a wide directional angle, it is broken from the position of the transmitter / receiver 13 shown by the solid line. While moving to the position of the transmission / reception device 13 shown by, the receiver 12 can always receive the reflected wave from the search target 2. In the figure, P1 indicates the propagation path of the transmission / reception wave before movement, and PN indicates the propagation path of the Nth transmission / reception wave at the position of the transmission / reception device 13 after movement indicated by the broken line.

【0024】計測装置15内では、送受信装置13を移
動しながら収集した反射エコーデータと送受信装置13
の移動位置データに基づき探査画像を合成する処理を行
う。
In the measuring device 15, the reflection echo data collected while moving the transmitting / receiving device 13 and the transmitting / receiving device 13
The process of synthesizing the search image is performed based on the moving position data.

【0025】図2は、送受信装置13の移動位置の正面
に探査対象2があるという前提で比較的均質な媒質1内
の伝播波の波長に比べて小さい点状の探査対象2を画像
化した例である。同図では、送信ビームEが広指向角を
有しているため表示画像は、ローカスカーブ20といわ
れる上に凸の形状をした画像として表示される。ローカ
スカーブ20の頂点は、実際の探査対象2の位置(送受
信装置の移動方向)に一致しているため、送受信装置の
移動方向(水平方向)における位置同定を行うことがで
きる。
FIG. 2 is an image of a dot-shaped search target 2 which is smaller than the wavelength of a propagating wave in a relatively homogeneous medium 1 on the assumption that the search target 2 is located in front of the moving position of the transmitter / receiver 13. Here is an example. In the figure, since the transmission beam E has a wide directivity angle, the display image is displayed as an image having a convex shape called a locus curve 20. Since the apex of the locus curve 20 coincides with the actual position of the search target 2 (moving direction of the transmitting / receiving device), position identification in the moving direction (horizontal direction) of the transmitting / receiving device can be performed.

【0026】ところで、本発明に係る開口合成による画
像化では、反射エコーデータを送信器11と受信器12
の位置からの等伝播時間を表す曲線である楕円体(また
は回転楕円体)を伝播距離方向に多層に重ね、同曲線
(曲面)上に伝播時間に応じた波形振幅データを対応さ
せて画像化空間に展開し、それらの値を送受信器の全て
の組合せについて加算処理することにより精細な画像を
表示することができる。
By the way, in the imaging by aperture synthesis according to the present invention, the reflected echo data is transmitted by the transmitter 11 and the receiver 12.
An ellipsoid (or spheroid), which is a curve representing the equal propagation time from the position of, is layered in the propagation distance direction in multiple layers, and the waveform amplitude data corresponding to the propagation time is mapped on the same curve (curved surface) and imaged. A fine image can be displayed by expanding in space and adding those values for all combinations of the transmitter and the receiver.

【0027】次に、同じ反射エコーデータと送受信装置
13の移動位置データを用いて開口合成による探査画像
の合成処理を行う場合を図3〜図5に示す。図3〜図5
は、伝播波の伝播速度を正確に求めるために送信器11
の出力パワーと受信器12の感度を最大にし比較的均質
な媒質1中にある微小な含有物や検査対象のエッジ部2
を検出できる状態で送受信装置13を移動させながら5
回の送受信(N=5)で反射波形のピーク位置(時間)
に対応した楕円(21〜25,31〜35,41〜4
5)を描いたものである。すなわち、図3の21〜25
は伝播速度低の場合の回転楕円体、図4の31〜35は
伝播速度が正しい場合の回転楕円体、図5の41〜45
は伝播速度高の場合の回転楕円体、Dはローカスカーブ
の頂点を通った深さ方向、fは画像データ強度を表して
いる。
Next, FIG. 3 to FIG. 5 show a case in which a search image is synthesized by aperture synthesis using the same reflected echo data and the moving position data of the transmitting / receiving device 13. 3 to 5
Is the transmitter 11 in order to accurately obtain the propagation velocity of the propagating wave.
Output power and the sensitivity of the receiver 12 are maximized, and minute inclusions in the relatively homogeneous medium 1 or the edge portion 2 of the inspection object
5 while moving the transmitter / receiver 13 in a state that can detect
Peak position (time) of reflected waveform after transmission and reception (N = 5)
Ellipse corresponding to (21-25, 31-35, 41-4
5) is drawn. That is, 21 to 25 in FIG.
Is a spheroid when the propagation velocity is low, 31 to 35 in FIG. 4 are spheroids when the propagation velocity is correct, and 41 to 45 in FIG.
Is a spheroid when the propagation velocity is high, D is the depth direction passing through the apex of the locus curve, and f is the image data intensity.

【0028】図3は伝播波の速度を真値よりも遅くした
場合の画像であり、楕円の径が短いために全体がバラけ
てしかも探査対象位置よりも上に画像が表示される。図
4は伝播波の速度が真値に一致した場合を示しており、
楕円が1点で交わりしかも探査対象2の位置に一致して
いる。図5は速度を真値よりも速くした場合を示してお
り、図3と逆に楕円の径が長いために全体がバラけてし
かも探査対象位置よりも下に画像が表示される。
FIG. 3 shows an image in which the velocity of the propagating wave is slower than the true value. Since the diameter of the ellipse is short, the whole image is scattered and the image is displayed above the search target position. Figure 4 shows the case where the velocity of the propagating wave matches the true value,
The ellipses intersect at one point and coincide with the position of the search target 2. FIG. 5 shows a case in which the speed is made faster than the true value. Contrary to FIG. 3, the ellipse has a long diameter, so that the whole is scattered and an image is displayed below the search target position.

【0029】以上の原理に基づき、微小含有物や検査対
象のエッジ部の近傍の限定領域の画像を伝播波の速度を
パラメータとして連続的に表示し、その結果に基づき判
断した真の速度データを用いて全体画像を合成し表示す
ることで解像度が良好で鮮明な画像を表示装置16上に
表示することができる。
Based on the above principle, images of a limited area near the edge of the inclusion or the object to be inspected are continuously displayed with the velocity of the propagating wave as a parameter, and the true velocity data judged based on the result is displayed. By combining and displaying the whole image by using it, a clear image with good resolution can be displayed on the display device 16.

【0030】図6は、本発明の第2実施形態(請求項4
対応)の開口合成探査装置の構成図であり、地層のよう
に比較的明瞭な境界部7により、境界部7の探査側の媒
質5を介して境界部7に接する探査側とは反対側の媒質
6中の探査対象2を開口合成法により探査する概念図を
示している。
FIG. 6 shows a second embodiment of the present invention (claim 4).
It is a block diagram of the aperture synthetic exploration device of (correspondence), and the comparatively clear boundary part 7 such as a stratum, which is on the opposite side of the exploration side in contact with the boundary part 7 via the medium 5 on the exploration side of the boundary part 7. The conceptual diagram which searches the object 2 to be searched in the medium 6 by the aperture synthesis method is shown.

【0031】本実施形態によると、前記の限定領域の画
像を伝播波の速度をパラメータとして連続的に表示する
方法を用いて可視化された境界部7の形状と境界面の探
査側の媒質5における真の伝播波の速度データに基づ
き、伝播波の屈折計算を行うことにより得られた境界部
7に接する探査側とは反対側の媒質6中での等伝播時間
の曲線(または曲面)51〜55は、伝播波の速度を変
えることにより、図3〜図5に示すような変化をするた
め、画像データの集中を比較することにより真の速度を
求めることが可能である。
According to the present embodiment, the shape of the boundary portion 7 visualized by the method of continuously displaying the image of the limited area with the velocity of the propagating wave as a parameter and the medium 5 on the exploration side of the boundary surface. Curves (or curved surfaces) 51 of equal propagation times in the medium 6 on the side opposite to the exploration side in contact with the boundary portion 7 obtained by performing refraction calculation of the propagation wave based on the velocity data of the true propagation wave Since 55 changes as shown in FIGS. 3 to 5 by changing the velocity of the propagating wave, it is possible to obtain the true velocity by comparing the concentration of image data.

【0032】図7は本発明の第3実施形態(請求項5対
応)の開口合成探査装置の構成図であり、弾性波または
電磁波などの伝播波を送受信する送信器11と受信器1
2を平面上に複数配置し、送受信することにより地中や
コンクリート内を立体探査する概念図を示している。
FIG. 7 is a block diagram of an aperture synthetic exploration apparatus according to the third embodiment (corresponding to claim 5) of the present invention. A transmitter 11 and a receiver 1 for transmitting and receiving propagating waves such as elastic waves or electromagnetic waves.
It shows a conceptual diagram in which a plurality of 2's are arranged on a plane and transmitted / received to three-dimensionally explore the ground or concrete.

【0033】本実施形態によると、複数の送信器11
は、信号切替器17を介して計測装置から送信指令を取
り込むことにより、高速で送信ビームEの送信を切り替
えることが可能である。計測装置15は、全ての受信器
12で受信した反射エコーデータを送信切り替えの合間
に信号切り替え器17を介して全て取り込むものとす
る。探査画像の合成は、図6の第2実施形態と同様の方
法であるが、画像を全て立体表示することにより、地中
やコンクリート等の比較的均質な媒質中の探査対象の形
状や位置をより正確に把握することが可能となる。
According to this embodiment, a plurality of transmitters 11
Is capable of switching the transmission of the transmission beam E at high speed by fetching a transmission command from the measuring device via the signal switching unit 17. It is assumed that the measuring device 15 captures all the reflected echo data received by all the receivers 12 via the signal switching device 17 between transmission switching. The synthesis of the search image is the same as in the second embodiment of FIG. 6, but by displaying all the images in three dimensions, the shape and position of the search target in a relatively homogeneous medium such as underground or concrete can be determined. It becomes possible to grasp more accurately.

【0034】図8は本発明の第4実施形態(請求項6対
応)の開口合成探査装置の構成図である。本実施形態が
図7の第3実施形態と相違する構成は送信器11及び受
信器12として送受信器18を用いた点であり、その他
の構成は同一であるので、同一部分には同一符号を付し
て重複説明は省略する。
FIG. 8 is a block diagram of an aperture synthetic exploration apparatus according to a fourth embodiment of the present invention (corresponding to claim 6). The present embodiment is different from the third embodiment in FIG. 7 in that a transmitter / receiver 18 is used as the transmitter 11 and the receiver 12, and other configurations are the same, and therefore, the same portions are denoted by the same reference numerals. The duplicate description is omitted.

【0035】本実施形態によると、電磁波を用いる場合
は、送信器11と受信器12の機能を同じアンテナで実
現できるため、送受信の両者を兼ねる送受一体型の送受
信器18を送受信装置13内に複数収納し、平面上に配
置することにより、送受信器18を任意の組合せで送受
信することにより、探査画像の改善を図ることができ
る。
According to the present embodiment, when electromagnetic waves are used, the functions of the transmitter 11 and the receiver 12 can be realized by the same antenna. Therefore, the transmitter / receiver integrated transmitter / receiver 18 for both transmission and reception is provided in the transmitter / receiver 13. By accommodating a plurality of them and arranging them on a plane, the search image can be improved by transmitting / receiving the transmitter / receiver 18 in an arbitrary combination.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
弾性波や電磁波などの伝播波を用いた反射法による地中
やコンクリートの内部探査する際に、伝播波の速度が状
況によって変動していても、速度を正確に推定でき、解
像度が良好な開口合成探査装置を提供することが可能と
なる。
As described above, according to the present invention,
Even when the velocity of the propagating wave varies depending on the situation when exploring the inside of the ground or concrete by the reflection method using propagating waves such as elastic waves and electromagnetic waves, the velocity can be accurately estimated and the aperture has a good resolution. It becomes possible to provide a synthetic exploration device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態の開口合成探査装置の構
成図。
FIG. 1 is a configuration diagram of an aperture synthetic exploration device according to a first embodiment of the present invention.

【図2】ローカスカーブの画像化を示す図。FIG. 2 is a diagram showing imaging of a locus curve.

【図3】伝播波の速度低の場合の開口合成による探査画
像図。
FIG. 3 is an exploration image diagram by aperture synthesis when the velocity of a propagating wave is low.

【図4】伝播波の速度が真値の場合の開口合成による探
査画像図。
FIG. 4 is an exploration image diagram based on aperture synthesis when the velocity of a propagating wave is a true value.

【図5】伝播波の速度高の場合の開口合成による探査画
像図。
FIG. 5 is an exploration image diagram by aperture synthesis when the velocity of a propagating wave is high.

【図6】本発明の第2実施形態の開口合成探査装置の構
成図。
FIG. 6 is a configuration diagram of an aperture synthetic exploration device according to a second embodiment of the present invention.

【図7】本発明の第3実施形態の開口合成探査装置の構
成図。
FIG. 7 is a configuration diagram of an aperture synthetic exploration device according to a third embodiment of the present invention.

【図8】本発明の第4実施形態の開口合成探査装置の構
成図。
FIG. 8 is a configuration diagram of an aperture synthetic exploration device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…比較的均質な媒質、2…探査対象、5…境界面の手
前の媒質、6…境界面の向こう側の媒質、7…境界部、
11…送信器、12…受信器、13…送受信装置、14
…移動位置検出センサ、15…計測装置、16…表示装
置、17…信号切替器、E…送信ビーム、P1…伝播経
路1、PN…伝播経路N、21,22,23,24,2
5…伝播速度低の回転楕円体1,同回転楕円体2,同回
転楕円体3,同回転楕円体4,同回転楕円体5、D…ロ
ーカスカーブの頂点を通った深さ方向、f…画像データ
強度、31,32,33,34,35…伝播速度が正し
い場合の回転楕円体1,同回転楕円体2,同回転楕円体
3,同回転楕円体4,同回転楕円体5、41,42,4
3,44,45…伝播速度高の場合の回転楕円体1,同
回転楕円体2,同回転楕円体3,同回転楕円体4,同回
転楕円体5、51,52,53,54,55…等伝播時
間曲面1,同曲面2,同曲面3,同曲面4,同曲面5。
1 ... Relatively homogeneous medium, 2 ... Object to be probed, 5 ... Medium before boundary, 6 ... Medium beyond boundary, 7 ... Boundary,
11 ... Transmitter, 12 ... Receiver, 13 ... Transceiver, 14
... moving position detection sensor, 15 ... measuring device, 16 ... display device, 17 ... signal switcher, E ... transmission beam, P1 ... propagation route 1, PN ... propagation route N, 21, 22, 23, 24, 2
5 ... Low spheroid 1, same spheroid 2, same spheroid 3, same spheroid 4, same spheroid 5, D ... depth direction passing through apex of locus curve, f ... Image data intensity, 31, 32, 33, 34, 35 ... Spheroid 1, same spheroid 2, same spheroid 3, same spheroid 4, same spheroid 5, 41 when propagation velocity is correct , 42, 4
3, 44, 45 ... Spheroid 1, same spheroid 2, same spheroid 3, same spheroid 4, same spheroid 5, 51, 52, 53, 54, 55 when propagation velocity is high Equal propagation time curved surface 1, same curved surface 2, same curved surface 3, same curved surface 4, same curved surface 5.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01S 15/88 G01S 15/88 G01V 3/12 G01V 3/12 B Fターム(参考) 2G047 AA07 AA10 BA03 BC09 BC11 BC18 CB01 EA10 GF20 GG21 GG34 GG35 GH06 5J070 AB01 AC01 AE11 AF02 AK22 BE02 5J083 AA02 AB12 AC28 AD01 AD13 BA01 DC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01S 15/88 G01S 15/88 G01V 3/12 G01V 3/12 BF term (reference) 2G047 AA07 AA10 BA03 BC09 BC11 BC18 CB01 EA10 GF20 GG21 GG34 GG35 GH06 5J070 AB01 AC01 AE11 AF02 AK22 BE02 5J083 AA02 AB12 AC28 AD01 AD13 BA01 DC02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 伝播波の送信器と受信器を収納した移動
可能な送受信装置と、前記送受信装置に設置された位置
検出センサと、検出された位置信号を用いた信号処理の
結果を表示する表示装置とを備えた開口合成探査装置に
おいて、前記送受信装置が所定量移動する毎に伝播波を
送受信することにより得られる反射エコーデータと、送
受信と同時に計測された前記送受信装置の位置信号か
ら、伝播波の伝播速度をパラメータとして変更すること
により得られた複数の画像を比較し、画像データの集中
度と強度に基づいて伝播波の速度を推定することを特徴
とする開口合成探査装置。
1. A movable transmitter / receiver housing a propagating wave transmitter and receiver, a position detection sensor installed in the transmitter / receiver, and a result of signal processing using the detected position signal. In the aperture synthetic exploration device with a display device, reflected echo data obtained by transmitting and receiving a propagating wave each time the transceiver device moves a predetermined amount, from the position signal of the transceiver device measured at the same time as transmission and reception, An aperture synthetic exploration apparatus characterized in that a plurality of images obtained by changing the propagation velocity of a propagating wave as a parameter are compared, and the velocity of the propagating wave is estimated based on the concentration degree and intensity of image data.
【請求項2】 請求項1記載の開口合成探査装置におい
て、前記送受信器の送受信感度を最大にした状態で反射
エコーデータから媒質の断面を画像化したBスコープ画
像化結果から、反射指向角の大きな反射点の位置を画像
中のローカスカーブにより判断し、このローカスカーブ
の頂点位置から探査対象位置を推定することを特徴とす
る開口合成探査装置。
2. The aperture synthetic exploration apparatus according to claim 1, wherein a cross section of the medium is imaged from the reflection echo data with the transmission / reception sensitivity of the transmitter / receiver maximized, and the reflection directivity angle An aperture synthetic exploration device characterized in that the position of a large reflection point is determined by a locus curve in an image, and the exploration target position is estimated from the vertex position of this locus curve.
【請求項3】 請求項2記載の開口合成探査装置におい
て、反射指向角の大きな反射点位置の近傍を画像化領域
とし、前記ローカスカーブを表示するために用いた反射
エコーデータを用いて伝播波の速度をパラメータとして
開口合成処理することにより得られた複数の画像を直接
観察することにより最も画像が集中する伝播波速度を判
定し、前記速度データを用いて全体の探査画像を合成す
ることを特徴とする開口合成探査装置。
3. The synthetic aperture exploration apparatus according to claim 2, wherein the vicinity of a reflection point position having a large reflection directivity angle is set as an imaging region, and the reflected wave data used for displaying the locus curve is used to propagate a propagation wave. By directly observing a plurality of images obtained by performing aperture synthesis processing using the velocity of as a parameter, the propagation wave velocity at which the image is most concentrated is determined, and the entire search image is synthesized using the velocity data. Characteristic synthetic aperture exploration device.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の開口合成探査装置において、均質な媒質が明瞭な境
界をなして構成されている地中の内部に伝播波を送信器
より送信し、送受信器に近い均質媒質部の可視化で得ら
れた境界部の形状データに基づき、伝播波の屈折計算を
行い、境界部に接する前記送受信器から遠い領域におけ
る伝播波速度をパラメータとした画像化結果を比較し、
最も画像が集中する伝播波速度を判定し、前記速度デー
タを用いて全体の探査画像を合成することを特徴とする
開口合成探査装置。
4. The synthetic aperture exploration apparatus according to claim 1, wherein the transmitter transmits a propagating wave into the ground where a homogeneous medium forms a clear boundary. Then, based on the shape data of the boundary portion obtained by visualization of the homogeneous medium portion near the transceiver, refraction calculation of the propagating wave is performed, and the image with the velocity of the propagating wave in the region far from the transceiver contacting the boundary portion as a parameter Compare the results of
An aperture synthetic exploration apparatus, characterized in that a propagating wave velocity at which an image is most concentrated is determined and the entire exploration image is synthesized using the velocity data.
【請求項5】 請求項1記載の開口合成探査装置におい
て、複数の送信器と、複数の受信器を所定位置に配置
し、伝播波の送受信を切替回路で切り替えることによ
り、可視化のための受信エコーデータを収集するととも
に、複数の送信器と受信器から得られた受信エコーデー
タを用いることにより、探査深度を増大させることを特
徴とする開口合成探査装置。
5. The aperture synthetic exploration apparatus according to claim 1, wherein a plurality of transmitters and a plurality of receivers are arranged at predetermined positions, and transmission / reception of propagating waves is switched by a switching circuit, thereby receiving for visualization. An aperture synthetic exploration apparatus, which increases echo exploration depth by collecting echo data and using received echo data obtained from a plurality of transmitters and receivers.
【請求項6】 請求項5記載の開口合成探査装置におい
て、電磁波を送信波として用い、送信と受信を同じアン
テナで行うことができる送受信器を複数配置し、任意に
送受信器を切り替えられる切替回路により、複数の送受
信器から得られた受信エコーデータを用いることによ
り、探査深度を増大させることを特徴とする開口合成探
査装置。
6. The switching synthetic circuit according to claim 5, wherein a plurality of transceivers that use electromagnetic waves as transmission waves and can perform transmission and reception with the same antenna are arranged, and the transceivers can be arbitrarily switched. By using the received echo data obtained from a plurality of transmitters / receivers, the aperture synthetic exploration apparatus is characterized by increasing the exploration depth.
JP2001305310A 2001-10-01 2001-10-01 Aperture synthesys survey device Pending JP2003107164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305310A JP2003107164A (en) 2001-10-01 2001-10-01 Aperture synthesys survey device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305310A JP2003107164A (en) 2001-10-01 2001-10-01 Aperture synthesys survey device

Publications (1)

Publication Number Publication Date
JP2003107164A true JP2003107164A (en) 2003-04-09

Family

ID=19125121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305310A Pending JP2003107164A (en) 2001-10-01 2001-10-01 Aperture synthesys survey device

Country Status (1)

Country Link
JP (1) JP2003107164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024704A (en) * 2005-07-19 2007-02-01 Non-Destructive Inspection Co Ltd Inside inspection method of article, and inside inspection device of article
JP2012007982A (en) * 2010-06-24 2012-01-12 Taisei Corp Non-destructive density measuring device
JP2019532297A (en) * 2016-10-19 2019-11-07 プロセク ソシエテ アノニム Method and apparatus for compensating for combining non-uniformities in ultrasonic inspection
JP2020091129A (en) * 2018-12-03 2020-06-11 三菱重工業株式会社 Aperture synthetic processing device, aperture synthetic processing method and program of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024704A (en) * 2005-07-19 2007-02-01 Non-Destructive Inspection Co Ltd Inside inspection method of article, and inside inspection device of article
JP2012007982A (en) * 2010-06-24 2012-01-12 Taisei Corp Non-destructive density measuring device
JP2019532297A (en) * 2016-10-19 2019-11-07 プロセク ソシエテ アノニム Method and apparatus for compensating for combining non-uniformities in ultrasonic inspection
JP2020091129A (en) * 2018-12-03 2020-06-11 三菱重工業株式会社 Aperture synthetic processing device, aperture synthetic processing method and program of the same
JP7120896B2 (en) 2018-12-03 2022-08-17 三菱重工業株式会社 Aperture synthesis processing device, aperture synthesis processing method, and its program

Similar Documents

Publication Publication Date Title
JPS60207085A (en) Method and apparatus for discriminating object to be detected
CN111044569B (en) Tunnel concrete structure defect detection method
JP2007327935A (en) Method for measuring object in medium
CN107064301A (en) A kind of non-contact non-destructive testing method based on vibration measurement with laser
US4702112A (en) Ultrasonic phase reflectoscope
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
EP0053034B1 (en) Method of determining stress distribution in a solid body
Choi et al. Array type miniaturized ultrasonic sensors to detect urban sinkholes
US7654142B2 (en) Method of imaging using topologic energy calculation
JP5910641B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
RU2282875C1 (en) Building structure exploration device
Lee et al. Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection: Laboratory scale application
JP2003107164A (en) Aperture synthesys survey device
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JPH0361915B2 (en)
CN105548363A (en) Multi-route identification based ultrasonic detection imaging method
JP2866885B2 (en) Method and apparatus for measuring depth of object in buried medium and relative permittivity of buried medium
Bachiri et al. Examinating GPR based detection of defects in RC builds
WO2022054448A1 (en) Ultrasonography method, ultrasonography device, and program
RU2798390C1 (en) Method for passive determination of coordinates of a noise-generating object
CN108413900A (en) Check and evaluation method for large-scale Box-shaped Drainage Culvert structural defect
JP7139061B2 (en) Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration
RU2158015C2 (en) Subsurface radar
JP2005345217A (en) Ultrasonic flaw detecting method and device
JP2000075025A (en) Three-dimensional searching method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927