JPH0861747A - Operation controlling method for air conditioner - Google Patents

Operation controlling method for air conditioner

Info

Publication number
JPH0861747A
JPH0861747A JP6216685A JP21668594A JPH0861747A JP H0861747 A JPH0861747 A JP H0861747A JP 6216685 A JP6216685 A JP 6216685A JP 21668594 A JP21668594 A JP 21668594A JP H0861747 A JPH0861747 A JP H0861747A
Authority
JP
Japan
Prior art keywords
circulation circuit
cold water
compressor
water circulation
overload control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216685A
Other languages
Japanese (ja)
Inventor
Hideaki Watari
秀明 亘
Yukari Hamachika
由香里 浜近
Yoshitaka Oya
義孝 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP6216685A priority Critical patent/JPH0861747A/en
Publication of JPH0861747A publication Critical patent/JPH0861747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To perform cooking without stopping the operation of a compressor by controlling ON, OFF a circulation pump when a cooling load becomes overload. CONSTITUTION: A refrigerant circulating circuit has a compressor 1, an evaporation type condenser 2, an expansion unit 3, an evaporator 4 and an accumulator 5. A chilled water circulating circuit circulates chilled water cooled by the evaporator 4 of the refrigerant circuit by a circulation pump 10 to an indoor heat exchanger. When the overload state of the refrigerant circuit is detected, the operation of the pump 10 of the water circuit is stopped in the state that the operation of the compressor 1 is continued, and the overload control is started. When the refrigerant circuit is reset from the overload state to a normal load state without a preset standby time, the operation of the pump 10 of the water circuit is restarted, and the overload control is stopped. When the refrigerant circuit is not reset from the overload state to the normal load state within the stand-by time, the pump is controlled to be ON, OFF before the compressor 1 is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷水を室内熱交換器に
循環させて冷房を行い、温水を室内熱交換器に循環させ
て暖房を行う冷温水式空気調和機の運転制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for a cold / hot water type air conditioner in which cold water is circulated in an indoor heat exchanger for cooling and hot water is circulated in the indoor heat exchanger for heating.

【0002】[0002]

【従来の技術】従来、圧縮機、凝縮熱交換器、キャピラ
リチューブ等の膨張装置、蒸発熱交換器を有して冷媒を
循環させる冷却回路と、該冷却回路の冷却器(蒸発熱交
換器)において冷却した冷水を循環ポンプにより室内熱
交換器に循環させて冷房を行う冷水循環回路と、温水器
において加熱した温水を循環ポンプにより室内熱交換器
に循環させて暖房を行う温水循環回路とを備えた冷温水
式空気調和機が用いられている。上記冷温水式空気調和
機においては、冷却回路の圧縮機が過負荷状態になった
時に圧縮機を保護する手段が設けられていた。例えば、
圧縮機の吐出温度が上限設定値(例えば、110 ℃)以上
に上昇した場合にこれをサーモスイッチ等の圧縮機吐出
温度検出手段で検出して圧縮機を停止させる、或いは圧
縮機に許容値以上の電流が流れた場合、または圧縮機が
許容値以上に過熱した場合にオーバーロードリレー(OL
R )が動作して圧縮機への通電を遮断し、圧縮機を停止
させる手段等が設けられており、上記圧縮機保護手段が
作動して圧縮機を停止させると、冷媒を循環させる冷却
回路内の圧力が均等になるまでの時間として設定された
待機時間(例えば、3分間)の間、圧縮機の再起動を禁
止して圧縮機を保護している。
2. Description of the Related Art Conventionally, a cooling circuit having a compressor, a condensation heat exchanger, an expansion device such as a capillary tube, and an evaporation heat exchanger for circulating a refrigerant, and a cooler for the cooling circuit (evaporation heat exchanger) A cold water circulation circuit that circulates the chilled cold water in the indoor heat exchanger by a circulation pump for cooling, and a hot water circulation circuit that circulates the hot water heated in the water heater by the circulation pump to the indoor heat exchanger for heating. The equipped cold / hot water type air conditioner is used. In the above-mentioned cold / hot water type air conditioner, means for protecting the compressor in the cooling circuit is provided when the compressor is overloaded. For example,
When the discharge temperature of the compressor rises above the upper limit set value (for example, 110 ° C), it is detected by the compressor discharge temperature detection means such as a thermo switch and the compressor is stopped, or the compressor exceeds the allowable value. When the current flows to the overload relay (OL
R) operates to shut off the power supply to the compressor to stop the compressor. When the compressor protection means operates to stop the compressor, a cooling circuit that circulates the refrigerant. During the waiting time (for example, 3 minutes) set as the time until the internal pressure becomes uniform, the restart of the compressor is prohibited to protect the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記冷
温水式空気調和機の圧縮機保護手段が作動して圧縮機を
停止させた後、冷温水式空気調和機を再起動させる際
に、圧縮機が再起動するまでの待機時間(3分間)と、
給水等を行う立ち上がり時間とが必要であるから、室内
熱交換器に冷水が循環して室内に冷風が吹き出すまでに
かなりのロスタイム(例えば、5,6分間)を生じ、冷
房運転を継続できないという問題があった。また、暖房
運転直後に冷房運転を行おうとすると、冷水循環回路の
配管内に温水が滞留しており、冷媒温度が高く冷房負荷
が過大となり、圧縮機が過負荷となって圧縮機の吐出温
度が上限設定値(110 ℃)を超える、或いは過電流が流
れてOLR が動作し、圧縮機への通電を遮断して圧縮機を
停止させることになり、配管内の温水が自然冷却によっ
て冷却される温度低下を待たなければ冷房運転を開始で
きないという問題があった。
However, when the cold / hot water type air conditioner is restarted after the compressor protecting means of the cold / hot water type air conditioner is activated to stop the compressor, the compressor is restarted. Waiting time (3 minutes) before restarting,
Since it takes a rising time to supply water, etc., a considerable loss time (for example, 5 or 6 minutes) occurs before the cold water circulates in the indoor heat exchanger and the cool air blows into the room, and the cooling operation cannot be continued. There was a problem. Also, if an attempt is made to perform the cooling operation immediately after the heating operation, hot water will remain in the piping of the cold water circulation circuit, the refrigerant temperature will be high and the cooling load will become excessive, and the compressor will become overloaded and the discharge temperature of the compressor will rise. Exceeds the upper limit set value (110 ° C), or overcurrent flows and the OLR operates, shutting off the power to the compressor and stopping the compressor, and the hot water in the pipe is cooled by natural cooling. There was a problem that the cooling operation could not be started until the temperature drop was lowered.

【0004】本発明の目的は、暖房運転直後も含めて冷
房負荷が過負荷、即ち圧縮機が過負荷となったとき、循
環ポンプをオン・オフ制御することにより、圧縮機の運
転を停止させることなく冷房運転を行うことのできる空
気調和機の運転制御方法を提供することである。
The object of the present invention is to stop the operation of the compressor by controlling the circulation pump on / off when the cooling load is overloaded, that is, when the compressor is overloaded, including immediately after the heating operation. An object of the present invention is to provide an operation control method of an air conditioner that can perform a cooling operation without using the air conditioner.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の空気調和機の運転制御方法は、圧縮機、凝縮
熱交換器、膨張装置、蒸発熱交換器及びアキュムレータ
を有する冷媒循環回路と、該冷媒循環回路の蒸発熱交換
器において冷却した冷水を循環ポンプにより室内熱交換
器に循環させる冷水循環回路を備えた空気調和機におい
て、冷媒循環回路が過負荷状態であることを検出した時
に、圧縮機の運転を継続した状態で冷水循環回路の循環
ポンプの運転を停止させて過負荷制御を開始し、予め設
定された待機時間内に冷媒循環回路が過負荷状態から正
常の負荷状態に復帰した時に、冷水循環回路の循環ポン
プの運転を再開して過負荷制御を停止し、待機時間内に
冷媒循環回路が過負荷状態から正常の負荷状態に復帰し
ない時には、冷媒循環回路及び冷水循環回路の運転を停
止させることにより、冷媒循環回路が過負荷になった
時、圧縮機の過熱、或いは過電流によりOLR が作動して
圧縮機を停止させる前に、冷水循環回路の冷水循環ポン
プをオン・オフ制御することで、冷房能力は一時低下す
るが、圧縮機の過負荷を解消しながら、冷房側回路の運
転を継続することができるとともに、暖房運転の直後の
冷房運転においても有効である。なお、圧縮機の吐出温
度が予め設定された上限設定値を越えたことを検知した
時点で過負荷制御を開始し、予め設定された待機時間内
にアキュムレータの入口温度が予め設定された復帰温度
以下に低下したことを検知した時点で過負荷制御を停止
させることができる。また、過負荷制御が行われている
時に、圧縮機の吐出温度が上限設定値よりも予め設定さ
れた設定低下量だけ低下したことを検知した時点で過負
荷制御を停止させることができる。また、圧縮機の電流
が予め設定された上限電流値を越えたことを検知した時
点で過負荷制御を開始し、予め設定された待機時間内に
圧縮機の電流が上限電流値よりも予め設定された設定低
下電流値だけ低下したことを検知した時点で過負荷制御
を停止させることができる。さらに、圧縮機の吐出圧力
が予め設定された上限圧力を越えたことを検知した時点
で過負荷制御を開始し、予め設定された待機時間内に圧
縮機の吐出圧力が上限圧力よりも予め設定された吐出圧
力低下量だけ低下したことを検知した時点で過負荷制御
を停止させることができる。また、過負荷制御を終了し
て冷水循環回路の循環ポンプの運転を再開した後に冷水
循環回路の冷水の循環の有無を確認し、冷水が循環して
いる時は冷水循環回路が正常と判定して冷媒循環回路及
び冷水循環回路の運転を継続し、冷水が循環していない
時は冷水循環回路が異常と判定して冷媒循環回路及び冷
水循環回路の運転を停止させることにより、正常な状態
においては、過負荷制御終了後に冷水循環ポンプの運転
を再開すると、蒸発熱交換器に供給される水の温度が上
昇し、蒸発器における冷媒の蒸発が進み、蒸発熱交換器
の蒸発圧力、蒸発温度が高くなるから蒸発熱交換器が過
冷却される恐れがなく、凍結破損することがないもので
あるが、蒸発熱交換器に冷水が滞留している場合は、蒸
発熱交換器の蒸発圧力、蒸発温度が高くならず、蒸発熱
交換器が過冷却されて凍結する恐れがあり、冷水の循環
が無いことを確認して冷房側回路の運転を停止させるこ
とにより、蒸発熱交換器の凍結破損を防止できる。ま
た、過負荷制御終了後に冷水循環ポンプの運転を再開
し、圧縮機の吐出温度が予め設定された確認時間の間に
上昇したことを確認した場合には、正常状態であると判
断して冷媒循環回路及び冷水循環回路の運転を継続し、
圧縮機の吐出温度が上昇しない時は冷水循環回路が異常
と判定して冷媒循環回路及び冷水循環回路の運転を停止
させることができる。また、過負荷制御終了後に冷水循
環ポンプの運転を再開し、圧縮機の電流が予め設定され
た確認時間の間に増大したことを確認した場合には、正
常状態であると判断して冷媒循環回路及び冷水循環回路
の運転を継続し、圧縮機の電流が増大しない時は冷水循
環回路が異常と判定して冷媒循環回路及び冷水循環回路
の運転を停止させることができる。さらに、過負荷制御
終了後に冷水循環ポンプの運転を再開し、圧縮機の吐出
圧力が予め設定された確認時間の間に上昇したことを確
認した場合には、正常状態であると判断して冷媒循環回
路及び冷水循環回路の運転を継続し、圧縮機の吐出圧力
が上昇しない時は冷水循環回路が異常と判定して冷媒循
環回路及び冷水循環回路の運転を停止させることができ
る。
In order to achieve the above object, an operation control method for an air conditioner according to the present invention is a refrigerant circulation circuit having a compressor, a condensing heat exchanger, an expansion device, an evaporative heat exchanger and an accumulator. And, in the air conditioner having a cold water circulation circuit that circulates the cold water cooled in the evaporation heat exchanger of the refrigerant circulation circuit to the indoor heat exchanger by the circulation pump, it was detected that the refrigerant circulation circuit was in an overloaded state. Occasionally, the operation of the circulation pump of the cold water circulation circuit is stopped while the compressor continues to operate, and overload control is started, and the refrigerant circulation circuit changes from the overload state to the normal load state within the preset standby time. When it returns to, the operation of the circulation pump of the cold water circulation circuit is restarted to stop the overload control, and when the refrigerant circulation circuit does not return from the overload state to the normal load state within the standby time, When the refrigerant circulation circuit is overloaded by stopping the operation of the ring circuit and the chilled water circulation circuit, the chilled water circulation circuit is stopped before the compressor stops due to overheating or overcurrent of the compressor and the OLR operates. Although the cooling capacity is temporarily reduced by controlling the on / off control of the chilled water circulation pump, it is possible to continue the operation of the cooling side circuit while eliminating the overload of the compressor, and to cool immediately after the heating operation. It is also effective in driving. The overload control is started when it is detected that the discharge temperature of the compressor has exceeded the preset upper limit value, and the inlet temperature of the accumulator is reset within the preset standby time. The overload control can be stopped at the time when it is detected that the load has dropped below. Further, when the overload control is being performed, it is possible to stop the overload control at the time when it is detected that the discharge temperature of the compressor is lower than the upper limit set value by a preset reduction amount. Also, when it is detected that the current of the compressor exceeds the preset upper limit current value, overload control is started, and the current of the compressor is preset more than the upper limit current value within the preset standby time. It is possible to stop the overload control at the time when it is detected that the set reduced current value has decreased. Further, when it is detected that the discharge pressure of the compressor has exceeded the preset upper limit pressure, overload control is started, and the discharge pressure of the compressor is preset to be higher than the upper limit pressure within a preset standby time. It is possible to stop the overload control at the time when it is detected that the discharge pressure has decreased by the discharged amount. In addition, after ending the overload control and restarting the operation of the circulation pump of the cold water circulation circuit, check whether the cold water circulation of the cold water circulation circuit is present, and if the cold water is circulating, judge that the cold water circulation circuit is normal. The operation of the refrigerant circulation circuit and the cold water circulation circuit is continued, and when the cold water is not circulating, the cold water circulation circuit determines that there is an abnormality and stops the operation of the refrigerant circulation circuit and the cold water circulation circuit. When the operation of the cold water circulation pump is restarted after overload control ends, the temperature of the water supplied to the evaporation heat exchanger rises, the evaporation of the refrigerant in the evaporator proceeds, and the evaporation pressure and evaporation temperature of the evaporation heat exchanger increase. Therefore, there is no risk of the evaporative heat exchanger being overcooled, and there is no freeze damage.However, if cold water remains in the evaporative heat exchanger, the evaporative pressure of the evaporative heat exchanger, Evaporation temperature does not rise There is a risk that evaporative heat exchanger is frozen is supercooled by stopping the operation of the cooling side circuit to verify that the cold water circulation is not possible to prevent freezing damage to the evaporator heat exchanger. When the operation of the chilled water circulation pump is restarted after the end of overload control and it is confirmed that the discharge temperature of the compressor has risen during the preset confirmation time, it is determined that the refrigerant is in a normal state and the refrigerant Continue operation of circulation circuit and cold water circulation circuit,
When the discharge temperature of the compressor does not rise, it is possible to determine that the cold water circulation circuit is abnormal and stop the operation of the refrigerant circulation circuit and the cold water circulation circuit. When the operation of the chilled water circulation pump is restarted after the overload control is finished and it is confirmed that the compressor current has increased during the preset confirmation time, it is determined that it is in the normal state and the refrigerant circulation is determined. The operation of the circuit and the cold water circulation circuit is continued, and when the current of the compressor does not increase, it is possible to determine that the cold water circulation circuit is abnormal and stop the operation of the refrigerant circulation circuit and the cold water circulation circuit. Further, when the operation of the chilled water circulation pump is restarted after the end of the overload control, and it is confirmed that the discharge pressure of the compressor has risen during the preset confirmation time, it is determined that the refrigerant is in the normal state, and the refrigerant is judged to be normal. It is possible to continue the operation of the circulation circuit and the cold water circulation circuit, and when the discharge pressure of the compressor does not rise, determine that the cold water circulation circuit is abnormal and stop the operation of the refrigerant circulation circuit and the cold water circulation circuit.

【0006】[0006]

【実施例】図2を参照して本発明を適用する空気調和機
について説明すると、冷房側回路は冷媒循環回路と冷水
循環回路とを備えている。冷媒循環回路は、圧縮機1
と、蒸発式凝縮器2と、キャピラリチューブ(膨張装
置)3と、蒸発器4と、アキュムレータ5とが冷媒管路
で順次連結されて形成され、アキュムレータ5の入口側
管路にアキュムレータ入口温度を検出する入口側サーミ
スタ33が設けられ、圧縮機1の吐出側管路に圧縮機吐出
温度を検出する吐出側サーミスタ34が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An air conditioner to which the present invention is applied will be described with reference to FIG. 2. The cooling side circuit includes a refrigerant circulation circuit and a cold water circulation circuit. The refrigerant circulation circuit is the compressor 1
The evaporative condenser 2, the capillary tube (expansion device) 3, the evaporator 4, and the accumulator 5 are sequentially formed by a refrigerant pipe line, and the accumulator inlet temperature is set in the inlet side pipe line of the accumulator 5. An inlet side thermistor 33 for detecting is provided, and a discharge side thermistor 34 for detecting the compressor discharge temperature is provided in the discharge side pipeline of the compressor 1.

【0007】上記蒸発式凝縮器2は、駆動モータ20で駆
動される冷却ファン21及び揚水ロート22と、揚水ロート
22の周囲に配設され、圧縮機1並びにキャピラリチュー
ブ3にそれぞれ接続された凝縮熱交換管23と、下部に配
置されたドレンパン24と、ドレンパン24に接続されて排
水電磁弁26を有する排水管25と、ドレンパン24内の水位
を検出するドレン水位検出電極27と、給水管17に接続さ
れて冷房側補給水用電磁弁171 を備えた冷房側補給水管
170 と、ドレンパン24の上部に接続されたオーバーフロ
ー管29とを備えている。
The evaporative condenser 2 includes a cooling fan 21 driven by a drive motor 20, a pumping funnel 22, and a pumping funnel.
Condensation heat exchange pipe 23 arranged around 22 and connected to the compressor 1 and the capillary tube 3, respectively, a drain pan 24 arranged at the lower part, and a drain pipe having a drain solenoid valve 26 connected to the drain pan 24. 25, a drain water level detection electrode 27 that detects the water level in the drain pan 24, and a cooling side makeup water pipe that is connected to the water supply pipe 17 and includes a cooling side makeup water solenoid valve 171.
170 and an overflow pipe 29 connected to the upper part of the drain pan 24.

【0008】冷水循環回路は、冷媒循環回路の蒸発器4
が内蔵された冷水発生機6に、逆止弁8を備えた冷房往
き管7と、エアセパレータ9と冷水循環ポンプ10とを備
えた冷房戻り管11とが連結され、冷房往き管7と冷房戻
り管11の他端側は冷房室内熱交換器(図示せず)に連通
されており、冷水発生機6の出口付近の冷房往き管7に
往き冷水温度検出サーミスタ32が設けられる。
The cold water circulation circuit is the evaporator 4 of the refrigerant circulation circuit.
The cooling water generator 6 having a built-in air conditioner is connected to the cooling outflow pipe 7 having the check valve 8 and the cooling return pipe 11 including the air separator 9 and the cooling water circulation pump 10 to connect the cooling outflow pipe 7 and the cooling water. The other end of the return pipe 11 is communicated with a heat exchanger (not shown) for a cooling room, and a chilled water temperature detecting thermistor 32 is provided to the chilled water flue pipe 7 near the outlet of the chilled water generator 6.

【0009】暖房循環回路は、温水器(熱源機)12の出
湯側に接続された暖房往き管14が暖房室内熱交換器(図
示せず)の入口側に接続され、暖房室内熱交換器の出口
側に接続された暖房戻り管13が膨張タンク15に接続さ
れ、暖房循環ポンプ16を備えた入水管131 によって膨張
タンク15と温水器12の入水側とを連結されており、暖房
往き管14にはハイリミットスイッチ30及び暖房サーミス
タ31が設けられており、膨張タンク15には水位検出電極
151 が設けられている。膨張タンク15には、給水管17か
ら分岐されて暖房側補給水用電磁弁172 を備えた暖房側
補給水管173 が連通されている。また、冷房往き管7と
暖房往き管14とが、冷暖房切替弁19を備えた冷暖房切替
バイパス管18で連通され、エアセパレータ9と暖房戻り
管13とが冷暖房切替バイパス管132 で連通されている。
温水器12は、熱交換器121 と、ガスバーナ122 と、燃焼
ファン126 と、点火プラグ及びフレームロッド127 とを
備え、ガスバーナ122 に接続されたガス供給管にはガス
比例弁123 と、ガス電磁弁124 と、ガス元電磁弁125 を
備えている。
In the heating circulation circuit, the heating outflow pipe 14 connected to the hot water outlet (heat source device) 12 is connected to the inlet side of the heating indoor heat exchanger (not shown), The heating return pipe 13 connected to the outlet side is connected to the expansion tank 15, and the expansion tank 15 and the water inlet side of the water heater 12 are connected by the water inlet pipe 131 equipped with the heating circulation pump 16. Is equipped with a high limit switch 30 and a heating thermistor 31, and the expansion tank 15 has a water level detection electrode.
151 are provided. A heating side makeup water pipe 173, which is branched from the water supply pipe 17 and includes a heating side makeup water electromagnetic valve 172, is connected to the expansion tank 15. In addition, the cooling outflow pipe 7 and the heating outflow pipe 14 are connected by a cooling / heating switching bypass pipe 18 having a cooling / heating switching valve 19, and the air separator 9 and the heating return pipe 13 are connected by a cooling / heating switching bypass pipe 132. .
The water heater 12 includes a heat exchanger 121, a gas burner 122, a combustion fan 126, a spark plug and a frame rod 127, and a gas supply pipe connected to the gas burner 122 has a gas proportional valve 123 and a gas solenoid valve. 124 and a gas source solenoid valve 125 are provided.

【0010】動作について説明すると、冷房運転時には
冷房側回路を運転し、冷暖房切替弁19を閉じて、圧縮機
1と蒸発式凝縮器2の駆動モータ20とを駆動し、冷媒を
圧縮機1、蒸発式凝縮器2、キャピラリチューブ3、蒸
発器4、アキュムレータ5に循環させ、蒸発器4により
冷水発生機6内の水を冷却する。冷水循環ポンプ10を駆
動し、冷水発生機6内の冷水が冷房往き管7により、逆
止弁8を介して冷房室内熱交換器に供給されて冷風を発
生させ、冷房室内熱交換器からエアセパレータ9を介し
て冷水循環ポンプ10に還流される。この時、冷水流量を
調節することにより、冷却能力を制御する。
To explain the operation, during cooling operation, the cooling side circuit is operated, the cooling / heating switching valve 19 is closed, the compressor 1 and the drive motor 20 of the evaporative condenser 2 are driven, and the refrigerant is compressed by the compressor 1. The evaporation condenser 2, the capillary tube 3, the evaporator 4, and the accumulator 5 are circulated, and the water in the cold water generator 6 is cooled by the evaporator 4. The chilled water circulation pump 10 is driven, the chilled water in the chilled water generator 6 is supplied to the chiller indoor heat exchanger via the check-out valve 8 via the check valve 8 to generate chilled air, and the chiller indoor heat exchanger generates air. It is recirculated to the cold water circulation pump 10 via the separator 9. At this time, the cooling capacity is controlled by adjusting the flow rate of cold water.

【0011】一方暖房運転時には暖房循環ポンプ16及び
温水器12を運転し、温水が暖房往き管14から暖房室内熱
交換器に供給されて温風を発生させた後、暖房戻り管13
により膨張タンク15に還流される。この時温水流量を調
節することにより、暖房能力を制御する。なお、暖房能
力を大きくするには、圧縮機1及び冷水循環ポンプ10を
停止させて冷暖房切替弁19を開くことにより、冷房室内
熱交換器及び暖房室内熱交換器に同時に温水を供給す
る。また、除湿運転時には、圧縮機1と蒸発式凝縮器2
の駆動モータ20及び冷水循環ポンプ10を起動して冷房側
回路即ち冷媒循環回路及び冷水循環回路を運転して冷房
室内熱交換器に冷水を供給すると同時に、暖房循環ポン
プ16及び温水器12を起動して温水循環回路を運転して暖
房側室内熱交換器に温水を供給し、室内温度Tr を変化
させない適温の風を送風する。
On the other hand, during the heating operation, the heating circulation pump 16 and the water heater 12 are operated so that hot water is supplied from the heating outflow pipe 14 to the heating indoor heat exchanger to generate warm air, and then the heating return pipe 13 is supplied.
Is returned to the expansion tank 15. At this time, the heating capacity is controlled by adjusting the hot water flow rate. In order to increase the heating capacity, the compressor 1 and the chilled water circulation pump 10 are stopped and the heating / cooling switching valve 19 is opened to supply hot water to the cooling indoor heat exchanger and the heating indoor heat exchanger at the same time. Further, during the dehumidifying operation, the compressor 1 and the evaporative condenser 2
The driving motor 20 and the cold water circulation pump 10 are started to operate the cooling side circuit, that is, the refrigerant circulation circuit and the cold water circulation circuit to supply cold water to the cooling room heat exchanger, and at the same time, to start the heating circulation pump 16 and the water heater 12. Then, the hot water circulation circuit is operated to supply hot water to the heating-side indoor heat exchanger, and a proper temperature air that does not change the indoor temperature Tr is blown.

【0012】図1のフローチャートを参照して本発明の
第1実施例を説明する。冷房側回路即ち冷媒循環回路及
び冷水循環回路を起動させると、蒸発式凝縮器2の排水
電磁弁26を閉じて冷房側補給水管170 の冷房側補給水用
電磁弁171 を開き、ドレンパン24内の水位が所定値以上
の水位(Hi)であることをドレン水位検出電極27で検出
した後、圧縮機1と蒸発式凝縮器2の駆動モータ20及び
冷水循環ポンプ10の運転を開始(オン)して冷房室内熱
交換器に冷水を供給する。
A first embodiment of the present invention will be described with reference to the flowchart of FIG. When the cooling side circuit, that is, the refrigerant circulation circuit and the cold water circulation circuit are activated, the drainage solenoid valve 26 of the evaporative condenser 2 is closed, the cooling side makeup water solenoid valve 171 of the cooling side makeup water pipe 170 is opened, and the inside of the drain pan 24 is closed. After the drain water level detection electrode 27 detects that the water level is equal to or higher than a predetermined value (Hi), the drive motor 20 of the compressor 1 and the evaporative condenser 2 and the operation of the cold water circulation pump 10 are started (turned on). Supply cold water to the heat exchanger in the cooling room.

【0013】冷房側回路の運転中に、冷媒の蒸発圧力並
びに蒸発温度が高くなって冷媒循環回路が過負荷である
ことを検出した場合、過負荷制御開始条件が満たされて
過負荷制御が開始され、冷水循環回路の冷水循環ポンプ
10を停止(オフ)させる。冷水循環ポンプ10を停止した
状態で冷媒循環回路の運転を継続する即ち圧縮機1の運
転を継続することにより、冷水循環流量が0(l/min.)と
なって冷水発生機6内に冷水が滞留して蒸発器4を冷却
するから、冷媒の蒸発圧力並びに蒸発温度が低下し、蒸
発器4からアキュムレータ5への戻り冷媒は気液混合状
態となり、圧縮機1即ち冷媒循環回路の負荷が低減され
て運転される。
When it is detected that the refrigerant evaporation pressure and the evaporation temperature are high and the refrigerant circulation circuit is overloaded during the operation of the cooling side circuit, the overload control start condition is satisfied and the overload control is started. The chilled water circulation pump of the chilled water circulation circuit
Stop 10 (off). By continuing the operation of the refrigerant circulation circuit with the cold water circulation pump 10 stopped, that is, by continuing the operation of the compressor 1, the cold water circulation flow rate becomes 0 (l / min.), And the cold water in the cold water generator 6 is reduced. Stays in the evaporator 4 and cools the evaporator 4, so that the evaporation pressure and the evaporation temperature of the refrigerant decrease, the refrigerant returning from the evaporator 4 to the accumulator 5 enters a gas-liquid mixed state, and the load of the compressor 1, that is, the refrigerant circulation circuit is reduced. It is operated with reduced pressure.

【0014】冷水循環ポンプ10を停止した状態で冷媒循
環回路の運転を継続し、過負荷制御終了条件を満足した
後、冷水循環ポンプ10の運転を再開して冷水循環回路に
冷水を循環させ、冷房室内熱交換器に冷水を供給する。
冷房側回路の運転を停止する時は、圧縮機1と蒸発式凝
縮器2の駆動モータ20及び冷水循環ポンプ10を停止させ
た後、蒸発式凝縮器2の排水電磁弁26を開く。なお、冷
水循環ポンプ10を停止している待機時間は、停止前の冷
水の流量、水温によって異なる値に設定されるが、1分
30秒以下にすると良く、1分30秒を超えた時は冷媒循環
回路即ち圧縮機1を停止させるものであり、冷水循環ポ
ンプ10を停止している時間を一定にすることもできる。
After continuing the operation of the refrigerant circulation circuit with the cold water circulation pump 10 stopped and satisfying the overload control termination condition, the operation of the cold water circulation pump 10 is restarted to circulate the cold water in the cold water circulation circuit, Supply cold water to the heat exchanger in the cooling room.
When the operation of the cooling side circuit is stopped, the compressor 1, the drive motor 20 of the evaporative condenser 2 and the cold water circulation pump 10 are stopped, and then the drainage electromagnetic valve 26 of the evaporative condenser 2 is opened. The standby time for stopping the cold water circulation pump 10 is set to a different value depending on the flow rate of the cold water before the stop and the water temperature, but 1 minute.
The time is preferably 30 seconds or less, and when the time exceeds 1 minute and 30 seconds, the refrigerant circulation circuit, that is, the compressor 1 is stopped, and the time during which the cold water circulation pump 10 is stopped can be made constant.

【0015】上記構成により、冷媒循環回路が過負荷に
なった時、圧縮機の過熱、或いは過電流によりOLR が作
動して圧縮機を停止させる前に、冷水循環回路の冷水循
環ポンプをオン・オフ制御することで、冷房能力は一時
低下するが、圧縮機の過負荷を解消しながら、冷房側回
路の運転を継続することができる。次に、過負荷状態を
検出して過負荷制御を開始する過負荷制御開始条件並び
に過負荷状態から正常の負荷状態に復帰して過負荷制御
を停止する過負荷制御停止条件が異なる他の実施例につ
いて説明する。
With the above construction, when the refrigerant circulation circuit is overloaded, the chilled water circulation pump of the chilled water circulation circuit is turned on before the OLR operates and the compressor is stopped due to overheating of the compressor or overcurrent. By performing the off control, the cooling capacity is temporarily reduced, but the operation of the cooling side circuit can be continued while eliminating the overload of the compressor. Next, other implementations with different overload control start conditions that detect the overload state and start overload control and overload control stop conditions that return from the overload state to a normal load state and stop overload control An example will be described.

【0016】第2実施例においては、冷媒循環回路即ち
圧縮機1が過負荷状態にある時、冷媒の蒸発圧力並びに
蒸発温度が高くなっているから、圧縮機1の吐出温度が
予め設定された上限設定値(例えば、110 ℃)を超えた
ことを吐出側サーミスタ34で検出すると、過負荷制御開
始条件が満たされたもの判定して過負荷制御を開始す
る。なお、上限設定値(110 ℃)は、OLR が作動する温
度より低い温度に設定されている。過負荷制御を行い、
冷水循環ポンプ10を停止した状態で冷媒循環回路の運転
を継続すると、冷水循環流量が0(l/min.)となって冷水
発生機6内に冷水が滞留して蒸発器4を冷却するから、
冷媒の蒸発圧力並びに蒸発温度が低下し、蒸発器4から
アキュムレータ5への戻り冷媒は気液混合状態となり、
アキュムレータ5の入口温度が低下し、アキュムレータ
5の入口温度が予め設定された復帰温度(例えば、0
℃)以下に低下したことを入口側サーミスタ33で検出す
ると過負荷制御停止条件を満足したものとして過負荷制
御を停止し、冷水循環ポンプ10の運転を再開する。
In the second embodiment, when the refrigerant circulation circuit, that is, the compressor 1 is in an overloaded state, the evaporation pressure and evaporation temperature of the refrigerant are high, so the discharge temperature of the compressor 1 is preset. When the discharge side thermistor 34 detects that the upper limit set value (for example, 110 ° C.) is exceeded, it is determined that the overload control start condition is satisfied, and the overload control is started. The upper limit set value (110 ° C) is set to a temperature lower than the temperature at which the OLR operates. Overload control,
If the operation of the refrigerant circulation circuit is continued with the cold water circulation pump 10 stopped, the cold water circulation flow rate becomes 0 (l / min.), And cold water stays in the cold water generator 6 to cool the evaporator 4. ,
The evaporation pressure and evaporation temperature of the refrigerant decrease, and the refrigerant returning from the evaporator 4 to the accumulator 5 enters a gas-liquid mixed state,
The inlet temperature of the accumulator 5 decreases, and the inlet temperature of the accumulator 5 returns to a preset return temperature (for example, 0
When the inlet side thermistor 33 detects that the temperature falls below the (.degree. C.), the overload control is stopped assuming that the overload control stop condition is satisfied, and the operation of the cold water circulation pump 10 is restarted.

【0017】第3実施例においては、過負荷制御終了条
件として圧縮機の吐出温度の低下量を採用したものであ
り、圧縮機1の吐出温度が上限設定値(110 ℃)を超え
たことを検出して圧縮機1の過負荷を検出し、過負荷制
御を開始して冷水循環ポンプ10を停止した状態で圧縮機
1の運転を継続すると、冷水循環流量が0(l/min.)とな
って冷水発生機6内に冷水が滞留して蒸発器4を冷却す
るから、冷媒の蒸発圧力及び蒸発温度が低下し、圧縮機
1への戻り冷媒は気液混合状態となり、圧縮機1の吐出
温度が低下する。圧縮機1の吐出温度が上限設定値(11
0 ℃)よりも予め設定された設定低下量(例えば、2
℃)だけ低下して、圧縮機1の吐出温度が〔上限設定値
−設定低下量(110 ℃−2℃=108 ℃)〕となった時点
で過負荷制御終了条件を満足したものとして冷水循環ポ
ンプ10の運転を再開する。
In the third embodiment, the amount of decrease in the discharge temperature of the compressor is adopted as the overload control termination condition, and it is determined that the discharge temperature of the compressor 1 exceeds the upper limit set value (110 ° C.). When the overload of the compressor 1 is detected, the overload control is started and the operation of the compressor 1 is continued with the chilled water circulation pump 10 stopped, the chilled water circulation flow rate becomes 0 (l / min.). Since cold water stays in the cold water generator 6 and cools the evaporator 4, the evaporation pressure and the evaporation temperature of the refrigerant decrease, and the refrigerant returning to the compressor 1 enters a gas-liquid mixed state, and the compressor 1 The discharge temperature drops. The discharge temperature of the compressor 1 is set to the upper limit value (11
A preset amount of decrease (for example, 2
℃) and the discharge temperature of the compressor 1 becomes [upper limit set value-set decrease amount (110 ℃ -2 ℃ = 108 ℃)], it is assumed that the overload control termination condition is satisfied and cold water circulation The operation of the pump 10 is restarted.

【0018】第4実施例においては、冷房側回路の運転
中に、圧縮機1の電流が予め設定した上限電流値(例え
ば、7.6 A)を超えたこと(圧縮機即ち冷媒循環回路が
過負荷である)を図示しない電流検出装置(例えば、カ
レントトランス)で検出した場合、過負荷制御開始条件
が満たされて過負荷制御が開始され、冷水循環回路の冷
水循環ポンプ10を停止(オフ)させる。
In the fourth embodiment, the current of the compressor 1 exceeds a preset upper limit current value (for example, 7.6 A) during operation of the cooling side circuit (the compressor, that is, the refrigerant circulation circuit is overloaded). Is detected by a current detector (not shown) (for example, a current transformer), the overload control start condition is satisfied, the overload control is started, and the cold water circulation pump 10 of the cold water circulation circuit is stopped (turned off). .

【0019】冷水循環ポンプ10を停止した状態で冷媒循
環回路の運転を継続する即ち圧縮機1の運転を継続する
ことにより、冷水循環流量が0(l/min.)となって冷水発
生機6内に冷水が滞留して蒸発器4を冷却するから、冷
媒の蒸発圧力、蒸発温度が低下し、圧縮機1への戻り冷
媒は気液混合状態となり、圧縮機1の負荷が低減されて
圧縮機の電流が低下する。電流の低下量が予め設定され
た設定低下電流値(例えば、0.5 A)に達した時点で過
負荷制御終了条件を満足したものとして冷水循環ポンプ
10の運転を再開する。なお、上記上限電流値(7.6 A)
は、OLR の作動電流値を超えない値とするとともに、圧
縮機起動電流は過負荷状態判定のデータとして採用しな
い。
By continuing the operation of the refrigerant circulation circuit with the cold water circulation pump 10 stopped, that is, by continuing the operation of the compressor 1, the cold water circulation flow rate becomes 0 (l / min.) And the cold water generator 6 Since cold water stays inside and cools the evaporator 4, the evaporation pressure and the evaporation temperature of the refrigerant are lowered, the refrigerant returning to the compressor 1 is in a gas-liquid mixed state, and the load of the compressor 1 is reduced and compressed. Machine current drops. The chilled water circulation pump is regarded as satisfying the overload control termination condition when the amount of current decrease reaches a preset set current value (for example, 0.5 A).
Restart operation of 10. The upper limit current value (7.6 A)
Is a value that does not exceed the OLR operating current value, and the compressor starting current is not used as data for determining the overload condition.

【0020】第5実施例においては、冷房側回路の運転
中に、圧縮機1の吐出圧力が上昇して予め設定された上
限圧力(例えば、20.5kgf/cm2G)に上昇したことを吐出
圧力検出装置(図示せず)で検出すると、過負荷である
と判定し、過負荷制御を開始して冷水循環ポンプ10を停
止した状態で圧縮機1の運転を継続する。冷水循環ポン
プ10を停止した状態で冷媒循環回路の運転を継続する即
ち圧縮機1の運転を継続することにより、冷水循環流量
が0(l/min.)となって冷水発生機6内に冷水が滞留して
蒸発器4を冷却するから、冷媒の蒸発圧力、蒸発温度が
低下し、圧縮機1への戻り冷媒は気液混合状態となり、
圧縮機1の吐出圧力が低下して予め設定された吐出圧力
低下量(例えば、1kgf/cm2G)だけ低い圧力値(例え
ば、19.5kgf/cm2G)になった時点で過負荷制御終了条件
を満足したものとして冷水循環ポンプ10の運転を再開す
る。
In the fifth embodiment, it is discharged that the discharge pressure of the compressor 1 rises to the preset upper limit pressure (for example, 20.5 kgf / cm 2 G) during the operation of the cooling side circuit. When it is detected by the pressure detection device (not shown), it is determined that the compressor is overloaded, the overload control is started, and the operation of the compressor 1 is continued with the cold water circulation pump 10 stopped. By continuing the operation of the refrigerant circulation circuit with the cold water circulation pump 10 stopped, that is, by continuing the operation of the compressor 1, the cold water circulation flow rate becomes 0 (l / min.), And the cold water in the cold water generator 6 is reduced. Accumulate and cool the evaporator 4, the evaporation pressure and evaporation temperature of the refrigerant decrease, and the refrigerant returning to the compressor 1 enters a gas-liquid mixed state,
Discharge pressure decrease the discharge pressure is set in advance in reduction in compressor 1 (e.g., 1kgf / cm 2 G) by low pressure value (e.g., 19.5kgf / cm 2 G) overload control ends when it becomes The operation of the cold water circulation pump 10 is restarted assuming that the conditions are satisfied.

【0021】なお、一般に圧縮機1の吐出圧力が上昇す
る時は、圧縮機1の吐出温度も上昇するものであるか
ら、上記第2実施例に示したように、圧縮機1の吐出温
度を吐出側サーミスタ34で検出し、検出した吐出温度を
上記吐出圧力に加えて過負荷制御開始条件並びに過負荷
制御終了条件に採用しても良い。また、上記各実施例に
示した過負荷制御開始条件並びに過負荷制御終了条件に
ついては、単独で採用するとは限らず、複数組み合わせ
ても良いものである。
In general, when the discharge pressure of the compressor 1 rises, the discharge temperature of the compressor 1 also rises. Therefore, as shown in the second embodiment, the discharge temperature of the compressor 1 is The discharge temperature detected by the discharge side thermistor 34 may be added to the discharge pressure to be used as the overload control start condition and the overload control end condition. Further, the overload control start condition and the overload control end condition shown in each of the above-mentioned embodiments are not necessarily adopted individually, but a plurality of them may be combined.

【0022】図3のフローチャートに示す第6実施例に
おいて、上述の過負荷制御終了条件を満足して過負荷制
御を終了した後に冷水循環ポンプ10の運転を再開し、冷
水循環ポンプ10の運転再開後に、冷水循環回路の異常特
に冷水循環ポンプ10に故障等の異常が無いことを確認し
てから冷房側回路の運転を継続し、異常がある場合には
冷房側回路の運転を停止させる。冷水循環回路の異常の
有無は、冷水発生機6内に冷水が循環しているか否かに
より判断するもので、冷水循環流量が0(l/min.)となる
時には冷水が滞留していることになり、予め設定した確
認時間(例えば、30秒間)が経過するまでに、冷水発生
機6内に冷水が循環しない場合には、冷水循環回路の異
常特に冷水循環ポンプ10に故障等の異常があるものと判
断して冷房側回路の運転を停止させる。
In the sixth embodiment shown in the flow chart of FIG. 3, the operation of the cold water circulation pump 10 is restarted after the above-mentioned overload control ending condition is satisfied and the overload control is ended, and the operation of the cold water circulation pump 10 is restarted. After that, the operation of the cooling side circuit is continued after confirming that there is no abnormality such as a failure in the cold water circulation pump 10, particularly the cooling water circulation pump 10, and if there is an abnormality, the operation of the cooling side circuit is stopped. The presence or absence of abnormality in the cold water circulation circuit is determined by whether or not the cold water is circulating in the cold water generator 6. When the cold water circulation flow rate is 0 (l / min.), The cold water remains. If the chilled water does not circulate in the chilled water generator 6 before the preset confirmation time (for example, 30 seconds) elapses, an abnormality in the chilled water circulation circuit, particularly an abnormality such as a failure in the chilled water circulation pump 10, occurs. It is judged that there is something, and the operation of the cooling side circuit is stopped.

【0023】上記構成により、正常な状態においては、
過負荷制御終了後に冷水循環ポンプ10の運転を再開する
と、冷水発生機6内に供給される水の温度が上昇し、蒸
発器4における冷媒の蒸発が進み、蒸発器4の蒸発圧
力、蒸発温度が高くなるから蒸発器4が過冷却される恐
れがなく、凍結破損することがないものであるが、冷水
循環流量が0(l/min.)であり、冷水発生機6内に冷水が
滞留している場合は、蒸発器4の蒸発圧力、蒸発温度が
高くならず、蒸発器4が過冷却されて凍結破損される恐
れがあり、冷水の循環が無いことを確認して冷房側回路
の運転を停止させることにより、蒸発器4の凍結破損を
防止できる。
With the above configuration, in a normal state,
When the operation of the cold water circulation pump 10 is restarted after the end of the overload control, the temperature of the water supplied into the cold water generator 6 rises, the evaporation of the refrigerant in the evaporator 4 proceeds, and the evaporation pressure and evaporation temperature of the evaporator 4 are increased. Since there is no risk of overcooling the evaporator 4 because it becomes higher and freeze damage does not occur, the cold water circulation flow rate is 0 (l / min.), And cold water remains in the cold water generator 6. If it is, the evaporation pressure and the evaporation temperature of the evaporator 4 do not rise and there is a risk that the evaporator 4 will be overcooled and freeze-damaged. By stopping the operation, freeze damage of the evaporator 4 can be prevented.

【0024】第7実施例においては、冷水循環回路の通
水を圧縮機1の吐出温度の上昇で判定するものであり、
過負荷制御終了後に冷水循環ポンプ10の運転を再開した
時点における圧縮機1の吐出温度から、予め設定された
確認時間(例えば、30秒間)の間に吐出温度が上昇した
ことを吐出側サーミスタ34で検出して確認した場合に
は、正常状態であると判断して冷房側回路の運転を継続
する。逆に、上記確認時間(30秒間)内に吐出温度が上
昇しない場合は、冷水循環ポンプ10の故障により冷水循
環回路内の冷水の循環が行われず、冷水発生機6内の冷
水循環流量が0(l/min.)となって冷水が滞留していると
判断して冷房側回路の運転を停止させる。
In the seventh embodiment, the water flow in the cold water circulation circuit is determined by the rise in the discharge temperature of the compressor 1,
The discharge side thermistor 34 indicates that the discharge temperature rises from the discharge temperature of the compressor 1 at the time when the operation of the cold water circulation pump 10 is restarted after the end of the overload control, for a preset confirmation time (for example, 30 seconds). When it is detected and confirmed in step S3, it is determined to be in a normal state, and the operation of the cooling side circuit is continued. On the contrary, if the discharge temperature does not rise within the above-mentioned confirmation time (30 seconds), the cold water circulating pump 10 fails, so that the cold water in the cold water circulation circuit is not circulated, and the cold water circulation flow rate in the cold water generator 6 becomes zero. (l / min.) is reached and it is determined that cold water is staying and the operation of the cooling side circuit is stopped.

【0025】上記構成により、正常な状態においては、
過負荷制御終了後に冷水循環ポンプ10の運転を再開する
と、冷水発生機6内に供給される水の温度が上昇し、蒸
発器4における冷媒の蒸発が進むから、圧縮機1の吐出
温度が冷水循環ポンプ10の運転再開時から少し遅れて必
ず上昇するものであるから、圧縮機1の吐出温度が確認
時間(30秒間)内に上昇しない場合は、冷水発生機6内
に冷水が滞留しているために蒸発器4の蒸発圧力、蒸発
温度が高くならず、吐出温度が上昇しないものと判断し
て冷房側回路の運転を停止させ、蒸発器4の凍結破損を
防止できる。
With the above configuration, in a normal state,
When the operation of the cold water circulation pump 10 is restarted after the overload control is finished, the temperature of the water supplied into the cold water generator 6 rises and the evaporation of the refrigerant in the evaporator 4 progresses, so that the discharge temperature of the compressor 1 becomes cold water. Since it always increases a little after the circulation pump 10 is restarted, if the discharge temperature of the compressor 1 does not rise within the confirmation time (30 seconds), cold water remains in the cold water generator 6. Since the evaporation pressure and the evaporation temperature of the evaporator 4 do not increase and the discharge temperature does not increase, the operation of the cooling side circuit is stopped and the evaporator 4 can be prevented from freezing damage.

【0026】第8実施例においては、冷水循環回路の通
水を圧縮機1の電流の増大で判定するものであり、上述
の過負荷制御終了後に、冷水循環ポンプ10の運転を再開
した時点から予め設定された確認時間(例えば、30秒
間)が経過するまでに、圧縮機1の電流が増大する場合
には、正常であると判定して冷房回路の運転を継続させ
る。逆に、圧縮機1の電流が増大しない場合には、冷水
循環ポンプ10の故障により冷水循環回路内の冷水の循環
が行われず、冷水発生機6内の冷水循環流量が0(l/mi
n.)となって冷水が滞留していると判断して冷房側回路
の運転を停止させる。
In the eighth embodiment, the water flow in the cold water circulation circuit is determined by the increase in the current of the compressor 1. From the time when the operation of the cold water circulation pump 10 is restarted after the end of the above-mentioned overload control. If the current of the compressor 1 increases before the preset confirmation time (for example, 30 seconds) elapses, it is determined to be normal and the operation of the cooling circuit is continued. On the contrary, when the current of the compressor 1 does not increase, the cold water circulating pump 10 fails and the cold water in the cold water circulation circuit is not circulated, and the cold water circulation flow rate in the cold water generator 6 is 0 (l / mi).
n.) is determined and it is determined that cold water is staying, and the operation of the cooling side circuit is stopped.

【0027】上記構成により、正常な状態においては、
過負荷制御終了後に冷水循環ポンプ10の運転を再開する
と、冷水発生機6内に供給される水の温度が上昇し、蒸
発器4における冷媒の蒸発が進むから、圧縮機1の負荷
が増大してその運転電流が冷水循環ポンプ10の運転再開
時から少し遅れて必ず増大するものであるから、圧縮機
1の電流が確認時間(30秒間)内に増大しない場合は、
冷水発生機6内に冷水が滞留しているために蒸発器4の
蒸発圧力、蒸発温度が高くならず、圧縮機1の負荷が増
大しないから、圧縮機1の電流が増大しないものと判断
して冷房側回路の運転を停止させ、蒸発器4の凍結破損
を防止できる。
With the above configuration, in a normal state,
When the operation of the cold water circulation pump 10 is restarted after the end of the overload control, the temperature of the water supplied into the cold water generator 6 rises and the evaporation of the refrigerant in the evaporator 4 progresses, so the load on the compressor 1 increases. Since the operating current always increases a little after the operation of the cold water circulation pump 10 is restarted, if the current of the compressor 1 does not increase within the confirmation time (30 seconds),
Since the cold water is accumulated in the cold water generator 6, the evaporation pressure and the evaporation temperature of the evaporator 4 do not increase, and the load of the compressor 1 does not increase. Therefore, it is determined that the current of the compressor 1 does not increase. Thus, the operation of the cooling side circuit is stopped, and the evaporator 4 can be prevented from freezing and damage.

【0028】第7実施例においては、冷水循環回路の通
水を圧縮機1の吐出圧力の上昇で判定するものであり、
過負荷制御終了後に冷水循環ポンプ10の運転を再開した
時点における圧縮機1の吐出温度から、予め設定された
確認時間(例えば、30秒間)の間に吐出圧力が上昇した
ことを検出して確認した場合には、正常状態であると判
断して冷房側回路の運転を継続する。逆に、上記確認時
間(30秒間)内に吐出圧力が上昇しない場合は、冷水循
環ポンプ10の故障により冷水循環回路内の冷水の循環が
行われず、冷水発生機6内の冷水循環流量が0(l/min.)
となって冷水が滞留していると判断して冷房側回路の運
転を停止させる。
In the seventh embodiment, the water flow through the cold water circulation circuit is determined by the increase in the discharge pressure of the compressor 1,
From the discharge temperature of the compressor 1 at the time of restarting the operation of the cold water circulation pump 10 after the end of the overload control, it is confirmed by detecting that the discharge pressure has risen within a preset confirmation time (for example, 30 seconds). If so, it is determined that the system is in a normal state and the operation of the cooling side circuit is continued. On the contrary, when the discharge pressure does not rise within the above-mentioned confirmation time (30 seconds), the cold water circulating pump 10 fails, so that the cold water in the cold water circulation circuit is not circulated and the cold water circulation flow rate in the cold water generator 6 becomes zero. (l / min.)
Therefore, it is determined that the cold water is staying and the operation of the cooling side circuit is stopped.

【0029】上記構成により、正常な状態においては、
過負荷制御終了後に冷水循環ポンプ10の運転を再開する
と、冷水発生機6内に供給される水の温度が上昇し、蒸
発器4における冷媒の蒸発が進むから、圧縮機1の吐出
圧力が冷水循環ポンプ10の運転再開時から少し遅れて必
ず上昇するものであるから、圧縮機1の吐出圧力が確認
時間(30秒間)内に上昇しない場合は、冷水発生機6内
に冷水が滞留しているために蒸発器4の蒸発圧力、蒸発
温度が高くならず、吐出圧力が上昇しないものと判断し
て冷房側回路の運転を停止させ、蒸発器4の凍結破損を
防止できる。
With the above configuration, in a normal state,
When the operation of the cold water circulation pump 10 is restarted after the end of the overload control, the temperature of the water supplied into the cold water generator 6 rises, and the evaporation of the refrigerant in the evaporator 4 progresses, so that the discharge pressure of the compressor 1 becomes cold water. Since it always increases a little after the circulation pump 10 is restarted, if the discharge pressure of the compressor 1 does not rise within the confirmation time (30 seconds), cold water remains in the cold water generator 6. Since the evaporation pressure and the evaporation temperature of the evaporator 4 are not increased and the discharge pressure is not increased, the operation of the cooling side circuit is stopped and the evaporator 4 can be prevented from being damaged by freezing.

【0030】[0030]

【発明の効果】本発明は、上述のとおり構成されている
から次に述べる効果を奏する。冷媒循環回路が過負荷状
態であることを検出した時に、圧縮機の運転を継続した
状態で冷水循環回路の循環ポンプの運転を停止させて過
負荷制御を開始し、予め設定された待機時間内に冷媒循
環回路が過負荷状態から正常の負荷状態に復帰した時
に、冷水循環回路の循環ポンプの運転を再開して過負荷
制御を停止し、待機時間内に冷媒循環回路が過負荷状態
から正常の負荷状態に復帰しない時には、冷媒循環回路
及び冷水循環回路の運転を停止させることにより、冷媒
循環回路が過負荷になった時、圧縮機の過熱、或いは過
電流によりOLR が作動して圧縮機を停止させる前に、冷
水循環回路の冷水循環ポンプをオン・オフ制御すること
で、冷房能力は一時低下するが、圧縮機の過負荷を解消
しながら、冷房側回路の運転を継続することができると
ともに、暖房運転の直後の冷房運転においても有効であ
る。なお、過負荷状態或いは正常状態の判定を、圧縮機
の吐出温度、吐出圧力または電流、或いはアキュムレー
タの入口温度の検出で行うことにより、特別の検出装置
を必要とすることなく、判定することができる。また、
過負荷制御が行われている時に、圧縮機の吐出温度が上
限設定値よりも予め設定された設定低下量だけ低下した
ことを検知した時点で過負荷制御を停止させることがで
きる。また、圧縮機の電流が予め設定された上限電流値
を越えたことを検知した時点で過負荷制御を開始し、予
め設定された待機時間内に圧縮機の電流が上限電流値よ
りも予め設定された設定低下電流値だけ低下したことを
検知した時点で過負荷制御を停止させることができる。
さらに、圧縮機の吐出圧力が予め設定された上限圧力を
越えたことを検知した時点で過負荷制御を開始し、予め
設定された待機時間内に圧縮機の吐出圧力が上限圧力よ
りも予め設定された吐出圧力低下量だけ低下したことを
検知した時点で過負荷制御を停止させることができる。
また、過負荷制御を終了して冷水循環回路の循環ポンプ
の運転を再開した後に冷水循環回路の冷水の循環の有無
を確認し、冷水が循環している時は冷水循環回路が正常
と判定して冷媒循環回路及び冷水循環回路の運転を継続
し、冷水が循環していない時は冷水循環回路が異常と判
定して冷媒循環回路及び冷水循環回路の運転を停止させ
ることにより、正常な状態においては、過負荷制御終了
後に冷水循環ポンプの運転を再開すると、蒸発熱交換器
に供給される水の温度が上昇し、蒸発器における冷媒の
蒸発が進み、蒸発熱交換器の蒸発圧力、蒸発温度が高く
なるから蒸発熱交換器が過冷却される恐れがなく、凍結
破損することがないものであるが、蒸発熱交換器に冷水
が滞留している場合は、蒸発熱交換器の蒸発圧力、蒸発
温度が高くならず、蒸発熱交換器が過冷却されて凍結す
る恐れがあり、冷水の循環が無いことを確認して冷房側
回路の運転を停止させることにより、蒸発熱交換器の凍
結破損を防止できる。また、冷水循環回路の異常の判定
を圧縮機の吐出温度の上昇、または吐出圧力の上昇、或
いは電流の増大で判定することにより、特別の検出装置
を必要とすることなく、判定することができる。
Since the present invention is constructed as described above, it has the following effects. When it is detected that the refrigerant circulation circuit is overloaded, the operation of the circulation pump of the chilled water circulation circuit is stopped while the compressor continues to operate, and overload control is started within the preset waiting time. When the refrigerant circulation circuit returns from the overload state to the normal load state, the operation of the circulation pump of the chilled water circulation circuit is restarted to stop the overload control, and the refrigerant circulation circuit returns from the overload state to the normal state within the standby time. If the refrigerant circulation circuit and chilled water circulation circuit are not operating again when the load condition of the above does not return, when the refrigerant circulation circuit becomes overloaded, the OLR operates due to overheating of the compressor or overcurrent, and the compressor Although the cooling capacity is temporarily reduced by turning on / off the chilled water circulation pump of the chilled water circulation circuit before stopping, the operation of the cooling side circuit can be continued while eliminating the overload of the compressor. it can At the same time, it is effective in the cooling operation immediately after the heating operation. The determination of the overload state or the normal state is performed by detecting the discharge temperature of the compressor, the discharge pressure or current, or the inlet temperature of the accumulator, so that the determination can be performed without the need for a special detection device. it can. Also,
When the overload control is being performed, the overload control can be stopped when it is detected that the discharge temperature of the compressor is lower than the upper limit set value by a preset reduction amount. Also, when it is detected that the current of the compressor exceeds the preset upper limit current value, overload control is started, and the current of the compressor is preset more than the upper limit current value within the preset standby time. It is possible to stop the overload control at the time when it is detected that the set reduced current value has decreased.
Further, when it is detected that the discharge pressure of the compressor has exceeded the preset upper limit pressure, overload control is started, and the discharge pressure of the compressor is preset to be higher than the upper limit pressure within a preset standby time. It is possible to stop the overload control at the time when it is detected that the discharge pressure has decreased by the discharged amount.
In addition, after ending the overload control and restarting the operation of the circulation pump of the cold water circulation circuit, check whether the cold water circulation of the cold water circulation circuit is present, and if the cold water is circulating, judge that the cold water circulation circuit is normal. The operation of the refrigerant circulation circuit and the cold water circulation circuit is continued, and when the cold water is not circulating, the cold water circulation circuit determines that there is an abnormality and stops the operation of the refrigerant circulation circuit and the cold water circulation circuit. When the operation of the cold water circulation pump is restarted after overload control ends, the temperature of the water supplied to the evaporation heat exchanger rises, the evaporation of the refrigerant in the evaporator proceeds, and the evaporation pressure and evaporation temperature of the evaporation heat exchanger increase. Therefore, there is no risk of the evaporative heat exchanger being overcooled, and there is no freeze damage.However, if cold water remains in the evaporative heat exchanger, the evaporative pressure of the evaporative heat exchanger, Evaporation temperature does not rise There is a risk that evaporative heat exchanger is frozen is supercooled by stopping the operation of the cooling side circuit to verify that the cold water circulation is not possible to prevent freezing damage to the evaporator heat exchanger. Further, by determining the abnormality of the chilled water circulation circuit by the rise of the discharge temperature of the compressor, the rise of the discharge pressure, or the increase of the current, it is possible to make the determination without requiring a special detection device. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る空気調和機の運転制御方法の第
1実施例を示すフローチャートである。
FIG. 1 is a flowchart showing a first embodiment of an operation control method for an air conditioner according to the present invention.

【図2】 本発明を適用する空気調和機の概略構成図で
ある。
FIG. 2 is a schematic configuration diagram of an air conditioner to which the present invention is applied.

【図3】 本発明に係る空気調和機の運転制御方法の第
5実施例を示すフローチャートである。
FIG. 3 is a flowchart showing a fifth embodiment of an operation control method for an air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 蒸発式凝縮器、3 キャピラリチュー
ブ(膨張装置) 4 蒸発器(蒸発熱交換器)、5 アキュムレータ、6
冷水発生機 7 冷房往き管、8 逆止弁、9 エアセパレータ、10
冷水循環ポンプ 11 冷房戻り管、12 温水器(熱源機)、13 暖房戻り
管、14 暖房往き管 15 膨張タンク、16 暖房循環ポンプ、32 往き冷水温
度検出サーミスタ、33 入口側サーミスタ、34 吐出側
サーミスタ、
1 Compressor, 2 Evaporative Condenser, 3 Capillary Tube (Expansion Device) 4 Evaporator (Evaporation Heat Exchanger), 5 Accumulator, 6
Cold water generator 7 Cooling outflow pipe, 8 Check valve, 9 Air separator, 10
Cold water circulation pump 11 Cooling return pipe, 12 Water heater (heat source device), 13 Heating return pipe, 14 Heating outflow pipe 15 Expansion tank, 16 Heating circulation pump, 32 Outflow cold water temperature detection thermistor, 33 Inlet side thermistor, 34 Discharge side thermistor ,

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮熱交換器、膨張装置、蒸発
熱交換器及びアキュムレータを有する冷媒循環回路と、
該冷媒循環回路の蒸発熱交換器において冷却した冷水を
循環ポンプにより室内熱交換器に循環させる冷水循環回
路を備えた空気調和機において、冷媒循環回路が過負荷
状態であることを検出した時に、圧縮機の運転を継続し
た状態で冷水循環回路の循環ポンプの運転を停止させて
過負荷制御を開始し、予め設定された待機時間内に冷媒
循環回路が過負荷状態から正常の負荷状態に復帰した時
に、冷水循環回路の循環ポンプの運転を再開して過負荷
制御を停止し、待機時間内に冷媒循環回路が過負荷状態
から正常の負荷状態に復帰しない時には、冷媒循環回路
及び冷水循環回路の運転を停止させることを特徴とする
空気調和機の運転制御方法。
1. A refrigerant circulation circuit having a compressor, a condensation heat exchanger, an expansion device, an evaporation heat exchanger and an accumulator,
In an air conditioner equipped with a cold water circulation circuit that circulates cold water cooled in the evaporation heat exchanger of the refrigerant circulation circuit to the indoor heat exchanger by a circulation pump, when it is detected that the refrigerant circulation circuit is in an overloaded state, Stop the operation of the circulation pump of the chilled water circulation circuit while continuing the operation of the compressor to start overload control, and the refrigerant circulation circuit returns from the overload state to the normal load state within the preset standby time. When the cooling water circulation circuit restarts, the overload control is stopped, and when the refrigerant circulation circuit does not return from the overload state to the normal load state within the standby time, the refrigerant circulation circuit and the cooling water circulation circuit A method for controlling the operation of an air conditioner, which comprises stopping the operation of the air conditioner.
【請求項2】 圧縮機の吐出温度が予め設定された上限
設定値を越えたことを検知した時点で過負荷制御を開始
し、予め設定された待機時間内にアキュムレータの入口
温度が予め設定された復帰温度以下に低下したことを検
知した時点で過負荷制御を停止することを特徴とする請
求項1記載の空気調和機の運転制御方法。
2. The overload control is started when it is detected that the discharge temperature of the compressor exceeds a preset upper limit set value, and the inlet temperature of the accumulator is preset within a preset standby time. The operation control method for an air conditioner according to claim 1, wherein the overload control is stopped at the time when it is detected that the temperature has dropped below the return temperature.
【請求項3】 圧縮機の吐出温度が予め設定された上限
設定値を越えたことを検知した時点で過負荷制御を開始
し、過負荷制御が行われている時に、圧縮機の吐出温度
が上限設定値よりも予め設定された設定低下量だけ低下
したことを検知した時点で過負荷制御を停止することを
特徴とする請求項1記載の空気調和機の運転制御方法。
3. The discharge temperature of the compressor is started when overload control is started at the time when it is detected that the discharge temperature of the compressor exceeds a preset upper limit set value. The operation control method for an air conditioner according to claim 1, wherein the overload control is stopped at the time when it is detected that the preset lower limit value is lower than the upper limit set value.
【請求項4】 圧縮機の電流が予め設定された上限電流
値を越えたことを検知した時点で過負荷制御を開始し、
予め設定された待機時間内に圧縮機の電流が上限電流値
よりも予め設定された設定低下電流値だけ低下したこと
を検知した時点で過負荷制御を停止することを特徴とす
る請求項1記載の空気調和機の運転制御方法。
4. The overload control is started at the time when it is detected that the current of the compressor exceeds a preset upper limit current value,
2. The overload control is stopped at the time when it is detected that the current of the compressor is lower than the upper limit current value by a preset set reduction current value within a preset standby time. Operation control method for air conditioners.
【請求項5】 圧縮機の吐出圧力が予め設定された上限
圧力を越えたことを検知した時点で過負荷制御を開始
し、予め設定された待機時間内に圧縮機の吐出圧力が上
限圧力よりも予め設定された吐出圧力低下量だけ低下し
たことを検知した時点で過負荷制御を停止することを特
徴とする請求項1記載の空気調和機の運転制御方法。
5. The overload control is started at the time when it is detected that the discharge pressure of the compressor exceeds a preset upper limit pressure, and the discharge pressure of the compressor is lower than the upper limit pressure within a preset standby time. 2. The operation control method for an air conditioner according to claim 1, wherein the overload control is stopped at the time when it is detected that the discharge pressure has decreased by a preset amount.
【請求項6】 圧縮機、凝縮熱交換器、膨張装置、蒸発
熱交換器及びアキュムレータを有する冷媒循環回路と、
該冷媒循環回路の蒸発熱交換器において冷却した冷水を
循環ポンプにより室内熱交換器に循環させる冷水循環回
路を備えた空気調和機において、冷媒循環回路が過負荷
状態であることを検出した時に、圧縮機の運転を継続し
た状態で冷水循環回路の循環ポンプの運転を停止させて
過負荷制御を開始し、予め設定された待機時間内に冷媒
循環回路が過負荷状態から正常の負荷状態に復帰した時
に、冷水循環回路の循環ポンプの運転を再開して過負荷
制御を停止し、待機時間内に冷媒循環回路が過負荷状態
から正常の負荷状態に復帰しない時には、冷媒循環回路
及び冷水循環回路の運転を停止させるとともに、過負荷
制御を終了して冷水循環回路の循環ポンプの運転を再開
した後に冷水循環回路の冷水の循環の有無を確認し、冷
水が循環している時は冷水循環回路が正常と判定して冷
媒循環回路及び冷水循環回路の運転を継続し、冷水が循
環していない時は冷水循環回路が異常と判定して冷媒循
環回路及び冷水循環回路の運転を停止させることを特徴
とする空気調和機の運転制御方法。
6. A refrigerant circulation circuit having a compressor, a condensation heat exchanger, an expansion device, an evaporation heat exchanger, and an accumulator,
In an air conditioner equipped with a cold water circulation circuit that circulates cold water cooled in the evaporation heat exchanger of the refrigerant circulation circuit to the indoor heat exchanger by a circulation pump, when it is detected that the refrigerant circulation circuit is in an overloaded state, Stop the operation of the circulation pump of the chilled water circulation circuit while continuing the operation of the compressor to start overload control, and the refrigerant circulation circuit returns from the overload state to the normal load state within the preset standby time. When the cooling water circulation circuit restarts, the overload control is stopped, and when the refrigerant circulation circuit does not return from the overload state to the normal load state within the standby time, the refrigerant circulation circuit and the cooling water circulation circuit After stopping the operation of, restarting the operation of the circulation pump of the cold water circulation circuit after ending the overload control, it is confirmed whether the cold water in the cold water circulation circuit is circulating, and the cold water is circulating. Determines that the cold water circulation circuit is normal and continues the operation of the refrigerant circulation circuit and the cold water circulation circuit.When the cold water is not circulating, it judges that the cold water circulation circuit is abnormal and operates the refrigerant circulation circuit and the cold water circulation circuit. A method for controlling operation of an air conditioner, characterized by stopping.
【請求項7】 過負荷制御終了後に冷水循環ポンプの運
転を再開し、圧縮機の吐出温度が予め設定された確認時
間の間に上昇したことを確認した場合には、正常状態で
あると判断して冷媒循環回路及び冷水循環回路の運転を
継続し、圧縮機の吐出温度が上昇しない時は冷水循環回
路が異常と判定して冷媒循環回路及び冷水循環回路の運
転を停止させることを特徴とする請求項6記載の空気調
和機の運転制御方法。
7. When the operation of the chilled water circulation pump is restarted after the end of the overload control and it is confirmed that the discharge temperature of the compressor has risen within a preset confirmation time, it is determined that the state is normal. The operation of the refrigerant circulation circuit and the cold water circulation circuit is continued, and when the discharge temperature of the compressor does not rise, the operation of the refrigerant circulation circuit and the cold water circulation circuit is stopped by determining that the cold water circulation circuit is abnormal. The operation control method for an air conditioner according to claim 6.
【請求項8】 過負荷制御終了後に冷水循環ポンプの運
転を再開し、圧縮機の電流が予め設定された確認時間の
間に増大したことを確認した場合には、正常状態である
と判断して冷媒循環回路及び冷水循環回路の運転を継続
し、圧縮機の電流が増大しない時は冷水循環回路が異常
と判定して冷媒循環回路及び冷水循環回路の運転を停止
させることを特徴とする請求項6記載の空気調和機の運
転制御方法。
8. When the operation of the chilled water circulation pump is restarted after the overload control is finished and it is confirmed that the current of the compressor has increased during the preset confirmation time, it is determined that the state is normal. The operation of the refrigerant circulation circuit and the chilled water circulation circuit is continued, and when the current of the compressor does not increase, it is determined that the chilled water circulation circuit is abnormal and the operation of the refrigerant circulation circuit and the chilled water circulation circuit is stopped. Item 7. The operation control method for an air conditioner according to Item 6.
【請求項9】 過負荷制御終了後に冷水循環ポンプの運
転を再開し、圧縮機の吐出圧力が予め設定された確認時
間の間に上昇したことを確認した場合には、正常状態で
あると判断して冷媒循環回路及び冷水循環回路の運転を
継続し、圧縮機の吐出圧力が上昇しない時は冷水循環回
路が異常と判定して冷媒循環回路及び冷水循環回路の運
転を停止させることを特徴とする請求項6記載の空気調
和機の運転制御方法。
9. When the operation of the cold water circulation pump is restarted after the end of the overload control and it is confirmed that the discharge pressure of the compressor has risen during a preset confirmation time, it is determined that the normal state is achieved. The operation of the refrigerant circulation circuit and the cold water circulation circuit is continued, and when the discharge pressure of the compressor does not rise, the operation of the refrigerant circulation circuit and the cold water circulation circuit is stopped by determining that the cold water circulation circuit is abnormal. The operation control method for an air conditioner according to claim 6.
JP6216685A 1994-08-19 1994-08-19 Operation controlling method for air conditioner Pending JPH0861747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216685A JPH0861747A (en) 1994-08-19 1994-08-19 Operation controlling method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216685A JPH0861747A (en) 1994-08-19 1994-08-19 Operation controlling method for air conditioner

Publications (1)

Publication Number Publication Date
JPH0861747A true JPH0861747A (en) 1996-03-08

Family

ID=16692324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216685A Pending JPH0861747A (en) 1994-08-19 1994-08-19 Operation controlling method for air conditioner

Country Status (1)

Country Link
JP (1) JPH0861747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216201A (en) * 2021-12-02 2022-03-22 珠海格力电器股份有限公司 Control method of fixed-frequency air conditioner and fixed-frequency air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216201A (en) * 2021-12-02 2022-03-22 珠海格力电器股份有限公司 Control method of fixed-frequency air conditioner and fixed-frequency air conditioner
CN114216201B (en) * 2021-12-02 2024-03-22 珠海格力电器股份有限公司 Control method of fixed-frequency air conditioner and fixed-frequency air conditioner

Similar Documents

Publication Publication Date Title
JP5053430B2 (en) Air conditioner
JPH0849930A (en) Heat pump equipment
JP3742858B2 (en) Heat pump water heater
KR20180093342A (en) Method for controlling of air conditioner
JP2018066515A (en) Method of controlling heat pump hot water heating system
JP3920671B2 (en) Air conditioner
KR20100136004A (en) Heat pump system having freezing protection apparatus
CN114909699B (en) Defrosting control method, central controller and heating system
JP4546067B2 (en) Air conditioner
JPH0861747A (en) Operation controlling method for air conditioner
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP6881424B2 (en) Refrigerator
JP2008116184A (en) Refrigerating cycle device
JPH0861748A (en) Operation controlling method for air conditioner
JPH07151420A (en) Air conditioner with water heater
JP2008170045A (en) Air-conditioning system and its operation method
KR20140063930A (en) An engine-driven heat pump system
JPH07127894A (en) Operation controlling method for air conditioner
JP4194286B2 (en) Air conditioner
JP3426931B2 (en) Air conditioner
JP2023157663A (en) heat source unit
JP4152008B2 (en) Refrigerant circulation type heat transfer device
JPH06288601A (en) Operation control method for air conditioner
JP3383898B2 (en) Absorption type cold heat generator
JP4030501B2 (en) Air conditioner