JP2008170045A - Air-conditioning system and its operation method - Google Patents

Air-conditioning system and its operation method Download PDF

Info

Publication number
JP2008170045A
JP2008170045A JP2007002700A JP2007002700A JP2008170045A JP 2008170045 A JP2008170045 A JP 2008170045A JP 2007002700 A JP2007002700 A JP 2007002700A JP 2007002700 A JP2007002700 A JP 2007002700A JP 2008170045 A JP2008170045 A JP 2008170045A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
liquid
liquid phase
secondary heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002700A
Other languages
Japanese (ja)
Inventor
Sukenari Tate
祐成 舘
Naoto Nakamura
直人 中村
Hideo Kawaguchi
秀夫 河口
Yosuke Mino
洋介 三野
Tsuneo Uekusa
常雄 植草
Shisei Waratani
至誠 藁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Toho Gas Co Ltd
Original Assignee
NTT Facilities Inc
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, Toho Gas Co Ltd filed Critical NTT Facilities Inc
Priority to JP2007002700A priority Critical patent/JP2008170045A/en
Publication of JP2008170045A publication Critical patent/JP2008170045A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning system and its operation method capable of preventing stagnation of a refrigerant, and surely circulating the refrigerant even with a small liquid receiver. <P>SOLUTION: This air-conditioning system comprising a cold/hot water-side heat exchanger 2, an indoor machine 3, the liquid receiver 12, a pump 11, inflow channels 15, 16, outflow channels 17, 18, a refrigerant gas pipe 6 connecting a gas-phase refrigerant opening of the cold/hot water-side heat exchanger 2 and a gas-phase refrigerant opening of the indoor machine 3, outflow opening and closing valves 26, 27 disposed in the outflow channels, and inflow opening and closing valves 21, 24 disposed in the inflow channels, further comprises a heating operation start control portion performing a liquid recovering processing for recovering the liquid-phase phase-change refrigerant from the refrigerant gas pipe 6 and the cold/hot water-side heat exchanger 2 to the liquid receiver 12 by charging the hot water into the cold/hot water-side heat exchanger 2 and evaporating the liquid-phase phase-change refrigerant in a state that the outflow opening and closing valve 26 is closed, the inflow opening and closing valve 24 is opened, and the pump 11 is stopped in starting the heating operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,建物内の冷暖房設備に使用される空調システムおよびその運転方法に関する。さらに詳細には,1次側に冷温水を,2次側に相変化冷媒を利用した冷暖房設備に用いられ,相変化冷媒をポンプを使用して循環させる空調システムおよびその運転方法に関するものである。   The present invention relates to an air-conditioning system used for air-conditioning equipment in a building and an operation method thereof. More specifically, the present invention relates to an air conditioning system that uses cold / hot water on the primary side and a phase change refrigerant on the secondary side and circulates the phase change refrigerant using a pump, and an operation method thereof. .

従来より,建物内の冷暖房は,水や相変化冷媒等の熱交換媒体を循環させて,室内空気と熱交換させることにより行っている。ここで,多層階建築物用の冷暖房設備では,縦方向の循環に関して,重力の影響を大きく受ける。そこで本出願人は,縦方向には水を利用した水循環回路を用い,横方向には気液相変化冷媒を利用した冷媒循環回路を用いる冷暖房設備を提案した(特許文献1参照。)。このようにすれば,冷媒循環回路における重力の影響を回避できる。
特許第3680043号公報
Conventionally, air conditioning in buildings has been performed by circulating heat exchange media such as water and phase change refrigerant to exchange heat with room air. Here, air-conditioning equipment for multi-storey buildings is greatly affected by gravity with respect to vertical circulation. Therefore, the present applicant has proposed a cooling / heating facility using a water circulation circuit using water in the vertical direction and a refrigerant circulation circuit using a gas-liquid phase change refrigerant in the horizontal direction (see Patent Document 1). In this way, the influence of gravity in the refrigerant circuit can be avoided.
Japanese Patent No. 3680043

しかしながら,前記した従来の設備では,暖房期間中の暖房運転停止後に冷媒寝込みが発生するという問題点があった。例えば,夜間に室内機側周辺が低温となり,流路中や室内機中にあったガス冷媒が液化して溜まるのである。この状態となったまま暖房運転を開始した場合には,受液器に十分な量の冷媒が無いため,冷媒の循環が不可能となるおそれがあった。また,冷房運転期間中であっても,比較的負荷が小さい場合等では冷媒ガス管中でガス冷媒が液化し,寝込むおそれがあった。   However, the above-described conventional equipment has a problem that refrigerant stagnation occurs after the heating operation is stopped during the heating period. For example, the temperature around the indoor unit becomes low at night, and the gas refrigerant in the flow path and indoor unit liquefies and accumulates. When the heating operation is started in this state, there is a possibility that the refrigerant cannot be circulated because there is not a sufficient amount of refrigerant in the receiver. Further, even during the cooling operation period, when the load is relatively small, the gas refrigerant may liquefy in the refrigerant gas pipe and fall asleep.

また,ビル等の冷暖房設備では,一般に,1次側の熱交換能力に比較して,2次側の室内機容量の合計がやや多くなるように接続される。そのため,特に冷房運転期間中に多くの室内機が同時に大出力で使用された場合には,1次側の熱交換能力を上回るおそれがある。このようになると,液冷媒の過冷却が小さくなり,冷媒循環不良の原因となるという問題点があった。   In addition, in a cooling / heating facility such as a building, the connection is generally made so that the total capacity of the indoor unit on the secondary side is slightly larger than the heat exchange capacity on the primary side. Therefore, especially when many indoor units are used at the same time with high output during the cooling operation period, there is a possibility that the heat exchange capacity on the primary side may be exceeded. In this case, there is a problem that the supercooling of the liquid refrigerant is reduced, which causes poor refrigerant circulation.

また,このような冷媒循環設備をユニット化した冷媒循環ユニットでは,受液器の大きさがその全体の大きさを支配し,小型化の障害となっていた。そのため,循環不良とすることなく,より小型の受液器を使用できるものが望まれていた。   Further, in the refrigerant circulation unit in which such refrigerant circulation equipment is unitized, the size of the liquid receiver dominates the overall size, which is an obstacle to miniaturization. Therefore, there has been a demand for a device that can use a smaller liquid receiver without causing poor circulation.

本発明は,前記した従来の設備が有する問題点を解決するためになされたものである。すなわちその課題とするところは,冷媒寝込みを防止するとともに,小さい受液器によっても,確実に冷媒の循環が可能となる空調システムおよびその運転方法を提供することにある。   The present invention has been made in order to solve the problems of the conventional equipment described above. That is, an object of the present invention is to provide an air-conditioning system and a method for operating the same that prevent refrigerant stagnation and can reliably circulate the refrigerant even with a small liquid receiver.

この課題の解決を目的としてなされた本発明の空調システムは,1次熱交換器と,2次熱交換器と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と1次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と2次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路と,流出流路に配置された流出開閉弁と,流入流路に配置された流入開閉弁とを有する空調システムであって,暖房運転起動時に,流出開閉弁を閉じ流入開閉弁を開きポンプを停止した状態で,1次熱交換器に温水を投入して液相の相変化冷媒を気化させることにより,ガス流路および2次熱交換器から受液器へ液相の相変化冷媒を回収する液回収処理を行う暖房運転起動時制御部を有するものである。   The air conditioning system of the present invention, which has been made for the purpose of solving this problem, includes a primary heat exchanger, a secondary heat exchanger, a receiver that contains a liquid phase change refrigerant, and a liquid phase of the receiver. A pump for delivering the phase change refrigerant, an outlet passage connecting the outlet of the pump and the liquid phase refrigerant port of the primary heat exchanger, an inlet of the liquid receiver, and a liquid phase refrigerant port of the secondary heat exchanger A connecting inflow channel, a gas channel connecting a gas phase refrigerant port of the primary heat exchanger and a gas phase refrigerant port of the secondary heat exchanger, an outflow on-off valve disposed in the outflow channel, and an inflow channel An air-conditioning system having an inflow on-off valve arranged at the same time, when heating operation is started, with the outflow on-off valve closed, the inflow on-off valve opened and the pump stopped, hot water is charged into the primary heat exchanger A liquid recovery process for recovering the liquid phase change refrigerant from the gas flow path and the secondary heat exchanger to the receiver by vaporizing the phase change refrigerant. And it has a heating operation startup control unit that performs.

本発明の空調システムでは,受液器に収容される液相の相変化冷媒は,ポンプによって送出され,流出流路を経て1次熱交換器へ流される。暖房運転時には1次熱交換器に温熱源が用意され,ここで相変化冷媒が気化される。気相となった相変化冷媒はガス流路を介して2次熱交換器に流され,ここで液化される。さらに,液相となった相変化冷媒は流入流路を介して受液器へと収容される。   In the air conditioning system of the present invention, the liquid phase change refrigerant accommodated in the liquid receiver is sent out by the pump and flows to the primary heat exchanger via the outflow channel. During the heating operation, a heat source is prepared in the primary heat exchanger, where the phase change refrigerant is vaporized. The phase change refrigerant that has become a gas phase flows through the gas flow path to the secondary heat exchanger, where it is liquefied. Further, the phase change refrigerant that has become a liquid phase is accommodated in the liquid receiver via the inflow channel.

このようなシステムにおいて本発明によれば,暖房運転起動時制御部を有するので,暖房運転起動時に液回収処理が行われる。すなわち,流出開閉弁を閉じ流入開閉弁を開きポンプを停止した状態で,1次熱交換器に温水が投入される。これにより,1次熱交換器内に残存する相変化冷媒が気化され,冷媒の圧力は1次熱交換器において最も高くなる。そして,ガス流路,2次熱交換器,流入流路,受液器の順に圧力が低くなるため,冷媒はこの順に流れて受液器に回収される。さらに,ガス流路以降の部位においては,冷媒の圧力がその温度に相当する飽和圧力より高くなるため,冷媒は過冷却状態となる。そのため,流入流路や受液器は液相の相変化冷媒で満たされ,その相変化冷媒が受液器に回収される。   In such a system, according to the present invention, since the heating operation start control unit is provided, the liquid recovery process is performed when the heating operation is started. That is, warm water is poured into the primary heat exchanger with the outflow on-off valve closed, the inflow on-off valve opened and the pump stopped. As a result, the phase change refrigerant remaining in the primary heat exchanger is vaporized, and the pressure of the refrigerant is highest in the primary heat exchanger. And since a pressure becomes low in order of a gas channel, a secondary heat exchanger, an inflow channel, and a liquid receiver, a refrigerant flows in this order and is collected by a liquid receiver. Furthermore, in the part after the gas flow path, the refrigerant pressure is higher than the saturation pressure corresponding to the temperature, so the refrigerant is in a supercooled state. Therefore, the inflow channel and the liquid receiver are filled with the liquid phase change refrigerant, and the phase change refrigerant is collected in the liquid receiver.

さらに本発明では,暖房運転起動時制御部が,液回収処理に先立ち,流出開閉弁を開き流入開閉弁を閉じた状態で,ポンプを所定時間駆動して受液器から1次熱交換器へ液相の相変化冷媒を送る予備送液処理を行うことが望ましい。このようにすれば,液回収処理の開始時には,1次熱交換器に液相の相変化冷媒が確実に存在する。   Further, in the present invention, the heating operation start-up control unit drives the pump for a predetermined time from the liquid receiver to the primary heat exchanger with the outflow on-off valve opened and the inflow on-off valve closed before the liquid recovery process. It is desirable to perform a preliminary liquid feeding process for sending a liquid phase change refrigerant. This ensures that the liquid phase change refrigerant is present in the primary heat exchanger at the start of the liquid recovery process.

さらに本発明では,受液器の液面レベルを検知する液面センサを有し,暖房運転起動時制御部は,受液器の液面レベルが所定値に達すると,液回収処理を終了して通常の暖房運転に移行することが望ましい。このようにすれば,所定量の相変化冷媒が受液器に回収されているので,良好な冷媒循環が可能となる。   Furthermore, in the present invention, the liquid level sensor for detecting the liquid level of the liquid receiver is provided, and the controller at the start of heating operation finishes the liquid recovery process when the liquid level of the liquid receiver reaches a predetermined value. It is desirable to shift to normal heating operation. In this way, a predetermined amount of phase change refrigerant is recovered in the liquid receiver, so that good refrigerant circulation is possible.

さらに本発明では,暖房運転起動時制御部が,液回収処理が開始されてから所定時間以内に受液器の液面レベルが所定値に達しない場合に,運転を停止させることが望ましい。このようにすれば,システム中に何らかの原因で所定量の相変化冷媒が存在していない状態となっていることが容易に分かる。   Furthermore, in the present invention, it is desirable that the heating operation start-up control unit stop the operation when the liquid level of the liquid receiver does not reach a predetermined value within a predetermined time after the liquid recovery process is started. In this way, it can be easily seen that a predetermined amount of phase change refrigerant does not exist in the system for some reason.

さらに本発明では,2次熱交換器に送風ファンが設けられており,暖房運転起動時制御部は,暖房運転起動時に,液回収処理が終了するまで送風ファンの駆動を禁止することが望ましい。このようにすれば,2次熱交換器において相変化冷媒が液化されることが防止され,相変化冷媒を確実に回収できる。   Further, in the present invention, it is desirable that the secondary heat exchanger is provided with a blower fan, and that the heating operation start time control unit prohibits driving of the blower fan until the liquid recovery process is completed at the start of the heating operation. In this way, the phase change refrigerant is prevented from being liquefied in the secondary heat exchanger, and the phase change refrigerant can be reliably recovered.

また本発明は,1次熱交換器と,2次熱交換器と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と1次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と2次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路と,流出流路に配置された流出開閉弁と,流入流路に配置された流入開閉弁とを有する空調システムの運転方法であって,暖房運転起動時に,流出開閉弁を閉じ流入開閉弁を開きポンプを停止した状態で,1次熱交換器に温水を投入して液相の相変化冷媒を気化させることにより,ガス流路および2次熱交換器から受液器へ液相の相変化冷媒を回収する液回収処理を行う空調システムの運転方法にも及ぶ。   The present invention also includes a primary heat exchanger, a secondary heat exchanger, a liquid receiver that houses a liquid phase change refrigerant, a pump that delivers the liquid phase change refrigerant of the liquid receiver, An outflow passage that connects the outlet of the liquid and the liquid phase refrigerant port of the primary heat exchanger, an inflow passage that connects the inlet of the liquid receiver and the liquid phase refrigerant port of the secondary heat exchanger, and the primary heat exchanger Air conditioner having a gas flow path connecting the gas-phase refrigerant port of the secondary heat exchanger and the gas-phase refrigerant port of the secondary heat exchanger, an outflow on-off valve arranged in the outflow passage, and an inflow on-off valve arranged in the inflow passage The system operation method, when heating operation is started, with the outflow on-off valve closed, the inflow on-off valve opened and the pump stopped, hot water is poured into the primary heat exchanger to vaporize the liquid phase change refrigerant Therefore, the operation method of the air conditioning system that performs the liquid recovery process for recovering the liquid phase change refrigerant from the gas flow path and the secondary heat exchanger to the receiver is also included. Department.

さらに本発明の空調システムの運転方法では,液回収処理に先立ち,流出開閉弁を開き流入開閉弁を閉じた状態で,ポンプを所定時間駆動して受液器から1次熱交換器へ液相の相変化冷媒を送る予備送液処理を行うことが望ましい。   Further, in the operation method of the air conditioning system of the present invention, prior to the liquid recovery process, the pump is driven for a predetermined time with the outflow on-off valve opened and the inflow on-off valve closed, and the liquid phase is transferred from the liquid receiver to the primary heat exchanger. It is desirable to perform preliminary liquid feeding processing for sending the phase change refrigerant.

また本発明の空調システムは,1次熱交換器と,複数の2次熱交換器と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と1次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と複数の2次熱交換器の各液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と複数の2次熱交換器の各気相冷媒口とを結ぶガス流路とを有する空調システムであって,暖房運転中に複数の2次熱交換器の運転負荷の合計が1次熱交換器の容量を上回った場合に,複数の2次熱交換器の運転負荷を低下させる強制低下処理を行う過負荷時制御部を有するものである。   The air-conditioning system of the present invention also delivers a primary heat exchanger, a plurality of secondary heat exchangers, a receiver that contains a liquid phase change refrigerant, and a liquid phase change refrigerant of the receiver. , An inflow flow connecting the outlet of the pump and the liquid refrigerant port of the primary heat exchanger, and the inlet of the receiver and the liquid refrigerant ports of the secondary heat exchangers And an air conditioning system having a gas flow path connecting the gas-phase refrigerant ports of the primary heat exchanger and the gas-phase refrigerant ports of the plurality of secondary heat exchangers. It has an overload control unit that performs forced reduction processing to reduce the operation load of a plurality of secondary heat exchangers when the total operation load of the heat exchanger exceeds the capacity of the primary heat exchanger. .

本発明によれば,過負荷時制御部を有するので,暖房運転中に複数の2次熱交換器の運転負荷の合計が1次熱交換器の容量を上回った場合に,強制低下処理が行われる。すなわち,2次熱交換器の運転負荷を低下させることにより,2次熱交換器の運転負荷の合計が1次熱交換器の容量を上回らないように調整される。従って,液相の相変化冷媒が過冷却状態とされ,冷媒循環不良が防止される。   According to the present invention, the overload control unit is provided, so that the forced reduction process is performed when the total operation load of the plurality of secondary heat exchangers exceeds the capacity of the primary heat exchanger during the heating operation. Is called. That is, by reducing the operating load of the secondary heat exchanger, the total operating load of the secondary heat exchanger is adjusted so as not to exceed the capacity of the primary heat exchanger. Therefore, the liquid phase change refrigerant is brought into a supercooled state, and refrigerant circulation failure is prevented.

さらに本発明では,1次熱交換器の冷温水出口の水温を検知する水温センサと,ガス流路の圧力を検知する圧力センサと,ガス流路の温度を検知するガス温度センサと,ガス流路の圧力と1次熱交換器の冷温水出口の水温とに基づいて,ガス流路の目標温度を設定する目標温度設定部とを有し,過負荷時制御部は,強制低下処理の後に,ガス流路の温度がその目標温度より低い場合に受液器からの液相の相変化冷媒の送出量を増加させ,ガス流路の温度がその目標温度より高い場合に受液器からの液相の相変化冷媒の送出量を減少させる冷媒流量調整処理を行うことが望ましい。このようにすれば,相変化冷媒の飽和換算温度が調整されて,液相の相変化冷媒に十分な過冷却を持たせることができる。   Furthermore, in the present invention, a water temperature sensor that detects the temperature of the cold water outlet of the primary heat exchanger, a pressure sensor that detects the pressure of the gas flow path, a gas temperature sensor that detects the temperature of the gas flow path, A target temperature setting unit for setting a target temperature of the gas flow path based on the pressure of the passage and the temperature of the cold water outlet of the primary heat exchanger. When the gas flow path temperature is lower than the target temperature, the liquid phase phase change refrigerant delivery amount from the liquid receiver is increased, and when the gas flow path temperature is higher than the target temperature, It is desirable to perform a refrigerant flow rate adjustment process that reduces the amount of liquid phase change refrigerant delivered. In this way, the saturation conversion temperature of the phase change refrigerant is adjusted, and the liquid phase change refrigerant can be sufficiently subcooled.

また本発明は,1次熱交換器と,複数の2次熱交換器と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と1次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と複数の2次熱交換器の各液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と複数の2次熱交換器の各気相冷媒口とを結ぶガス流路とを有する空調システムの運転方法であって,暖房運転中に複数の2次熱交換器の運転負荷の合計が1次熱交換器の容量を上回った場合に,複数の2次熱交換器の運転負荷を低下させる強制低下処理を行う空調システムの運転方法にも及ぶ。   The present invention also includes a primary heat exchanger, a plurality of secondary heat exchangers, a receiver that contains a liquid phase change refrigerant, a pump that delivers the liquid phase change refrigerant of the receiver, , An outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the primary heat exchanger, an inflow passage connecting the inlet of the liquid receiver and the liquid phase refrigerant ports of the plurality of secondary heat exchangers, An operation method of an air conditioning system having a gas flow path connecting a gas phase refrigerant port of a primary heat exchanger and gas phase refrigerant ports of a plurality of secondary heat exchangers, This also extends to an operation method of an air conditioning system that performs forced reduction processing to reduce the operation load of a plurality of secondary heat exchangers when the total operation load of the heat exchanger exceeds the capacity of the primary heat exchanger.

さらに本発明の空調システムの運転方法では,ガス流路の圧力と1次熱交換器の冷温水出口の水温とに基づいて,ガス流路の目標温度を設定し,強制低下処理の後に,ガス流路の温度がその目標温度より低い場合に受液器からの液相の相変化冷媒の送出量を増加させ,ガス流路の温度がその目標温度より高い場合に受液器からの液相の相変化冷媒の送出量を減少させる冷媒流量調整処理を行うことが望ましい。   Further, in the operation method of the air conditioning system according to the present invention, the target temperature of the gas flow path is set based on the pressure of the gas flow path and the water temperature of the cold / hot water outlet of the primary heat exchanger, and after the forced reduction process, When the flow path temperature is lower than the target temperature, the liquid-phase phase change refrigerant delivery amount from the receiver is increased, and when the gas flow path temperature is higher than the target temperature, the liquid phase from the receiver is increased. It is desirable to perform refrigerant flow rate adjustment processing that reduces the amount of phase change refrigerant delivered.

また本発明は,1次熱交換器と,2次熱交換器と,2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と2次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と1次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路とを有する空調システムであって,ガス流路の温度を検知するガス温度センサと,ガス流路の圧力を検知するガス圧力センサと,ガス流路の圧力に基づいてその飽和換算温度を取得する飽和換算温度取得部と,冷房運転中にガス流路の温度がその飽和換算温度より低くなった場合に,開閉弁を所定時間にわたって閉じその後開くことにより,ガス流路内の液相の相変化冷媒を気化させて回収する気化回収処理を行う滞留液回収制御部とを有するものである。   The present invention also includes a primary heat exchanger, a secondary heat exchanger, an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger, a liquid receiver that accommodates a liquid phase change refrigerant, , A pump for sending the liquid phase phase change refrigerant of the receiver, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchanger An air-conditioning system having an inflow channel connecting a liquid-phase refrigerant port of the gas and a gas channel connecting a gas-phase refrigerant port of a primary heat exchanger and a gas-phase refrigerant port of a secondary heat exchanger, A gas temperature sensor for detecting the temperature of the flow channel, a gas pressure sensor for detecting the pressure of the gas flow channel, a saturation converted temperature acquisition unit for acquiring the saturated converted temperature based on the pressure of the gas flow channel, and during cooling operation When the temperature of the gas flow path becomes lower than the saturation conversion temperature, the gas flow is achieved by closing the on-off valve for a predetermined time and then opening it. A phase change refrigerant in the inner liquid phase are those having a retentate recovery control unit which performs vaporization recovery process for recovering vaporized.

本発明によれば,滞留液回収制御部を有するので,冷房運転中にガス流路の温度がその飽和換算温度より低くなった場合に,ガス流路内の液相の相変化冷媒を気化させて回収する気化回収処理が行われる。すなわち,開閉弁が所定時間にわたって閉じられその後開かれることにより,2次熱交換器内の液相の相変化冷媒が確実に気化されて回収される。従って,ガス流路内の液相の相変化冷媒も気化されて回収される。   According to the present invention, since the retained liquid recovery control unit is provided, the liquid phase phase change refrigerant in the gas channel is vaporized when the temperature of the gas channel becomes lower than the saturation conversion temperature during the cooling operation. The vaporization recovery process is performed. That is, when the on-off valve is closed for a predetermined time and then opened, the liquid phase change refrigerant in the secondary heat exchanger is surely vaporized and recovered. Accordingly, the liquid phase change refrigerant in the gas flow path is also vaporized and recovered.

さらに本発明では,複数組の2次熱交換器とその液相冷媒口の開閉弁を有し,滞留液回収制御部は,複数組の2次熱交換器および開閉弁について,順次,気化回収処理を行うことが望ましい。順に行うことにより,システム全体の状態を大きく変化させることなく,ガス流路内の相変化冷媒が少しずつ回収される。   Furthermore, in the present invention, a plurality of sets of secondary heat exchangers and on-off valves for the liquid-phase refrigerant ports are provided, and the staying liquid recovery control unit sequentially evaporates and collects the plurality of sets of secondary heat exchangers and on-off valves. It is desirable to perform processing. By performing in order, the phase change refrigerant in the gas flow path is recovered little by little without greatly changing the state of the entire system.

さらに本発明では,滞留液回収制御部は,運転負荷の大きい2次熱交換器の組から順に気化回収処理を行うことが望ましい。運転負荷の大きい2次熱交換器ほど液相の相変化冷媒が存在する可能性が高いので,これから順に気化回収処理を行うことにより,効率よく処理することが可能である。   Furthermore, in the present invention, it is desirable that the staying liquid recovery control unit performs the vaporization recovery process in order from the set of secondary heat exchangers with a large operating load. Since the secondary heat exchanger with a larger operating load is more likely to have a liquid phase change refrigerant, it can be processed efficiently by performing the vaporization recovery process in order.

また本発明は,1次熱交換器と,2次熱交換器と,2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と2次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と1次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路とを有する空調システムの運転方法であって,冷房運転中にガス流路の温度がその飽和換算温度より低くなった場合に,開閉弁を所定時間にわたって閉じその後開くことにより,ガス流路内の液相の相変化冷媒を気化させて回収する気化回収処理を行う空調システムの運転方法にも及ぶ。   The present invention also includes a primary heat exchanger, a secondary heat exchanger, an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger, a liquid receiver that accommodates a liquid phase change refrigerant, , A pump for sending the liquid phase phase change refrigerant of the receiver, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchanger The air-conditioning system has an inflow channel connecting the liquid-phase refrigerant port of the gas generator and a gas channel connecting the gas-phase refrigerant port of the primary heat exchanger and the gas-phase refrigerant port of the secondary heat exchanger. When the temperature of the gas flow path becomes lower than the saturation conversion temperature during cooling operation, the liquid-phase phase change refrigerant in the gas flow path is vaporized by closing and opening the on-off valve for a predetermined time. It extends to the operation method of the air-conditioning system which performs the vaporization collection processing to collect.

さらに本発明の空調システムの運転方法では,複数組の2次熱交換器とその液相冷媒口の開閉弁を有する空調システムを対象とし,複数組の2次熱交換器および開閉弁について,順次,気化回収処理を行うことが望ましい。   Further, the air conditioning system operating method of the present invention is directed to an air conditioning system having a plurality of sets of secondary heat exchangers and on / off valves for the liquid-phase refrigerant ports. Therefore, it is desirable to perform a vaporization recovery process.

また本発明は,1次熱交換器と,2次熱交換器と,2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と2次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と1次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路と,流出流路に配置された流出開閉弁とを有する空調システムであって,冷房運転停止後に,流出開閉弁を開いた状態でポンプを所定時間駆動して受液器から2次熱交換器へ液相の相変化冷媒を送り,その後に流出開閉弁を閉じる液冷媒移送処理を行うことにより,冷房期間中の休止時に2次熱交換器に液相の相変化冷媒を貯留させる休止時貯留制御部を有するものである。   The present invention also includes a primary heat exchanger, a secondary heat exchanger, an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger, a liquid receiver that accommodates a liquid phase change refrigerant, , A pump for sending the liquid phase phase change refrigerant of the receiver, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchanger An inflow channel connecting the liquid phase refrigerant port of the gas, a gas channel connecting the gas phase refrigerant port of the primary heat exchanger and the gas phase refrigerant port of the secondary heat exchanger, and an outflow channel disposed in the outflow channel An air-conditioning system having an on-off valve, and after cooling operation is stopped, the pump is driven for a predetermined time with the outflow on-off valve opened to send a liquid phase change refrigerant from the receiver to the secondary heat exchanger, Thereafter, a liquid refrigerant transfer process is performed to close the outflow on-off valve so that the secondary heat exchanger stores the liquid phase change refrigerant during the cooling period. Parts and has a.

本発明によれば,休止時貯留制御部を有するので,冷房運転停止後に液冷媒移送処理が行われ,冷房期間中の休止時に2次熱交換器に液相の相変化冷媒が貯留される。従って,受液器を容量の小さいものとしても,液相の相変化冷媒は確実に貯留される。   According to the present invention, since the suspension storage control unit is provided, the liquid refrigerant transfer process is performed after the cooling operation is stopped, and the liquid phase change refrigerant is stored in the secondary heat exchanger during the suspension during the cooling period. Therefore, even if the receiver has a small capacity, the liquid phase change refrigerant is reliably stored.

さらに本発明では,複数の2次熱交換器を有し,休止時貯留制御部は,すべての2次熱交換器の運転が停止されたときに液冷媒移送処理を行うことが望ましい。このようにすれば,通常の運転状態には何の影響もない。   Further, in the present invention, it is preferable that the secondary storage control unit has a plurality of secondary heat exchangers and the liquid refrigerant transfer processing is performed when the operation of all the secondary heat exchangers is stopped. This will have no effect on normal operating conditions.

さらに本発明では,休止時貯留制御部は,液冷媒移送処理の終了後に,1次熱交換器への冷水投入を停止させることが望ましい。   Furthermore, in the present invention, it is desirable that the resting storage control unit stop the cold water charging to the primary heat exchanger after the liquid refrigerant transfer process is completed.

また本発明は,1次熱交換器と,2次熱交換器と,2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,受液器の液相の相変化冷媒を送出するポンプと,ポンプの出口と2次熱交換器の液相冷媒口とを結ぶ流出流路と,受液器の入口と1次熱交換器の液相冷媒口とを結ぶ流入流路と,1次熱交換器の気相冷媒口と2次熱交換器の気相冷媒口とを結ぶガス流路と,流出流路に配置された流出開閉弁とを有する空調システムの運転方法であって,冷房運転停止後に,流出開閉弁を開いた状態でポンプを所定時間駆動して受液器から2次熱交換器へ液相の相変化冷媒を送り,その後に流出開閉弁を閉じる液冷媒移送処理を行うことにより,冷房期間中の休止時に2次熱交換器に液相の相変化冷媒を貯留させる空調システムの運転方法にも及ぶ。   The present invention also includes a primary heat exchanger, a secondary heat exchanger, an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger, a liquid receiver that accommodates a liquid phase change refrigerant, , A pump for sending the liquid phase phase change refrigerant of the receiver, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchanger An inflow channel connecting the liquid phase refrigerant port of the gas, a gas channel connecting the gas phase refrigerant port of the primary heat exchanger and the gas phase refrigerant port of the secondary heat exchanger, and an outflow channel disposed in the outflow channel A method of operating an air conditioning system having an on-off valve, wherein after a cooling operation is stopped, the pump is driven for a predetermined time with the outflow on-off valve opened and a liquid phase change refrigerant is transferred from the receiver to the secondary heat exchanger. And then the liquid refrigerant transfer process is performed to close the outflow on-off valve, thereby allowing the secondary heat exchanger to store the liquid phase change refrigerant during the cooling period. Also extends to system method of operation.

本発明の空調システムおよびその運転方法によれば,冷媒寝込みを防止するとともに,小さい受液器によっても,確実に冷媒の循環が可能となる。   According to the air-conditioning system and the operation method thereof of the present invention, it is possible to prevent refrigerant stagnation and to reliably circulate the refrigerant even with a small liquid receiver.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,1次側に冷温水を,2次側に相変化冷媒を利用した冷媒循環ユニットを有する空調システムに本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to an air conditioning system having a refrigerant circulation unit that uses cold / hot water on the primary side and phase change refrigerant on the secondary side.

本形態の空調システムは,1次側に冷温水を,2次側に相変化冷媒(以下,単に冷媒という。)を利用したシステムである。このような空調システムでは,図1に示すように,冷媒循環ユニット1を有し,これに冷温水側熱交換器2と室内機3とが接続されている。冷温水側熱交換器2が1次熱交換器に相当し,室内機3が2次熱交換器に相当する。冷温水側熱交換器2には冷温水配管4が設けられ,冷温水配管4は電動弁5によって開閉される。そして,冷房時には冷温水配管4に冷水が流され,冷温水側熱交換器2において,冷媒は気体から液体へと相変化する。また,暖房時には冷温水配管4に温水が流され,冷温水側熱交換器2において,冷媒は液体から気体へと相変化する。   The air conditioning system of this embodiment is a system that uses cold / hot water on the primary side and phase change refrigerant (hereinafter simply referred to as refrigerant) on the secondary side. In such an air conditioning system, as shown in FIG. 1, it has the refrigerant | coolant circulation unit 1, and the cold / hot water side heat exchanger 2 and the indoor unit 3 are connected to this. The cold / hot water side heat exchanger 2 corresponds to a primary heat exchanger, and the indoor unit 3 corresponds to a secondary heat exchanger. The cold / hot water side heat exchanger 2 is provided with a cold / hot water pipe 4, and the cold / hot water pipe 4 is opened and closed by an electric valve 5. And at the time of air_conditioning | cooling, cold water is poured into the cold / hot water piping 4, and in the cold / hot water side heat exchanger 2, a refrigerant | coolant changes a phase from a gas to a liquid. In addition, hot water flows through the cold / hot water pipe 4 during heating, and the refrigerant changes phase from liquid to gas in the cold / hot water side heat exchanger 2.

また,各室内機3には,気相の冷媒が流れる冷媒ガス管6と液相の冷媒が流れる冷媒液管7とが接続されている。この冷媒ガス管6がガス流路に相当する。各冷媒液管7にはそれぞれ開閉弁8が設けられ,室内機3毎に開放・閉止の切換が可能である。冷房運転時には,冷媒液管7から流れ込む液相の冷媒が,室内機3において,室内の空気の熱を奪って気相へ相変化し,冷媒ガス管6へと流出する。暖房運転時には,冷媒ガス管6から流れ込む気相の冷媒が,室内機3において,室内の空気に熱を放出して液相へ相変化し,冷媒液管7へと流出する。なお,室内機3はいずれも,送風ファンを有している。   Each indoor unit 3 is connected with a refrigerant gas pipe 6 through which a gas-phase refrigerant flows and a refrigerant liquid pipe 7 through which a liquid-phase refrigerant flows. This refrigerant gas pipe 6 corresponds to a gas flow path. Each refrigerant liquid pipe 7 is provided with an opening / closing valve 8 and can be switched between open and closed for each indoor unit 3. During the cooling operation, the liquid-phase refrigerant flowing from the refrigerant liquid pipe 7 takes the heat of the indoor air in the indoor unit 3, changes the phase to the gas phase, and flows out to the refrigerant gas pipe 6. During the heating operation, the gas-phase refrigerant flowing from the refrigerant gas pipe 6 releases heat into the indoor air in the indoor unit 3, changes to the liquid phase, and flows out to the refrigerant liquid pipe 7. In addition, all the indoor units 3 have a ventilation fan.

さらに本形態では,冷媒循環ユニット1を制御するコントローラ9を有している。このコントローラ9は,冷媒循環ユニット1に加え,電動弁5および各開閉弁8をも制御する。これにより,冷温水側熱交換器2や各室内機3における熱媒体の循環を制御する。このコントローラ9では,各室内機3の運転負荷を常時把握できるようになっている。また,室内機3におけるユーザによる操作信号もコントローラ9に送信される。さらに,コントローラ9からの制御によって,ユーザの操作とは独立に各室内機3の送風ファンや開閉弁8の制御もできるようになっている。   Furthermore, in this embodiment, a controller 9 that controls the refrigerant circulation unit 1 is provided. This controller 9 controls the motor-operated valve 5 and the on-off valves 8 in addition to the refrigerant circulation unit 1. Thereby, circulation of the heat medium in the cold / hot water side heat exchanger 2 and each indoor unit 3 is controlled. The controller 9 can always grasp the operation load of each indoor unit 3. An operation signal from the user in the indoor unit 3 is also transmitted to the controller 9. Furthermore, the control from the controller 9 can also control the blower fan and the on-off valve 8 of each indoor unit 3 independently of the user's operation.

本形態の冷媒循環ユニット1は,ポンプ11とその上流の受液器12とを有し,複数の弁や流路が組み込まれてユニット化されているものである。これは,図1に示すように,接続口13,14を介して冷媒液管7と接続され,そこから液相の冷媒が入出力される。そして,冷媒循環ユニット1内には,ポンプ11と受液器12とを中心として,流路15,16,17,18が形成されている。   The refrigerant circulation unit 1 of this embodiment has a pump 11 and a liquid receiver 12 upstream thereof, and is unitized by incorporating a plurality of valves and flow paths. As shown in FIG. 1, this is connected to the refrigerant liquid pipe 7 through the connection ports 13 and 14, and liquid phase refrigerant is input and output therefrom. In the refrigerant circulation unit 1, flow paths 15, 16, 17, and 18 are formed around the pump 11 and the liquid receiver 12.

流路15は,接続口13と受液器12とを接続するものであり,その流路15中には接続口13側から順に開閉弁21,逆止弁22が配置されている。流路16は,受液器12と接続口14とを接続するものであり,その流路16中には受液器12側から順に逆止弁23,開閉弁24が配置されている。流路17は,接続口13とポンプ11とを接続するものであり,その流路17中には接続口13側から順に逆止弁25,開閉弁26が配置されている。流路18は,ポンプ11と接続口14とを接続するものであり,その流路18中には開閉弁27が配置されている。   The flow path 15 connects the connection port 13 and the liquid receiver 12, and an open / close valve 21 and a check valve 22 are arranged in the flow path 15 in that order from the connection port 13 side. The flow path 16 connects the liquid receiver 12 and the connection port 14, and a check valve 23 and an opening / closing valve 24 are disposed in the flow path 16 in order from the liquid receiver 12 side. The flow path 17 connects the connection port 13 and the pump 11, and a check valve 25 and an opening / closing valve 26 are disposed in the flow path 17 in this order from the connection port 13 side. The flow path 18 connects the pump 11 and the connection port 14, and an open / close valve 27 is disposed in the flow path 18.

なお,各流路15〜18は,図1中に黒丸で示した箇所において合流されており,その他の交差箇所では合流されていない。また,ポンプ11は図中に矢印で示したように,受液器12から流路17,18へと液相の冷媒を押し出すものである。従って,流路15,16は流入流路に相当し,流路17,18は流出流路に相当する。また,開閉弁21,24は流入開閉弁に,開閉弁26,27は流出開閉弁に相当する。   In addition, each flow path 15-18 is merged in the location shown by the black circle in FIG. 1, and is not merged in the other crossing location. The pump 11 pushes liquid phase refrigerant from the liquid receiver 12 to the flow paths 17 and 18 as indicated by arrows in the figure. Accordingly, the channels 15 and 16 correspond to inflow channels, and the channels 17 and 18 correspond to outflow channels. On-off valves 21 and 24 correspond to inflow on-off valves, and on-off valves 26 and 27 correspond to outflow on-off valves.

また,受液器12中には,貯留されている冷媒の液面を検出するための液面センサ31が備えられている。さらに,冷媒ガス管6には,内部の冷媒ガスの温度および圧力を測定するために,ガス温度センサ32およびガス圧力センサ33が設けられている。これらは,冷媒ガス管6の内,冷温水側熱交換器2の近くに配置されている。また,冷温水側熱交換器2の冷温水配管4の出口側には,水温センサ34が設けられている。   The liquid receiver 12 is provided with a liquid level sensor 31 for detecting the liquid level of the stored refrigerant. Further, the refrigerant gas pipe 6 is provided with a gas temperature sensor 32 and a gas pressure sensor 33 in order to measure the temperature and pressure of the internal refrigerant gas. These are arranged near the cold / hot water side heat exchanger 2 in the refrigerant gas pipe 6. A water temperature sensor 34 is provided on the outlet side of the cold / hot water pipe 4 of the cold / hot water side heat exchanger 2.

次に,このような空調システムにおける冷媒循環ユニット1の制御方法について説明する。通常の暖房運転時には,開閉弁21,27を閉止し,開閉弁24,26を開放する。従って,流路16,17が開放され,流路15,18が閉止される。ポンプ11から送り出された液相の冷媒は,流路17を介して冷温水側熱交換器2で気化される。さらに,冷媒ガス管6を介して室内機3に投入される。さらに室内機3で熱を放出して液化され,流路16を介して受液器12に戻される。   Next, a control method of the refrigerant circulation unit 1 in such an air conditioning system will be described. During normal heating operation, the on-off valves 21 and 27 are closed and the on-off valves 24 and 26 are opened. Accordingly, the channels 16 and 17 are opened, and the channels 15 and 18 are closed. The liquid-phase refrigerant sent out from the pump 11 is vaporized by the cold / hot water side heat exchanger 2 through the flow path 17. Furthermore, the refrigerant is introduced into the indoor unit 3 through the refrigerant gas pipe 6. Furthermore, heat is released from the indoor unit 3 to be liquefied and returned to the liquid receiver 12 through the flow path 16.

また,冷房運転時には,開閉弁24,26を閉止し,開閉弁21,27を開放する。従って,流路15,18が開放され,流路16,17が閉止される。ポンプ11から送り出された液相の冷媒は,流路18を介して室内機3に投入される。室内機3で熱を奪って気化され,冷媒ガス管6を介して冷温水側熱交換器2で液化される。さらに,流路15を介して受液器12に戻される。   In the cooling operation, the on-off valves 24 and 26 are closed and the on-off valves 21 and 27 are opened. Accordingly, the flow paths 15 and 18 are opened, and the flow paths 16 and 17 are closed. The liquid-phase refrigerant sent out from the pump 11 is introduced into the indoor unit 3 through the flow path 18. Heat is taken away by the indoor unit 3 and vaporized, and liquefied by the cold / hot water side heat exchanger 2 through the refrigerant gas pipe 6. Further, the liquid is returned to the liquid receiver 12 through the flow path 15.

本形態の空調システムでは,これらの通常運転時の制御に加えて,状況に応じて以下の各処理のいずれかを実行する。すなわち,
[1]暖房運転期間中のシステム起動時に行う液回収処理,
[2]暖房運転中の特に厳寒期に行う運転負荷監視処理(強制低下処理と冷媒流量調整処理を含む),
[3]冷房運転中の低負荷時に行う気化回収処理,
[4]小型受液器を有するシステムにおいて冷房運転期間中に行う液冷媒移送処理,
の4種類の制御方法である。
In the air conditioning system of this embodiment, in addition to these controls during normal operation, one of the following processes is executed depending on the situation. That is,
[1] Liquid recovery process performed at system startup during heating operation
[2] Operation load monitoring processing (including forced reduction processing and refrigerant flow rate adjustment processing) that is performed particularly during the extremely cold season during heating operation,
[3] Vaporization recovery processing performed at low load during cooling operation,
[4] Liquid refrigerant transfer processing performed during cooling operation in a system having a small liquid receiver,
These are the four types of control methods.

まず,[1]の暖房運転期間中のシステム起動時に行う液回収処理について,図2のフローチャートを参照して説明する。冬季の暖房運転期間中では,夜間等の運転停止時間中に配管や室内機周辺が低温となり,液化した冷媒が室内機中に溜まってしまうことがある。そこで本形態では,システムの起動時にまず,冷媒を受液器12に回収するための液回収処理を行う。本処理は,例えば,冬季の朝等に,各室の暖房運転が開始される前でシステムのすべての装置が停止されている状態から実行開始される。すなわち,本処理の実行開始時には,電動弁5,開閉弁8,21,24,26,27はすべて閉止され,全室内機3およびポンプ11も運転が停止されている。そして,システム中のいずれか1台の室内機の運転スイッチが押されると,まず本処理が開始される。   First, the liquid recovery process performed when the system is started during the heating operation period [1] will be described with reference to the flowchart of FIG. During the heating operation period in winter, the temperature around the pipes and indoor units may be low during operation stoppages such as at night, and liquefied refrigerant may accumulate in the indoor units. Therefore, in this embodiment, at the time of starting the system, first, a liquid recovery process for recovering the refrigerant in the liquid receiver 12 is performed. This processing is started from a state in which all the devices of the system are stopped before the heating operation of each room is started, for example, in the morning of winter. That is, at the start of the execution of this process, all of the motor operated valves 5 and the on-off valves 8, 21, 24, 26, 27 are closed, and the operation of all the indoor units 3 and the pumps 11 are also stopped. Then, when the operation switch of any one of the indoor units in the system is pressed, this processing is started first.

システム停止中は,コントローラ9はいずれかの室内機3の運転スイッチがONされるまで待機している(S101)。そして,室内機3のうちの1台でもONされたら(S101:Yes),次に進む。そして,コントローラ9によって,ONされているすべての室内機3のファンを強制的に停止させる(S102)。すなわち,室内機3の開閉弁8を開放し,ファンは駆動しない状態とする。これにより,室内機3を介する冷媒の循環は行われるが,室内機3における送風は行われない。従って,室内機3において気相の冷媒が液化されることより冷媒系の圧力が下がることはない。なお,このファンの強制停止状態は,仮にユーザが各室内機3において何らかの操作をしたとしても,この処理中で解除されるまで継続される。   While the system is stopped, the controller 9 stands by until the operation switch of any indoor unit 3 is turned on (S101). If even one of the indoor units 3 is turned on (S101: Yes), the process proceeds to the next. Then, the fans of all the indoor units 3 that are turned on are forcibly stopped by the controller 9 (S102). That is, the on-off valve 8 of the indoor unit 3 is opened and the fan is not driven. As a result, the refrigerant is circulated through the indoor unit 3, but the indoor unit 3 is not blown. Therefore, the pressure of the refrigerant system does not drop because the gaseous refrigerant is liquefied in the indoor unit 3. The forced stop state of the fan continues even if the user performs any operation on each indoor unit 3 until it is canceled during this process.

続いて,開閉弁26を開放し(S103),ポンプ11を30秒程度運転する(S104)。30秒程度運転したら停止する。これにより,受液器12に溜められていた液相の冷媒がポンプ11から開閉弁26を介して,冷温水側熱交換器2に少量送られる。そして,次に,開閉弁26を閉止し,開閉弁24を開放する(S105)。さらに,電動弁5を制御して,冷温水配管4に例えば45℃以上の温水を投入する(S106)。   Subsequently, the on-off valve 26 is opened (S103), and the pump 11 is operated for about 30 seconds (S104). Stop for about 30 seconds. Thereby, a small amount of the liquid-phase refrigerant stored in the liquid receiver 12 is sent from the pump 11 to the cold / hot water side heat exchanger 2 via the on-off valve 26. Next, the on-off valve 26 is closed and the on-off valve 24 is opened (S105). Furthermore, the motor-operated valve 5 is controlled, and hot water of, for example, 45 ° C. or more is poured into the cold / hot water pipe 4 (S106).

これにより,S104で冷温水側熱交換器2内に送られた冷媒が気化される。S106で投入された温水の温度をT1とすると,冷媒は温水の温度T1よりやや低温の飽和ガスとなる。この飽和ガス温度をT2とする。このとき,室内機3(ここの温度を温度T3とする)の周辺や受液器12(温度T4とする)周辺は暖められていないので,飽和ガス温度T2はこれらの温度T3,T4に比較して十分高い。すなわち,T1,T2,T3,T4は次式の関係となる。
T1>T2>>T3≒T4
Thereby, the refrigerant | coolant sent in the cold / hot water side heat exchanger 2 by S104 is vaporized. Assuming that the temperature of the hot water charged in S106 is T1, the refrigerant becomes a saturated gas slightly lower in temperature than the temperature T1 of the hot water. Let this saturated gas temperature be T2. At this time, since the surroundings of the indoor unit 3 (here, temperature T3) and the receiver 12 (temperature T4) are not warmed, the saturated gas temperature T2 is compared with these temperatures T3, T4. High enough. That is, T1, T2, T3, and T4 have the following relationship.
T1 >> T2 >> T3≈T4

また,系内の圧力は温度T2における飽和圧力ベースとなるため,これより十分低温の室内機3および冷媒液管7を介して受液器12までの部分は過冷却状態となる。従って,この範囲にある冷媒はすべて液相状態となる。また,各部の圧力の関係は,以下のようになる。
冷温水側熱交換器2の内圧 > 室内機3の内圧 > 受液器12の内圧
従って,冷温水側熱交換器2→室内機3→受液器12という液相の冷媒の流れができ,受液器12へ液相の冷媒が回収される。
Further, since the pressure in the system is based on the saturation pressure at the temperature T2, the portion up to the receiver 12 through the indoor unit 3 and the refrigerant liquid pipe 7 that are sufficiently cooler than this is in a supercooled state. Therefore, all refrigerants in this range are in a liquid phase state. The relationship between the pressures at each part is as follows.
Internal pressure of the cold / hot water side heat exchanger 2> Internal pressure of the indoor unit 3> Internal pressure of the liquid receiver 12 Accordingly, a liquid refrigerant flow of the cold / hot water side heat exchanger 2 → the indoor unit 3 → the liquid receiver 12 can be made, Liquid phase refrigerant is recovered in the liquid receiver 12.

そこで,受液器12内の液面の高さを液面センサ31で検出し,十分な量の冷媒が受液器12に回収されたら(S107:Yes),冷媒回収作業を終了して通常運転へ移行する。すなわち,まず開閉弁26を開放し(S108),ポンプ11を作動させる(S109)。さらに,室内機3のファンの強制停止状態を解除する(S110)。これにより,初めに運転スイッチがONされた室内機3のファンが回り始める。また,本処理中に運転スイッチがONされたものがあれば,その室内機3についても同様に,この時点で初めてファンが回り始める。以後,各室内機3は,それぞれユーザの操作に従うようになる。これで,この処理は終了である。   Accordingly, the height of the liquid level in the liquid receiver 12 is detected by the liquid level sensor 31, and when a sufficient amount of refrigerant is recovered in the liquid receiver 12 (S107: Yes), the refrigerant recovery operation is terminated and the normal operation is performed. Transition to operation. That is, first, the on-off valve 26 is opened (S108), and the pump 11 is operated (S109). Furthermore, the forced stop state of the fan of the indoor unit 3 is canceled (S110). Thereby, the fan of the indoor unit 3 whose operation switch is first turned on starts to rotate. In addition, if there is one in which the operation switch is turned on during this processing, the fan starts to rotate for the first time at the same time for the indoor unit 3 as well. Thereafter, each indoor unit 3 follows the user's operation. This is the end of this process.

ここで,冷温水側熱交換器2の冷温水配管4に温水を投入開始してから10分が経過しても,液面センサ31が液面を検知できない場合(S111:Yes)は,これ以上の冷媒回収は無理であると判断する。システムのどこかから冷媒が漏出した等の理由により,冷媒の全体量が低下していると考えられる。そこで,この場合には管理者に異常であることを通知し(S112),システムの運転をすべて停止する(S113)。これで,この処理の説明を終了する。   Here, if the liquid level sensor 31 cannot detect the liquid level even after 10 minutes have passed since the start of charging hot water into the cold / hot water pipe 4 of the cold / hot water side heat exchanger 2 (S111: Yes), It is determined that the above refrigerant recovery is impossible. It is thought that the total amount of refrigerant is decreasing due to leakage of refrigerant from somewhere in the system. Therefore, in this case, the administrator is notified of the abnormality (S112), and all system operations are stopped (S113). This concludes the description of this process.

次に,[2]の暖房運転中の運転負荷監視処理について,図3のフローチャートを参照して説明する。この処理は,冬季の暖房運転期間中において,暖房運転中に常時行われる。一般に,雑居ビル等のビル空調では,熱源機に相当する冷温水側熱交換器2の能力に対して,室内機3の容量の合計が150%程度となるように設置されることが多い。実際には,すべての室内機3が最大負荷で運転されることは滅多にないので,このように設置してもほとんど問題はない。   Next, the operation load monitoring process during the heating operation of [2] will be described with reference to the flowchart of FIG. This process is always performed during the heating operation during the winter heating operation. In general, in a building air conditioner such as a residential building, it is often installed such that the total capacity of the indoor unit 3 is about 150% of the capacity of the cold / hot water side heat exchanger 2 corresponding to the heat source unit. Actually, since all the indoor units 3 are rarely operated at the maximum load, there is almost no problem even if they are installed in this way.

一般的な暖房運転での冷媒の状態変化は,蒸発器たる冷温水側熱交換器2によって支配され,概略,図4のモリエル線図にサイクルAで示すような循環となる。すなわち,サイクルAの図中左端では,ポンプ11による圧縮を受け,圧力が上昇する。次に,冷温水側熱交換器2で温水の熱を受けて気化されることにより,図中上辺を左から右向きに移動し,比エンタルピが上昇する。次に,図中右端は,冷媒ガス管6を流れる途中での圧力損失を示している。そして,室内機3で室内空気に熱を放出して凝縮され,比エンタルピが低下する。このとき,サイクルAの図中下辺を右から左向きに移動する。なお,この図の範囲ではおよそ,図中上方が高温域,図中下方が低温域となる。   The state change of the refrigerant in the general heating operation is governed by the cold / hot water side heat exchanger 2 as an evaporator, and is roughly circulated as shown by the cycle A in the Mollier diagram of FIG. That is, at the left end of the cycle A diagram, the pressure is increased due to compression by the pump 11. Next, by receiving the heat of the hot water in the cold / hot water side heat exchanger 2 and evaporating, the upper side in the figure moves from the left to the right, and the specific enthalpy increases. Next, the right end in the figure shows the pressure loss in the middle of flowing through the refrigerant gas pipe 6. Then, the indoor unit 3 releases heat to the indoor air to condense, and the specific enthalpy decreases. At this time, the lower side of the cycle A diagram is moved from right to left. In the range of this figure, the upper part in the figure is the high temperature region and the lower part in the figure is the low temperature region.

しかし,もし熱源機の容量を超えて室内機3が運転された場合,冷媒温度と圧力とは凝縮器として機能する室内機3側に支配されることになる。すなわち,図4のモリエル線図に示すように,サイクルAからサイクルBに変更される。そのため,サイクル全体として冷媒の圧力および温度が低下し,運転中の室内機3の吹き出し温度が低下する。さらに,過冷却の度合いが4℃程度から1℃程度まで小さくなるので,冷媒循環不良を起こしやすい不安定な運転状態となる。万一,冷媒循環不良を起こすと暖房運転ができなくなる。そこで,このような室内機3の支配下での運転状態とならないように,室内機3の運転負荷を適宜監視するとともに,適切な運転状態となるように調整するのが本処理である。   However, if the indoor unit 3 is operated exceeding the capacity of the heat source unit, the refrigerant temperature and pressure are controlled by the indoor unit 3 functioning as a condenser. That is, the cycle A is changed to the cycle B as shown in the Mollier diagram of FIG. Therefore, the pressure and temperature of the refrigerant decrease as a whole cycle, and the blowing temperature of the indoor unit 3 during operation decreases. Furthermore, since the degree of supercooling is reduced from about 4 ° C. to about 1 ° C., an unstable operating state is likely to cause refrigerant circulation failure. If a refrigerant circulation failure occurs, heating operation cannot be performed. In view of this, the present process is to appropriately monitor the operating load of the indoor unit 3 and adjust it to an appropriate operating state so that the operating state under the control of the indoor unit 3 does not occur.

暖房運転が開始されると本処理が実行開始される。そして,図3に示すようにコントローラ9は,各室内機3で運転スイッチが操作されたり,暖房出力を切り替えられた等の運転状態の変化を常時監視する(S201)。変化がなければ(S201:No),そのまま監視を続ける。運転状態が変更された場合は(S201:Yes),運転中の室内機3の運転負荷を合計し,その合計と冷温水側熱交換器2の能力と比較する(S202)。運転中の室内機3の運転負荷の合計が冷温水側熱交換器2の能力を上回っていなければ(S202:No),そのまま運転を続けて問題ない。そこで,S201に戻り,継続して監視する。   When the heating operation is started, the processing is started. Then, as shown in FIG. 3, the controller 9 constantly monitors changes in the operation state such as operation switches being operated in each indoor unit 3 or heating output being switched (S201). If there is no change (S201: No), monitoring is continued as it is. When the operation state is changed (S201: Yes), the operation loads of the indoor units 3 in operation are totaled, and the total is compared with the capacity of the cold / hot water side heat exchanger 2 (S202). If the total operation load of the indoor unit 3 in operation does not exceed the capacity of the cold / hot water side heat exchanger 2 (S202: No), the operation is continued and there is no problem. Therefore, the process returns to S201 and is continuously monitored.

一方,運転中の室内機3の運転負荷の合計が冷温水側熱交換器2の能力を上回っている場合には(S202:Yes),運転中の室内機3の運転負荷を,コントローラ9によって強制的に制御する強制低下処理を行う(S203)。すなわち,運転中の室内機3の運転負荷の合計が冷温水側熱交換器2の能力を上回わらないように,各室内機3の運転状態を変更する。例えば,運転中の室内機3のファン風量を強制的に1ランクずつ下げる。なお,一般的に室内機3のファン風量は,3〜5段階程度に変更できる。上回っている度合いが大きい場合には,さらに大幅に変更してもよい。   On the other hand, when the total operation load of the indoor unit 3 during operation exceeds the capacity of the cold / hot water side heat exchanger 2 (S202: Yes), the operation load of the indoor unit 3 during operation is determined by the controller 9. Forcible lowering processing for forced control is performed (S203). That is, the operation state of each indoor unit 3 is changed so that the total operation load of the indoor units 3 during operation does not exceed the capacity of the cold / hot water side heat exchanger 2. For example, the fan air volume of the indoor unit 3 during operation is forcibly lowered by one rank. In general, the fan air volume of the indoor unit 3 can be changed to about 3 to 5 stages. If the degree of surpassing is large, it may be changed more drastically.

S203で各室内機3の運転状態を制御した場合は,さらに,冷媒の流量を調整する冷媒流量調整処理を行う。そのために,まず,冷温水側熱交換器2の出口での冷媒の圧力をガス圧力センサ33の検出結果から得る(S204)。次に,S204で得られた圧力に基づいて,飽和換算温度Tgを取得する(S205)。ガス圧力とその飽和温度との関係は冷媒の種類毎に決まっており,コントローラ9に例えばテーブルとして記憶させておけばよい。冷媒ガス圧力と冷媒飽和温度との関係の一例を,図5に示す。   When the operation state of each indoor unit 3 is controlled in S203, a refrigerant flow rate adjusting process for adjusting the refrigerant flow rate is further performed. For this purpose, first, the refrigerant pressure at the outlet of the cold / hot water side heat exchanger 2 is obtained from the detection result of the gas pressure sensor 33 (S204). Next, the saturation conversion temperature Tg is acquired based on the pressure obtained in S204 (S205). The relationship between the gas pressure and its saturation temperature is determined for each type of refrigerant and may be stored in the controller 9 as a table, for example. An example of the relationship between the refrigerant gas pressure and the refrigerant saturation temperature is shown in FIG.

また,冷温水側熱交換器2の温水出口温度Twを水温センサ34の検出結果から得る。これらの温度を比較し,そのガス圧力での飽和換算温度Tgが温水出口温度Twより2℃程度低い温度であるかどうかを判断する(S206)。この2℃という温度は最低限の温度であり,過負荷となりがちなこの状況下では,最適な温度である。そして,Tg=Tw−2(℃)であった場合は,最適なガス圧力が得られる最適な冷媒循環量であるので,S201に戻ってこのまま監視を続ければよい。   Further, the hot water outlet temperature Tw of the cold / hot water side heat exchanger 2 is obtained from the detection result of the water temperature sensor 34. These temperatures are compared, and it is determined whether or not the saturation conversion temperature Tg at the gas pressure is about 2 ° C. lower than the hot water outlet temperature Tw (S206). This temperature of 2 ° C. is the minimum temperature, and is an optimum temperature under this situation that tends to be overloaded. If Tg = Tw−2 (° C.), the optimum refrigerant circulation amount is obtained so that the optimum gas pressure can be obtained. Therefore, it is only necessary to return to S201 and continue monitoring.

一方,S206の結果,そのガス圧力での飽和換算温度Tgがその最適な温度でない場合は,適切な冷媒ガス圧力となるように冷媒循環量を調整する。例えば,飽和換算温度Tgがその最適な温度に比較して低すぎ,S206においてTg<Tw−2(℃)であった場合は,ガス圧力が低すぎることを意味する。従って,この場合には,冷媒の流量を増加させて冷媒の圧力を上げることにより,飽和換算温度Tgを上昇させる(S207)。   On the other hand, if the saturation conversion temperature Tg at the gas pressure is not the optimum temperature as a result of S206, the refrigerant circulation amount is adjusted so as to be an appropriate refrigerant gas pressure. For example, if the saturation conversion temperature Tg is too low compared to the optimum temperature and Tg <Tw−2 (° C.) in S206, it means that the gas pressure is too low. Accordingly, in this case, the saturation conversion temperature Tg is increased by increasing the refrigerant flow rate and increasing the refrigerant pressure (S207).

またあるいは,飽和換算温度Tgがその最適な温度に比較して高すぎ,S206においてTg>Tw−2(℃)であった場合は,ガス圧力が高すぎることを意味する。そこで,冷媒の流量を減少させて冷媒のガス圧力を低下させることにより,飽和換算温度Tgを下げる(S208)。   Alternatively, if the saturation conversion temperature Tg is too high compared to the optimum temperature and Tg> Tw−2 (° C.) in S206, it means that the gas pressure is too high. Therefore, the saturation conversion temperature Tg is lowered by decreasing the refrigerant flow rate to reduce the refrigerant gas pressure (S208).

なお,S207およびS208の処理は,具体的には,ポンプ11の運転回転数をインバータにより変化させればよい。あるいは,ポンプ11と冷温水側熱交換器2との間に,開閉弁26に代えて,あるいは開閉弁26に加えて,開度を調整できる調整弁を設けておいてもよい。このようにすれば,この調整弁の開度によって冷媒の流量を調整することができる。冷媒の流量を調整した後,再びS201の監視状態に戻る。   In addition, the process of S207 and S208 should just change the driving | running rotation speed of the pump 11 with an inverter specifically ,. Alternatively, an adjustment valve capable of adjusting the opening degree may be provided between the pump 11 and the cold / hot water side heat exchanger 2 instead of the on-off valve 26 or in addition to the on-off valve 26. If it does in this way, the flow volume of a refrigerant | coolant can be adjusted with the opening degree of this adjustment valve. After adjusting the flow rate of the refrigerant, the process returns to the monitoring state of S201 again.

このように,室内機3の運転負荷の合計が冷温水側熱交換器2の能力を上回っていないかどうかを常時監視するとともに,上回った場合には室内機3のファン風量等を制御して,強制的に室内機3の運転負荷を下げる。従って,冷媒のサイクルを蒸発器側が支配している状態(図4のサイクルAの状態)を維持できる。また,過冷却を2℃程度に制御することで,冷媒循環不良を回避しつつ,できるだけ高い暖房能力を得ることができる。これにより,風量をやや抑えるのみで,吹き出し温度が低下することを防止し,循環不良も回避できる監視処理となっている。   In this way, it is always monitored whether the total operation load of the indoor unit 3 exceeds the capacity of the cold / hot water heat exchanger 2, and if it exceeds, the fan air volume of the indoor unit 3 is controlled. , Forcibly reduce the operation load of the indoor unit 3. Therefore, it is possible to maintain the state in which the evaporator side dominates the refrigerant cycle (the state of cycle A in FIG. 4). Further, by controlling the supercooling to about 2 ° C., it is possible to obtain as high a heating capacity as possible while avoiding poor refrigerant circulation. As a result, it is a monitoring process that prevents the blowing temperature from decreasing and avoids poor circulation only by slightly suppressing the air flow.

次に,[3]の冷房運転中の気化回収処理について,図6のフローチャートを参照して説明する。冷房期間中でも気温が比較的低い日もある。このような日には,熱負荷が小さいためシステム全体がかなり低温となる。そのため,冷媒ガス管等の気相の冷媒が存在する範囲で冷媒が液化し,管内に溜まることがあった。このようになると冷媒ガス管の流路が狭くなり,圧力損失が大きくなるため除湿性能低下の原因となる。本形態では,冷房運転中の冷媒ガス管の状態を監視し,液相の冷媒となって溜まることを防止している。この処理は冷房運転中に適宜の時間間隔で自動的に開始される。   Next, the vaporization recovery process during the cooling operation of [3] will be described with reference to the flowchart of FIG. There are days when the temperature is relatively low even during the cooling period. On such days, the thermal load is small, and the entire system becomes very cold. For this reason, the refrigerant sometimes liquefies and accumulates in the pipe in the range where the gas-phase refrigerant such as the refrigerant gas pipe exists. In this case, the flow path of the refrigerant gas pipe becomes narrow, and the pressure loss increases, which causes a decrease in dehumidification performance. In this embodiment, the state of the refrigerant gas pipe during the cooling operation is monitored to prevent liquid refrigerant from accumulating. This process is automatically started at appropriate time intervals during the cooling operation.

この処理を開始するとまず,コントローラ9は,冷媒ガス管6内の冷媒ガスの温度と圧力を取得する。そのために,ガス温度センサ32によって温度を測定する(S301)。この温度を温度Tとする。さらに,ガス圧力センサ33によって圧力を測定する(S302)。続いて,S302で得られた圧力に基づいて,[2]と同様のテーブルから飽和換算温度Tsを取得する(S303)。   When this process is started, the controller 9 first acquires the temperature and pressure of the refrigerant gas in the refrigerant gas pipe 6. For this purpose, the temperature is measured by the gas temperature sensor 32 (S301). This temperature is defined as temperature T. Further, the pressure is measured by the gas pressure sensor 33 (S302). Subsequently, based on the pressure obtained in S302, the saturation conversion temperature Ts is obtained from the same table as [2] (S303).

次に,S301の結果の温度TとS303の結果の温度Tsとを比較する(S304)。ガス温度Tが飽和換算温度Tsより高ければ(S304:Yes),冷媒ガス管6内は過熱度があり,液相の冷媒が溜まっているおそれはない。従って,この場合は正常な状態であり,このままの状態で冷房運転を継続すればよいので,これで処理を終了する。   Next, the temperature T resulting from S301 is compared with the temperature Ts resulting from S303 (S304). If the gas temperature T is higher than the saturation conversion temperature Ts (S304: Yes), the refrigerant gas pipe 6 is superheated and there is no possibility that liquid-phase refrigerant is accumulated. Therefore, in this case, it is a normal state, and it is only necessary to continue the cooling operation in this state.

しかし,ガス温度Tが飽和換算温度Ts以下である場合は(S304:No),過熱度が無い。そのため,冷媒ガス管6中に液相の冷媒が溜まっている可能性がある。ここで,一般に冷媒ガス管6は,冷媒液管7より太く,また保温材に覆われていることが多い。そのようになっていると,ひとたび液相の冷媒が溜まった場合には,そのままの状態で冷房運転を続けている間に,ひとりでに蒸発し回収されるということはない。   However, when the gas temperature T is equal to or lower than the saturation conversion temperature Ts (S304: No), there is no degree of superheat. Therefore, there is a possibility that the liquid phase refrigerant is accumulated in the refrigerant gas pipe 6. Here, the refrigerant gas pipe 6 is generally thicker than the refrigerant liquid pipe 7 and is often covered with a heat insulating material. In such a case, once the liquid-phase refrigerant has accumulated, it cannot be evaporated and collected by itself while continuing the cooling operation in that state.

そこで本形態では,T−Ts≦0であったら(S304:No),液冷媒回収処理を行う。まず,運転中の室内機3の内,最も負荷の大きい運転を行っているものを選択する。すなわち,最も設定温度が低く,ファンの風量が大きくなっている室内機3を1台選択する。そして,その室内機3の開閉弁8を一旦閉じ,5分間程度経過後再び開放する(S305)。これにより,この室内機3内に液相状態で残っている冷媒を気化させ,回収することができる。このとき,その室内機3のファンは停止させない。5分程度であれば,室内温度をさほど上昇させるものでもないので体感的には問題はない。   Therefore, in this embodiment, when T−Ts ≦ 0 (S304: No), the liquid refrigerant recovery process is performed. First, of the indoor units 3 that are in operation, the indoor unit that is operating with the highest load is selected. That is, one indoor unit 3 having the lowest set temperature and the large fan air flow is selected. Then, the on-off valve 8 of the indoor unit 3 is temporarily closed, and is opened again after about 5 minutes (S305). As a result, the refrigerant remaining in the liquid phase in the indoor unit 3 can be vaporized and recovered. At this time, the fan of the indoor unit 3 is not stopped. If it is about 5 minutes, the room temperature will not increase so much, so there is no problem in terms of experience.

このようにすることにより,その室内機3に残っていた液相の冷媒が気化されて回収される。その際,比較的高温の気相の冷媒となって冷媒ガス管6を通り,その途中で冷媒ガス管6中に溜まっている液相の冷媒に触れる。そのため,冷媒ガス管6中の液相の冷媒の温度も上がり,気化されてともに回収される。   By doing so, the liquid-phase refrigerant remaining in the indoor unit 3 is vaporized and recovered. At that time, it becomes a relatively high-temperature gas-phase refrigerant, passes through the refrigerant gas pipe 6, and touches the liquid-phase refrigerant accumulated in the refrigerant gas pipe 6 on the way. Therefore, the temperature of the liquid phase refrigerant in the refrigerant gas pipe 6 also rises and is vaporized and recovered together.

続いて,2番目に負荷の大きい運転を行っている室内機3の開閉弁8を一旦閉じ,5分間経過後再び開放する(S306)。このように,負荷の大きいものから順に1台ずつ室内機3の開閉弁8を閉じて,内部の液冷媒を蒸発させる。そして,最後に負荷の最も小さい室内機3の開閉弁8を5分間閉じて,再び開放する(S307)。なお,このように1台ずつ順に行うことが望ましいが,室内機3の接続台数が多いシステムや容量の小さい室内機3等では,2〜3台を同時に行ってもよい。   Subsequently, the on-off valve 8 of the indoor unit 3 performing the operation with the second largest load is once closed and opened again after 5 minutes (S306). Thus, the on-off valve 8 of the indoor unit 3 is closed one by one in order from the largest load, and the liquid refrigerant inside is evaporated. Finally, the on-off valve 8 of the indoor unit 3 with the smallest load is closed for 5 minutes and then opened again (S307). In addition, although it is desirable to carry out one unit at a time in this way, in a system with a large number of connected indoor units 3 or an indoor unit 3 with a small capacity, two or three units may be simultaneously performed.

このようにすることにより,各室内機3に残っていた液相の冷媒が順に気化されて,順に回収される。また,その回収の途中で,冷媒ガス管6中の液相の冷媒も気化されてともに回収される。すべての室内機3の弁開閉が終了したら,再びS301に戻る。   By doing in this way, the liquid-phase refrigerant | coolant which remained in each indoor unit 3 is vaporized in order, and is collect | recovered in order. In the course of the recovery, the liquid phase refrigerant in the refrigerant gas pipe 6 is also vaporized and recovered together. When valve opening / closing of all the indoor units 3 is completed, the process returns to S301 again.

そして,ガス管温度Tおよびガス管圧力を測定し,飽和換算温度Tsとガス管温度Tとを比較する。T−Ts>0となっていら(S304:Yes),この処理を終了する。まだそうなっていなかったら,もう一度S305〜S307の処理を繰り返す。この空調システムでは,冷房運転中には適宜,この気化回収処理を実行する。   Then, the gas pipe temperature T and the gas pipe pressure are measured, and the saturation conversion temperature Ts and the gas pipe temperature T are compared. If T-Ts> 0 is satisfied (S304: Yes), this process is terminated. If not, the process from S305 to S307 is repeated once again. In this air conditioning system, this vaporization recovery process is executed as appropriate during the cooling operation.

次に,[4]の小型受液器を有するシステムにおいて冷房運転期間中に行う液冷媒移送処理について,図7のフローチャートを参照して説明する。一般に冷媒を利用した空調システムでは,冷房運転時と暖房運転時とで必要となる冷媒総量が異なる。冷房運転時には,暖房運転時より少量の冷媒を循環させるだけで足りる。これは,運転される温度レベルが異なるため,その温度に相当する圧力を保持するために必要な冷媒量が異なるからである。   Next, the liquid refrigerant transfer process performed during the cooling operation period in the system having the small liquid receiver of [4] will be described with reference to the flowchart of FIG. In general, in an air conditioning system using refrigerant, the total amount of refrigerant required for cooling operation and heating operation differs. During cooling operation, it is sufficient to circulate a smaller amount of refrigerant than during heating operation. This is because the operating temperature level is different and the amount of refrigerant required to maintain the pressure corresponding to that temperature is different.

本形態のシステムのように,あらかじめ決められた量の冷媒をシステム内に密閉して使用するものでは,より多く必要な暖房運転時の冷媒量を用意することとなる。このため,冷房運転期間中には冷媒が余剰となり,その余剰分は基本的には受液器12に溜められて保存されている。特に,運転停止中には多くの液相の冷媒が集められるため,その総量はかなりのものとなる。この余剰分の冷媒を全て受液器12に溜めるためには,大きい受液器12が必要となり,冷媒循環ユニット1全体の大きさも大きくなってしまう。本形態では,冷房運転期間中,特にその運転停止中に余剰の液相の冷媒を保存するスペースを,システム中の受液器12以外の場所に確保することにより,受液器12として小型なものを採用することができる。   In the case of using a predetermined amount of refrigerant sealed in the system as in the system of this embodiment, a larger amount of refrigerant required for heating operation is prepared. For this reason, the refrigerant becomes surplus during the cooling operation period, and the surplus is basically stored and stored in the liquid receiver 12. In particular, since many liquid-phase refrigerants are collected during shutdown, the total amount is considerable. In order to collect all the excess refrigerant in the liquid receiver 12, a large liquid receiver 12 is required, and the size of the entire refrigerant circulation unit 1 is also increased. In this embodiment, the space for storing the excess liquid-phase refrigerant during the cooling operation period, particularly during the operation stop, is secured in a place other than the liquid receiver 12 in the system, thereby reducing the size of the liquid receiver 12. Things can be adopted.

本処理は,冷房運転期間中において,おもに冷房運転終了後に実行される。すなわち,図7に示すように,まず,1日の冷房運転が開始され,通常の冷房運転が行われる(S401)。そして,終業時等にすべての室内機3のスイッチがOFFされるまでは(S402:No),通常運転を続ける。   This process is mainly executed after the cooling operation is completed during the cooling operation period. That is, as shown in FIG. 7, first, the cooling operation of the day is started, and the normal cooling operation is performed (S401). The normal operation is continued until the switches of all the indoor units 3 are turned off at the end of work (S402: No).

すべての室内機3のスイッチがOFFされたら(S402:Yes),冷媒循環ユニット1の各開閉弁の状態はそのままで,全室内機3の冷媒液管7の開閉弁8を開放する(S403)。そして,ポンプ11を約1分間定格運転する(S404)。これにより,冷媒液管7に冷媒が送出され,開閉弁8を介して,各室内機3内に液相の冷媒が送り込まれる。   When the switches of all the indoor units 3 are turned off (S402: Yes), the open / close valves 8 of the refrigerant liquid pipes 7 of all the indoor units 3 are opened without changing the state of each open / close valve of the refrigerant circulation unit 1 (S403). . Then, the pump 11 is rated for about 1 minute (S404). As a result, the refrigerant is sent to the refrigerant liquid pipe 7, and the liquid-phase refrigerant is sent into each indoor unit 3 through the on-off valve 8.

そしてその状態で,全室内機3の冷媒液管7の開閉弁8を閉止する(S405)。これにより,各室内機3内に液相の冷媒が溜まった状態となる。さらに,冷媒循環ユニット1のすべての開閉弁を閉止し(S406),冷媒の循環を停止させる。続いて,冷温水側熱交換器2の冷温水配管4への冷水の投入を停止する(S407)。冷水の停止を最後に行うことにより,処理中に冷媒が気化してキャビテーションが発生することは防止されている。これで本処理は終了であり,翌日の朝再び起動されるまで,このままの状態で保持される。   In this state, the on-off valve 8 of the refrigerant liquid pipe 7 of all the indoor units 3 is closed (S405). As a result, a liquid phase refrigerant is accumulated in each indoor unit 3. Further, all the on-off valves of the refrigerant circulation unit 1 are closed (S406), and the refrigerant circulation is stopped. Subsequently, the supply of cold water to the cold / hot water pipe 4 of the cold / hot water side heat exchanger 2 is stopped (S407). By stopping the cold water last, it is possible to prevent the refrigerant from being vaporized and cavitation during the process. This is the end of the process, and it is held in this state until it is started again the next morning.

なお,翌日の朝の起動時には,通常と同様に運転開始すればよい。例えば,室内機3の熱交換器が300mm程度,液相の冷媒に没している状態でも,この分のヘッドは温度換算した場合1℃に満たない。従って,室温に大きな影響を与えるほどではないからである。また,ここでは本処理を冷房運転終了後に実行するとしたが,冷房運転中にも冷媒が余剰となる場合には,本処理と同様に,室内機3に液相の冷媒をある程度溜めておいてもよい。室内機3の熱交換器がある程度,液相の冷媒に没した状態となったとしても,ほとんど問題はない。特に運転停止中の室内機3があれば,それを選んで開閉弁8を開放するとよい。   When starting in the morning of the next day, operation may be started as usual. For example, even if the heat exchanger of the indoor unit 3 is submerged in a liquid phase refrigerant of about 300 mm, this amount of head is less than 1 ° C. in terms of temperature. Therefore, it does not have a great influence on the room temperature. In addition, here, this process is executed after the cooling operation is completed. However, if the refrigerant becomes excessive during the cooling operation, the liquid refrigerant is stored in the indoor unit 3 to some extent as in this process. Also good. Even if the heat exchanger of the indoor unit 3 is submerged in the liquid refrigerant to some extent, there is almost no problem. In particular, if there is an indoor unit 3 that is stopped, it is preferable to select it and open the on-off valve 8.

このようにすることにより,受液器12として従来の1/3程度の大きさのものを選択できるようになった。従って,本形態によれば,小型の受液器12を使用した冷媒循環ユニット1とできるので,冷媒循環ユニット1の全体の大きさを小さいものとできる。   By doing so, a liquid receiver 12 having a size about 1/3 of the conventional one can be selected. Therefore, according to the present embodiment, since the refrigerant circulation unit 1 using the small liquid receiver 12 can be obtained, the overall size of the refrigerant circulation unit 1 can be reduced.

以上詳細に説明したように本形態の冷媒循環ユニット1の制御方法によれば,次の4つの処理を行う。
[1]暖房運転期間中のシステム起動時には液回収処理を行う
[2]暖房運転中の特に厳寒期には運転負荷監視処理(強制低下処理と冷媒流量調整処理を含む)を行う
[3]冷房運転中の低負荷時には気化回収処理を行う
[4]特に小型受液器を有するシステムでは,冷房運転期間中に液冷媒移送処理を行う
従って,冷媒寝込みを防止するとともに,小さい受液器によっても,確実に冷媒の循環が可能となる熱交換器ポンプシステムとなっている。
As described in detail above, according to the control method of the refrigerant circulation unit 1 of the present embodiment, the following four processes are performed.
[1] Liquid recovery processing is performed when the system is started during the heating operation period. [2] Operation load monitoring processing (including forced reduction processing and refrigerant flow rate adjustment processing) is performed particularly during severe cold periods during heating operation. [3] Cooling [4] Especially in a system with a small liquid receiver, the liquid refrigerant transfer process is performed during the cooling operation period. This is a heat exchanger pump system that can reliably circulate the refrigerant.

なお,本システムでは,暖房運転期間中には,起動時に[1]を実行し,運転中に[2]を実行する。また,冷房運転期間中には,運転中に[3]を実行し,運転停止時に[4]を実行すればよい。コントローラ9では,システムの状況を検出して適切な処理を選択して実行する。   In the present system, during the heating operation period, [1] is executed at the time of startup, and [2] is executed during the operation. Further, during the cooling operation period, [3] is executed during operation, and [4] is executed when operation is stopped. The controller 9 detects the system status and selects and executes an appropriate process.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,時間や温度等の数値は一例であり,これに限らない。また,[2]の運転負荷監視処理では,運転状態が変更されたときに運転負荷を比較するとしたが,運転状態の変化にかかわらず適切なタイミングで随時比較監視していてもよい。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, numerical values such as time and temperature are examples and are not limited thereto. In the operational load monitoring process [2], the operational load is compared when the operational state is changed. However, the comparative monitoring may be performed at an appropriate timing at any time regardless of changes in the operational state.

本形態に係る空調システムの概略構成を示す構成図である。It is a lineblock diagram showing a schematic structure of an air-conditioning system concerning this form. 暖房起動時の液回収処理を示すフローチャートである。It is a flowchart which shows the liquid collection | recovery process at the time of heating starting. 暖房運転中の負荷調整処理を示すフローチャートである。It is a flowchart which shows the load adjustment process in heating operation. 暖房運転中の冷媒の状態変化を示すモリエル線図である。It is a Mollier diagram which shows the state change of the refrigerant | coolant during heating operation. 冷媒の圧力と飽和温度との関係を示すグラフである。It is a graph which shows the relationship between the pressure of a refrigerant | coolant, and saturation temperature. 冷房運転中の監視処理を示すフローチャートである。It is a flowchart which shows the monitoring process in air_conditionaing | cooling operation. 小型受液器を有するシステムにおける冷房運転終了時処理を示すフローチャートである。It is a flowchart which shows the process at the time of the cooling operation completion | finish in the system which has a small liquid receiver.

符号の説明Explanation of symbols

2 冷温水側熱交換器
3 室内機
6 冷媒ガス管
8 開閉弁
9 コントローラ
11 ポンプ
12 受液器
15,16 流入流路
17,18 流出流路
21,24 流入開閉弁
26,27 流出開閉弁
31 液面センサ
32 ガス温度センサ
33 ガス圧力センサ
34 水温センサ
2 Heating / cooling water side heat exchanger 3 Indoor unit 6 Refrigerant gas pipe 8 Open / close valve 9 Controller 11 Pump 12 Receiver 15, 16 Inflow channel 17, 18 Outflow channel 21, 24 Inflow on / off valve 26, 27 Outflow on / off valve 31 Liquid level sensor 32 Gas temperature sensor 33 Gas pressure sensor 34 Water temperature sensor

Claims (20)

1次熱交換器と,2次熱交換器と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記1次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記2次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路と,前記流出流路に配置された流出開閉弁と,前記流入流路に配置された流入開閉弁とを有する空調システムにおいて,
暖房運転起動時に,前記流出開閉弁を閉じ前記流入開閉弁を開き前記ポンプを停止した状態で,前記1次熱交換器に温水を投入して液相の相変化冷媒を気化させることにより,前記ガス流路および前記2次熱交換器から前記受液器へ液相の相変化冷媒を回収する液回収処理を行う暖房運転起動時制御部を有することを特徴とする空調システム。
A primary heat exchanger; a secondary heat exchanger; a receiver that contains a liquid phase change refrigerant; a pump that delivers the liquid phase change refrigerant of the receiver; an outlet of the pump; An outflow channel connecting the liquid phase refrigerant port of the primary heat exchanger, an inflow channel connecting the inlet of the receiver and the liquid phase refrigerant port of the secondary heat exchanger, and the primary heat exchange A gas flow path connecting the gas phase refrigerant port of the storage unit and the gas phase refrigerant port of the secondary heat exchanger, an outflow on-off valve disposed in the outflow channel, and an inflow on-off valve disposed in the inflow channel In an air conditioning system having
When heating operation is started, the outflow on-off valve is closed, the inflow on-off valve is opened and the pump is stopped, and hot water is introduced into the primary heat exchanger to vaporize the liquid phase change refrigerant, An air conditioning system comprising: a heating operation start-up control unit that performs a liquid recovery process of recovering a liquid phase change refrigerant from the gas flow path and the secondary heat exchanger to the liquid receiver.
請求項1に記載の空調システムにおいて,前記暖房運転起動時制御部は,
前記液回収処理に先立ち,前記流出開閉弁を開き前記流入開閉弁を閉じた状態で,前記ポンプを所定時間駆動して前記受液器から前記1次熱交換器へ液相の相変化冷媒を送る予備送液処理を行うことを特徴とする空調システム。
The air conditioning system according to claim 1, wherein the heating operation start-up control unit includes:
Prior to the liquid recovery process, with the outflow on-off valve opened and the inflow on-off valve closed, the pump is driven for a predetermined time to supply liquid phase change refrigerant from the receiver to the primary heat exchanger. An air conditioning system characterized by performing preliminary liquid feeding processing.
請求項1または請求項2に記載の空調システムにおいて,
前記受液器の液面レベルを検知する液面センサを有し,
前記暖房運転起動時制御部は,前記受液器の液面レベルが所定値に達すると,前記液回収処理を終了して通常の暖房運転に移行することを特徴とする空調システム。
The air conditioning system according to claim 1 or 2,
A liquid level sensor for detecting a liquid level of the liquid receiver;
When the liquid level of the liquid receiver reaches a predetermined value, the heating operation start-up control unit ends the liquid recovery process and shifts to a normal heating operation.
請求項3に記載の空調システムにおいて,前記暖房運転起動時制御部は,
前記液回収処理が開始されてから所定時間以内に前記受液器の液面レベルが所定値に達しない場合に,運転を停止させることを特徴とする空調システム。
The air conditioning system according to claim 3, wherein the heating operation start-up control unit includes:
An air conditioning system characterized in that the operation is stopped when the liquid level of the liquid receiver does not reach a predetermined value within a predetermined time after the liquid recovery process is started.
請求項1から請求項4までのいずれか1つに記載の空調システムにおいて,
前記2次熱交換器に送風ファンが設けられており,
前記暖房運転起動時制御部は,暖房運転起動時に,前記液回収処理が終了するまで前記送風ファンの駆動を禁止することを特徴とする空調システム。
In the air conditioning system according to any one of claims 1 to 4,
The secondary heat exchanger is provided with a blower fan,
The heating operation start time control unit prohibits driving of the blower fan at the time of heating operation start until the liquid recovery process is completed.
1次熱交換器と,2次熱交換器と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記1次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記2次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路と,前記流出流路に配置された流出開閉弁と,前記流入流路に配置された流入開閉弁とを有する空調システムの運転方法において,
暖房運転起動時に,前記流出開閉弁を閉じ前記流入開閉弁を開き前記ポンプを停止した状態で,前記1次熱交換器に温水を投入して液相の相変化冷媒を気化させることにより,前記ガス流路および前記2次熱交換器から前記受液器へ液相の相変化冷媒を回収する液回収処理を行うことを特徴とする空調システムの運転方法。
A primary heat exchanger; a secondary heat exchanger; a receiver that contains a liquid phase change refrigerant; a pump that delivers the liquid phase change refrigerant of the receiver; an outlet of the pump; An outflow channel connecting the liquid phase refrigerant port of the primary heat exchanger, an inflow channel connecting the inlet of the receiver and the liquid phase refrigerant port of the secondary heat exchanger, and the primary heat exchange A gas flow path connecting the gas phase refrigerant port of the storage unit and the gas phase refrigerant port of the secondary heat exchanger, an outflow on-off valve disposed in the outflow channel, and an inflow on-off valve disposed in the inflow channel In the operation method of the air conditioning system having
When heating operation is started, the outflow on-off valve is closed, the inflow on-off valve is opened and the pump is stopped, and hot water is introduced into the primary heat exchanger to vaporize the liquid phase change refrigerant, A method of operating an air conditioning system, wherein a liquid recovery process is performed to recover a liquid phase change refrigerant from the gas flow path and the secondary heat exchanger to the liquid receiver.
請求項6に記載の空調システムの運転方法において,
前記液回収処理に先立ち,前記流出開閉弁を開き前記流入開閉弁を閉じた状態で,前記ポンプを所定時間駆動して前記受液器から前記1次熱交換器へ液相の相変化冷媒を送る予備送液処理を行うことを特徴とする空調システムの運転方法。
The operation method of the air conditioning system according to claim 6,
Prior to the liquid recovery process, with the outflow on-off valve opened and the inflow on-off valve closed, the pump is driven for a predetermined time to supply liquid phase change refrigerant from the receiver to the primary heat exchanger. An operation method of an air conditioning system, characterized in that preliminary liquid feeding processing is performed.
1次熱交換器と,複数の2次熱交換器と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記1次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記複数の2次熱交換器の各液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記複数の2次熱交換器の各気相冷媒口とを結ぶガス流路とを有する空調システムにおいて,
暖房運転中に前記複数の2次熱交換器の運転負荷の合計が前記1次熱交換器の容量を上回った場合に,前記複数の2次熱交換器の運転負荷を低下させる強制低下処理を行う過負荷時制御部を有することを特徴とする空調システム。
A primary heat exchanger, a plurality of secondary heat exchangers, a liquid receiver that contains a liquid phase change refrigerant, a pump that delivers the liquid phase change refrigerant of the liquid receiver, An outflow channel connecting an outlet and a liquid phase refrigerant port of the primary heat exchanger, an inflow channel connecting an inlet of the receiver and the liquid phase refrigerant ports of the plurality of secondary heat exchangers, In the air conditioning system having a gas flow path connecting the gas phase refrigerant port of the primary heat exchanger and the gas phase refrigerant ports of the plurality of secondary heat exchangers,
When the total operating load of the plurality of secondary heat exchangers exceeds the capacity of the primary heat exchanger during heating operation, a forced reduction process is performed to reduce the operating load of the plurality of secondary heat exchangers. An air conditioning system comprising an overload control unit for performing the operation.
請求項8に記載の空調システムにおいて,
前記1次熱交換器の冷温水出口の水温を検知する水温センサと,
前記ガス流路の圧力を検知する圧力センサと,
前記ガス流路の温度を検知するガス温度センサと,
前記ガス流路の圧力と前記1次熱交換器の冷温水出口の水温とに基づいて,ガス流路の目標温度を設定する目標温度設定部とを有し,
前記過負荷時制御部は,前記強制低下処理の後に,
前記ガス流路の温度がその目標温度より低い場合に前記受液器からの液相の相変化冷媒の送出量を増加させ,
前記ガス流路の温度がその目標温度より高い場合に前記受液器からの液相の相変化冷媒の送出量を減少させる冷媒流量調整処理を行うことを特徴とする空調システム。
The air conditioning system according to claim 8,
A water temperature sensor for detecting a water temperature at a cold / hot water outlet of the primary heat exchanger;
A pressure sensor for detecting the pressure of the gas flow path;
A gas temperature sensor for detecting the temperature of the gas flow path;
A target temperature setting unit for setting a target temperature of the gas flow path based on the pressure of the gas flow path and the water temperature of the cold water outlet of the primary heat exchanger;
The overload control unit, after the forced reduction process,
When the temperature of the gas flow path is lower than the target temperature, increase the delivery amount of the liquid phase change refrigerant from the receiver,
An air conditioning system that performs a refrigerant flow rate adjusting process for reducing a delivery amount of a liquid phase change refrigerant from the liquid receiver when a temperature of the gas flow path is higher than a target temperature.
1次熱交換器と,複数の2次熱交換器と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記1次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記複数の2次熱交換器の各液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記複数の2次熱交換器の各気相冷媒口とを結ぶガス流路とを有する空調システムの運転方法において,
暖房運転中に前記複数の2次熱交換器の運転負荷の合計が前記1次熱交換器の容量を上回った場合に,前記複数の2次熱交換器の運転負荷を低下させる強制低下処理を行うことを特徴とする空調システムの運転方法。
A primary heat exchanger, a plurality of secondary heat exchangers, a liquid receiver that contains a liquid phase change refrigerant, a pump that delivers the liquid phase change refrigerant of the liquid receiver, An outflow channel connecting an outlet and a liquid phase refrigerant port of the primary heat exchanger, an inflow channel connecting an inlet of the receiver and the liquid phase refrigerant ports of the plurality of secondary heat exchangers, In an operating method of an air conditioning system having a gas flow path connecting a gas phase refrigerant port of the primary heat exchanger and gas phase refrigerant ports of the plurality of secondary heat exchangers,
When the total operating load of the plurality of secondary heat exchangers exceeds the capacity of the primary heat exchanger during heating operation, a forced reduction process is performed to reduce the operating load of the plurality of secondary heat exchangers. An operation method of an air conditioning system characterized by being performed.
請求項10に記載の空調システムの運転方法において,
前記ガス流路の圧力と前記1次熱交換器の冷温水出口の水温とに基づいて,ガス流路の目標温度を設定し,
前記強制低下処理の後に,
前記ガス流路の温度がその目標温度より低い場合に前記受液器からの液相の相変化冷媒の送出量を増加させ,
前記ガス流路の温度がその目標温度より高い場合に前記受液器からの液相の相変化冷媒の送出量を減少させる冷媒流量調整処理を行うことを特徴とする空調システムの運転方法。
In the operating method of the air conditioning system of Claim 10,
Based on the pressure of the gas flow path and the temperature of the cold heat outlet of the primary heat exchanger, a target temperature of the gas flow path is set,
After the forced reduction process,
When the temperature of the gas flow path is lower than the target temperature, increase the delivery amount of the liquid phase change refrigerant from the receiver,
An operation method of an air conditioning system, wherein a refrigerant flow rate adjustment process is performed to reduce a delivery amount of a liquid phase change refrigerant from the receiver when a temperature of the gas flow path is higher than a target temperature.
1次熱交換器と,2次熱交換器と,前記2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記2次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記1次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路とを有する空調システムにおいて,
前記ガス流路の温度を検知するガス温度センサと,
前記ガス流路の圧力を検知するガス圧力センサと,
前記ガス流路の圧力に基づいてその飽和換算温度を取得する飽和換算温度取得部と,
冷房運転中に前記ガス流路の温度がその飽和換算温度より低くなった場合に,前記開閉弁を所定時間にわたって閉じその後開くことにより,前記ガス流路内の液相の相変化冷媒を気化させて回収する気化回収処理を行う滞留液回収制御部とを有することを特徴とする空調システム。
A primary heat exchanger; a secondary heat exchanger; an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger; a liquid receiver containing a liquid phase change refrigerant; A pump for sending the liquid phase phase change refrigerant of the vessel, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchange An air-conditioning system having an inflow channel connecting a liquid-phase refrigerant port of a storage unit, and a gas channel connecting a gas-phase refrigerant port of the primary heat exchanger and a gas-phase refrigerant port of the secondary heat exchanger,
A gas temperature sensor for detecting the temperature of the gas flow path;
A gas pressure sensor for detecting the pressure of the gas flow path;
A saturation conversion temperature acquisition unit that acquires the saturation conversion temperature based on the pressure of the gas flow path;
When the temperature of the gas flow path becomes lower than the saturation conversion temperature during cooling operation, the phase change refrigerant in the liquid phase in the gas flow path is vaporized by closing and opening the on-off valve for a predetermined time. An air-conditioning system, comprising: a staying liquid recovery control unit that performs a vaporization recovery process of recovering the liquid.
請求項12に記載の空調システムにおいて,
複数組の2次熱交換器とその液相冷媒口の開閉弁を有し,
前記滞留液回収制御部は,前記複数組の2次熱交換器および開閉弁について,順次,前記気化回収処理を行うことを特徴とする空調システム。
The air conditioning system according to claim 12,
It has multiple sets of secondary heat exchangers and on / off valves for the liquid phase refrigerant ports,
The staying liquid recovery control unit sequentially performs the vaporization recovery process on the plurality of sets of secondary heat exchangers and on-off valves.
請求項13に記載の空調システムにおいて,
前記滞留液回収制御部は,運転負荷の大きい2次熱交換器の組から順に前記気化回収処理を行うことを特徴とする空調システム。
The air conditioning system according to claim 13,
The said staying liquid collection | recovery control part performs the said vaporization collection | recovery process in an order from the group of the secondary heat exchanger with a large operation load.
1次熱交換器と,2次熱交換器と,前記2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記2次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記1次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路とを有する空調システムの運転方法において,
冷房運転中に前記ガス流路の温度がその飽和換算温度より低くなった場合に,前記開閉弁を所定時間にわたって閉じその後開くことにより,前記ガス流路内の液相の相変化冷媒を気化させて回収する気化回収処理を行うことを特徴とする空調システムの運転方法。
A primary heat exchanger; a secondary heat exchanger; an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger; a liquid receiver containing a liquid phase change refrigerant; A pump for sending the liquid phase phase change refrigerant of the vessel, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchange Of an air-conditioning system having an inflow channel connecting a liquid phase refrigerant port of the storage unit and a gas channel connecting a gas phase refrigerant port of the primary heat exchanger and a gas phase refrigerant port of the secondary heat exchanger In the method,
When the temperature of the gas flow path becomes lower than the saturation conversion temperature during cooling operation, the phase change refrigerant in the liquid phase in the gas flow path is vaporized by closing and opening the on-off valve for a predetermined time. A method of operating an air conditioning system, characterized by performing a vaporization recovery process for recovery.
請求項15に記載の空調システムの運転方法において,
複数組の2次熱交換器とその液相冷媒口の開閉弁を有する空調システムを対象とし,
前記複数組の2次熱交換器および開閉弁について,順次,前記気化回収処理を行うことを特徴とする空調システムの運転方法。
The operation method of the air conditioning system according to claim 15,
Targeting air conditioning systems with multiple sets of secondary heat exchangers and on / off valves for their liquid refrigerant ports,
An operation method of an air conditioning system, wherein the vaporization recovery process is sequentially performed on the plurality of sets of secondary heat exchangers and on-off valves.
1次熱交換器と,2次熱交換器と,前記2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記2次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記1次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路と,前記流出流路に配置された流出開閉弁とを有する空調システムにおいて,
冷房運転停止後に,前記流出開閉弁を開いた状態で前記ポンプを所定時間駆動して前記受液器から前記2次熱交換器へ液相の相変化冷媒を送り,その後に前記流出開閉弁を閉じる液冷媒移送処理を行うことにより,冷房期間中の休止時に前記2次熱交換器に液相の相変化冷媒を貯留させる休止時貯留制御部を有することを特徴とする空調システム。
A primary heat exchanger; a secondary heat exchanger; an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger; a liquid receiver containing a liquid phase change refrigerant; A pump for sending the liquid phase phase change refrigerant of the vessel, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchange An inflow channel connecting the liquid phase refrigerant port of the storage unit, a gas channel connecting the gas phase refrigerant port of the primary heat exchanger and the gas phase refrigerant port of the secondary heat exchanger, and the outflow channel In an air conditioning system having an outflow on-off valve arranged,
After the cooling operation is stopped, the pump is driven for a predetermined time with the outflow on-off valve opened to send a liquid phase change refrigerant from the receiver to the secondary heat exchanger, and then the outflow on-off valve An air conditioning system comprising: a resting storage control unit that stores a liquid phase change refrigerant in the secondary heat exchanger during a resting period during a cooling period by performing a liquid coolant transfer process to be closed.
請求項17に記載の空調システムにおいて,
複数の2次熱交換器を有し,
前記休止時貯留制御部は,すべての2次熱交換器の運転が停止されたときに前記液冷媒移送処理を行うことを特徴とする空調システム。
The air conditioning system according to claim 17,
Having a plurality of secondary heat exchangers,
The air-conditioning system, wherein the resting storage control unit performs the liquid refrigerant transfer process when the operation of all the secondary heat exchangers is stopped.
請求項17または請求項18に記載の空調システムにおいて,前記休止時貯留制御部は,
前記液冷媒移送処理の終了後に,前記1次熱交換器への冷水投入を停止させることを特徴とする空調システム。
The air conditioning system according to claim 17 or claim 18, wherein the resting storage control unit includes:
An air conditioning system characterized in that, after the liquid refrigerant transfer process is finished, the introduction of cold water into the primary heat exchanger is stopped.
1次熱交換器と,2次熱交換器と,前記2次熱交換器の液相冷媒口に設けられた開閉弁と,液相の相変化冷媒を収容する受液器と,前記受液器の液相の相変化冷媒を送出するポンプと,前記ポンプの出口と前記2次熱交換器の液相冷媒口とを結ぶ流出流路と,前記受液器の入口と前記1次熱交換器の液相冷媒口とを結ぶ流入流路と,前記1次熱交換器の気相冷媒口と前記2次熱交換器の気相冷媒口とを結ぶガス流路と,前記流出流路に配置された流出開閉弁とを有する空調システムの運転方法において,
冷房運転停止後に,前記流出開閉弁を開いた状態で前記ポンプを所定時間駆動して前記受液器から前記2次熱交換器へ液相の相変化冷媒を送り,その後に前記流出開閉弁を閉じる液冷媒移送処理を行うことにより,冷房期間中の休止時に前記2次熱交換器に液相の相変化冷媒を貯留させることを特徴とする空調システムの運転方法。
A primary heat exchanger; a secondary heat exchanger; an on-off valve provided at a liquid phase refrigerant port of the secondary heat exchanger; a liquid receiver containing a liquid phase change refrigerant; A pump for sending the liquid phase phase change refrigerant of the vessel, an outflow passage connecting the outlet of the pump and the liquid phase refrigerant port of the secondary heat exchanger, the inlet of the receiver and the primary heat exchange An inflow channel connecting the liquid phase refrigerant port of the storage unit, a gas channel connecting the gas phase refrigerant port of the primary heat exchanger and the gas phase refrigerant port of the secondary heat exchanger, and the outflow channel In an operating method of an air conditioning system having an outflow on-off valve arranged,
After the cooling operation is stopped, the pump is driven for a predetermined time with the outflow on-off valve opened to send a liquid phase change refrigerant from the receiver to the secondary heat exchanger, and then the outflow on-off valve An operating method of an air conditioning system, wherein a liquid phase change refrigerant is stored in the secondary heat exchanger during a cooling period by performing a closing liquid refrigerant transfer process.
JP2007002700A 2007-01-10 2007-01-10 Air-conditioning system and its operation method Pending JP2008170045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002700A JP2008170045A (en) 2007-01-10 2007-01-10 Air-conditioning system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002700A JP2008170045A (en) 2007-01-10 2007-01-10 Air-conditioning system and its operation method

Publications (1)

Publication Number Publication Date
JP2008170045A true JP2008170045A (en) 2008-07-24

Family

ID=39698310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002700A Pending JP2008170045A (en) 2007-01-10 2007-01-10 Air-conditioning system and its operation method

Country Status (1)

Country Link
JP (1) JP2008170045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017045A1 (en) * 2019-08-01 2021-02-04 南京天加环境科技有限公司 Air conditioner coil pipe structure with variable air path
CN115183492A (en) * 2022-06-14 2022-10-14 海信空调有限公司 Air conditioner and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017045A1 (en) * 2019-08-01 2021-02-04 南京天加环境科技有限公司 Air conditioner coil pipe structure with variable air path
CN115183492A (en) * 2022-06-14 2022-10-14 海信空调有限公司 Air conditioner and control method thereof
CN115183492B (en) * 2022-06-14 2023-09-22 海信空调有限公司 Air conditioner and control method thereof

Similar Documents

Publication Publication Date Title
US11774154B2 (en) Systems and methods for controlling a refrigeration system
US20170184314A1 (en) Heat pump heating system
CN108700347B (en) System and method for controlling a refrigeration system
JP5639984B2 (en) Air conditioner
JP2010054152A (en) Heat source system and its control method
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
US20040107709A1 (en) Method for operating compressors of air conditioner
JP6065213B2 (en) Water heating system
JP4934413B2 (en) Air conditioner
JP2011257098A (en) Heat pump cycle device
JP6689801B2 (en) Solar air conditioning system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JP2006010137A (en) Heat pump system
JP2018071955A (en) Air-conditioner
JP5150300B2 (en) Heat pump type water heater
JP2008170045A (en) Air-conditioning system and its operation method
JP2011122801A (en) Air heat source heat pump system and method of operating the same
JP2006275449A (en) Heat storage type air conditioner
JP4478052B2 (en) Hot water heater
JP3370501B2 (en) Cooling system
JP2008116184A (en) Refrigerating cycle device
JP6455752B2 (en) Refrigeration system
JP2912811B2 (en) Air conditioner
KR101488903B1 (en) Heat storaging apparatus and Control process of the same
JP2006342994A (en) Ice heat storage air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216