JPH085708B2 - Oxide ceramics - Google Patents
Oxide ceramicsInfo
- Publication number
- JPH085708B2 JPH085708B2 JP62245902A JP24590287A JPH085708B2 JP H085708 B2 JPH085708 B2 JP H085708B2 JP 62245902 A JP62245902 A JP 62245902A JP 24590287 A JP24590287 A JP 24590287A JP H085708 B2 JPH085708 B2 JP H085708B2
- Authority
- JP
- Japan
- Prior art keywords
- tiox
- mol
- mgo
- oxide
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011224 oxide ceramic Substances 0.000 title claims description 6
- 229910052574 oxide ceramic Inorganic materials 0.000 title claims description 6
- 239000000919 ceramic Substances 0.000 claims description 33
- 229910003087 TiOx Inorganic materials 0.000 claims description 17
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000006104 solid solution Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- -1 SnO 2 Chemical class 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- KELHQGOVULCJSG-UHFFFAOYSA-N n,n-dimethyl-1-(5-methylfuran-2-yl)ethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=C(C)O1 KELHQGOVULCJSG-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/855—Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はMg,Ti,酸素(O)から成る新規な酸化物系セ
ラミックスに関し、更に詳しくは、N型半導体特性を備
えており、水蒸気,一酸化炭素,水素,アンモニア,四
塩化炭素,硫化水素などのガス成分に対する感知機能を
有しているため各種センサーへの適用が可能であり、ま
た、液体窒素温度(−195.8℃)から500℃の温度域にお
いて熱起電力を利用する熱電発電機能特性を備えている
酸化物系セラミックスに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a novel oxide-based ceramics composed of Mg, Ti and oxygen (O). Since it has a sensing function for gas components such as carbon monoxide, hydrogen, ammonia, carbon tetrachloride, and hydrogen sulfide, it can be applied to various sensors, and it can be applied from liquid nitrogen temperature (-195.8 ℃) to 500 ℃. The present invention relates to oxide-based ceramics having thermoelectric power generation functional characteristics that utilize thermoelectromotive force in the temperature range.
(従来の技術) SnO2,ZnO,Fe2O3のような金属酸化物はN型半導体特性
を備えており、またこれに一酸化炭素,アルコールのよ
うなガスを吸着させるとその電気伝導度が変化をする。
このような性質を利用して、例えばSnO2は水素,一酸化
炭素,メタン,アルコールのような可燃性ガスの警報器
センサーとして、ZnOはプロパン,エタン,ブタンのよ
うな炭化水素化合物系ガスとくに酸化・還元ガス検知用
のセンサーに、そしてFe2O3は都市ガス用センサーに組
込む素材として実用に供されている。(Prior Art) Metal oxides such as SnO 2 , ZnO, and Fe 2 O 3 have N-type semiconductor characteristics, and when they adsorb gases such as carbon monoxide and alcohol, their electrical conductivity is increased. Changes.
Utilizing these properties, SnO 2 can be used as an alarm sensor for combustible gases such as hydrogen, carbon monoxide, methane, and alcohol, and ZnO can be used as a hydrocarbon compound gas such as propane, ethane, and butane. Fe 2 O 3 has been put to practical use as a material to be incorporated into a sensor for detecting oxidizing and reducing gas, and Fe 2 O 3 as a material to be incorporated into a sensor for city gas.
(発明が解決しようとする問題点) しかしながら、現在までのところ、Ti,Mg,Oを必須成
分としていてガス感知機能を備えた酸化物系セラミック
スは知られていない。本発明は、Ti,Mg,Oから成り、N
型半導体特性を備えていてガス感知機能を有し、しかも
熱電発電機能特性をも備える新規な酸化物系セラミック
スの提供を目的とする。(Problems to be Solved by the Invention) However, up to now, oxide ceramics having Ti, Mg, O as essential components and having a gas sensing function have not been known. The present invention comprises Ti, Mg, O, N
It is an object of the present invention to provide a novel oxide-based ceramic having a type semiconductor characteristic, a gas sensing function, and a thermoelectric generation function characteristic.
(問題点を解決するための手段・作用) 本発明の酸化物系セラミックスは、MgOに0.1〜40モル
%量のTiOx(ただし、xは0.64≦x≦1.25の関係を満足
する数を表わす)が固溶した相から成ることを特徴と
し、また他のものは、上記した相と、TiOxに多くとも30
モル%量のMgOが固溶した相とが混在して成るセラミッ
クスであることを特徴とする。(Means and Actions for Solving Problems) The oxide-based ceramics of the present invention contain 0.1 to 40 mol% of TiOx in MgO (where x represents a number satisfying the relationship of 0.64 ≦ x ≦ 1.25). Is composed of a solid solution phase, and the other is composed of the above-mentioned phases and at most 30% of TiOx.
The ceramic is characterized by being mixed with a phase in which a mol% amount of MgO is dissolved.
本発明の酸化物系セラミックスの第1は、NaCl型結晶
構造のMgOに同じくNaCl型結晶構造の一酸化チタン(TiO
x)が固溶して成る単相のセラミックスである。ここで
xはTiに固溶されている酸素の原子モル数を表わし、こ
の値が0.64〜1.25の範囲を外れている場合には、得られ
たセラミックスはN型半導体としての特性を発現しな
い。好ましくは、0.85≦x≦1.05である。The first of the oxide-based ceramics of the present invention is MgO having a NaCl type crystal structure and titanium monoxide (TiO 2) having a NaCl type crystal structure.
x) is a single-phase ceramic formed by solid solution. Here, x represents the atomic mole number of oxygen solid-dissolved in Ti, and when this value is outside the range of 0.64 to 1.25, the obtained ceramic does not exhibit the characteristics as an N-type semiconductor. Preferably, 0.85 ≦ x ≦ 1.05.
またTiOxのMgOへの固溶量は0.1〜40モル%に設定され
る。この固溶量が40モル%より多い場合は、得られたセ
ラミックスはN型半導体特性を喪失して電気伝導度が導
電金属のそれに近似する値になるとともにゼーベック係
数は増加しなくなる。また0.1モル%より少ない場合
は、電気伝導度が著減して絶縁性が顕著になりN型半導
体特性が消失する。固溶量は、10〜25モル%であること
が好ましい。Further, the solid solution amount of TiOx in MgO is set to 0.1 to 40 mol%. When the amount of this solid solution is more than 40 mol%, the obtained ceramic loses the N-type semiconductor characteristics, the electric conductivity becomes a value close to that of the conductive metal, and the Seebeck coefficient does not increase. On the other hand, if it is less than 0.1 mol%, the electrical conductivity is remarkably reduced, the insulating property becomes remarkable, and the N-type semiconductor characteristics disappear. The solid solution amount is preferably 10 to 25 mol%.
本発明の酸化物系セラミックスの第2は、上記した単
相の外に、TiOxにMgOが多くとも30モル%固溶して成る
相が存在し、両相が混在しているセラミックスである。The second of the oxide-based ceramics of the present invention is a ceramic in which, in addition to the above-mentioned single phase, there is a phase in which TiOx contains MgO at a maximum of 30 mol%, and both phases are mixed.
またこの後者の相において、TiOxへのMgOの固溶量が3
0モル%よりも多い場合は、2相混合相となり電気伝導
性の劣化のような問題を生じて不都合である。好ましく
は10〜20モル%である。In this latter phase, the solid solution amount of MgO in TiOx is 3
When it is more than 0 mol%, it becomes a two-phase mixed phase, which causes a problem such as deterioration of electric conductivity, which is inconvenient. It is preferably 10 to 20 mol%.
この第2のセラミックスにおいて、MgOにTiOxを固溶
せしめた相と前述したTiOxにMgOを固溶せしめた相との
混在割合で、後者の混在量が50モル%を超えて多くなる
場合は、電気的絶縁性となるから好ましくない。好まし
くは前者:後者のモル比が90〜60:10〜40の場合であ
る。In this second ceramic, when the mixed ratio of the phase in which TiOx is dissolved in MgO and the above-described phase in which MgO is dissolved in TiOx is large, when the latter mixed amount exceeds 50 mol%, It is not preferable because it becomes electrically insulating. The case where the molar ratio of the former to the latter is preferably 90 to 60:10 to 40 is preferable.
このような本発明の酸化物系セラミックスは、いずれ
も、常温から500℃の温度域における電気伝導度が1×1
0-14〜1×103Ω-1・cm-1であり、またゼーベック係数
は−50〜0μV/Kである。Such oxide-based ceramics of the present invention each have an electric conductivity of 1 × 1 in the temperature range from room temperature to 500 ° C.
It is 0 -14 to 1 × 10 3 Ω −1 · cm −1 , and the Seebeck coefficient is −50 to 0 μV / K.
本発明の酸化物系セラミックスは粉末治金法を適用し
た焼結体として製造することができるし、また、物理蒸
着法(PVD法)、化学蒸着法(CVD法),プラズマCVD法
のような真空薄膜形成法を適用して、適宜な基材の表面
に上記組成のセラミックスを薄膜として1層または複数
層を積層して製造することもできる。The oxide-based ceramics of the present invention can be manufactured as a sintered body to which a powder metallurgy method is applied, and also, such as physical vapor deposition method (PVD method), chemical vapor deposition method (CVD method), and plasma CVD method. It is also possible to apply a vacuum thin film forming method to manufacture one layer or a plurality of layers of ceramics having the above composition as a thin film on the surface of an appropriate substrate.
しかしながら、製造が容易である、特性の調整が容易
であるなどの点から、焼結体として製造することが好ま
しい。However, it is preferable to manufacture the sintered body as it is easy to manufacture and the characteristics can be easily adjusted.
焼結体として製造する場合には、まず原料粉としてMg
O粉末、TiO粉末を準備する。これら粉末の粒度は、焼結
性促進と焼結体の諸特性の向上の点からして、平均粒径
100〜5000Åであることが好ましい。とくに好ましくは5
00〜3000Åである。When manufacturing as a sintered body, first use Mg as the raw material powder.
Prepare O powder and TiO powder. The particle size of these powders is the average particle size from the viewpoint of promoting sinterability and improving various properties of the sintered body.
It is preferably 100 to 5000Å. Especially preferably 5
It is from 00 to 3000Å.
目的とする焼結体の組成に対応させて両粉末を混合
し、更にここに例えばパラフィンを成形助剤として全体
重量に対し3〜10重量%程度添加し全体を充分に混合す
る。このとき、例えばアセトンのような溶媒を適量添加
してもよい。Both powders are mixed according to the composition of the desired sintered body, and further, for example, paraffin as a molding aid is added thereto in an amount of about 3 to 10% by weight based on the total weight, and the whole is sufficiently mixed. At this time, an appropriate amount of a solvent such as acetone may be added.
得られた混合粉を乾燥したのち例えばプレス成形して
所定形状の成形体に賦形する。通常、成形圧は500〜100
0kg/cm2に設定される。ついで温度300〜800℃で成形体
を予備焼成し、添加されている成形助剤や溶媒を除去し
たのちこれを焼結する。The obtained mixed powder is dried and then, for example, press-molded to form a molded product having a predetermined shape. Molding pressure is usually 500-100
It is set to 0kg / cm 2 . Then, the molded body is pre-baked at a temperature of 300 to 800 ° C. to remove the molding aids and solvents added, and then sintered.
焼結は真空またはAr雰囲気中で行なわれる。とくに真
空雰囲気であることが好ましい。このときの焼結炉の炉
内圧は10-3〜10-2Torrであることが好ましい。炉内圧が
低すぎると、Mgが揮発し易すい状態となり目的組成と特
性のセラミックスが製造されにくくなり、また炉内圧が
高すぎると酸素,窒素が固溶して安定な化合物となるか
らである。焼結時に留意すべきことは、炉内における酸
素分圧の制御である。この場合の酸素分圧は、用いたMg
O,TiO両粉末の量、TiOxまたはMgOとして固溶させる量、
試料容量との関係で適宜管理されるべきで一義的に決め
ることはできない。Sintering is performed in vacuum or Ar atmosphere. A vacuum atmosphere is particularly preferable. The internal pressure of the sintering furnace at this time is preferably 10 −3 to 10 −2 Torr. This is because if the furnace pressure is too low, Mg easily volatilizes and it becomes difficult to produce ceramics with the target composition and characteristics, and if the furnace pressure is too high, oxygen and nitrogen form a solid solution to form stable compounds. . What should be noted at the time of sintering is control of oxygen partial pressure in the furnace. The oxygen partial pressure in this case is the Mg used.
Amount of both O and TiO powders, amount to be solid-solved as TiOx or MgO,
It should be controlled appropriately in relation to the sample volume and cannot be uniquely determined.
焼結温度は1100〜1600℃が好ましい。この温度が低す
ぎるとMgOへのTiOxの固溶反応またはTiOxへのMgOの固溶
反応が円滑に進行せず、また高すぎるとMgの揮発傾向が
増大して富酸素化するからである。The sintering temperature is preferably 1100-1600 ° C. This is because if the temperature is too low, the solid solution reaction of TiOx with MgO or the solid solution reaction of MgO with TiOx does not proceed smoothly, and if it is too high, the tendency of Mg to volatilize increases and oxygen is enriched.
また、例えば後述するガス感知機能を活用するために
は、この焼結体を多孔質にすればよいが、その場合、焼
結温度が高すぎると全体は緻密化するので焼結は例えば
800〜1200℃と比較的低温の温度域で行なえばよい。こ
の温度域の場合には5〜50%程度の多孔質体が得られ
る。また、焼結時間は、酸素、窒素の富化防止及び焼結
性の制御の点からして0.5〜2時間であることが好まし
い。Further, for example, in order to utilize the gas sensing function described later, this sintered body may be made porous, but in that case, if the sintering temperature is too high, the entire body will be densified, so sintering is
It may be carried out in a relatively low temperature range of 800 to 1200 ° C. In this temperature range, a porous body of about 5 to 50% can be obtained. Further, the sintering time is preferably 0.5 to 2 hours from the viewpoint of preventing enrichment of oxygen and nitrogen and controlling the sinterability.
このようにして得られた焼結体は、その構成粒子の粒
径が100〜5000Åであり、その比表面積は1〜200m2/gと
なっている。The thus-obtained sintered body has a particle size of its constituent particles of 100 to 5000Å and a specific surface area of 1 to 200 m 2 / g.
(発明の実施例) 実施例1〜10 (1)セラミックスの製造 原料粉として粒径100〜5000ÅのMgO粉末、TiO粉末を
用意した。両粉末を第1表に示した割合(重量%)で混
合し、更にこの混合粉に対し4〜10重量%量のパラフィ
ンを添加し、全体をアセトン溶媒中で湿式ボールミルに
より混合した。得られた混合粉を大気中で乾燥したのち
1000kg/cm2の圧でプレス成形して長方体とした。各長方
体を500℃の真空炉で予備焼成したのち、第1表に示し
た条件下で焼結した。(Examples of the Invention) Examples 1 to 10 (1) Manufacturing of Ceramics As raw material powders, MgO powder and TiO powder having a particle size of 100 to 5000Å were prepared. Both powders were mixed in the proportions (% by weight) shown in Table 1, 4 to 10% by weight of paraffin was added to the mixed powder, and the whole was mixed in an acetone solvent by a wet ball mill. After drying the obtained mixed powder in the air,
A rectangular parallelepiped was formed by press molding at a pressure of 1000 kg / cm 2 . Each rectangular parallelepiped was pre-fired in a vacuum furnace at 500 ° C. and then sintered under the conditions shown in Table 1.
得られた各焼結体の組成、密度、構成粒子の粒径、比
表面積をそれぞれ測定しその値を第1表に示した。表
中、A相とはMgOに固溶したTiOxとから成る相を表わ
し、B相とは、TiOxに固溶したMgOとから成る相を表わ
す。The composition, density, particle size of the constituent particles, and specific surface area of each of the obtained sintered bodies were measured, and the values are shown in Table 1. In the table, the A phase represents a phase composed of TiOx dissolved in MgO, and the B phase represents a phase composed of MgO dissolved in TiOx.
(2)セラミックスの特性 電気伝導度の測定 実施例1〜6の各焼結体長方体を常温下のAr気流中に
置き、それぞれの長方体について4端子法によって電気
伝導度(σ:Ω-1・cm-1)を測定した。その結果を第1
図に示した。第1図における横軸はA相の混合割合
(%)を表わし、縦軸は測定した電気伝導度の対数値
(logσ)を表わす。 (2) Characteristics of Ceramics Measurement of Electrical Conductivity Each of the sintered rectangular parallelepipeds of Examples 1 to 6 was placed in an Ar stream at room temperature, and the electrical conductivity (σ: Ω) of each rectangular parallelepiped was measured by the 4-terminal method. −1 · cm −1 ) was measured. The result is first
As shown in the figure. The horizontal axis in FIG. 1 represents the mixing ratio (%) of phase A, and the vertical axis represents the logarithmic value (log σ) of the measured electrical conductivity.
第1図から明らかなように、本発明のセラミックスは
B相が減少してA相が増量する。すなわちTiOの含有量
が減少するに伴って電気伝導度は減少し、σが10-10〜1
03Ω-1・cm-1であり半導体的な導電性を示す。As is clear from FIG. 1, in the ceramic of the present invention, the B phase decreases and the A phase increases. That is, the electrical conductivity decreases as the content of TiO decreases, and σ is 10 -10 to 1
It is 0 3 Ω −1 · cm −1 and shows semiconductor-like conductivity.
ゼーベック係数の測定 実施例1,3,5の各長方体をAr気流中に置き、それぞれ
の両端に温度差を与え、常温から350℃までの温度範囲
でゼーベック熱起電力を測定した。その値からゼーベッ
ク係数(α:μV/K)を求めそれを第2図に示した。Measurement of Seebeck coefficient Each rectangular parallelepiped of Examples 1, 3, and 5 was placed in an Ar stream, a temperature difference was applied to both ends of each, and the Seebeck thermoelectromotive force was measured in a temperature range from room temperature to 350 ° C. Seebeck coefficient (α: μV / K) was calculated from the value and shown in FIG.
図から明らかなように、B相の減少、すなわちTiO含
有量の減少に伴ない本発明のセラミックスのゼーベック
係数は負の側に大きく変移しその半導体極性はN形であ
ることがわかる。As is clear from the figure, the Seebeck coefficient of the ceramics of the present invention largely shifts to the negative side as the B phase decreases, that is, the TiO content decreases, and the semiconductor polarity thereof is N type.
ガス濃度に対する電気抵抗の変化 実施例7の長方体を常温(25℃)下において濃度の異
なる硫化水素(H2S),水蒸気(H2O),アンモニア(NH
3),エタン(C2H6)の各ガス雰囲気中に置き、長方体
の電気比抵抗(ρ:Ω・cm)を測定した。その結果を、
各ガスの濃度との関係図として第3図に示した。Change in electrical resistance with respect to gas concentration The rectangular parallelepiped of Example 7 was subjected to room temperature (25 ° C.) at different concentrations of hydrogen sulfide (H 2 S), water vapor (H 2 O), ammonia (NH
3 ) and ethane (C 2 H 6 ) were placed in each gas atmosphere, and the electrical resistivity (ρ: Ω · cm) of the rectangular parallelepiped was measured. The result is
The relationship with the concentration of each gas is shown in FIG.
図から明らかなように、本発明のセラミックスは、H2
S,水蒸気に対しその濃度が上昇すると明確に電気抵抗値
も増大してこれらガスに対する感知機能を有している。As can be seen, the ceramic of the present invention, H 2
When the concentration of S and water vapor increases, the electric resistance value also clearly increases and it has a sensing function for these gases.
ガス濃度に対する電気抵抗 実施例10の長方体を、いずれも濃度1000ppmの一酸化
炭素(CO),水素(H2),プロパン(C3H8),塩化水素
(HCl),窒酸化物(NOx)のガス雰囲気中に置き、雰囲
気温度を変化させたときの長方体の電気抵抗を測定し
た。その結果を第4図に示した。Electrical Resistance to Gas Concentration All of the rectangular parallelepipeds of Example 10 had a concentration of 1000 ppm, carbon monoxide (CO), hydrogen (H 2 ), propane (C 3 H 8 ), hydrogen chloride (HCl), and nitric oxide ( The electrical resistance of the rectangular parallelepiped was measured when it was placed in a NOx) gas atmosphere and the atmosphere temperature was changed. The results are shown in FIG.
図から明らかなように、本発明のセラミックスは、HC
l,NOxに対しては非常に高感度であり、これらガスに対
するセンサーとして使用することができる。As is clear from the figure, the ceramic of the present invention is
It has a very high sensitivity to l and NOx and can be used as a sensor for these gases.
熱エネルギーの電気エネルギーへの変換効率指数
(Z) 実施例3,7,10の各長方体につき、ゼーベック係数
(α),熱伝導率(K),電気伝導度(σ)を測定し、
次式:Z=σα2/Kで示される性能指数を算出した。Thermal energy to electric energy conversion efficiency index (Z) Seebeck coefficient (α), thermal conductivity (K), and electrical conductivity (σ) of each rectangular parallelepiped of Examples 3, 7, and 10 were measured,
The figure of merit shown by the following formula: Z = σα 2 / K was calculated.
この性能指数Zが大きな値である材料ほど熱エネルギ
ーと電気エネルギーとの変換効率が高く、熱電材料とし
ての価値は大きいことになる。A material having a larger value of the performance index Z has a higher conversion efficiency between heat energy and electric energy, and thus has a greater value as a thermoelectric material.
以上の結果を第2表に示した。比較のために、Ag(比
較例1),Bi2Te3(比較例2)のデータも示した。Table 2 shows the above results. For comparison, data of Ag (Comparative Example 1) and Bi 2 Te 3 (Comparative Example 2) are also shown.
第2表から明らかなように、本発明のセラミックス
は、Z値が熱電材料として知られている比較例2の値に
及ばないとはいえ、しかしその融点は高く高温下で用い
る熱電材料としての意義は大きい。 As is clear from Table 2, although the Z value of the ceramics of the present invention does not reach the value of Comparative Example 2 which is known as a thermoelectric material, its melting point is high and it can be used as a thermoelectric material used at high temperature. Significant.
(発明の効果) 以上の説明で明らかなように、本発明のセラミックス
は、熱エネルギーを電気エネルギーに、また逆に電気エ
ネルギーを熱エネルギーに変換することができるので、
これら材料が利用されているガス,石油のファンヒー
タ,ガス湯沸し器の温度制御素子や強制排気の電源等の
分野に使用することができる。また、本発明のセラミッ
クスは低原子量の元素で構成されているため、例えば、
低温用の天体長波長放射線利用の天気計やスポット形差
動式火災検知器などの素子材料ともなり得る。(Effect of the invention) As is clear from the above description, the ceramic of the present invention can convert thermal energy into electric energy and vice versa.
It can be used in the fields such as gas heaters, petroleum fan heaters, temperature control elements of gas water heaters, and power sources for forced exhaust using these materials. Further, since the ceramic of the present invention is composed of a low atomic weight element, for example,
It can also be used as an element material for weather gauges that use long-wavelength radiation for low temperatures and spot-type differential fire detectors.
更に本発明のセラミックスは負のゼーベック係数を有
するN型半導体であるため、これをCoO,NiO,CuOのよう
な正のゼーベック係数を有するP形半導体と接合して通
電すれば、周囲の熱を奪う電子冷凍素子としても機能し
小形冷凍器への組込みが可能となる。Furthermore, since the ceramic of the present invention is an N-type semiconductor having a negative Seebeck coefficient, if it is joined to a P-type semiconductor having a positive Seebeck coefficient such as CoO, NiO, and CuO to conduct electricity, the ambient heat is removed. It also functions as an electronic refrigeration device that can be deprived and can be incorporated into a small refrigerator.
また、第3図,第4図からも明らかなように、この材
料はH2S,水蒸気,HCl,NOx等のガスに対する感知機能を有
するため、これらガスのセンサー材料としても使用し得
る。Further, as is clear from FIGS. 3 and 4, since this material has a sensing function for gases such as H 2 S, water vapor, HCl, NOx, it can be used as a sensor material for these gases.
更に、この材料は、第2表に示したようにその融点が
高く、熱安定性に優れるとともに、適切な電気伝導性も
備えているので高温下で用いる積層コンデンサの電極材
料として使用することができる。Furthermore, as shown in Table 2, this material has a high melting point, is excellent in thermal stability, and has suitable electrical conductivity, so that it can be used as an electrode material for a multilayer capacitor used at high temperatures. it can.
第1図は、本発明セラミックスのA相の混在割合と電気
伝導度との関係を表わす図であり、第2図は本発明セラ
ミックスのゼーベック係数の温度変化を表わす図であ
る。第3図は本発明セラミックスのガス濃度と電気抵抗
の関係図,第4図は本発明セラミックスのガス雰囲気温
度と電気抵抗との関係図である。FIG. 1 is a diagram showing the relationship between the mixing ratio of the A phase of the ceramics of the present invention and the electrical conductivity, and FIG. 2 is a diagram showing the temperature change of the Seebeck coefficient of the ceramics of the present invention. FIG. 3 is a relationship diagram between gas concentration and electric resistance of the ceramic of the present invention, and FIG. 4 is a relationship diagram between gas atmosphere temperature and electric resistance of the ceramic of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 章二 岡山県備前市浦伊部1175番地 九州耐火煉 瓦株式会社内 (56)参考文献 特開 昭62−208502(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Yoshida 1175 Uraibe, Bizen City, Okayama Prefecture Kyushu Fire Brick Co., Ltd. (56) References JP-A-62-208502 (JP, A)
Claims (6)
は0.64≦x≦1.25の関係を満足する数を表わす)が固溶
した相から成ることを特徴とする酸化物系セラミック
ス。1. A MgO content of 0.1-40 mol% TiOx (provided that x
Represents a number satisfying the relationship of 0.64 ≦ x ≦ 1.25), which is an oxide ceramics.
伝導度、ゼーベック係数が、それぞれ、1×10-14〜1
×103Ω-1・cm-1、−50〜0μV/Kである特許請求の範囲
第1項記載の酸化物系セラミックス。2. The electric conductivity and Seebeck coefficient in the temperature range from room temperature to 500 ° C. are 1 × 10 -14 to 1 respectively.
The oxide ceramics according to claim 1 , which has a density of × 10 3 Ω -1 · cm -1 and -50 to 0 µV / K.
請求の範囲第1項または第2項記載の酸化物セラミック
ス。3. The oxide ceramics according to claim 1 or 2, wherein the oxide ceramics is a sintered body.
1〜200m2/gの多孔質体から成る特許請求の範囲第13項
記載の酸化物系セラミックス。4. The oxide-based ceramics according to claim 13, wherein the sintered body is a porous body having a particle size of 100 to 5000Å and a specific surface area of 1 to 200 m 2 / g.
は0.64≦x≦1.25の関係を満足する数を表わす)が固溶
した相と、TiOxに多くとも30モル%量のMgOが固溶した
相とが混在していることを特徴とする酸化物系セラミッ
クス。5. A MgO content of 0.1 to 40 mol% TiOx (provided that x
Represents a number satisfying the relationship of 0.64 ≤ x ≤ 1.25) and a phase in which TiOx is a solid solution in which at most 30 mol% MgO is mixed. Ceramics.
は0.64≦x≦1.25の関係を満足する数を表わす)が固溶
した相と、TiOxに多くとも30モル%量のMgOが固溶した
相との混在割合が、モル比で95〜50:5〜50である特許請
求の範囲第5項記載の酸化物系セラミックス。6. A MgO content of 0.1 to 40 mol% TiOx (provided that x
Represents a number satisfying the relationship of 0.64 ≤ x ≤ 1.25) and a mixed ratio of a phase in which TiOx is dissolved in MgO in an amount of at most 30 mol% is 95 to 50: The oxide-based ceramics according to claim 5, which is 5 to 50.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62245902A JPH085708B2 (en) | 1987-10-01 | 1987-10-01 | Oxide ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62245902A JPH085708B2 (en) | 1987-10-01 | 1987-10-01 | Oxide ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0193467A JPH0193467A (en) | 1989-04-12 |
JPH085708B2 true JPH085708B2 (en) | 1996-01-24 |
Family
ID=17140520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62245902A Expired - Lifetime JPH085708B2 (en) | 1987-10-01 | 1987-10-01 | Oxide ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH085708B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156497A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石金属株式会社 | Mgo-tio sintered compact target and method for producing same |
WO2016088867A1 (en) * | 2014-12-05 | 2016-06-09 | 宇部マテリアルズ株式会社 | MgO SPUTTERING TARGET MATERIAL AND THIN FILM |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070240749A1 (en) * | 2004-03-22 | 2007-10-18 | Japan Science And Technology Agency | Porous Thermoelectric Material and Process for Producing the Same |
WO2017170152A1 (en) * | 2016-03-29 | 2017-10-05 | Jx金属株式会社 | Mg-ti-o sputtering target and production method therefor |
US11444292B2 (en) * | 2018-12-27 | 2022-09-13 | Robert Bosch Gmbh | Anticorrosive and conductive material |
JP7178707B2 (en) * | 2019-03-15 | 2022-11-28 | 株式会社高純度化学研究所 | Method for manufacturing MgO-TiO-based sputtering target |
-
1987
- 1987-10-01 JP JP62245902A patent/JPH085708B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156497A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石金属株式会社 | Mgo-tio sintered compact target and method for producing same |
JP5925907B2 (en) * | 2013-03-29 | 2016-05-25 | Jx金属株式会社 | MgO-TiO sintered compact target and manufacturing method thereof |
TWI616425B (en) * | 2013-03-29 | 2018-03-01 | Jx Nippon Mining & Metals Corp | MgO-TiO sintered body target and manufacturing method thereof |
WO2016088867A1 (en) * | 2014-12-05 | 2016-06-09 | 宇部マテリアルズ株式会社 | MgO SPUTTERING TARGET MATERIAL AND THIN FILM |
JPWO2016088867A1 (en) * | 2014-12-05 | 2017-09-21 | 宇部マテリアルズ株式会社 | MgO target material and thin film for sputtering |
Also Published As
Publication number | Publication date |
---|---|
JPH0193467A (en) | 1989-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008124417A (en) | Thermoelectric conversion material, and its manufacturing method | |
Chakraborty et al. | Low temperature synthesis and some physical properties of barium-substituted lanthanum manganite (La1− x BaxMnO3) | |
US7435896B2 (en) | Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element | |
KR20070048734A (en) | Thermoelectric conversion material and process for producing the same | |
Maekawa et al. | Thermoelectric properties of perovskite type strontium ruthenium oxide | |
JPH085708B2 (en) | Oxide ceramics | |
Sakabe et al. | Nonreducible mechanism of {(Ba1-xCax) O} mTiO2 (m> 1) ceramics | |
JP2006062951A (en) | Thermoelectric conversion material and its manufacturing method | |
JP4024294B2 (en) | Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element | |
JP2002280619A (en) | Thermoelectric conversion material and thermoelectric conversion element | |
JP3069701B1 (en) | Composite oxide with high Seebeck coefficient and high electrical conductivity | |
JP7123078B2 (en) | Oxygen permeable element and sputtering target material | |
JP4876721B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2000012915A (en) | Thermoelectric conversion material | |
TW200950164A (en) | Sinter matter and thermoelectric conversion material | |
JP2006100683A (en) | Thermoelectric conversion material for titanium oxide | |
JP2009196821A (en) | Perovskite-based oxide, its producing method and thermoelectric element using it | |
CN104788098B (en) | A kind of two-parameter thermometric complex phase thermal sensitive ceramic material and preparation method thereof | |
JPH07231122A (en) | Oxide thermoelectric conversion material | |
JP2006108598A (en) | Thermoelectric oxide material | |
Lu et al. | The Sintering and electrical properties of La0. 5Sr0. 5Co0. 96Ni0. 04O3-δ ceramics with B2O3-CuO addition | |
JP2004281726A (en) | Thin-film-like thermoelectric transformation material and its formation method | |
JP2001127350A (en) | Thermoelectric conversion material and photoelectric conversion element | |
Seok et al. | Electrical characterization of Co-doped La2CuO4+ δ at elevated temperature | |
JP3586716B2 (en) | Composite oxide with high thermoelectric conversion efficiency |