JP2006100683A - Thermoelectric conversion material for titanium oxide - Google Patents

Thermoelectric conversion material for titanium oxide Download PDF

Info

Publication number
JP2006100683A
JP2006100683A JP2004286811A JP2004286811A JP2006100683A JP 2006100683 A JP2006100683 A JP 2006100683A JP 2004286811 A JP2004286811 A JP 2004286811A JP 2004286811 A JP2004286811 A JP 2004286811A JP 2006100683 A JP2006100683 A JP 2006100683A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
less
conversion material
sintered body
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004286811A
Other languages
Japanese (ja)
Inventor
Yoshio Uchida
義男 内田
Tetsuro Taima
哲朗 當間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004286811A priority Critical patent/JP2006100683A/en
Priority to EP05767817A priority patent/EP1791191A1/en
Priority to US11/571,430 priority patent/US20090205697A2/en
Priority to KR1020077004296A priority patent/KR20070048734A/en
Priority to PCT/JP2005/013897 priority patent/WO2006011581A1/en
Priority to TW094125080A priority patent/TW200607762A/en
Publication of JP2006100683A publication Critical patent/JP2006100683A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an n-type thermoelectric conversion material which has a high performance index in thermoelectric conversion and is comprised of a titanium oxide. <P>SOLUTION: The n-type thermoelectric conversion material is comprised of non-stoichiometric titanium-oxide of the molecular formula TiO<SB>x</SB>, wherein 1.89≤x<1.94 or 1.94<x<2.00, in a crystal structure indicating peaks at positions of 26.0°±0.3°, 26.8°±0.3°, 27.9°±0.1° and 28.2°±0.1° in an X-ray diffraction pattern. The process for producing the n-type thermoelectric conversion material comprises the steps of molding a titanium compound, holding and sintering the same under the conditions when the hydrogen concentration is ≥1 vol.% but <5 vol.%, at the temperature of 1,000 to 1,400°C, and at the time period of 1 to 10 hr, and when the hydrogen concentration is in the range of 5 to 100 vol.%, at the temperature of 950 to 1,050°C, and at the time period of 10 min to 5 hr. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱電変換材料に関する。より詳しくはチタン酸化物からなるn型の熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material. More specifically, the present invention relates to an n-type thermoelectric conversion material made of titanium oxide.

熱電発電は熱電効果(ゼーベック効果)により熱源を用いて発電する技術である。熱電発電は、地熱や焼却炉の熱など種々の熱源を利用することができ、熱電発電装置には可動部分が無いので故障しにくく連続運転が容易なので、熱電発電は実用化可能な環境保全型の発電として期待されている。この熱電発電には、熱電効果を示す熱電変換材料が必要であり、金属元素の酸化物からなる熱電変換材料が検討されている。熱電発電を行うには、n型の熱電変換材料からなるn型発電体とp型の熱電変換材料からなるp型発電体とを接合して用いる。このp型とn型のうち、特にn型の熱電変換材料として、高い性能を有するものが求められている。   Thermoelectric power generation is a technique for generating electricity using a heat source by the thermoelectric effect (Seebeck effect). Thermoelectric power generation can use various heat sources such as geothermal heat and heat from incinerators, and since there are no moving parts in the thermoelectric power generation device, it is difficult to malfunction and continuous operation is easy. Is expected to generate electricity. This thermoelectric power generation requires a thermoelectric conversion material exhibiting a thermoelectric effect, and a thermoelectric conversion material composed of an oxide of a metal element has been studied. In order to perform thermoelectric power generation, an n-type power generator made of an n-type thermoelectric conversion material and a p-type power generator made of a p-type thermoelectric conversion material are joined and used. Among the p-type and n-type, materials having high performance are particularly required as n-type thermoelectric conversion materials.

ここで、熱電変換材料の性能は、次の示す性能指数(Z)により決められており、この性能指数が高いほど性能の高い熱電変換材料とされている。
性能指数=ゼーベック係数の2乗×電気伝導度/熱伝導度
Here, the performance of the thermoelectric conversion material is determined by the following figure of merit (Z). The higher the figure of merit, the higher the performance of the thermoelectric conversion material.
Figure of merit = square of Seebeck coefficient x electrical conductivity / thermal conductivity

この性能指数が高く、n型の熱電変換材料としてチタン酸化物が検討されており、TiO1.94、TiO1.88、TiO1.86が提案されている(例えば、非特許文献1参照。)が、298Kにおける性能指数はそれぞれ0.096、0.071、0.086(単位は×10-3/K)であり、さらに高い性能指数を有するチタン酸化物からなる熱電変換材料が求められていた。 Although this figure of merit is high, titanium oxide has been studied as an n-type thermoelectric conversion material, and TiO 1.94 , TiO 1.88 , and TiO 1.86 have been proposed (see, for example, Non-Patent Document 1). The indexes are 0.096, 0.071, and 0.086 (units are × 10 −3 / K), respectively, and a thermoelectric conversion material made of titanium oxide having a higher performance index has been demanded.

日産化学振興財団研究報告書、26巻、2003年Nissan Chemical Foundation Research Report, Volume 26, 2003

本発明の目的は、熱電変換における性能指数が高く、チタン酸化物からなるn型の熱電変換材料を提供することにある。   An object of the present invention is to provide an n-type thermoelectric conversion material having a high figure of merit in thermoelectric conversion and made of titanium oxide.

本発明はかかる課題を解決するために、不定比酸化チタンからなるn型の熱電変換材料について鋭意検討した結果、特定の不定比を有する酸化チタンを用いた焼結体が高い性能指数を示すことを見出し、本発明を完成させるに到った。   In order to solve this problem, the present invention has been intensively studied on an n-type thermoelectric conversion material composed of non-stoichiometric titanium oxide, and as a result, a sintered body using titanium oxide having a specific non-stoichiometric ratio exhibits a high figure of merit. As a result, the present invention has been completed.

すなわち本発明は、式TiOxで示される不定比酸化チタンであり、xの値が1.89以上1.94未満または1.94より大きく2.00未満であり、X線回折において、26.0°±0.3°、26.8°±0.3°、27.9°±0.1°、28.2°±0.1°の各々の位置にピークを示す結晶構造を有する不定比酸化チタンからなることを特徴とするn型の熱電変換焼結体材料を提供する。 That is, the present invention is non-stoichiometric titanium oxide represented by the formula TiO x , the value of x is 1.89 or more and less than 1.94 or more than 1.94 and less than 2.00. Indefinite having a crystal structure showing a peak at each position of 0 ° ± 0.3 °, 26.8 ° ± 0.3 °, 27.9 ° ± 0.1 °, 28.2 ° ± 0.1 ° An n-type thermoelectric conversion sintered material comprising a specific titanium oxide is provided.

本発明の酸化物からなるn型熱電変換材料は安価なチタンのみを原料とした単純な組成を有し、製造も容易であり、高い性能指数を示し、熱電変換装置に本発明のn型熱電変換材料を用いれば、安価な安定した熱電変換装置となるので、本発明は工業的に極めて重要ある。   The n-type thermoelectric conversion material comprising the oxide of the present invention has a simple composition using only inexpensive titanium as a raw material, is easy to manufacture, exhibits a high figure of merit, and is used in a thermoelectric conversion device. If a conversion material is used, it becomes an inexpensive and stable thermoelectric conversion device, so the present invention is extremely important industrially.

本発明のn型の熱電変換材料は、式TiOxで示される不定比酸化チタンであり、xの値が1.89以上1.94未満または1.94より大きく2.00未満であり、X線回折において26.0°±0.3°、26.8°±0.3°、27.9°±0.1°、28.2°±0.1°の各々の位置にピークを有する結晶構造を有するものからなることを特徴とする。 The n-type thermoelectric conversion material of the present invention is non-stoichiometric titanium oxide represented by the formula TiO x , and the value of x is 1.89 or more and less than 1.94 or more than 1.94 and less than 2.00, and X It has a peak at each position of 26.0 ° ± 0.3 °, 26.8 ° ± 0.3 °, 27.9 ° ± 0.1 °, and 28.2 ° ± 0.1 ° in line diffraction. It consists of what has a crystal structure.

不定比酸化チタンとしては、式TiOxで表されxが1.75以上2.00未満のものとしてマグネリ相が存在することが知られているが、本発明の化合物は異なる結晶構造を有している。また、電荷補償のため、3価のチタンが含有されている。xの値が1.85以下では、本発明の結晶構造が保てず性能指数が低下する。また、たとえxが1.89以上2.00未満であってもマグネリ相では、熱伝導度が高くなり性能指数が低下する。 As the non-stoichiometric titanium oxide, it is known that a magnelite phase exists as a compound represented by the formula TiO x and x is 1.75 or more and less than 2.00. However, the compound of the present invention has a different crystal structure. ing. Further, trivalent titanium is contained for charge compensation. When the value of x is 1.85 or less, the crystal structure of the present invention cannot be maintained and the figure of merit is lowered. Moreover, even if x is 1.89 or more and less than 2.00, in the magnetic phase, the thermal conductivity increases and the figure of merit decreases.

本発明の熱電変換材料を構成する化合物の結晶構造の詳細は不明であるが、X線回折プロファイルでは、マグネリ相の結晶構造とは異なり、2θで26.0°±0.3°、26.8°±0.3°、27.9°±0.1°、28.2°±0.1°にピークを有する特定の結晶構造を有し、式TiOxで示され、xが1.85以上2.00未満である化合物からなる熱電変換材料が、高い性能指数を有するのである。 Although the details of the crystal structure of the compound constituting the thermoelectric conversion material of the present invention are unknown, the X-ray diffraction profile differs from the crystal structure of the magnetic phase in 2θ at 26.0 ° ± 0.3 °, 26. It has a specific crystal structure with peaks at 8 ° ± 0.3 °, 27.9 ° ± 0.1 °, 28.2 ° ± 0.1 °, represented by the formula TiO x , where x is 1. The thermoelectric conversion material which consists of a compound which is 85 or more and less than 2.00 has a high figure of merit.

上記xの値は1.92以上1.93以下の範囲であるかまたは1.96以上1.98以下の範囲であると、性能指数が高くなる傾向があるので好ましく、この二つの領域のうちxの値が1.92以上1.93以下の範囲がより好ましい。   The value of x is preferably in the range of 1.92 to 1.93 or in the range of 1.96 to 1.98 because the figure of merit tends to be high. The value of x is more preferably in the range of 1.92 to 1.93.

ここで、本発明の熱電変換材料にチタンと酸素以外の元素を性能指数向上剤として含有させて性能指数をさらに上げることも可能である。含有させることができる元素としては、アルカリ金属元素、アルカリ土類金属元素、希土類金属元素、4族金属元素、5族金属元素、6族金属元素、7族金属元素、14族金属元素、15族金属元素が挙げられる。アルカリ金属元素としては、具体的にはLi、NaおよびKが挙げられ、アルカリ土類金属元素としてはMg、Ca、SrおよびBaが挙げられ、希土類金属元素としてはY、LaおよびCe挙げられ、4族金属元素としてはZrおよびHfが挙げられ、5族金属元素としてVが挙げられ、6族金属元素としてはCrおよびMoが挙げられ、7族金属元素としてはMnが挙げられ、14族金属元素としてはSnが挙げられ、15族金属元素としてはBiが挙げられる。   Here, the thermoelectric conversion material of the present invention can contain an element other than titanium and oxygen as a performance index improver to further increase the performance index. Examples of elements that can be contained include alkali metal elements, alkaline earth metal elements, rare earth metal elements, group 4 metal elements, group 5 metal elements, group 6 metal elements, group 7 metal elements, group 14 metal elements, and group 15 A metal element is mentioned. Specific examples of the alkali metal element include Li, Na, and K. Examples of the alkaline earth metal element include Mg, Ca, Sr, and Ba. Examples of the rare earth metal element include Y, La, and Ce. Group 4 metal elements include Zr and Hf, Group 5 metal elements include V, Group 6 metal elements include Cr and Mo, Group 7 metal elements include Mn, Group 14 metal Examples of the element include Sn, and examples of the Group 15 metal element include Bi.

このうちアルカリ金属元素とアルカリ土類金属元素は、結晶構造のうちの酸素欠陥近傍の位置またはチタンと酸素の格子間に入って含有されることにより、熱伝導度を低下させて熱電変換材料の性能指数を向上させるものと考えられ、その含有量は前記X線回折により決めることができる結晶構造が保持できる範囲であればよく、通常は1重量ppm以上5重量%以下の範囲である。希土類金属元素、4族金属元素はチタンのサイト(結晶格子における原子の位置)にチタンと置き換わって含有されることにより、熱伝導度を低下させて熱電変換材料の性能指数を向上させるものと考えられ、その含有量は前記X線回折により決めることができる結晶構造が保持できる範囲であればよく、通常は1重量ppm以上5重量%以下の範囲である。また、5族金属元素、6族金属元素、7族金属元素、12族金属元素、13族金属元素は、3価のチタンを増大させて電気伝導度を上げることにより熱電変換材料の性能指数を向上させるものと考えられ、その含有量は前記X線回折により決めることができる結晶構造が保持できる範囲であればよく、通常は1重量ppm以上5重量%以下の範囲である。   Among these, the alkali metal element and the alkaline earth metal element are contained in the vicinity of the oxygen defect in the crystal structure or between the lattices of titanium and oxygen, thereby reducing the thermal conductivity of the thermoelectric conversion material. It is considered that the figure of merit is improved, and the content thereof may be in a range that can maintain the crystal structure that can be determined by the X-ray diffraction, and is usually in the range of 1 ppm by weight to 5% by weight. It is considered that rare earth metal elements and group 4 metal elements are replaced by titanium at the titanium sites (atomic positions in the crystal lattice), thereby reducing the thermal conductivity and improving the performance index of thermoelectric conversion materials. The content thereof may be in a range that can maintain the crystal structure that can be determined by the X-ray diffraction, and is usually in the range of 1 ppm by weight to 5% by weight. In addition, Group 5 metal element, Group 6 metal element, Group 7 metal element, Group 12 metal element, Group 13 metal element increase performance index of thermoelectric conversion materials by increasing trivalent titanium and increasing electric conductivity. The content is considered to be improved as long as the crystal structure that can be determined by the X-ray diffraction can be maintained, and is usually in the range of 1 ppm by weight to 5% by weight.

熱電変換材料は、焼結体として用いるので、その密度も重要であり、実際の使用においては熱応力等の負荷が掛かるため、焼結体強度が必要であり、焼結体密度は1.9g/cm3以上が好ましく、2.1g/cm3以上がさらに好ましい。焼結体密度の上限は理論密度の4.25g/cm3である。 Since the thermoelectric conversion material is used as a sintered body, its density is also important. In actual use, a load such as thermal stress is applied, so the strength of the sintered body is necessary, and the sintered body density is 1.9 g. / Cm 3 or more is preferable, and 2.1 g / cm 3 or more is more preferable. The upper limit of the sintered body density is 4.25 g / cm 3 of the theoretical density.

焼結体強度には焼結体の粒径も影響を及ぼす。微粒である方が強度が高くなる傾向にあり、10μm以下が好ましい。焼結体粒径の下限は通常は0.1μm程度である。   The particle size of the sintered body also affects the sintered body strength. Finer particles tend to have higher strength and are preferably 10 μm or less. The lower limit of the sintered body particle size is usually about 0.1 μm.

本発明の熱電変換材料は3価のTiを含有するため、酸化される可能性があるが、400℃までは安定であり、この領域での熱電発電に適している。しかし、3価のチタンが長時間の使用により酸化され性能が低下するおそれがある場合やより高温で使用する場合は、熱電変換材料の表面を酸素が通過しない緻密な皮膜でコーティングしてもよい。皮膜材料としては具体的には、アルミナ、チタニア、ジルコニア、炭化珪素等が挙げられ。その皮膜により本発明の熱電変換材料をコーティング方法としては例えば、エアロゾルデポジション法、溶射法等が挙げられる。このコーティングにより酸化を防ぐことが可能であり、1000℃まで使用することもできる。また、発電モジュールの構造を容器内に熱電変換素子を密閉し、容器内を真空とするかまたは容器内に窒素、アルゴン、ヘリウム等の不活性ガスを封入することもできる。   Since the thermoelectric conversion material of the present invention contains trivalent Ti, it may be oxidized, but is stable up to 400 ° C., and is suitable for thermoelectric power generation in this region. However, if the trivalent titanium is oxidized due to long-term use and the performance may be lowered or if it is used at a higher temperature, the surface of the thermoelectric conversion material may be coated with a dense film that does not allow oxygen to pass through. . Specific examples of the film material include alumina, titania, zirconia, and silicon carbide. Examples of a method for coating the thermoelectric conversion material of the present invention with the coating include an aerosol deposition method and a thermal spraying method. This coating can prevent oxidation and can be used up to 1000 ° C. In addition, the thermoelectric conversion element can be hermetically sealed in the container, and the container can be evacuated, or an inert gas such as nitrogen, argon, or helium can be sealed in the container.

次に本発明の製造方法について説明する。
本発明のn型熱電変換材料は、チタン化合物を水素含有雰囲気中で焼結して製造することができる。チタン化合物としては、焼成により酸化物となるものかまたは酸化チタンであればよく、例えば、酸化チタン、硫酸チタニル等が挙げられ、酸化チタン(チタニア)が好ましい。酸化チタンの結晶形はとしてはルチル、アナターゼ、ブルッカイトのいずれでもよい。
Next, the manufacturing method of this invention is demonstrated.
The n-type thermoelectric conversion material of the present invention can be produced by sintering a titanium compound in a hydrogen-containing atmosphere. The titanium compound may be any oxide or titanium oxide when fired, and examples thereof include titanium oxide and titanyl sulfate, and titanium oxide (titania) is preferable. The crystal form of titanium oxide may be any of rutile, anatase and brookite.

まず、これらのチタン化合物の粉末に圧力をかけて成形を行う。成形は工業的に通常行われている成形方法により行うことができる。例えば、1軸プレス、静水圧プレス(CIP)、メカニカルプレス等により行うことができる。成形体は、角柱状、円柱状等の熱電変換素子として適切な形状となるように製造すればよい。   First, molding is performed by applying pressure to these titanium compound powders. Molding can be carried out by a molding method which is usually carried out industrially. For example, it can be performed by a uniaxial press, an isostatic press (CIP), a mechanical press or the like. What is necessary is just to manufacture a molded object so that it may become a shape suitable as thermoelectric conversion elements, such as prismatic shape and cylindrical shape.

次に、得られた成形体を焼結する。焼結は、3価のTiを焼結体中に存在させるため、還元性雰囲気中で行う必要がある。還元性雰囲気としては、水素を1体積%以上含有する不活性ガスからなる雰囲気が挙げられ、不活性ガスとしては窒素、アルゴン、ヘリウム等を用いることができる。   Next, the obtained molded body is sintered. Sintering needs to be performed in a reducing atmosphere because trivalent Ti is present in the sintered body. Examples of the reducing atmosphere include an atmosphere made of an inert gas containing 1% by volume or more of hydrogen. As the inert gas, nitrogen, argon, helium, or the like can be used.

本発明の熱電変換素子を製造するために適切な焼結条件は水素濃度により異なる。水素濃度が1体積%以上5%未満(残部は不活性雰囲気)の場合では、1000℃以上1400℃以下の温度範囲で1時間以上10時間以下保持して焼結を行い、水素濃度が5体積%以上100体積%以下(残部は不活性雰囲気)の場合では、950℃以上1050℃以下の温度範囲で10分以上5時間以下保持して焼結を行う。   Suitable sintering conditions for producing the thermoelectric conversion element of the present invention depend on the hydrogen concentration. When the hydrogen concentration is 1% by volume or more and less than 5% (the remainder is an inert atmosphere), sintering is performed at a temperature range of 1000 ° C. or more and 1400 ° C. or less for 1 hour or more and 10 hours or less, and the hydrogen concentration is 5 volumes. % To 100% by volume (the balance is an inert atmosphere), sintering is performed at a temperature range of 950 ° C. to 1050 ° C. for 10 minutes to 5 hours.

焼結体の密度、粒径は熱電変換材料としての特性に影響するが、これらは、成形圧力、焼結温度により制御することができる。また、耐久性を向上させるため、製造した焼結体を空気中でアニ−ルしてもよい。   The density and particle size of the sintered body affect the properties of the thermoelectric conversion material, and these can be controlled by the molding pressure and the sintering temperature. In order to improve the durability, the manufactured sintered body may be annealed in the air.

また、熱伝導度を小さくするため、焼結体密度が1.9g/cm3以上となる範囲で焼結体密度を低くし、多孔体からなる熱電変換材料とすることもできる。多孔体からなる熱電変換材料は、例えば、スプレードライ等により数十μmの粒子に造粒し、得られた造粒粒子を成形する方法や、焼成粉末に樹脂ビーズやクルミ紛のような燃焼除去できる物質を混合し成形し、空気中で加熱して樹脂ビーズ等を燃焼除去して多孔体とし、さらに焼結して作製する方法等が挙げられる。 Further, in order to reduce the thermal conductivity, the sintered body density can be lowered within a range where the sintered body density is 1.9 g / cm 3 or more, and a thermoelectric conversion material comprising a porous body can be obtained. Thermoelectric conversion material made of porous material is granulated into particles of several tens of μm by, for example, spray drying, etc., and the resulting granulated particles are molded, or burned powder such as resin beads or walnut powder is removed by combustion Examples include a method of mixing and forming a material that can be produced, heating in air to burn and remove the resin beads to form a porous body, and further sintering.

焼結に用いるチタン化合物としては、チタン含有物質を成形せずに焼成し、得られた焼成粉末を用いることが好ましい。チタン含有物質としては、焼結用原料のチタン化合物と同様のものを用いることができる。   As a titanium compound used for sintering, it is preferable to use a fired powder obtained by firing without forming a titanium-containing material. As the titanium-containing substance, the same titanium compound as the raw material for sintering can be used.

焼成は、3価のTiをチタン化合物中に存在させるため、還元性雰囲気中で行う必要がある。還元性雰囲気としては、水素を1体積%以上含有する不活性ガスからなる雰囲気が挙げられ、不活性ガスとしては窒素、アルゴン、ヘリウム等を用いることができる。   Firing needs to be performed in a reducing atmosphere because trivalent Ti is present in the titanium compound. Examples of the reducing atmosphere include an atmosphere made of an inert gas containing 1% by volume or more of hydrogen. As the inert gas, nitrogen, argon, helium, or the like can be used.

本発明の熱電変換素子製造用の焼成粉末を製造するために適切な焼成条件は、還元性雰囲気中の水素ガス濃度により異なり、水素濃度1体積%以上5体積%未満(残部は不活性雰囲気)の場合では、1000℃以上1400℃以下の温度範囲で1時間以上10時間以下保持して焼成を行い、水素濃度が5体積%以上100体積%以下(残部は不活性雰囲気)の場合では、950℃以上1050℃以下の温度範囲で10分以上5時間以下保持して焼成を行う。降温時も還元雰囲気中が好ましく、降温を不活性ガス中で行った場合は、還元が不充分になる傾向がある。   The firing conditions suitable for producing the fired powder for producing the thermoelectric conversion element of the present invention depend on the hydrogen gas concentration in the reducing atmosphere, and the hydrogen concentration is 1% by volume or more and less than 5% by volume (the remainder is an inert atmosphere). In the case of, firing is carried out in the temperature range of 1000 ° C. to 1400 ° C. for 1 hour to 10 hours, and in the case where the hydrogen concentration is 5% by volume to 100% by volume (the remainder is an inert atmosphere), 950 Firing is carried out by maintaining the temperature in the temperature range of 1050C to 1050C for 10 minutes to 5 hours. Even when the temperature is lowered, a reducing atmosphere is preferable. When the temperature is lowered in an inert gas, the reduction tends to be insufficient.

焼成により得られた焼成粉末は、成形する前に粉砕することが好ましく、焼成粉末を粉砕後に成形し焼結して熱電変換材料とする。この粉砕の程度により、焼結体密度を制御することもできる。粉砕は、ボールミル、振動ミル、アトライター、ダイノーミル等の通常工業的に用いられる装置により行うことができる。   The fired powder obtained by firing is preferably pulverized before molding, and the fired powder is shaped after grinding and sintered to obtain a thermoelectric conversion material. The density of the sintered body can be controlled by the degree of pulverization. The pulverization can be performed by a device that is usually used industrially, such as a ball mill, a vibration mill, an attritor, or a dyno mill.

こうして得られた熱電変換材料は、室温から500℃の領域または表面処理により1000℃まで使用することができ、性能指数が高く、しかも安価な酸化チタンが原料であり安価に製造することができるn型の熱電変換材料である。   The thermoelectric conversion material thus obtained can be used from room temperature to 500 ° C. or up to 1000 ° C. by surface treatment, and has a high figure of merit, and inexpensive titanium oxide is a raw material and can be manufactured at low cost. Type thermoelectric conversion material.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらによって限定されるものではない。
1.電気伝導度
焼結体を10×3×3mmの角柱に加工し、銀ペーストで白金線を装着し、直流4端子法で測定した。
2.ゼーベック係数
電気伝導度測定と同様の形状に加工した焼結体の両端にR熱電対および白金線をつけ、焼結体の温度および熱起電力を測定した。管状炉中で温度をコントロールし、温度差は、焼結体の片面に窒素ガスを接触させることにより制御した。温度差は1〜10℃に制御した。
3.熱伝導度測定
真空理工株式会社製レーザーフラッシュ法熱伝導度測定装置TC−7000型により測定した。
4.X線回折
粉末、焼結体の結晶構造は、株式会社リガク製X線回折測定装置RINT2500TTR型によりX銭回折パターンを測定して分析した。
5.焼結体密度
焼結体の寸法および重量から見かけ密度を測定した。
6.酸素欠損量の測定
マックサイエンス社のTG−DTAで10℃/分でTGを測定、その重量増加量から酸素欠損量つまりxを求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.
1. Electrical conductivity The sintered body was processed into a square column of 10 × 3 × 3 mm, a platinum wire was attached with a silver paste, and measurement was performed by a direct current four-terminal method.
2. Seebeck coefficient An R thermocouple and a platinum wire were attached to both ends of the sintered body processed into the same shape as the electrical conductivity measurement, and the temperature and thermoelectromotive force of the sintered body were measured. The temperature was controlled in a tubular furnace, and the temperature difference was controlled by bringing nitrogen gas into contact with one side of the sintered body. The temperature difference was controlled at 1-10 ° C.
3. Measurement of thermal conductivity It was measured with a laser flash method thermal conductivity measuring device TC-7000 manufactured by Vacuum Riko Co., Ltd.
4). X-ray diffraction The crystal structure of the powder and the sintered body was analyzed by measuring an X-shaped diffraction pattern with an RINT2500TTR type X-ray diffraction measuring apparatus manufactured by Rigaku Corporation.
5. Sintered body density The apparent density was measured from the size and weight of the sintered body.
6). Measurement of oxygen deficiency TG was measured at 10 ° C./min with TG-DTA manufactured by Mac Science, and the oxygen deficiency, that is, x was determined from the weight increase.

実施例1
チタニア(石原テクノ株式会社製、PT401M(商品名))を10g秤量し100%水素雰囲気中において1000℃で1時間保持して焼成した。得られた焼成物は、X線回折により分析した結果、26.2°、26.9°、27.9°、28.2°にピークを持ち、マグネリ相とは異なるプロファイルを有していた。15mmφのジルコニアボールを用い粉砕し、得られた粉末を1t/cm2の圧力の静水圧プレス成形によりペレット状に成形した。得られた成形体を、水素100%の雰囲気において1000℃で1時間で焼結した。得られた焼結体は、X線回折パターンを測定した結果、ルチルが数%混在していたが、26.2°、26.9°、27.9°、28.2°にピークを持ち、マグネリ相とは異なるプロファイルを有していた。焼結体密度は2.8g/cm3で、焼結体粒径は約3μmあった。TG−DTAで酸素量を測定した結果TiO1.92であった。
Example 1
10 g of titania (manufactured by Ishihara Techno Co., Ltd., PT401M (trade name)) was weighed and held in a 100% hydrogen atmosphere at 1000 ° C. for 1 hour for firing. As a result of X-ray diffraction analysis, the obtained fired product had peaks at 26.2 °, 26.9 °, 27.9 °, and 28.2 °, and had a profile different from the magnetic phase. . The resulting powder was pulverized using 15 mmφ zirconia balls, and the obtained powder was formed into a pellet by hydrostatic press molding at a pressure of 1 t / cm 2 . The obtained molded body was sintered in an atmosphere of 100% hydrogen at 1000 ° C. for 1 hour. As a result of measuring the X-ray diffraction pattern, the obtained sintered body was mixed with several percent of rutile, but had peaks at 26.2 °, 26.9 °, 27.9 ° and 28.2 °. And had a profile different from that of the Magneli phase. The sintered compact density was 2.8 g / cm 3 and the sintered compact particle size was about 3 μm. The amount of oxygen measured by TG-DTA was TiO 1.92 .

該焼結体の特性は、300Kで測定したゼーベック係数は144μV/K、電気伝導度は、3.4×103S/m、熱伝導度(室温)は0.7W/mKであり、性能指数を算出すると、0.10×10-3(1/T)であった。焼結体の強度は高く、加工等に問題はなかった。 The properties of the sintered body were as follows: the Seebeck coefficient measured at 300 K was 144 μV / K, the electrical conductivity was 3.4 × 10 3 S / m, and the thermal conductivity (room temperature) was 0.7 W / mK. The index was calculated to be 0.10 × 10 −3 (1 / T). The strength of the sintered body was high and there was no problem in processing.

実施例2
0.4μmのチタニアを出発原料として用いた以外は実施例1と同様にして焼結体を得た。密度は2.1g/cm3で、粒径は約2μmであった。酸素量はTiO1.93であった。得られた焼結体は、X線回折パターンを測定した結果、26.1°、27.1°、27.9°、28.3°にピークを持ち、マグネリ相とは異なるプロファイルを有していた。該焼結体の特性は、室温(約25℃)でのゼ−ベック係数は121μmV/K、電気伝導度1.1×103s/m、熱伝導度は0.1W/mKであり、性能指数を算出すると0.16×10-3であった。焼結体の強度は高く、加工等に問題はなかった。
Example 2
A sintered body was obtained in the same manner as in Example 1 except that 0.4 μm of titania was used as a starting material. The density was 2.1 g / cm 3 and the particle size was about 2 μm. The amount of oxygen was TiO 1.93 . As a result of measuring the X-ray diffraction pattern, the obtained sintered body had peaks at 26.1 °, 27.1 °, 27.9 °, and 28.3 °, and had a profile different from the magnetic phase. It was. The properties of the sintered body are as follows: the Seebeck coefficient at room temperature (about 25 ° C.) is 121 μmV / K, the electrical conductivity is 1.1 × 10 3 s / m, and the thermal conductivity is 0.1 W / mK. The figure of merit was calculated to be 0.16 × 10 −3 . The strength of the sintered body was high and there was no problem in processing.

実施例3
実施例1と同様の出発原料を用い、出発原料を焼成せずに1.0t/cm2の圧力の静水圧プレス成形によりペレット状に成形し、得られた成形体を、3体積%H2含有窒素中で970℃で保持して焼結体を作製した。得られた焼結体は、X線回折により分析した結果、得られた焼成物は、X線回折パターンを測定した結果、26.2°、26.9°、28.0°、28.1°にピークを持ち、マグネリ相とは異なるプロファイルを有していた。焼結体密度は2.8g/cm3で、焼結体粒径は0.5μmであった。TG−DTAにより酸素量を測定した結果、組成はTiO1.96であった。
Example 3
The same starting material as in Example 1 was used, and the starting material was molded into a pellet by isostatic pressing at a pressure of 1.0 t / cm 2 without firing, and the resulting molded body was 3% by volume H 2. A sintered body was produced by holding at 970 ° C. in nitrogen-containing. The obtained sintered body was analyzed by X-ray diffraction. As a result of measuring the X-ray diffraction pattern of the obtained fired product, 26.2 °, 26.9 °, 28.0 °, 28.1 It had a peak at ° and had a profile different from the magnetic phase. The sintered compact density was 2.8 g / cm 3 and the sintered compact particle size was 0.5 μm. As a result of measuring the amount of oxygen by TG-DTA, the composition was TiO 1.96 .

該焼結体の特性は、300Kでの測定でゼーベック係数は135μV/K、電気伝導度は、2.4×103S/m、熱伝導度(室温)は0.6W/mKであり、性能指数を算出すると、0.073×10-3(1/T)であった。焼結体の強度は十分高く、加工等に問題はなかった。焼結体の強度は高く、加工等に問題はなかった。 The properties of the sintered body were measured at 300K, the Seebeck coefficient was 135 μV / K, the electrical conductivity was 2.4 × 10 3 S / m, and the thermal conductivity (room temperature) was 0.6 W / mK. The figure of merit was calculated to be 0.073 × 10 −3 (1 / T). The strength of the sintered body was sufficiently high and there was no problem in processing. The strength of the sintered body was high and there was no problem in processing.

比較例1
実施例1と同様の出発原料を用い、1.0t/cm2の静水圧プレス成形によりペレット状に成形し、得られた成形体を、水素100体積%中で1200℃で保持して焼結した。得られた焼結体のX線回折パターンを測定した結果、該焼結体は主にTi59(TiOxにおいてx=1.80)からなるマグネリ相であった。焼結体密度は3.8g/cm3であり、室温(約25℃)でのゼーベック係数は67μV/K、電気伝導度は1.8×103S/m、熱伝導度は6.3W/mKであり、性能指数は、0.013×10-3であった。
Comparative Example 1
Using the same starting materials as in Example 1, it was molded into a pellet by isostatic pressing at 1.0 t / cm 2 , and the resulting molded body was held at 1200 ° C. in 100 vol% hydrogen and sintered. did. As a result of measuring the X-ray diffraction pattern of the obtained sintered body, the sintered body was a magnetic phase mainly composed of Ti 5 O 9 (x = 1.80 in TiO x ). The density of the sintered body is 3.8 g / cm 3 , the Seebeck coefficient at room temperature (about 25 ° C.) is 67 μV / K, the electrical conductivity is 1.8 × 10 3 S / m, and the thermal conductivity is 6.3 W. / MK and the figure of merit was 0.013 × 10 −3 .

比較例2
実施例1と同様の出発原料を用い、焼結温度を950℃としたことと、成形圧力を0.5t/cm2とした以外は実施例1と同様にして焼結体を作製した。得られた焼結体は、式TiOxにおいてx=1.94であり、焼結体密度は1.7g/cm3であった。室温(約25℃)でのゼーベック係数は46μV/K、電気伝導度は0.6×103S/m、熱伝導度は0.09W/mKであった。性能指数は0.014×10-3であった。また、焼結体は強度がなく、容易に崩壊し加工することは不可能であった。
Comparative Example 2
A sintered body was produced in the same manner as in Example 1 except that the same starting materials as in Example 1 were used, the sintering temperature was 950 ° C., and the molding pressure was 0.5 t / cm 2 . The obtained sintered body was x = 1.94 in the formula TiO x , and the sintered body density was 1.7 g / cm 3 . The Seebeck coefficient at room temperature (about 25 ° C.) was 46 μV / K, the electric conductivity was 0.6 × 10 3 S / m, and the thermal conductivity was 0.09 W / mK. The figure of merit was 0.014 × 10 −3 . Further, the sintered body has no strength and cannot be easily collapsed and processed.

Claims (4)

式TiOxで示される不定比酸化チタンであり、xの値が1.89以上1.94未満または1.94より大きく2.00未満であり、X線回折において、26.0°±0.3°、26.8°±0.3°、27.9°±0.1°、28.2°±0.1°の各々の位置にピークを示す結晶構造を有する不定比酸化チタンからなることを特徴とするn型の熱電変換焼結体材料。 It is non-stoichiometric titanium oxide represented by the formula TiO x , and the value of x is 1.89 or more and less than 1.94 or more than 1.94 and less than 2.00, and 26.0 ° ± 0.00 in X-ray diffraction. It consists of non-stoichiometric titanium oxide having a crystal structure showing a peak at each of 3 °, 26.8 ° ± 0.3 °, 27.9 ° ± 0.1 °, and 28.2 ° ± 0.1 °. An n-type thermoelectric conversion sintered material characterized by the above. 酸素不透過膜でコーティングしてなる請求項1記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the thermoelectric conversion material is coated with an oxygen-impermeable film. チタン化合物を水素含有雰囲気中で焼結することによるn型熱電変換材料の製造方法において、チタン化合物を成形し、得られた成形体を水素濃度1体積%以上5%体積未満の場合は1000℃以上1400℃以下の温度範囲で1時間以上10時間以下保持して焼結し、水素濃度5体積%以上100体積%以下の場合は950℃以上1050℃以下の温度範囲で10分以上5時間以下保持して焼結することを特徴とする請求項1記載のn型熱電変換材料の製造方法。   In the method for producing an n-type thermoelectric conversion material by sintering a titanium compound in a hydrogen-containing atmosphere, the titanium compound is molded, and when the obtained molded body has a hydrogen concentration of 1% by volume or more and less than 5% volume, 1000 ° C. Sintering by holding for 1 hour or more and 10 hours or less in the temperature range of 1400 ° C. or less, and when the hydrogen concentration is 5% by volume or more and 100% by volume or less, the temperature range is 950 ° C. or more and 1050 ° C. or less and 10 minutes or more and 5 hours or less The method for producing an n-type thermoelectric conversion material according to claim 1, wherein the method is held and sintered. チタン化合物として、チタン含有物質を水素濃度1体積%以上5%未満の場合は1000℃以上1400℃以下の温度範囲で1時間以上10時間以下保持して焼成し、水素濃度5体積%以上100体積%以下の場合は950℃以上1050℃以下の温度範囲で10分以上5時間以下保持して焼成し、得られた焼成粉末を用いる請求項3記載の製造方法。
As a titanium compound, when a titanium-containing substance has a hydrogen concentration of 1% by volume or more and less than 5%, it is fired by holding it at a temperature range of 1000 ° C. or more and 1400 ° C. or less for 1 hour or more and 10 hours or less, and a hydrogen concentration of 5% by volume or more and 100% The manufacturing method according to claim 3, wherein, in the case of% or less, firing is carried out by holding at a temperature range of 950 ° C. or more and 1050 ° C. or less for 10 minutes or more and 5 hours or less.
JP2004286811A 2004-07-27 2004-09-30 Thermoelectric conversion material for titanium oxide Withdrawn JP2006100683A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004286811A JP2006100683A (en) 2004-09-30 2004-09-30 Thermoelectric conversion material for titanium oxide
EP05767817A EP1791191A1 (en) 2004-07-27 2005-07-22 Thermoelectric conversion material and process for producing the same
US11/571,430 US20090205697A2 (en) 2004-07-27 2005-07-22 Thermoelectric conversion material and process for producing the same
KR1020077004296A KR20070048734A (en) 2004-07-27 2005-07-22 Thermoelectric conversion material and process for producing the same
PCT/JP2005/013897 WO2006011581A1 (en) 2004-07-27 2005-07-22 Thermoelectric conversion material and process for producing the same
TW094125080A TW200607762A (en) 2004-07-27 2005-07-25 Thermo-electric conversion material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286811A JP2006100683A (en) 2004-09-30 2004-09-30 Thermoelectric conversion material for titanium oxide

Publications (1)

Publication Number Publication Date
JP2006100683A true JP2006100683A (en) 2006-04-13

Family

ID=36240175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286811A Withdrawn JP2006100683A (en) 2004-07-27 2004-09-30 Thermoelectric conversion material for titanium oxide

Country Status (1)

Country Link
JP (1) JP2006100683A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876656A2 (en) * 2006-07-03 2008-01-09 National Institute of Advanced Industrial Science and Technology Metal oxynitride material with a superior thermoelectric property
WO2008023650A1 (en) * 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
JP2008135501A (en) * 2006-11-28 2008-06-12 Sumitomo Chemical Co Ltd Thermoelectric conversion material
JP2008263056A (en) * 2007-04-12 2008-10-30 Sumitomo Chemical Co Ltd Thermoelectric conversion material and method of manufacturing the same
WO2009014243A1 (en) * 2007-07-26 2009-01-29 Sumitomo Chemical Company, Limited Thermoelectric conversion element and method for manufacturing the same
JP2010504903A (en) * 2006-09-26 2010-02-18 アトラノーヴァ・リミテッド Process for producing substoichiometric titanium oxide by hydrogen reduction
JP2012199493A (en) * 2011-03-23 2012-10-18 Chiba Univ Thermoelectric conversion material and production method therefor
JP2015162664A (en) * 2014-02-28 2015-09-07 国立大学法人 千葉大学 Thermoelectric conversion material and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876656A2 (en) * 2006-07-03 2008-01-09 National Institute of Advanced Industrial Science and Technology Metal oxynitride material with a superior thermoelectric property
US7771626B2 (en) 2006-07-03 2010-08-10 National Institute Of Advanced Industrial Science And Technology Metal oxynitride material with a superior thermoelectric property
EP1876656A3 (en) * 2006-07-03 2010-08-04 National Institute of Advanced Industrial Science and Technology Metal oxynitride material with a superior thermoelectric property
WO2008023650A1 (en) * 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
JP2008078608A (en) * 2006-08-24 2008-04-03 Sumitomo Chemical Co Ltd Thermoelectric conversion material and method for producing the same
US8217256B2 (en) 2006-08-24 2012-07-10 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
JP2010504903A (en) * 2006-09-26 2010-02-18 アトラノーヴァ・リミテッド Process for producing substoichiometric titanium oxide by hydrogen reduction
JP2008135501A (en) * 2006-11-28 2008-06-12 Sumitomo Chemical Co Ltd Thermoelectric conversion material
JP2008263056A (en) * 2007-04-12 2008-10-30 Sumitomo Chemical Co Ltd Thermoelectric conversion material and method of manufacturing the same
WO2008133153A1 (en) * 2007-04-12 2008-11-06 Sumitomo Chemical Company, Limited Thermoelectric conversion material, method for production thereof, and thermoelectric conversion element
EP2187460A1 (en) * 2007-07-26 2010-05-19 Sumitomo Chemical Company, Limited Thermoelectric conversion element and method for manufacturing the same
JP2009032893A (en) * 2007-07-26 2009-02-12 Sumitomo Chemical Co Ltd Thermoelectric conversion element and method for manufacturing the same
WO2009014243A1 (en) * 2007-07-26 2009-01-29 Sumitomo Chemical Company, Limited Thermoelectric conversion element and method for manufacturing the same
EP2187460A4 (en) * 2007-07-26 2012-01-18 Sumitomo Chemical Co Thermoelectric conversion element and method for manufacturing the same
JP2012199493A (en) * 2011-03-23 2012-10-18 Chiba Univ Thermoelectric conversion material and production method therefor
JP2015162664A (en) * 2014-02-28 2015-09-07 国立大学法人 千葉大学 Thermoelectric conversion material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2008124417A (en) Thermoelectric conversion material, and its manufacturing method
Mori et al. Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells
JP4867618B2 (en) Thermoelectric conversion material
JP4967772B2 (en) Thermoelectric conversion material and method for producing the same
KR20070048734A (en) Thermoelectric conversion material and process for producing the same
JP2008263056A (en) Thermoelectric conversion material and method of manufacturing the same
JP2007246294A (en) Aluminum-containing zinc oxide sintered compact and method of manufacturing the same
JP2009218541A (en) Method for producing sintered body
Kang et al. Novel NTC ceramics based on pyrochlore-type A2Ti2O7 (A= Sm, Eu, Y) titanates for high-temperature thermistors
JP2006100683A (en) Thermoelectric conversion material for titanium oxide
JP2009117449A (en) OXIDE COMPOUND MATERIAL HAVING n-TYPE THERMOELECTRIC CHARACTERISTIC
JP2006062951A (en) Thermoelectric conversion material and its manufacturing method
JP2009215149A (en) Sintered body and thermoelectric conversion material
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JP2010161213A (en) Thermoelectric conversion material, and method of manufacturing the same
JP2011020902A (en) Strontium titanate sintered compact and method for producing the same
TW200950164A (en) Sinter matter and thermoelectric conversion material
JPH08231223A (en) Thermoelectric conversing material
KR101559942B1 (en) Method of enhancing the thermoelectric properties and electrical conductivity in Ca-V oxide perovskite system by means of synthesizing the single phase
JP2009196821A (en) Perovskite-based oxide, its producing method and thermoelectric element using it
JP2018078219A (en) P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same
JP4844043B2 (en) Thermoelectric conversion material and method for producing the same
JP2007055878A (en) Perovskite type oxide dense sintered compact and method of manufacturing the same
JP3471890B2 (en) Porous sintered body, heat-resistant electrode and solid oxide fuel cell
Yasukawa et al. Preparation of dense BaPbO3-based ceramics by a coprecipitation and their thermoelectric properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101115