JP2015162664A - Thermoelectric conversion material and method for manufacturing the same - Google Patents

Thermoelectric conversion material and method for manufacturing the same Download PDF

Info

Publication number
JP2015162664A
JP2015162664A JP2014038954A JP2014038954A JP2015162664A JP 2015162664 A JP2015162664 A JP 2015162664A JP 2014038954 A JP2014038954 A JP 2014038954A JP 2014038954 A JP2014038954 A JP 2014038954A JP 2015162664 A JP2015162664 A JP 2015162664A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
powder
phase
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014038954A
Other languages
Japanese (ja)
Inventor
云 魯
Un Ro
云 魯
勝裕 相楽
Katsuhiro Sagara
勝裕 相楽
優汰 菊池
Yuta Kikuchi
優汰 菊池
博 浅沼
Hiroshi Asanuma
博 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2014038954A priority Critical patent/JP2015162664A/en
Publication of JP2015162664A publication Critical patent/JP2015162664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material which enables the achievement of a higher output, and a method for manufacturing such a thermoelectric conversion material.SOLUTION: A thermoelectric conversion material according to an aspect of the present invention comprises a composition expressed by TiCrO(where 0<x≤0.5, and 0<z≤0.13). In this case, it is preferable, but not necessary to be regarded as a restriction, that the thermoelectric conversion material preferably is a sintered compact having a multi-scale structure including at least two of TiOphase, which is a Magneli phase, a (Ti,Cr)Ophase, a TiCrOphase and a Cr phase. In addition, a method for manufacturing a thermoelectric conversion material according to another aspect of the present invention comprises the steps of: mixing TiO2 powder and Cr powder into a powder mixture; and sintering the powder mixture.

Description

本発明は、熱電変換材料及びその製造方法に関する。   The present invention relates to a thermoelectric conversion material and a method for producing the same.

近年の地球温暖化及びエネルギー資源の枯渇などの観点から、新エネルギーの利用は急務の課題である。   From the viewpoint of global warming in recent years and the depletion of energy resources, the use of new energy is an urgent issue.

新エネルギーの利用を実現する技術の一つに熱電変換材料がある。熱電変換材料とは熱と電力を変換する材料であり、具体的には熱エネルギーを電気エネルギーに変換することができる材料である。   One of the technologies that realize the use of new energy is thermoelectric conversion materials. The thermoelectric conversion material is a material that converts heat and electric power, specifically, a material that can convert heat energy into electric energy.

しかしながら、実用化されている熱電変換材料は一般に低融点であり、また、BiやTe等希少・有害な元素が使用されており、環境上改善すべき課題がある。   However, thermoelectric conversion materials that have been put to practical use generally have a low melting point, and rare and harmful elements such as Bi and Te are used, and there is a problem to be improved in terms of the environment.

これに対し、下記特許文献1に、タングステンカーバイドを含むTi酸化物からなる熱電変換材料が開示されている。   On the other hand, the following patent document 1 discloses a thermoelectric conversion material made of Ti oxide containing tungsten carbide.

特開2012−199493号公報JP 2012-199493 A

しかしながら、上記文献には電気抵抗率が高く、この電気抵抗率において改善すべき余地がある。この電気抵抗率はエネルギーの出力に影響を与え、結果として出力において改善すべき余地が残ることとなる。   However, the above document has a high electrical resistivity, and there is room for improvement in this electrical resistivity. This electrical resistivity affects the energy output, resulting in room for improvement in output.

そこで、本発明は、上記課題に鑑み、より高出力となる熱電変換材料及びその製造方法を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the thermoelectric conversion material which becomes higher output, and its manufacturing method.

本発明の一観点に係る熱電変換材料は、Ti1−xCr(0<x≦0.5、0<z≦0.13)の組成からなることを特徴の一つとする。この場合において、限定されるわけではないが、マグネリ相のTi2n−1相、(Ti,Cr)2n−1相、TiCrO相及びCr相の少なくとも二つを備えるマルチスケール構造を有する焼結体であることが好ましい。 One feature of the thermoelectric conversion material according to one aspect of the present invention is that it is composed of Ti 1-x Cr x O z (0 <x ≦ 0.5, 0 <z ≦ 0.13). In this case, but not limited to, a multi-scale structure comprising at least two of the magnetic phase Ti n O 2n-1 phase, (Ti, Cr) n O 2n-1 phase, TiCrO 3 phase and Cr phase It is preferable that the sintered body has.

また、本発明の他の一観点に係る熱電変換材料の製造方法は、TiO粉末とCr粉末とを混合して混合粉末とし、この混合粉末を焼結することを特徴とする。 A method for producing a thermoelectric conversion material according to another aspect of the present invention is characterized in that TiO 2 powder and Cr powder are mixed to form a mixed powder, and the mixed powder is sintered.

以上本発明は、より高出力となる熱電変換材料及びその製造方法を提供することができる。   As described above, the present invention can provide a thermoelectric conversion material with higher output and a method for producing the same.

実施例に係る熱電変換材料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the thermoelectric conversion material which concerns on an Example. 実施例に係る熱電変換材料の電気抵抗率を示す図である。It is a figure which shows the electrical resistivity of the thermoelectric conversion material which concerns on an Example. 実施例に係る熱電変換材料のゼーベック係数を示す図である。It is a figure which shows the Seebeck coefficient of the thermoelectric conversion material which concerns on an Example. 実施例に係る熱電変換材料の出力因子を示す図である。It is a figure which shows the output factor of the thermoelectric conversion material which concerns on an Example. 実施例に係る熱電変換材料のキャリア熱伝導率を示す図である。It is a figure which shows the carrier thermal conductivity of the thermoelectric conversion material which concerns on an Example. 実施例に係る熱電変換材料のSEM像を示す図である。It is a figure which shows the SEM image of the thermoelectric conversion material which concerns on an Example.

以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.

本実施形態に係る熱電変換材料(以下「本材料」という。)は、Ti1−xCr(0<x≦0.5、0<z≦0.13)の組成からなる焼結体である。 The thermoelectric conversion material (hereinafter referred to as “the present material”) according to the present embodiment is sintered having a composition of Ti 1-x Cr x O z (0 <x ≦ 0.5, 0 <z ≦ 0.13). Is the body.

本実施形態において、「熱電変換材料」とは、熱と電力を変換する材料である。具体的には熱エネルギーを電気エネルギーに変換することができる材料である。   In the present embodiment, the “thermoelectric conversion material” is a material that converts heat and power. Specifically, it is a material that can convert thermal energy into electrical energy.

また本実施形態において本材料は、Ti1−xCr(0<x≦0.5、0<z≦0.13)の組成からなる焼結体であることが好ましい。 In the present embodiment, the material is preferably a sintered body having a composition of Ti 1-x Cr x O z (0 <x ≦ 0.5, 0 <z ≦ 0.13).

本材料は上記の組成の範囲に含まれるものである限りにおいて限定されるわけではないが、酸化チタンマグネリ相Ti2n−1相、(Ti,Cr)2n−1相、TiCrO相及びCr相の少なくともいずれかを含むマルチスケール構造、より具体的には酸化チタンマグネリ相(Ti,Cr)相、Ti相を少なくとも含む焼結体であることが好ましい。 This material is not limited as long as it is intended to be included within the scope of the above composition, oxidation Chitanmaguneri phase Ti n O 2n-1 phase, (Ti, Cr) n O 2n-1 phase, TiCrO 3 A multi-scale structure including at least one of a phase and a Cr phase, more specifically, a sintered body including at least a titanium oxide magnetic phase (Ti, Cr) 3 O 5 phase and a Ti 4 O 7 phase is preferable.

本材料において、Crの添加量xを0より大きくすることでCrを含ませてTiCrO相を生じさせることができる一方、0.5以下とすることでTi1−xCrのOの量が相対的に少なくなるためnの値が小さくなり電気抵抗率等の特性が低下してしまうことを防止できる。 In the present material, the Cr addition amount x can be made larger than 0 to contain Cr and produce a TiCrO 3 phase, while by making it 0.5 or less, the Ti 1-x Cr x O z O Therefore, it is possible to prevent the value of n from decreasing and the characteristics such as electrical resistivity from deteriorating.

以上、本材料は、従来の熱電変換材料に比べてBiやTe等の有害・希少の元素を使用する必要がなく、安価に製造することが可能となる。また、従来の熱電変換材料では使用可能温度が350℃以下である必要があったのに対し、本材料では800℃まで使用することができるものであり、高温での使用が可能な熱電変換材料となっており、有用性が高い。さらに、本材料は後述の実施例によって明らかとなるが、より高出力となる熱電変換材料となっている。   As described above, this material does not require the use of harmful and rare elements such as Bi and Te as compared to conventional thermoelectric conversion materials, and can be manufactured at low cost. Moreover, in the conventional thermoelectric conversion material, the usable temperature needs to be 350 ° C. or lower, whereas in this material, the thermoelectric conversion material can be used up to 800 ° C. and can be used at a high temperature. It is highly useful. Furthermore, although this material becomes clear by the below-mentioned Example, it is a thermoelectric conversion material used as a higher output.

また、本実施形態において熱電変換材料の製造方法は、TiO粉末とCr粉末とを混合して混合粉末とし、この混合粉末を焼結することを特徴とする。 In the present embodiment, the method for producing a thermoelectric conversion material is characterized in that TiO 2 powder and Cr powder are mixed to form a mixed powder, and this mixed powder is sintered.

TiO粉末とCr粉末とを混合する手段としては、限定されるわけではないが、ボールミルを用いることによって混合することが好ましい。この場合において、TiO粉末とCr粉末を混合する量は、Ti1−xCr(0<x≦0.5)の範囲となるよう原子比で秤量して混合することが好ましい。 The means for mixing the TiO 2 powder and the Cr powder is not limited, but is preferably mixed by using a ball mill. In this case, it is preferable to weigh and mix the TiO 2 powder and Cr powder in an atomic ratio so that the amount of Ti 2 and Cr powder is in the range of Ti 1-x Cr x O z (0 <x ≦ 0.5).

TiO粉末の粒径は、混合粉砕することで均一に混合されることができる範囲であれば特に限定されるわけではないが、0.1mm以上2mm以下であることが好ましく、より好ましくは1mm以下である。 The particle size of the TiO 2 powder is not particularly limited as long as it can be uniformly mixed by mixing and pulverizing, but is preferably 0.1 mm or more and 2 mm or less, more preferably 1 mm. It is as follows.

また本実施形態においてCr粉末の粒径も、特に限定されるわけではないが、1μm以上1mm以下の範囲であることが好ましく、より好ましくは0.5mm以下である。   In the present embodiment, the particle size of the Cr powder is not particularly limited, but is preferably in the range of 1 μm or more and 1 mm or less, and more preferably 0.5 mm or less.

混合する時間等の条件は、上記粉末が十分に混合される限り制限はなく適宜調整可能であるが、ボールミルによって混合する場合は、100rpm以上500rpm以下程度である場合、1時間以上5時間以下の範囲であることが好ましい一例である。またこの場合において、混合の際に発熱を防ぐ観点から混合中に混合動作を一時停止するインターバル期間を設けておくことも好ましい。   Conditions such as mixing time are not limited as long as the powder is sufficiently mixed, and can be adjusted as appropriate. However, when mixing by a ball mill, when the mixing speed is about 100 rpm or more and 500 rpm or less, it is 1 hour or more and 5 hours or less. A preferable example is the range. In this case, it is also preferable to provide an interval period for temporarily stopping the mixing operation during mixing from the viewpoint of preventing heat generation during mixing.

また本実施形態において、混合粉末を焼結するが、焼結するに先立ち、粉末を所定の形状に維持する成型処理を行っておくことが好ましい。   In this embodiment, the mixed powder is sintered, but it is preferable to perform a molding process for maintaining the powder in a predetermined shape prior to sintering.

また、焼結処理は、焼結対を形成することができる限りにおいて限定されるものではなく、焼結炉を用いた通常の焼結であってもよいが、真空チャンバー内において加圧とパルス通電によって焼結を行ういわゆる放電プラズマ焼結であることは好ましい一例である。   In addition, the sintering process is not limited as long as a sintering pair can be formed, and may be normal sintering using a sintering furnace. A preferred example is so-called discharge plasma sintering, in which sintering is performed by energization.

また、焼結処理における温度は、所望の相形成を達成するために適宜調整されるものであり限定されるわけではないが、Ti及びCr金属の融点以下の温度であって、800℃以上1300度以下の範囲であることが好ましい。   Further, the temperature in the sintering treatment is appropriately adjusted to achieve a desired phase formation and is not limited, but is a temperature below the melting point of Ti and Cr metal, and is 800 ° C. or more and 1300 It is preferable that it is the range below a degree.

また、焼結処理における時間は、上記焼結方法、焼結温度等によって適宜調節されるべきものであり特に限定はされない。   Moreover, the time in the sintering treatment should be appropriately adjusted depending on the sintering method, sintering temperature, etc., and is not particularly limited.

以上、本方法は、より高出力となる熱電変換材料の製造方法となる。   As described above, this method is a method for producing a thermoelectric conversion material with higher output.

ここで、上記実施形態に係る熱電変換材料について、実際に作製を行いその効果を確認した。以下具体的に示す。   Here, about the thermoelectric conversion material which concerns on the said embodiment, it produced actually and confirmed the effect. This is specifically shown below.

まずルチル型のTiO粉末(粒径約0.3mm、純度99.0%)とCr粉末(粒径約10μm、純度98%)を所定の原子比(x=0.1,0.15,0.175,0.2,0.25,0.3,0.35,0.5)に秤量した。 First, rutile type TiO 2 powder (particle size: about 0.3 mm, purity: 99.0%) and Cr powder (particle size: about 10 μm, purity: 98%) are mixed at a predetermined atomic ratio (x = 0.1, 0.15, 0.175, 0.2, 0.25, 0.3, 0.35, 0.5).

このそれぞれに対し、別途混合処理を行った。具体的には、それぞれ秤量した粉末に対し、秤量した粉末と10mmのWC製ボール30個を内容積250mlのWC製ポットの約1/3となるよう充填および封入し、遊星型ボールミル(5/4型,株式会社フリッチュ製)によってそれぞれ混合した。   Each of these was separately mixed. Specifically, the weighed powder and 30 10 mm WC balls were filled and sealed into each of the weighed powders so as to be about 1/3 of a 250 ml WC pot, and a planetary ball mill (5 / 4 type, manufactured by Fritsch Co., Ltd.).

なお混合は、80mLのアセトンを溶媒として湿式で2h、アセトンを蒸発させてから乾式で2h、いずれも回転速度300rpmで行った。ただし、長時間回転させることによる発熱を防ぐため、湿式混合、乾式混合のいずれにおいても10min回転させる毎に2min中断して冷却する時間を設け、ポットの総回転時間が2hとなるよう混合した。   The mixing was carried out using 80 mL of acetone as a solvent in a wet manner for 2 h, and after evaporating the acetone, the dry method was carried out for 2 h, both at a rotational speed of 300 rpm. However, in order to prevent heat generation by rotating for a long time, in each of the wet mixing and the dry mixing, a cooling time was provided by interrupting for 2 minutes each time the rotation was performed for 10 minutes, and mixing was performed so that the total rotation time of the pot was 2 h.

ついで、上記混合した粉末それぞれを、グラファイトの型に充填し、放電プラズマ焼結(SPS:SPS−1030,住友石油鉱業株式会社製)した。焼結条件は真空中、印加圧力27.3MPa、焼結温度1273K、焼結保持時間5minとした。なお焼結後の冷却は炉冷とした。   Next, each of the mixed powders was filled into a graphite mold and subjected to spark plasma sintering (SPS: SPS-1030, manufactured by Sumitomo Oil Mining Co., Ltd.). The sintering conditions were an applied pressure of 27.3 MPa, a sintering temperature of 1273 K, and a sintering holding time of 5 min in vacuum. The cooling after sintering was furnace cooling.

一方、比較例として、x=0となるTiOと、Crのみのものを上記と同様の手順で作製した。 On the other hand, as a comparative example, TiO 2 where x = 0 and only Cr were prepared in the same procedure as described above.

そして、上記によって得られた焼結体から試験片を切り出し、XRDパターン、電気抵抗率、ゼーベック係数、出力因子、キャリア熱伝導率、について評価を行った。この結果を図1乃至図5にそれぞれ示す。また図6に、x=0.1,0.2,0.25,0.30,0.35,0.50に関し、作製した試験片のSEM画像を示しておく。なお、出力因子(P)は、電気抵抗率(ρ)とゼーベシック係数(S)を用い、P=S/ρの式により求めた。 And the test piece was cut out from the sintered compact obtained by the above, and the XRD pattern, the electrical resistivity, the Seebeck coefficient, the output factor, and the carrier thermal conductivity were evaluated. The results are shown in FIGS. FIG. 6 shows SEM images of the produced test pieces for x = 0.1, 0.2, 0.25, 0.30, 0.35, 0.50. In addition, the output factor (P) was calculated | required by the type | formula of P = S < 2 > / (rho) using the electrical resistivity ((rho)) and the Seebasic coefficient (S).

この結果、いずれの試験片においても半導体的挙動を示した。特に、値は10−4〜10−6Ωmと、Cr添加量x=0の比較例に比べ電気抵抗率は2〜3桁の大幅な低減が確認できた。 As a result, all the test pieces showed semiconductor behavior. In particular, the value was 10 −4 to 10 −6 Ωm, and the electrical resistivity was confirmed to be significantly reduced by 2 to 3 digits as compared with the comparative example in which the Cr addition amount x = 0.

一方で、ゼーベック係数については、Crの添加による低下が確認された。しかしながら、電気抵抗率の大幅な低減によって出力因子が向上することが確認でき、特に、Cr添加量0.175(17.5at%)のものは、973Kにおいて出力因子が0.65mW/Kmにまで達したことを確認した。 On the other hand, about Seebeck coefficient, the fall by addition of Cr was confirmed. However, it can be confirmed that the output factor is improved by greatly reducing the electrical resistivity. In particular, when the Cr addition amount is 0.175 (17.5 at%), the output factor is 0.65 mW / K 2 m at 973K. It was confirmed that it reached to.

以上本実施例によって、より高出力となる熱電変換材料及びその製造方法を提供することができることを確認した。   As described above, it was confirmed that the thermoelectric conversion material with higher output and the manufacturing method thereof can be provided by this example.

本発明は、熱伝変換材料およびその製造方法として産業上の利用可能性がある。   The present invention has industrial applicability as a heat transfer material and a method for producing the same.

Claims (3)

Ti1−xCr(0<x≦0.5、0<z≦0.13)の組成からなる焼結体を含む熱電変換材料。 A thermoelectric conversion material including a sintered body having a composition of Ti 1-x Cr x O z (0 <x ≦ 0.5, 0 <z ≦ 0.13). TiO粉末とCr粉末とを混合して混合粉末とし、
前記混合粉末を焼結する熱電変換材料の製造方法。
TiO 2 powder and Cr powder are mixed to form a mixed powder,
A method for producing a thermoelectric conversion material for sintering the mixed powder.
前記混合粉末は、Ti1−xCr(0<x≦0.5、0<z≦0.13)の組成からなる請求項2記載の熱電変換材料の製造方法。 The mixed powder, Ti 1-x Cr x O z (0 <x ≦ 0.5,0 <z ≦ 0.13) according to claim 2 method for producing a thermoelectric conversion material according to a composition of.
JP2014038954A 2014-02-28 2014-02-28 Thermoelectric conversion material and method for manufacturing the same Pending JP2015162664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038954A JP2015162664A (en) 2014-02-28 2014-02-28 Thermoelectric conversion material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038954A JP2015162664A (en) 2014-02-28 2014-02-28 Thermoelectric conversion material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015162664A true JP2015162664A (en) 2015-09-07

Family

ID=54185535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038954A Pending JP2015162664A (en) 2014-02-28 2014-02-28 Thermoelectric conversion material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015162664A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006590A (en) * 2002-03-26 2004-01-08 Toyota Central Res & Dev Lab Inc Thermoelectric converting material and its manufacturing method, and thermoelectric converting element
JP2006100683A (en) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Thermoelectric conversion material for titanium oxide
JP2007246294A (en) * 2006-03-13 2007-09-27 Osaka Univ Aluminum-containing zinc oxide sintered compact and method of manufacturing the same
JP2011119545A (en) * 2009-12-04 2011-06-16 National Institute Of Advanced Industrial Science & Technology Inter-metal compound thermoelectric conversion material containing oxygen, thermoelectric conversion element, and thermoelectric conversion module
JP2012512528A (en) * 2008-12-12 2012-05-31 コーニング インコーポレイテッド Titania semimetal composites as high temperature thermoelectric materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006590A (en) * 2002-03-26 2004-01-08 Toyota Central Res & Dev Lab Inc Thermoelectric converting material and its manufacturing method, and thermoelectric converting element
JP2006100683A (en) * 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Thermoelectric conversion material for titanium oxide
JP2007246294A (en) * 2006-03-13 2007-09-27 Osaka Univ Aluminum-containing zinc oxide sintered compact and method of manufacturing the same
JP2012512528A (en) * 2008-12-12 2012-05-31 コーニング インコーポレイテッド Titania semimetal composites as high temperature thermoelectric materials
JP2011119545A (en) * 2009-12-04 2011-06-16 National Institute Of Advanced Industrial Science & Technology Inter-metal compound thermoelectric conversion material containing oxygen, thermoelectric conversion element, and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
Shuai et al. Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high‐performance GeTe thermoelectric material
JP6127281B1 (en) Thermoelectric conversion material
JP2013138166A (en) Method for forming multi-element electro-thermal alloy
CN103168328B (en) Magnetic recording film sputtering target and manufacture method thereof
CN110592459B (en) High-entropy Half-Heusler thermoelectric material with low lattice thermal conductivity and preparation method thereof
TW201118058A (en) Indium oxide sintered body and indium oxide transparent conductive film
KR101043309B1 (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
JP2012174849A (en) Thermoelectric material
CN110088924B (en) Chalcogen-containing compound, method for producing the same, and thermoelectric element comprising the same
JP2015162664A (en) Thermoelectric conversion material and method for manufacturing the same
JP5828522B2 (en) Thermoelectric conversion material manufacturing method and manufacturing apparatus used therefor
JP6376380B2 (en) Method for producing lithium nickelate sputtering target
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP2018078219A (en) P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same
KR101375559B1 (en) Synthesizing method of higher manganese silicides thermoelectric material and higher manganese silicides thermoelectric material synthesized by the method
KR102304711B1 (en) Thermoelectric material for n-typed thermoelectric device
JP2019527668A (en) Chalcogen compound, method for producing the same, and thermoelectric device including the same
JP2017135287A (en) METHOD FOR PRODUCING Mg2Ge BASED THERMOELECTRIC MATERIAL
JP6755566B2 (en) Chalcogen compounds, their production methods, and thermoelectric devices containing them
JP6821235B2 (en) Chalcogen compounds, their production methods, and thermoelectric devices containing them
JP6799341B2 (en) Thermoelectric materials, their manufacturing methods and thermoelectric power generation modules using them
JP6618015B2 (en) Thermoelectric material, method for producing the same, and power generator
JP6877814B2 (en) Thermoelectric materials and thermoelectric elements containing them
JP2011214054A (en) Thermal spray powder for thermal barrier coating, thermal barrier coating, turbine member and gas turbine, and method of producing thermal spray powder for thermal barrier coating
JP2010222176A (en) ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180220