JPH0855775A - Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method - Google Patents

Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method

Info

Publication number
JPH0855775A
JPH0855775A JP18924094A JP18924094A JPH0855775A JP H0855775 A JPH0855775 A JP H0855775A JP 18924094 A JP18924094 A JP 18924094A JP 18924094 A JP18924094 A JP 18924094A JP H0855775 A JPH0855775 A JP H0855775A
Authority
JP
Japan
Prior art keywords
pattern
electron beam
area
drawing pattern
area density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18924094A
Other languages
Japanese (ja)
Inventor
Fumio Murai
二三夫 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18924094A priority Critical patent/JPH0855775A/en
Publication of JPH0855775A publication Critical patent/JPH0855775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve the accuracy of proximity effect by providing a drawing pattern for detecting that the accumulated energy by the electron beam at the position of arrangement has reached a certain value, having such a size as not to affect the drawing area density and being arranged approximately at the center of a pattern. CONSTITUTION:An electron beam drawing pattern is composed of a pattern 1, which decides drawing area density, and a pattern 2 for detection, which does not affect the drawing area density but detects that the accumulated energy of an electron beam at the point has reached a certain value from the pattern after development. The area pattern 1 is a uniform pattern where the lines of drawing parts L in width are arranged intervals S apart. Accordingly, defining that the drawing area density is A, A=L/(L+S). For the amount of irradiation given to the area pattern 1, the accumulated energy at the center of the detection pattern is sought by the specified formula. Hereby, the drawing pattern can be selected larger enough than the range of rear scattering, and reflection coefficient can be sought independent of other proximity effect pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子線描画方法に係り、
特に、近接効果を補正して描画を行う際、重要となる近
接効果パラメータの評価用パターン及びそれを用いた評
価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam drawing method,
In particular, the present invention relates to a proximity effect parameter evaluation pattern that is important when a proximity effect is corrected and drawing is performed, and an evaluation method using the same.

【0002】[0002]

【従来の技術】電子線描画では複数の描画パターンの間
隔が近づいたときパターン寸法が設計寸法よりも太くな
ったり、孤立した微細なパターンでは設計寸法よりも細
くなるという問題があり、これは近接効果現象として広
く知られている。
2. Description of the Related Art In electron beam drawing, there are problems that the pattern size becomes thicker than the design size when the intervals between a plurality of drawing patterns are close to each other, and the isolated fine pattern becomes thinner than the design size. It is widely known as an effect phenomenon.

【0003】この問題点を解消する手法は近接効果補正
と呼ばれ、いくつかの方法が提案されている。一般的に
は描画パターン毎に代表点を決め、この点に堆積する電
子線のエネルギを一定とするように与える最適電子線照
射量を計算機により計算するものである。この時重要と
なるのが電子線を照射した時、照射点から距離r離れた
点でどれだけのエネルギを堆積するかを現わす堆積エネ
ルギ分布関数とそこで用いられるパラメータ(近接効果
パラメータ)である。
A method for solving this problem is called proximity effect correction, and several methods have been proposed. In general, a representative point is determined for each drawing pattern, and the computer calculates the optimum electron beam irradiation dose given so that the energy of the electron beam deposited at this point is constant. At this time, what is important is the deposition energy distribution function that expresses how much energy is deposited at a distance r from the irradiation point when the electron beam is irradiated and the parameter (proximity effect parameter) used there. .

【0004】堆積エネルギ分布関数は次式の数1で示さ
れる二つのガウス関数の和の近似式(ダブルガウス近
似)がよく使われる。
As the deposition energy distribution function, an approximate expression (double Gaussian approximation) of the sum of two Gaussian functions represented by the following equation 1 is often used.

【0005】[0005]

【数1】 f(r)=(2/√π)[(1/α2){EXP(−r2/α2)} +(η/β2){EXP(−r2/β2)}] …(数1) ここで、f(r)は堆積エネルギ分布関数、α,β,η
は近接効果パラメータでそれぞれ前方散乱係数,後方散
乱係数,反射係数と呼ばれる。
F (r) = (2 / √π) [(1 / α 2 ) {EXP (−r 2 / α 2 )} + (η / β 2 ) {EXP (−r 2 / β 2 )) }] (Equation 1) where f (r) is a deposition energy distribution function, α, β, η
Are proximity effect parameters and are called forward scattering coefficient, back scattering coefficient, and reflection coefficient, respectively.

【0006】この近接効果パラメータの評価法(求め
方)についても多くの手法が知られている。例えば、技
術論文(マイクロエレクトロニック エンジニアリング
5巻141頁(Microelectronic Engineering 5(1986)
p.141)やプロシーディング オブ マイクロプロセス
カンファレンス 64頁(Proceeding of MicroProcess
Conference p.64 (1993))に見ることができる。しか
し、堆積エネルギ分布関数式(数1)に見られるように
三つの近接効果パラメータは互いに関連しており、描画
結果から独立にそれぞれのパラメータを求めることは困
難であった。
Many methods are known for the evaluation method (method of obtaining) of this proximity effect parameter. For example, technical paper (Microelectronic Engineering 5 Vol. 141 (Microelectronic Engineering 5 (1986)
p.141) and the Proceedings of Micro Process
Conference page 64 (Proceeding of MicroProcess
Conference p.64 (1993)). However, as shown in the deposition energy distribution function formula (Equation 1), the three proximity effect parameters are related to each other, and it was difficult to obtain each parameter independently from the drawing result.

【0007】一方、特開平3−225816 号公報で知られる
ように小領域内の描画面積率を計算して電子線照射量を
描画面積率から求めて描画を行い、近接効果を補正する
手法が提案されている。この場合には近接効果パラメー
タの内、特に反射係数ηが補正精度を決定するため、そ
の精密な評価が重要となっている。しかし、反射係数は
測定が困難であり、特に他の二つのパラメータと独立に
求めることが困難であった。
On the other hand, as known from Japanese Patent Laid-Open No. 3-225816, there is a method of correcting the proximity effect by calculating the drawing area ratio in a small area and obtaining the electron beam irradiation amount from the drawing area ratio to perform drawing. Proposed. In this case, of the proximity effect parameters, in particular, the reflection coefficient η determines the correction accuracy, and therefore precise evaluation thereof is important. However, it is difficult to measure the reflection coefficient, and especially it is difficult to obtain it independently of the other two parameters.

【0008】[0008]

【発明が解決しようとする課題】本発明で解決しようと
する課題は電子線描画における近接効果補正に不可欠の
パラメータである反射係数ηを他のパラメータとは独立
に求めることである。
The problem to be solved by the present invention is to obtain the reflection coefficient η which is an indispensable parameter for the proximity effect correction in electron beam drawing independently of other parameters.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明では図1に示すように電子線描画パターンを
描画面積密度を決定するパターン(以下面積パターンと
略す)1及び描画面積密度には影響を与えないがその点
での電子線の堆積エネルギが一定値となったことを現像
後のパターンから検知するための検出用パターン2で構
成する。図1の面積パターン1は描画部分の幅Lのライ
ンが間隔Sを隔てて配置された一様なパターンである。
従って描画面積密度をAとするとA=L/(L+S)で
ある。面積パターン1に与える照射量をD1、検出パタ
ーン2に与える照射量をD2とすると、検出パターンの
中心での堆積エネルギEは数1より求められ、数2とな
る。
In order to solve the above problems, in the present invention, as shown in FIG. 1, a pattern (hereinafter abbreviated as area pattern) 1 and a drawing area density for determining a drawing area density of an electron beam drawing pattern. However, the detection pattern 2 is used to detect from the pattern after development that the deposition energy of the electron beam at that point has a constant value. The area pattern 1 in FIG. 1 is a uniform pattern in which lines having a width L of a drawing portion are arranged with a space S therebetween.
Therefore, if the drawing area density is A, then A = L / (L + S). Assuming that the dose given to the area pattern 1 is D1 and the dose given to the detection pattern 2 is D2, the deposition energy E at the center of the detection pattern is obtained from the equation 1, and becomes the equation 2.

【0010】[0010]

【数2】 E=(1+A・η)・D1+D2 …(数2) 但し、図1において描画パターンの大きさWは後方散乱
係数βより十分大きく検出パターンの大きさはβより十
分小さいとする。異なる面積密度A(図1では異なるL
とSの組合せ)を有する描画パターンを電子線照射量を
変化させて描画現像を行い、検出用パターン2の形状あ
るいは膜厚が等しいものを選びだすと(数2)における
堆積エネルギが等しいことになる。従って複数の面積密
度Aa,Abを有するパターンとそれぞれに与えた電子
線照射量D1a,D2a,D1b,D2bがあれば数2よ
り数3となり、これにより反射係数は数4となる。
## EQU00002 ## E = (1 + A..eta.). Multidot.D1 + D2 (Expression 2) However, in FIG. 1, the size W of the drawing pattern is sufficiently larger than the backscattering coefficient .beta. And the size of the detection pattern is sufficiently smaller than .beta .. Different areal density A (different L in FIG. 1
(Combination of S and S), the drawing energy is changed by changing the electron beam irradiation amount, and if the shapes or thicknesses of the detection patterns 2 are selected, the deposition energy in (Equation 2) is equal. Become. Therefore, if there are patterns having a plurality of area densities Aa and Ab and the electron beam doses D1a, D2a, D1b, and D2b given to them, respectively, the expression 2 becomes the expression 3 and the reflection coefficient becomes the expression 4.

【0011】[0011]

【数3】 E=(1+Aa・η)・D1a+D2a=(1+Ab・η)D1b+D2b …(数3)[Equation 3] E = (1 + Aa · η) · D1a + D2a = (1 + Ab · η) D1b + D2b (Equation 3)

【0012】[0012]

【数4】 [Equation 4]

【0013】[0013]

【作用】本描画パターンでは、面積密度を決定する面積
パターン1としてライン/スペースパターンのように面
積密度が一様なパターンを選ぶことにより、あるいは扇
型のように評価点からの半径方向の距離によらず面積密
度が一定のパターンを選ぶことにより、描画パターンを
後方散乱の範囲より十分大きく選ぶことができる。この
結果他の近接効果パラメータとは独立に反射係数ηを求
めることが可能となった。
In this drawing pattern, a pattern having a uniform area density such as a line / space pattern is selected as the area pattern 1 which determines the area density, or a radial distance from the evaluation point such as a fan shape. Regardless of this, by selecting a pattern having a constant area density, the drawing pattern can be selected sufficiently larger than the range of backscattering. As a result, it became possible to obtain the reflection coefficient η independently of other proximity effect parameters.

【0014】また、従来の方法ではパターンの寸法測定
や電子顕微鏡による観察が必要であったが、検出パター
ン2の形状あるいは膜厚は金属顕微鏡の観察によって行
うことができるため迅速な評価が可能となる。
Further, in the conventional method, it was necessary to measure the dimensions of the pattern and observe it with an electron microscope. However, since the shape or the film thickness of the detection pattern 2 can be observed with a metallographic microscope, rapid evaluation is possible. Become.

【0015】[0015]

【実施例】【Example】

(実施例1)図2は本発明の実施例を示す図で面積パタ
ーンが扇形の場合の例である。点Oを中心として半径r
μm,中心角θ°の扇形の面積パターン3とそのほぼ中
心に検出パターン4を配置した。扇形の特徴は描画面積
密度が観測点Oからの距離rに依存せず中心角θのみに
依存することである。電子線の加速電圧が50kVの場
合には後方散乱の及ぶ範囲は20μm程度であるので半
径rを約20μm以上に選べば後方散乱の影響を全て取
り込むことができる。すなわち、後方散乱係数βの値に
かかわらず正しい反射係数を求めることができる。
(Embodiment 1) FIG. 2 is a view showing an embodiment of the present invention, which is an example in the case where the area pattern is a fan shape. Radius r centered on point O
A fan-shaped area pattern 3 having a μm and a central angle of θ ° and a detection pattern 4 are arranged substantially at the center thereof. The characteristic of the sector is that the drawing area density does not depend on the distance r from the observation point O but only on the central angle θ. When the accelerating voltage of the electron beam is 50 kV, the range of backscattering is about 20 μm, so if the radius r is selected to be about 20 μm or more, all the effects of backscattering can be captured. That is, the correct reflection coefficient can be obtained regardless of the value of the backscattering coefficient β.

【0016】本実施例では、図3に示すように、扇形の
半径rは25μmとし中心角θを0°,45°,90
°,135°,180°,225°,270°,315
°,360°の9種類のパターンを設計した。この9種
類のパターンの集合をパターン群とした。検出パターン
4は一辺が1μmの正方形とした。面積パターン3に与
える照射量をD1、検出パターン4に与える照射量をD
2としたとき、数5によりkを定義する。
In this embodiment, as shown in FIG. 3, the radius r of the sector is 25 μm and the central angle θ is 0 °, 45 °, 90 °.
°, 135 °, 180 °, 225 °, 270 °, 315
Nine kinds of patterns of 90 ° and 360 ° were designed. The set of 9 types of patterns was defined as a pattern group. The detection pattern 4 was a square with one side of 1 μm. The dose given to the area pattern 3 is D1, and the dose given to the detection pattern 4 is D
When k is 2, k is defined by Equation 5.

【0017】[0017]

【数5】 k=D2/D1 …(数5) 電子線描画において照射量を変化させて描画を行う際、
パターン群全体の照射量を変化させるが、常にkを一定
としたままでD1,D2の照射量を変化させた。この
時、数2は数6と変形される。
[Equation 5] k = D2 / D1 (Equation 5) When electron beam writing is performed by changing the irradiation amount,
Although the irradiation dose of the entire pattern group was changed, the irradiation doses of D1 and D2 were changed while keeping k constant. At this time, the equation 2 is transformed into the equation 6.

【0018】[0018]

【数6】 E={(1+k)+A・η}・D1 …(数6) 中心角θ=0°の時すなわち描画面積密度A=0の時検
出パターンが解像する最小の照射量をD0とすると数7
となる。
[Equation 6] E = {(1 + k) + A · η} · D1 (Equation 6) When the central angle θ = 0 °, that is, when the drawing area density A = 0, the minimum irradiation amount that the detection pattern resolves is D0. Then the number 7
Becomes

【0019】[0019]

【数7】 E=(1+k)・D1=D0 …(数7) 次に、描画面積密度Aの関数f(A)を次式のように数
8と定義すると、数6と数7より数9となり、f(A)
は描画面積密度Aに比例しその直線の傾きから反射係数
ηが求められる。
[Equation 7] E = (1 + k) · D1 = D0 (Equation 7) Next, if the function f (A) of the drawing area density A is defined as Equation 8 as in the following equation, Equation 6 and Equation 7 9 and f (A)
Is proportional to the drawing area density A, and the reflection coefficient η is obtained from the slope of the straight line.

【0020】[0020]

【数8】 f(A)=D0/D1−(1+k) …(数8)F (A) = D0 / D1- (1 + k) (Equation 8)

【0021】[0021]

【数9】 f(A)=A・η …(数9) シリコン基板上にネガ型電子線レジストSAL601
(シップレイファーイースト社商品名)を1.0μm 塗
布し図3に示したパターンを加速電圧50kVの電子線
により照射量2μC/cm2から1%きざみで20μC/c
m2まで変化させて描画した。また、数5のkの値は0.
2 とした。70%に希釈したMF312(シップレイ
ファーイースト社商品名)で2分間現像した後、金属顕
微鏡によりパターンを観察した。各描画面積密度毎に検
出パターンがちょうど解像する最小の照射量を選びだし
た。
F (A) = A · η (Equation 9) Negative electron beam resist SAL601 on a silicon substrate
1% increments from dose 2μC / cm 2 the pattern shown (the ship lay Far East trade name) to 1.0μm coated view 3 by electron beam at an acceleration voltage 50 kV 20 [mu] C / c
It was drawn by changing to m 2 . Also, the value of k in Equation 5 is 0.
It was 2. After developing with MF312 (trade name of Shipleigh Far East Co., Ltd.) diluted to 70% for 2 minutes, the pattern was observed with a metallurgical microscope. The minimum irradiation dose at which the detection pattern was just resolved was selected for each drawing area density.

【0022】図4はこの照射量を数8に従ってf(A)
を計算しAの関数としてプロットしたものを示す。測定
点を最小自乗法により直線近似すると数10となり、反
射係数は直線の傾きより反射係数ηは数11と求められ
た。
FIG. 4 shows this irradiation dose as f (A)
Is plotted and plotted as a function of A. When the measurement points were linearly approximated by the method of least squares, the result was Equation 10, and the reflection coefficient η was obtained from Equation 11 from the slope of the straight line.

【0023】[0023]

【数10】 f(A)=0.0945+0.817A …(数10)F (A) = 0.0945 + 0.817A (Equation 10)

【0024】[0024]

【数11】 η=0.817 …(数11) (実施例2)図5は異なる反射係数測定用描画パターン
の実施例を示すものである。本実施例では図3の扇形の
代わりに全体形状を正方形としたものである。可変成型
電子線描画装置を用いる場合、円形あるいは扇形のパタ
ーンを描画するには描画時間がかかるため矩形あるいは
三角形パターンが望ましい。正方形の一辺を後方散乱の
及ぶ範囲の2倍以上に選べば扇形の場合と同様に後方散
乱係数の値によらず反射係数のみを求めることができ
る。本実施例では正方形の一辺を50μmとし、検出パ
ターン4を0.5μm 角の矩形とした。
[Equation 11] η = 0.817 (Equation 11) (Embodiment 2) FIG. 5 shows an embodiment of a different reflection coefficient measurement drawing pattern. In the present embodiment, the entire shape is square instead of the fan shape in FIG. When a variable-shaped electron beam drawing apparatus is used, it takes a drawing time to draw a circular or fan-shaped pattern, so a rectangular or triangular pattern is preferable. If one side of the square is selected to be at least twice the range of the backscattering, only the reflection coefficient can be obtained regardless of the value of the backscattering coefficient as in the case of the fan shape. In this embodiment, one side of the square is 50 μm, and the detection pattern 4 is a rectangle of 0.5 μm square.

【0025】実施例1と同様のプロセスにより測定した
結果を図6に示す。ただし本実施例では数5のkの値を
0.5,1.0,1.5,2.0の四通りについて評価を行
った。それぞれのkの値で反射係数ηの値は0.84
2,0.847,0.847, 0.845 とよく一致し
た値が得られた。
The results measured by the same process as in Example 1 are shown in FIG. However, in this example, the value of k of the equation 5 was evaluated for four ways of 0.5, 1.0, 1.5, and 2.0. The value of the reflection coefficient η is 0.84 for each value of k.
The values were in good agreement with 2, 0.847, 0.847 and 0.845.

【0026】(実施例3)次に反射係数評価用のさらに
異なる描画パターンを図7に示す。図7は描画面積密度
を決定するパターンを微細な矩形とし矩形間の距離を変
えることで描画面積密度を変えるように設計したもので
ある。全体形状はW1(=30μm)の2倍で60μm
の矩形状のパターンである。面積密度決定用矩形5の一
辺W3は0.1μm ,検出用矩形パターン6の一辺は1
μmである。矩形5間の距離S1を変えることによって
描画面積密度Aを数12と変更することができる。
(Embodiment 3) FIG. 7 shows a further different drawing pattern for evaluating the reflection coefficient. FIG. 7 shows a design in which the pattern for determining the drawing area density is a fine rectangle and the drawing area density is changed by changing the distance between the rectangles. The overall shape is 60 μm, which is twice W1 (= 30 μm)
Is a rectangular pattern. One side W3 of the area density determination rectangle 5 is 0.1 μm, and one side W3 of the detection rectangular pattern 6 is 1.
μm. By changing the distance S1 between the rectangles 5, the drawing area density A can be changed to Eq.

【0027】[0027]

【数12】 A=W32/{2・(W3+S1)2} …(数12) 矩形5の代わりに点ビーム型の電子線描画装置において
はドットパターンとすることができる。
[Equation 12] A = W3 2 / {2 · (W3 + S1) 2 } (Equation 12) Instead of the rectangle 5, a dot pattern can be used in a point beam type electron beam drawing apparatus.

【0028】(実施例4)シリコン基板上に厚さ0.25μ
mのタングステンを蒸着した基板を用いて本発明により
求められた近接効果パラメータを使用して近接効果補正
の有効性を確認した。反射係数の測定には実施例2で示
した矩形の描画パターンを用い、反射係数η=1.08
の値を得た。次に可変成型電子線描画装置HL800D(日立
製作所商品名)を用い描画を行った。各描画パターン毎
の電子線照射量Dは描画パターン周辺の5μm角内の描
画面積密度Aに応じて数13で与えられる補正を加え
た。
(Embodiment 4) A thickness of 0.25 μm is formed on a silicon substrate.
The effectiveness of proximity effect correction was confirmed using the proximity effect parameters determined by the present invention using a substrate on which m tungsten was vapor-deposited. The rectangular drawing pattern shown in Example 2 was used for the measurement of the reflection coefficient, and the reflection coefficient η = 1.08.
Got the value of. Next, drawing was performed using a variable shaping electron beam drawing device HL800D (Hitachi Ltd. product name). The electron beam irradiation amount D for each drawing pattern was corrected according to the drawing area density A within 5 μm square around the drawing pattern, which was given by the equation 13.

【0029】[0029]

【数13】 D=Ds/(1+2・A・η) …(数13) ここでDsは描画面積密度が50%の場合の標準の照射
量である。描画後のパターン寸法測定結果を補正を加え
なかった場合と併せて図8(a),(b)に示す。補正
を加えたものでは設計寸法に依らず設計値からの寸法シ
フトが一定となっており、本発明で用いたパラメータ評
価用パターン及び評価法が正しいことを示している。
[Equation 13] D = Ds / (1 + 2.A. [Eta]) (Equation 13) Here, Ds is a standard irradiation amount when the drawing area density is 50%. The pattern dimension measurement results after drawing are shown in FIGS. 8A and 8B together with the case where no correction is made. With the correction, the dimension shift from the design value is constant regardless of the design dimension, which shows that the parameter evaluation pattern and the evaluation method used in the present invention are correct.

【0030】[0030]

【発明の効果】本発明の描画パターンに依れば、近接効
果パラメータの内反射係数ηが他のパラメータとは独立
に正確に求めることができるため近接効果の精度を向上
させることができる。また実施例2,実施例3で示した
ように、金属顕微鏡の観測のみでパラメータの評価が行
えるため安価で迅速な測定が可能となる。
According to the drawing pattern of the present invention, since the internal reflection coefficient η of the proximity effect parameter can be accurately determined independently of other parameters, the accuracy of the proximity effect can be improved. Further, as shown in Examples 2 and 3, since the parameters can be evaluated only by observing with a metallographic microscope, inexpensive and quick measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の近接効果パラメータの評価用描画パタ
ーンの説明図。
FIG. 1 is an explanatory diagram of a drawing pattern for evaluation of proximity effect parameters according to the present invention.

【図2】本発明の実施例1で示した近接効果パラメータ
の評価用描画パターンの説明図。
FIG. 2 is an explanatory diagram of a drawing pattern for evaluation of proximity effect parameters shown in the first embodiment of the present invention.

【図3】本発明の実施例1で示した近接効果パラメータ
の評価用描画パターンの説明図。
FIG. 3 is an explanatory diagram of a drawing pattern for evaluation of proximity effect parameters shown in the first embodiment of the present invention.

【図4】本発明の第1の実施例で示した近接効果パラメ
ータの評価用描画パターンを用いて評価した場合の描画
面積密度Aと関数f(A)の関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a drawing area density A and a function f (A) when evaluated using the drawing pattern for evaluation of proximity effect parameters shown in the first embodiment of the present invention.

【図5】本発明の実施例2で示した近接効果パラメータ
の評価用描画パターンの説明図。
FIG. 5 is an explanatory diagram of a drawing pattern for evaluation of proximity effect parameters shown in the second embodiment of the present invention.

【図6】本発明の実施例2で示した近接効果パラメータ
の評価用描画パターンを用いて評価した場合の描画面積
密度Aと関数f(A)の関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the drawing area density A and the function f (A) when evaluated using the drawing pattern for evaluation of proximity effect parameters shown in the second embodiment of the present invention.

【図7】本発明の実施例3で示した近接効果パラメータ
の評価用描画パターンの説明図。
FIG. 7 is an explanatory view of a drawing pattern for evaluation of proximity effect parameters shown in the third embodiment of the present invention.

【図8】本発明の実施例4で示した近接効果補正を加え
た場合と補正のない場合のパターン寸法測定結果を示す
特性図。
FIG. 8 is a characteristic diagram showing pattern dimension measurement results with and without the proximity effect correction shown in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1…描画面積密度を決定する面積パターン、2…堆積エ
ネルギが一定レベルに達していることを確認するための
検出パターン、L…ライン/スペースパターンのライン
部の長さ、S…ライン/スペースパターンのスペース部
の長さ、W…評価パターンの寸法。
1 ... Area pattern for determining drawing area density, 2 ... Detection pattern for confirming that the deposition energy has reached a certain level, L ... Length of line portion of line / space pattern, S ... Line / space pattern The length of the space portion of W, the dimension of the evaluation pattern.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】電子線描画における近接効果の評価を行う
ための描画パターンであって、一定領域内全体の面積に
対する描画パターンの占める割合を描画面積密度とする
とき、前記描画パターンは、一定領域内の描画面積密度
を主に決定するための描画パターンと、描画面積密度に
影響を与えない大きさをもち前記描画パターンの約中心
に配置され配置位置での電子線による堆積エネルギが一
定値に達したことを検知するための検出用描画パターン
とから構成されていることを特徴とする電子線描画用パ
ターン。
1. A drawing pattern for evaluating a proximity effect in electron beam drawing, wherein the drawing area density is a ratio of the drawing pattern to the entire area of the constant area, the drawing pattern is the constant area. A drawing pattern for mainly determining the drawing area density in the inside and a size that does not affect the drawing area density and is arranged at about the center of the drawing pattern and the deposition energy by the electron beam at the arrangement position becomes a constant value. An electron beam drawing pattern, comprising: a detection drawing pattern for detecting the arrival.
【請求項2】請求項1において、前記描画パターンは異
なる描画面積密度を有する複数の前記描画パターンと同
一の形状を有する複数の前記検出用描画パターンとから
構成されている電子線描画用パターン。
2. The electron beam drawing pattern according to claim 1, wherein the drawing pattern is composed of a plurality of the drawing patterns having different drawing area densities and a plurality of the detection drawing patterns having the same shape.
【請求項3】請求項1パターンにおいて、個々の描画面
積密度を有する描画パターンの大きさは電子線の後方散
乱の及ぼす影響の範囲より大きい電子線描画用パター
ン。
3. The electron beam drawing pattern according to claim 1, wherein the size of the drawing pattern having each drawing area density is larger than the range of influence of backscattering of the electron beam.
【請求項4】請求項1において、一定領域内の描画面積
密度を決定するための前記描画パターンは扇形であって
異なる描画面積密度を与える描画用パターンは異なる中
心角を有する扇形を用いた電子線描画用パターン。
4. The electron according to claim 1, wherein the drawing pattern for determining the drawing area density in a certain region is fan-shaped, and the drawing patterns giving different drawing area densities are fan-shaped having different central angles. Line drawing pattern.
【請求項5】請求項3において、一定領域内の描画面積
密度を決定するための前記描画パターンは扇形パターン
の中心領域を矩形で切りだした形状である電子線描画用
パターン。
5. The electron beam drawing pattern according to claim 3, wherein the drawing pattern for determining the drawing area density in a certain area is a shape obtained by cutting out a central area of a fan-shaped pattern with a rectangle.
【請求項6】請求項1において、一定領域内の描画面積
密度を決定するための前記描画パターンは一定の幅と間
隔とを有する線状パターン群であって異なる描画面積密
度を得るためには異なる線幅あるいは線間隔を用いた電
子線描画用パターン。
6. The drawing pattern for determining the drawing area density in a certain area according to claim 1, wherein the drawing patterns are linear patterns having a constant width and a certain interval, and different drawing area densities are obtained. An electron beam drawing pattern that uses different line widths or line intervals.
【請求項7】請求項1において、一定領域内の描画面積
密度を決定するための前記描画パターンは一定の面積と
間隔とを有する矩形または円パターン群であって異なる
描画面積密度を得るためには異なる面積の矩形パターン
または円パターンを用いるかあるいは異なるパターン間
隔を用いた電子線描画用パターン。
7. The drawing pattern for determining the drawing area density in a certain area according to claim 1, wherein the drawing patterns are rectangular or circular pattern groups having a constant area and a certain interval, and different drawing area densities are obtained. Is an electron beam drawing pattern that uses rectangular patterns or circular patterns with different areas or uses different pattern intervals.
【請求項8】一定領域内全体の面積に対する描画パター
ンの占める割合を描画面積密度として一定領域内の描画
面積密度を主に決定するための描画パターンと描画面積
密度に影響を与えない大きさを有した検出用描画パター
ンとから構成されたパターンを電子線描画用パターンと
するとき、基板上に電子線レジストを塗布する工程,異
なる描画面積密度を有する複数の電子線描画用パターン
を複数種類の電子線照射量により描画する工程,電子線
レジストを現像する工程,前記検出用描画パターンのレ
ジスト形状あるいはレジスト膜厚に一つ判断基準を設け
る工程,一つの描画面積密度の前記描画パターンに対し
て判断基準に合致するレジストパターン形状あるいはレ
ジスト膜厚を与える電子線照射量を選ぶ工程,選ばれた
電子線照射量と描画面積密度とより近接効果のパラメー
タを求めることを特徴とする近接効果評価方法。
8. A drawing pattern for mainly determining the drawing area density in a fixed area and a size that does not affect the drawing area density, where the ratio of the drawing pattern to the entire area in the fixed area is the drawing area density. When an electron beam drawing pattern is formed from the detection drawing pattern that is provided, a step of applying an electron beam resist on the substrate, a plurality of electron beam drawing patterns having different drawing area densities Step of drawing by electron beam irradiation amount, step of developing electron beam resist, step of setting one judgment criterion for resist shape or resist film thickness of the drawing pattern for detection, for the drawing pattern of one drawing area density The process of selecting the electron beam dose that gives the resist pattern shape or resist film thickness that matches the judgment criteria, and the selected electron beam dose Proximity effect evaluation method characterized by determining the parameters of the more proximity effect and areal density.
【請求項9】請求項8において、前記描画パターンに与
える電子線照射量と検出用描画パターンに与える電子線
照射量の比を一定に保ったままで描画パターン全体の電
子線照射量を変化させ近接効果のパラメータを求める近
接効果評価方法。
9. The approach according to claim 8, wherein the electron beam irradiation amount of the entire drawing pattern is changed while keeping the ratio of the electron beam irradiation amount given to the drawing pattern and the electron beam irradiation amount given to the detection drawing pattern constant. A proximity effect evaluation method for obtaining effect parameters.
【請求項10】請求項1において、前記電子線描画パタ
ーンにより求められた近接効果パラメータを用いて描画
位置近傍の描画面積密度に依存して電子線照射量を変化
させることにより近接効果を補正し電子線描画を行う電
子線描画方法。
10. The proximity effect is corrected by changing the electron beam irradiation dose depending on the drawing area density near the drawing position using the proximity effect parameter obtained by the electron beam drawing pattern. An electron beam drawing method for performing electron beam drawing.
JP18924094A 1994-08-11 1994-08-11 Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method Pending JPH0855775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18924094A JPH0855775A (en) 1994-08-11 1994-08-11 Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18924094A JPH0855775A (en) 1994-08-11 1994-08-11 Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method

Publications (1)

Publication Number Publication Date
JPH0855775A true JPH0855775A (en) 1996-02-27

Family

ID=16237965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18924094A Pending JPH0855775A (en) 1994-08-11 1994-08-11 Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method

Country Status (1)

Country Link
JP (1) JPH0855775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281513B1 (en) 1998-06-12 2001-08-28 Matsushita Electric Industrial Co., Ltd. Pattern forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281513B1 (en) 1998-06-12 2001-08-28 Matsushita Electric Industrial Co., Ltd. Pattern forming method

Similar Documents

Publication Publication Date Title
JP3288794B2 (en) Charge beam correction method and mark detection method
JPH10289851A (en) Charged particle beam exposing device
JPH0262941B2 (en)
US5877505A (en) Apparatus for determining mark position on wafer
JPH0855775A (en) Pattern for drawing electron beam, and proximity effect evaluation method using it, and electron beam drawing method
JP3737656B2 (en) Charged beam exposure method
JP2002008960A (en) Target mark member, its manufacturing method and electron beam exposure system
JP3697494B2 (en) Beam edge blur measurement method and refocus amount determination method, stencil mask used in these methods, and charged particle beam exposure method and apparatus
US4737646A (en) Method of using an electron beam
JPS584314B2 (en) Electron beam measuring device
JP2020535583A (en) Image contrast enhancement in sample inspection
JP2687256B2 (en) X-ray mask making method
JPH09186070A (en) Variable shaped beam estimation method
JPS6317331B2 (en)
JPH04144119A (en) Electron beam lithographic device and method of adjusting the same
JP3014022B2 (en) Film thickness equalizer
JP2806240B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method
JPS61292844A (en) Method for determining shape of ion beam
JPS628015B2 (en)
JP3140041B2 (en) Electron beam exposure method
JP3334341B2 (en) Electron beam exposure method
JPS633451B2 (en)
JPH11224642A (en) Electron beam exposure device and electron beam exposure method
JPS6244406B2 (en)
JPS61101027A (en) Reference mark for electron beam drawing device