JP2806240B2 - Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method - Google Patents

Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Info

Publication number
JP2806240B2
JP2806240B2 JP34626893A JP34626893A JP2806240B2 JP 2806240 B2 JP2806240 B2 JP 2806240B2 JP 34626893 A JP34626893 A JP 34626893A JP 34626893 A JP34626893 A JP 34626893A JP 2806240 B2 JP2806240 B2 JP 2806240B2
Authority
JP
Japan
Prior art keywords
heavy metal
reference mark
electron beam
calibration
beam exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34626893A
Other languages
Japanese (ja)
Other versions
JPH07183360A (en
Inventor
謙 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34626893A priority Critical patent/JP2806240B2/en
Publication of JPH07183360A publication Critical patent/JPH07183360A/en
Application granted granted Critical
Publication of JP2806240B2 publication Critical patent/JP2806240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子線露光装置におい
て、装置較正に用いる較正用基準マークに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calibration reference mark used for calibrating an electron beam exposure apparatus.

【0002】[0002]

【従来の技術】電子線露光を用いて所望パターンを得る
ための電子線露光装置において、電子線露光の前に実施
される電子線露光装置の較正は、従来、図4に示すよう
に、露光対象であるウェハ、レチクル等(1)を移動さ
せるためのステージ(2)上に設置された、図5及び図
6で示すような凹凸上の段差を持った重金属の較正用基
準マーク(3)に、入射電子線(4)を走査(偏向)さ
せて得られる反射電子信号(5)を検出器(6)により
検出して行われていた。つまり、この基準マーク(3)
から得られる反射電子信号(5)から、ステージ位置測
定を行い、実際の露光の際に必要な電子線偏向時の偏向
歪較正を実施し、また、この反射電子信号(5)から入
射電子線のビームサイズを検出し、ビームサイズ較正等
を行っていた。しかし、これらの較正用基準マーク
(3)を用いた場合、段差部からの反射電子信号(5)
対平坦部からの反射電子信号(5)比(S/N比)が低
いため、ステージ位置検出やビームサイズ検出等の精度
が低く、装置較正精度の劣化を招くという欠点が生じ
る。
2. Description of the Related Art In an electron beam exposure apparatus for obtaining a desired pattern by using an electron beam exposure, the calibration of the electron beam exposure apparatus performed before the electron beam exposure has conventionally been performed as shown in FIG. A reference mark (3) for calibration of a heavy metal having a step on unevenness as shown in FIGS. 5 and 6, which is set on a stage (2) for moving a target wafer, reticle, etc. (1). Then, the reflected electron signal (5) obtained by scanning (deflecting) the incident electron beam (4) is detected by the detector (6). That is, this reference mark (3)
The stage position is measured from the reflected electron signal (5) obtained from the above, the deflection distortion calibration at the time of electron beam deflection necessary for actual exposure is performed, and the reflected electron signal (5) is used to calculate the incident electron beam. Was detected, and beam size calibration and the like were performed. However, when these calibration reference marks (3) are used, the reflected electron signal (5)
Since the ratio (S / N ratio) of the backscattered electron signal (5) from the flat portion is low, the accuracy of stage position detection, beam size detection, and the like is low, resulting in a disadvantage that the device calibration accuracy is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】図5及び、図6に従来
の電子線露光装置に用いられている装置較正用基準マー
クの構造を示す。図5に示す装置較正用基準マーク構造
の場合、段差部(凸部)(7)と平坦部(8)の材料が
同じ重金属であるW,Ta等(9)であるため、平坦部
(8)からの反射電子信号(5)が段差部(7)の信号
(5)と同程度検出され、反射電子信号(5)の1次微
分波形(10)のピーク値が低く、且つ平坦部(8)か
らの反射電子信号(5)がバックグラウンドノイズにな
るため、S/N比が低くなってしまう。
FIG. 5 and FIG. 6 show the structure of an apparatus calibration reference mark used in a conventional electron beam exposure apparatus. In the case of the reference mark structure for device calibration shown in FIG. 5, since the material of the step portion (convex portion) (7) and the flat portion (8) are the same heavy metal such as W, Ta or the like (9), the flat portion (8) is used. ) Is detected to the same degree as the signal (5) of the step portion (7), the peak value of the first derivative waveform (10) of the reflected electron signal (5) is low, and the flat portion ( Since the reflected electron signal (5) from 8) becomes background noise, the S / N ratio becomes low.

【0004】図6のような装置較正用基準マーク構造は
図5で示したマーク構造の欠点であるピーク値の低下を
回避する方法として知られている。これは、装置較正用
でなく、実際の露光時の露光位置検出用基準マークとし
て特開昭62−1011号公報「集積化素子の製造方
法」に記載のものが知られている。しかし、W,Ta等
の重金属(9)である段差部(7)と異なるSi,Al
等の軽元素(11)を平坦部(8)に用いるため、1次
微分波形(10)のピーク値強度は向上するが、平坦部
(8)からの反射電子信号(5)が図5のマーク構造の
場合と同様にバックグラウンドノイズとして検出される
ため、S/N比の大幅な向上は望めない。
A reference mark structure for device calibration as shown in FIG. 6 is known as a method for avoiding a decrease in peak value which is a drawback of the mark structure shown in FIG. This is not for device calibration, but is known as a reference mark for exposure position detection at the time of actual exposure, which is described in Japanese Patent Application Laid-Open No. 62-1011, entitled "Method of Manufacturing Integrated Device". However, Si, Al different from the step portion (7) which is a heavy metal (9) such as W, Ta, etc.
Since the light element (11) such as is used for the flat portion (8), the peak value intensity of the first-order differential waveform (10) is improved, but the reflected electron signal (5) from the flat portion (8) is shown in FIG. Since it is detected as background noise as in the case of the mark structure, a significant improvement in the S / N ratio cannot be expected.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するためのもので、半導体基板上もしくは薄膜上に設
けた電子線エネルギを吸収し反応するレジスト膜を電子
線を用いて露光し、所望のパターンを形成する電子線露
光装置の装置較正時に用いる較正用基準マークにおい
て、前記基準マークが軽元素の下地基板並びにその下地
基板上の重金属材料の凸部及び前記凸部の周囲を凸部と
同一の重金属材料の平坦部で形成され、平坦部における
重金属材料膜厚が凸部における重金属材料の膜厚よりも
小さく、平坦部での重金属材料の膜厚が重金属中におけ
る入射電子の最大飛程距離の約1/5であることを特徴
とする装置較正用基準マークである。また、その軽元素
の下地基板が、SiまたはAlであり、また重金属の薄
膜が、W,またはTaであることを特徴とするものであ
り、さらにまた前記較正用基準マークを用いて電子線露
光装置の装置較正を行うことを特徴とする装置較正方法
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a resist film provided on a semiconductor substrate or a thin film and absorbing and reacting to electron beam energy is exposed by using an electron beam. A reference mark for calibration used at the time of device calibration of an electron beam exposure apparatus for forming a desired pattern, wherein the reference mark is convex on a base substrate of a light element and a convex portion of a heavy metal material on the base substrate and around the convex portion. Is formed of a flat portion of the same heavy metal material as the portion, the thickness of the heavy metal material at the flat portion is smaller than the thickness of the heavy metal material at the convex portion, and the thickness of the heavy metal material at the flat portion is the maximum of the incident electrons in the heavy metal. This is a reference mark for device calibration, which is about 1/5 of the range distance. Further, the light element base substrate is Si or Al, and the heavy metal thin film is W or Ta. Further, electron beam exposure is performed using the calibration reference mark. An apparatus calibration method characterized by performing apparatus calibration of an apparatus.

【0006】[0006]

【作用】本発明において、電子線露光装置の装置較正用
基準マーク構造が、軽元素の下地基板並びにその下地基
板上の重金属材料の凸部及び前記凸部の周囲を凸部と同
一の重金属材料の平坦部で形成され、平坦部における重
金属材料膜厚が凸部における重金属材料の膜厚よりも小
さく、平坦部での重金属材料の膜厚が重金属中における
入射電子の最大飛程距離の約1/5であることを特徴と
しているもので、つまり、平坦部上にも最適な膜厚を持
つ段差の凸部と同じ材料である重金属膜を被覆させるこ
とにより、バックグラウンドノイズの原因となる平坦部
からの反射電子信号を低減させ、S/N比の向上を図る
ことができるものである。
According to the present invention, the reference mark structure for calibrating the apparatus of the electron beam exposure apparatus comprises a base substrate made of a light element, a convex portion of the heavy metal material on the base substrate, and the same heavy metal material as the convex portion around the convex portion. The thickness of the heavy metal material at the flat portion is smaller than the thickness of the heavy metal material at the convex portion, and the thickness of the heavy metal material at the flat portion is about 1 of the maximum range of incident electrons in the heavy metal. / 5, that is, by coating a heavy metal film, which is the same material as the convex portion of the step having the optimum film thickness, on the flat portion, so that the flat noise causing the background noise is formed. The reflected electron signal from the section can be reduced, and the S / N ratio can be improved.

【0007】[0007]

【実施例】本発明の実施例について、図面を参照して説
明する。図1に本発明の実施例である装置較正用基準マ
ークの構造を示す。装置較正を実施する場合、入射電子
(4)を図1中に示すX軸方向に走査(偏向)させ、反
射電子信号(5)を検出器(6)にて検出し、この反射
電子信号(5)の1次微分波形(10)のピーク値から
段差部中心の位置検出を、また、ピーク値間からビーム
サイズ検出等を行う。そして、これらを基に電子線走査
(偏向)時の偏向歪や入射電子線(4)のビームサイズ
を定量し、電子線露光装置の装置較正を行う。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of an apparatus calibration reference mark according to an embodiment of the present invention. When performing device calibration, incident electrons (4) are scanned (deflected) in the X-axis direction shown in FIG. 1, a reflected electron signal (5) is detected by a detector (6), and the reflected electron signal (5) is detected. The position of the center of the step is detected from the peak value of the primary differential waveform (10) of 5), and the beam size is detected from between the peak values. Then, based on these, the deflection distortion at the time of electron beam scanning (deflection) and the beam size of the incident electron beam (4) are quantified to calibrate the electron beam exposure apparatus.

【0008】本発明において、Si,Al等の軽元素で
ある下地基板(11)上の平坦部(8)に、段差部
(7)と同一な重金属であるW,Ta等(9)の薄膜を
最適な膜厚(0.5〜1.0μm程度)で形成させるこ
とにより、入射電子(4)は重金属薄膜(9)を透過
し、軽元素である下地基板(11)へ注入される。下地
基板(11)に注入された入射電子(4)は下地基板
(11)内で散乱し、さらに重金属薄膜(9)との界面
でも散乱され、入射エネルギを消失する。そのため、重
金属薄膜(9)に再突入し、平坦部(8)表面から検出
される反射電子信号(5)はほとんどなくなってしま
う。
In the present invention, a thin film of the same heavy metal (W, Ta, etc., (9) as the step portion (7)) is formed on a flat portion (8) on a base substrate (11), which is a light element such as Si or Al. Is formed with an optimum thickness (about 0.5 to 1.0 μm), so that the incident electrons (4) pass through the heavy metal thin film (9) and are injected into the underlying substrate (11) which is a light element. The incident electrons (4) injected into the base substrate (11) are scattered in the base substrate (11) and further scattered at the interface with the heavy metal thin film (9), so that the incident energy is lost. For this reason, the re-entry into the heavy metal thin film (9) and the reflected electron signal (5) detected from the surface of the flat portion (8) almost disappears.

【0009】つまり、バックグラウンドノイズの原因と
なる平坦部(8)からの反射電子信号(5)を低減させ
ることが可能になり、S/N比の向上が可能となる。す
なわち、この構造を持った較正用基準マークを用いるこ
とにより、精度の良い装置較正が可能となる。ここで、
重金属薄膜(9)の最適な膜厚は入射電子(4)の加速
電圧、重金属薄膜(9)の膜密度等によって決定される
ものである。例えば、入射電子(4)の加速電圧が50
kVであり、重金属膜(9)にWを用いた場合、入射電
子(4)のW中への最大飛程距離は約3.0μmであ
り、また、入射電子(4)のバルク材料への静止確立分
布は通常ガウス分布で表せられるため、最適膜厚を約1
/5である0.6μmにすれば、約90%以上の電子は
W膜(9)を透過する。
That is, it is possible to reduce the reflected electron signal (5) from the flat portion (8) which causes the background noise, and to improve the S / N ratio. In other words, the use of the calibration reference mark having this structure enables highly accurate device calibration. here,
The optimum thickness of the heavy metal thin film (9) is determined by the acceleration voltage of the incident electrons (4), the film density of the heavy metal thin film (9), and the like. For example, if the acceleration voltage of the incident electron (4) is 50
kV, and when W is used for the heavy metal film (9), the maximum range of the incident electrons (4) into W is about 3.0 μm, and the incident electrons (4) Since the stationary probability distribution is usually represented by a Gaussian distribution, the optimal film thickness is about 1
If it is set to / 5, that is, 0.6 μm, about 90% or more of the electrons pass through the W film (9).

【0010】次に、本発明である装置較正用基準マーク
の作製プロセスを示す。図2及び図3に装置較正用基準
マークの作製フローの例を示す。図2(a)において、
軽元素であるSi,Al等の基板(11)上に重金属で
あるW,Ta等(9)をCVDやスパッタ法を用いて、
十分な膜厚で成膜する。次に、レジストやSiO2
(12)のマスクを用いて、図2(b)のようにエッチ
ングを行う。この際、図2(c)に示すように、平坦部
上に最適な膜厚を持つ重金属膜を残す必要がある。な
お、重金属がW,Taについて説明したが、これ以外の
重金属でもよいもので、当然のことながらMo、Crで
もよいものである。
Next, a process for manufacturing the reference mark for device calibration according to the present invention will be described. FIG. 2 and FIG. 3 show an example of a production flow of the device calibration reference mark. In FIG. 2A,
A heavy metal such as W or Ta (9) is deposited on a substrate (11) such as a light element such as Si or Al by CVD or sputtering.
The film is formed with a sufficient film thickness. Next, etching is performed as shown in FIG. 2B using a resist or a mask of SiO 2 (12). At this time, as shown in FIG. 2C, it is necessary to leave a heavy metal film having an optimum thickness on the flat portion. Although the heavy metals are described as W and Ta, other heavy metals may be used, and naturally, Mo and Cr may be used.

【0011】図3の作製例においては、図3(a)のよ
うに、最初、最適な膜厚で重金属(9)を軽元素である
下地基板(11)上にCVDやスパッタ法で成膜する。
次に、SiO2 やSi3 4 等(13)の膜を図3
(b)のように成膜・エッチングして作製する。最後
に、図3(c)にように、重金属(9)を選択CVDや
スパッタ法等で埋め込みし、最後にSiO2 ,Si3
4 膜等(13)の除去を行う。
In the manufacturing example shown in FIG. 3, first, as shown in FIG. 3A, a heavy metal (9) is formed on an undersubstrate (11), which is a light element, with an optimum thickness by CVD or sputtering. I do.
Next, a film of (13) such as SiO 2 or Si 3 N 4 is formed as shown in FIG.
It is formed by film formation and etching as shown in FIG. Finally, as shown in FIG. 3C, a heavy metal (9) is buried by selective CVD, sputtering, or the like, and finally SiO 2 , Si 3 N
4 The film (13) is removed.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
装置較正基準マーク平坦部に、段差部と同様な最適膜厚
を持った重金属膜を被覆することによって、反射電信号
の強度を落とすことなく、段差部からの反射電子信号対
平坦部からの反射電子信号比(S/N比)を大幅に改善
する効果があり、結果として、電子線露光装置較正時に
必要である電子線走査(偏向)による位置測定精度やビ
ームサイズ検出精度等を向上させることが出来る。つま
り、この較正用基準マークを用いることで、精度の良い
電子線露光装置の較正を可能にするという効果を奏する
ものである。
As described above, according to the present invention,
By coating the flat part of the device calibration reference mark with a heavy metal film having the same optimum thickness as that of the step, the reflected electron signal from the step and the reflection from the flat part are maintained without reducing the intensity of the reflected electric signal. This has the effect of significantly improving the electron signal ratio (S / N ratio), and as a result, improving the position measurement accuracy and beam size detection accuracy by electron beam scanning (deflection) required when calibrating an electron beam exposure apparatus. Can be done. In other words, the use of this calibration reference mark has the effect of enabling highly accurate calibration of the electron beam exposure apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明する図FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】本発明の較正基準マーク作製プロセスを説明す
るフロー
FIG. 2 is a flowchart illustrating a calibration reference mark production process of the present invention.

【図3】本発明の較正基準マーク作製プロセスを説明す
るフロー
FIG. 3 is a flowchart illustrating a process of producing a calibration reference mark according to the present invention.

【図4】従来例を説明するための装置較正方法の説明図FIG. 4 is an explanatory diagram of an apparatus calibration method for explaining a conventional example.

【図5】従来例を説明する図FIG. 5 illustrates a conventional example.

【図6】従来例を説明する図FIG. 6 illustrates a conventional example.

【符号の説明】[Explanation of symbols]

1 ウェハ、レチクル等 2 ステージ 3 装置較正用基準マーク 4 入射電子 5 反射電子信号 6 検出器 7 較正用基準マークの段差部 8 較正用基準マークの平坦部 9 W,Ta等の重金属 10 反射電子信号(5)の1次微分波形 11 Si,Al等の軽元素基板 12 SiO2 、レジスト等のマスク 13 SiO2 ,Si3 4 等のマスクDESCRIPTION OF SYMBOLS 1 Wafer, reticle, etc. 2 Stage 3 Device calibration reference mark 4 Incident electron 5 Reflected electron signal 6 Detector 7 Step portion of calibration reference mark 8 Flat portion of calibration reference mark 9 Heavy metal such as W, Ta 10 Reflected electron signal (5) the first-order differential waveform 11 Si, light element substrate 12 SiO 2 such as Al, a resist such as a mask 13 SiO 2, Si 3 N 4 such as a mask of

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上もしくは薄膜上に設けた電
子線エネルギを吸収し反応するレジスト膜を電子線を用
いて露光し、所望のパターンを形成する電子線露光装置
の装置較正時に用いる較正用基準マークにおいて、前記
基準マークが軽元素の下地基板並びにその下地基板上の
重金属材料の凸部及び前記凸部の周囲を凸部と同一の重
金属材料の平坦部で形成され、平坦部における重金属材
料膜厚が凸部における重金属材料の膜厚よりも小さく、
平坦部での重金属材料の膜厚が重金属中における入射電
子の最大飛程距離の約1/5であること特徴とする装置
較正用基準マーク。
An electron beam exposure apparatus for exposing a resist film, which is provided on a semiconductor substrate or a thin film and absorbs and reacts to an electron beam energy, with an electron beam to form a desired pattern. In the fiducial mark, the fiducial mark is formed of a base substrate of a light element, a convex portion of the heavy metal material on the base substrate, and a flat portion of the same heavy metal material as the convex portion around the convex portion. The film thickness is smaller than the film thickness of the heavy metal material in the convex portion,
An apparatus calibration reference mark wherein the thickness of the heavy metal material at the flat portion is about 1/5 of the maximum range of incident electrons in the heavy metal.
【請求項2】 軽元素の下地基板が、SiまたはAlで
あることを特徴とする請求項1に記載の装置較正用基準
マーク。
2. The reference mark for device calibration according to claim 1, wherein the light element base substrate is Si or Al.
【請求項3】 重金属の薄膜が、W,またはTaである
ことを特徴とする請求項1または2に記載の装置較正用
基準マーク。
3. The reference mark according to claim 1, wherein the heavy metal thin film is W or Ta.
【請求項4】 請求項1、2、3のいずれかに記載の較
正用基準マークを用いて電子線露光装置の装置較正を行
うことを特徴とする装置較正方法。
4. A method of calibrating an electron beam exposure apparatus using the calibration reference mark according to claim 1.
JP34626893A 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method Expired - Lifetime JP2806240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34626893A JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34626893A JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Publications (2)

Publication Number Publication Date
JPH07183360A JPH07183360A (en) 1995-07-21
JP2806240B2 true JP2806240B2 (en) 1998-09-30

Family

ID=18382257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34626893A Expired - Lifetime JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Country Status (1)

Country Link
JP (1) JP2806240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505662B2 (en) * 1999-03-03 2010-07-21 株式会社ニコン Reference mark structure, manufacturing method thereof, and charged particle beam exposure apparatus using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102523A (en) * 1981-12-15 1983-06-18 Toshiba Corp Position aligning marker
JPS6154621A (en) * 1984-08-27 1986-03-18 Hitachi Ltd Positioning mark for overlapping pattern
JPS6430220A (en) * 1987-07-27 1989-02-01 Matsushita Electronics Corp Alignment mark
JPH0670958B2 (en) * 1987-10-30 1994-09-07 日本電気株式会社 Electron beam position detection reference mark

Also Published As

Publication number Publication date
JPH07183360A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
US6627366B2 (en) Electron beam exposure method having good linearity with respect to producing fine patterns
US6632722B2 (en) Fiducial mark bodies for charged-particle-beam (CPB) microlithography, methods for making same, and CPB microlithography apparatus comprising same
US6627903B1 (en) Methods and devices for calibrating a charged-particle-beam microlithography apparatus, and microelectronic-device fabrication methods comprising same
GB1573920A (en) Electron beam lithographic system
JP3755228B2 (en) Charged particle beam exposure system
JP2746125B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method.
KR100367535B1 (en) Integrated circuit manufacturing method
US5906902A (en) Manufacturing system error detection
US6420702B1 (en) Non-charging critical dimension SEM metrology standard
JP2806240B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method
JP3288767B2 (en) Charged beam drawing equipment
US5877505A (en) Apparatus for determining mark position on wafer
JP3064375B2 (en) Electron beam drawing apparatus and its adjustment method
JPS6246976B2 (en)
JPH02165616A (en) Aligner
Singh et al. Linewidth measurement by low voltage SEM
US9165746B2 (en) Electron beam drift detection device and method for detecting electron beam drift
Hosaka et al. Fabrication of Submicron Pattern with an EB Lithographic System Using a Field Emission (FE) Electron Gun
JP2927201B2 (en) Charged particle beam exposure method, apparatus for performing the method, and position detection mark forming body used in the method
JP3334341B2 (en) Electron beam exposure method
JP3039390B2 (en) Electron beam mask, exposure apparatus using electron beam mask and exposure method thereof
JP2822938B2 (en) How to measure overlay accuracy
JPH09134701A (en) Electron beam drawing device drawing pattern forming method
Mizuno et al. Evaluation of total uncertainty in the dimension measurements using critical-dimension measurement scanning electron microscopes
JP3083428B2 (en) Charged particle beam drawing method