JPH07183360A - Reference mark for device calibration of electron beam exposure device and method for calibrating the device - Google Patents

Reference mark for device calibration of electron beam exposure device and method for calibrating the device

Info

Publication number
JPH07183360A
JPH07183360A JP34626893A JP34626893A JPH07183360A JP H07183360 A JPH07183360 A JP H07183360A JP 34626893 A JP34626893 A JP 34626893A JP 34626893 A JP34626893 A JP 34626893A JP H07183360 A JPH07183360 A JP H07183360A
Authority
JP
Japan
Prior art keywords
reference mark
electron beam
calibration
heavy metal
beam exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34626893A
Other languages
Japanese (ja)
Other versions
JP2806240B2 (en
Inventor
Ken Nakajima
謙 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34626893A priority Critical patent/JP2806240B2/en
Publication of JPH07183360A publication Critical patent/JPH07183360A/en
Application granted granted Critical
Publication of JP2806240B2 publication Critical patent/JP2806240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To improve S/N and to prevent the deterioration of an electron beam exposure device configuration accuracy without reducing the intensity (peak value) of a reflected electronic signal obtained from a reference mark (step of metal) used when calibrating the electron beam exposure device. CONSTITUTION:By forming a heavy metal thin film 9 which is approximately 0.5-1.0mum thick on a flat part 8 of a substrate 11 of a light element, a reflected electron signal from a flat part 8 causing background noise is reduced to S/N ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子線露光装置におい
て、装置較正に用いる較正用基準マークに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calibration reference mark used for calibrating an electron beam exposure apparatus.

【0002】[0002]

【従来の技術】電子線露光を用いて所望パターンを得る
ための電子線露光装置において、電子線露光の前に実施
される電子線露光装置の較正は、従来、図4に示すよう
に、露光対象であるウェハ、レチクル等(1)を移動さ
せるためのステージ(2)上に設置された、図5及び図
6で示すような凹凸上の段差を持った重金属の較正用基
準マーク(3)に、入射電子線(4)を走査(偏向)さ
せて得られる反射電子信号(5)を検出器(6)により
検出して行われていた。つまり、この基準マーク(3)
から得られる反射電子信号(5)から、ステージ位置測
定を行い、実際の露光の際に必要な電子線偏向時の偏向
歪較正を実施し、また、この反射電子信号(5)から入
射電子線のビームサイズを検出し、ビームサイズ較正等
を行っていた。しかし、これらの較正用基準マーク
(3)を用いた場合、段差部からの反射電子信号(5)
対平坦部からの反射電子信号(5)比(S/N比)が低
いため、ステージ位置検出やビームサイズ検出等の精度
が低く、装置較正精度の劣化を招くという欠点が生じ
る。
2. Description of the Related Art In an electron beam exposure apparatus for obtaining a desired pattern using electron beam exposure, the calibration of the electron beam exposure apparatus carried out before the electron beam exposure has been conventionally performed as shown in FIG. A reference mark (3) for calibration of heavy metal, which is installed on a stage (2) for moving a target wafer, reticle, etc. (1) and which has uneven steps as shown in FIGS. 5 and 6. In addition, the backscattered electron signal (5) obtained by scanning (deflecting) the incident electron beam (4) is detected by the detector (6). That is, this reference mark (3)
The position of the stage is measured from the backscattered electron signal (5) obtained from the above, and the deflection distortion at the time of electron beam deflection necessary in the actual exposure is calibrated. The beam size was detected and the beam size was calibrated. However, when these calibration reference marks (3) are used, the reflected electron signal (5) from the stepped portion is used.
Since the backscattered electron signal (5) ratio (S / N ratio) from the flat portion is low, the accuracy of stage position detection, beam size detection, etc. is low, and there is a drawback that the accuracy of the apparatus calibration is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】図5及び、図6に従来
の電子線露光装置に用いられている装置較正用基準マー
クの構造を示す。図5に示す装置較正用基準マーク構造
の場合、段差部(凸部)(7)と平坦部(8)の材料が
同じ重金属であるW,Ta等(9)であるため、平坦部
(8)からの反射電子信号(5)が段差部(7)の信号
(5)と同程度検出され、反射電子信号(5)の1次微
分波形(10)のピーク値が低く、且つ平坦部(8)か
らの反射電子信号(5)がバックグラウンドノイズにな
るため、S/N比が低くなってしまう。
FIG. 5 and FIG. 6 show the structure of an apparatus calibration reference mark used in a conventional electron beam exposure apparatus. In the case of the reference mark structure for device calibration shown in FIG. 5, since the material of the step portion (projection portion) (7) and the flat portion (8) are the same heavy metals such as W and Ta (9), the flat portion (8 The reflected electron signal (5) from () is detected to the same extent as the signal (5) of the stepped portion (7), the peak value of the first-order differential waveform (10) of the reflected electron signal (5) is low, and the flat portion ( Since the reflected electron signal (5) from 8) becomes background noise, the S / N ratio becomes low.

【0004】図6のような装置較正用基準マーク構造は
図5で示したマーク構造の欠点であるピーク値の低下を
回避する方法として知られている。これは、装置較正用
でなく、実際の露光時の露光位置検出用基準マークとし
て特開昭62−1011号公報「集積化素子の製造方
法」に記載のものが知られている。しかし、W,Ta等
の重金属(9)である段差部(7)と異なるSi,Al
等の軽元素(11)を平坦部(8)に用いるため、1次
微分波形(10)のピーク値強度は向上するが、平坦部
(8)からの反射電子信号(5)が図5のマーク構造の
場合と同様にバックグラウンドノイズとして検出される
ため、S/N比の大幅な向上は望めない。
The reference mark structure for device calibration as shown in FIG. 6 is known as a method for avoiding a decrease in peak value which is a defect of the mark structure shown in FIG. This is known as a reference mark for detecting an exposure position at the time of actual exposure, which is not for device calibration but is described in Japanese Patent Application Laid-Open No. 62-1011, "Method for Manufacturing Integrated Element". However, Si, Al different from the stepped portion (7) which is a heavy metal (9) such as W or Ta
Since the light element (11) such as is used for the flat portion (8), the peak value intensity of the first-order differential waveform (10) is improved, but the reflected electron signal (5) from the flat portion (8) is shown in FIG. Since it is detected as background noise as in the case of the mark structure, a significant improvement in the S / N ratio cannot be expected.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、半導体基板上もしくは薄膜上に設けた電
子線エネルギを吸収し反応するレジスト膜を電子線を用
いて露光し、所望のパターンを形成する電子線露光装置
の装置較正時において、高精度な較正を可能にする軽元
素の下地基板上を重金属の薄膜で被覆してあり、更に同
一の重金属の段差を有した構造を特徴とする装置較正用
基準マークであり、その軽元素の下地基板が、Siまた
はAlであり、また、重金属の薄膜が、W,またはTa
であることを特徴とするものであり、さらにまた、前記
較正用基準マークを用いて電子線露光装置の装置較正を
行うことを特徴とする装置較正方法である。
In order to solve the above problems, the present invention exposes a resist film, which is provided on a semiconductor substrate or a thin film and absorbs and reacts with electron beam energy, with an electron beam, When calibrating the electron beam exposure apparatus that forms a pattern of, the underlying substrate of a light element, which enables highly accurate calibration, is covered with a thin film of heavy metal, and a structure with the same heavy metal step is provided. A reference mark for calibrating a device, a light element base substrate is Si or Al, and a heavy metal thin film is W or Ta.
In addition, the apparatus calibration method is characterized in that the apparatus calibration of the electron beam exposure apparatus is performed using the calibration reference mark.

【0006】[0006]

【作用】本発明において、電子線露光装置の装置較正用
基準マーク構造が、軽元素の下地基板上を最適な重金属
の薄膜で被覆してあり、更に同一の重金属段差を有した
構造を特徴としているもので、つまり、平坦部上にも最
適な膜厚を持つ段差部と同じ材料である重金属膜を被覆
させることにより、バックグラウンドノイズの原因とな
る平坦部からの反射電子信号を低減させ、S/N比の向
上を図ることができるものである。
In the present invention, the apparatus calibration reference mark structure of the electron beam exposure apparatus is characterized in that a light element base substrate is covered with an optimal heavy metal thin film and further has the same heavy metal step. That is, by covering the flat portion with a heavy metal film that is the same material as the step portion having the optimum film thickness, the reflected electron signal from the flat portion that causes background noise is reduced, It is possible to improve the S / N ratio.

【0007】[0007]

【実施例】本発明の実施例について、図面を参照して説
明する。図1に本発明の実施例である装置較正用基準マ
ークの構造を示す。装置較正を実施する場合、入射電子
(4)を図1中に示すX軸方向に走査(偏向)させ、反
射電子信号(5)を検出器(6)にて検出し、この反射
電子信号(5)の1次微分波形(10)のピーク値から
段差部中心の位置検出を、また、ピーク値間からビーム
サイズ検出等を行う。そして、これらを基に電子線走査
(偏向)時の偏向歪や入射電子線(4)のビームサイズ
を定量し、電子線露光装置の装置較正を行う。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of an apparatus calibration reference mark that is an embodiment of the present invention. When calibrating the device, incident electrons (4) are scanned (deflected) in the X-axis direction shown in FIG. 1, a reflected electron signal (5) is detected by a detector (6), and this reflected electron signal ( 5) The position of the center of the step is detected from the peak value of the first-order differential waveform (10), and the beam size is detected from the peak value. Then, based on these, the deflection distortion during electron beam scanning (deflection) and the beam size of the incident electron beam (4) are quantified to calibrate the electron beam exposure apparatus.

【0008】本発明において、Si,Al等の軽元素で
ある下地基板(11)上の平坦部(8)に、段差部
(7)と同一な重金属であるW,Ta等(9)の薄膜を
最適な膜厚(0.5〜1.0μm程度)で形成させるこ
とにより、入射電子(4)は重金属薄膜(9)を透過
し、軽元素である下地基板(11)へ注入される。下地
基板(11)に注入された入射電子(4)は下地基板
(11)内で散乱し、さらに重金属薄膜(9)との界面
でも散乱され、入射エネルギを消失する。そのため、重
金属薄膜(9)に再突入し、平坦部(8)表面から検出
される反射電子信号(5)はほとんどなくなってしま
う。
In the present invention, a thin film of W, Ta, etc. (9), which is the same heavy metal as the step (7), is formed on the flat part (8) on the base substrate (11) which is a light element such as Si, Al. The incident electron (4) is transmitted through the heavy metal thin film (9) and is injected into the base substrate (11) which is a light element by forming the film with an optimum film thickness (about 0.5 to 1.0 μm). The incident electrons (4) injected into the base substrate (11) are scattered inside the base substrate (11) and also at the interface with the heavy metal thin film (9), and the incident energy disappears. Therefore, the backscattered electron signal (5) re-entered the heavy metal thin film (9) and detected from the surface of the flat portion (8) almost disappears.

【0009】つまり、バックグラウンドノイズの原因と
なる平坦部(8)からの反射電子信号(5)を低減させ
ることが可能になり、S/N比の向上が可能となる。す
なわち、この構造を持った較正用基準マークを用いるこ
とにより、精度の良い装置較正が可能となる。ここで、
重金属薄膜(9)の最適な膜厚は入射電子(4)の加速
電圧、重金属薄膜(9)の膜密度等によって決定される
ものである。例えば、入射電子(4)の加速電圧が50
kVであり、重金属膜(9)にWを用いた場合、入射電
子(4)のW中への最大飛程距離は約3.0μmであ
り、また、入射電子(4)のバルク材料への静止確立分
布は通常ガウス分布で表せられるため、最適膜厚を約1
/5である0.6μmにすれば、約90%以上の電子は
W膜(9)を透過する。
That is, the reflected electron signal (5) from the flat portion (8) which causes the background noise can be reduced, and the S / N ratio can be improved. That is, by using the calibration reference mark having this structure, accurate device calibration can be performed. here,
The optimum film thickness of the heavy metal thin film (9) is determined by the acceleration voltage of the incident electrons (4), the film density of the heavy metal thin film (9), and the like. For example, the acceleration voltage of the incident electrons (4) is 50
kV, and when W is used for the heavy metal film (9), the maximum range of the incident electrons (4) into W is about 3.0 μm, and the incident electrons (4) to the bulk material are Since the stationary probability distribution is usually expressed as a Gaussian distribution, the optimum film thickness is about 1
When it is set to 0.6 μm which is / 5, about 90% or more of electrons pass through the W film (9).

【0010】次に、本発明である装置較正用基準マーク
の作製プロセスを示す。図2及び図3に装置較正用基準
マークの作製フローの例を示す。図2(a)において、
軽元素であるSi,Al等の基板(11)上に重金属で
あるW,Ta等(9)をCVDやスパッタ法を用いて、
十分な膜厚で成膜する。次に、レジストやSiO2
(12)のマスクを用いて、図2(b)のようにエッチ
ングを行う。この際、図2(c)に示すように、平坦部
上に最適な膜厚を持つ重金属膜を残す必要がある。な
お、重金属がW,Taについて説明したが、これ以外の
重金属でもよいもので、当然のことながらMo、Crで
もよいものである。
Next, a manufacturing process of the apparatus calibration reference mark according to the present invention will be described. 2 and 3 show an example of the production flow of the reference mark for device calibration. In FIG. 2 (a),
A heavy metal such as W or Ta (9) is formed on a substrate (11) such as Si or Al which is a light element by CVD or a sputtering method.
The film is formed with a sufficient film thickness. Next, etching is performed as shown in FIG. 2B using a resist or a mask of SiO 2 or the like (12). At this time, as shown in FIG. 2C, it is necessary to leave a heavy metal film having an optimum film thickness on the flat portion. Although the heavy metal has been described as W and Ta, other heavy metals may be used, and naturally, Mo and Cr may be used.

【0011】図3の作製例においては、図3(a)のよ
うに、最初、最適な膜厚で重金属(9)を軽元素である
下地基板(11)上にCVDやスパッタ法で成膜する。
次に、SiO2 やSi3 4 等(13)の膜を図3
(b)のように成膜・エッチングして作製する。最後
に、図3(c)にように、重金属(9)を選択CVDや
スパッタ法等で埋め込みし、最後にSiO2 ,Si3
4 膜等(13)の除去を行う。
In the manufacturing example of FIG. 3, first, as shown in FIG. 3A, a heavy metal (9) is first formed with an optimum film thickness on a base substrate (11) which is a light element by CVD or sputtering. To do.
Next, a film of SiO 2 or Si 3 N 4 etc. (13) is formed as shown in FIG.
A film is formed and etched as shown in FIG. Finally, as shown in FIG. 3C, the heavy metal (9) is embedded by selective CVD, sputtering, etc., and finally SiO 2 , Si 3 N
4 Remove the film (13).

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
装置較正基準マーク平坦部に、段差部と同様な最適膜厚
を持った重金属膜を被覆することによって、反射電信号
の強度を落とすことなく、段差部からの反射電子信号対
平坦部からの反射電子信号比(S/N比)を大幅に改善
する効果があり、結果として、電子線露光装置較正時に
必要である電子線走査(偏向)による位置測定精度やビ
ームサイズ検出精度等を向上させることが出来る。つま
り、この較正用基準マークを用いることで、精度の良い
電子線露光装置の較正を可能にするという効果を奏する
ものである。
As described above, according to the present invention,
Equipment calibration reference mark By coating the flat part with a heavy metal film with an optimal film thickness similar to that of the step part, the reflected electron signal from the step part and the reflection from the flat part can be achieved without reducing the intensity of the reflected signal. It has an effect of greatly improving the electron signal ratio (S / N ratio), and as a result, improves the position measurement accuracy and beam size detection accuracy by electron beam scanning (deflection), which are necessary when calibrating the electron beam exposure apparatus. Can be done. That is, by using this calibration reference mark, it is possible to calibrate the electron beam exposure apparatus with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する図FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】本発明の較正基準マーク作製プロセスを説明す
るフロー
FIG. 2 is a flowchart for explaining a calibration reference mark manufacturing process of the present invention.

【図3】本発明の較正基準マーク作製プロセスを説明す
るフロー
FIG. 3 is a flowchart for explaining a calibration reference mark manufacturing process of the present invention.

【図4】従来例を説明するための装置較正方法の説明図FIG. 4 is an explanatory diagram of a device calibration method for explaining a conventional example.

【図5】従来例を説明する図FIG. 5 is a diagram illustrating a conventional example.

【図6】従来例を説明する図FIG. 6 is a diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1 ウェハ、レチクル等 2 ステージ 3 装置較正用基準マーク 4 入射電子 5 反射電子信号 6 検出器 7 較正用基準マークの段差部 8 較正用基準マークの平坦部 9 W,Ta等の重金属 10 反射電子信号(5)の1次微分波形 11 Si,Al等の軽元素基板 12 SiO2 、レジスト等のマスク 13 SiO2 ,Si3 4 等のマスク1 wafer, reticle, etc. 2 stage 3 device calibration reference mark 4 incident electron 5 reflected electron signal 6 detector 7 step of calibration reference mark 8 flat part of calibration reference mark 9 heavy metal such as W, Ta 10 reflected electron signal (5) First-order differential waveform 11 Light element substrate such as Si and Al 12 SiO 2 , mask such as resist 13 SiO 2 and mask such as Si 3 N 4

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上もしくは薄膜上に設けた電
子線エネルギを吸収し反応するレジスト膜を電子線を用
いて露光し、所望のパターンを形成する電子線露光装置
の装置較正時において、高精度な較正を可能にする軽元
素の下地基板上を重金属の薄膜で被覆してあり、更に同
一の重金属の段差を有した構造を特徴とする装置較正用
基準マーク。
1. A method for exposing a resist film, which is provided on a semiconductor substrate or a thin film and absorbs and reacts with electron beam energy, with an electron beam to expose a resist film to form a desired pattern. A reference mark for device calibration, which is characterized by a structure in which an undersubstrate of a light element that enables accurate calibration is covered with a thin film of heavy metal and further has a step of the same heavy metal.
【請求項2】 軽元素の下地基板が、SiまたはAlで
あることを特徴とする請求項1に記載の装置較正用基準
マーク。
2. The reference mark for device calibration according to claim 1, wherein the base substrate of the light element is Si or Al.
【請求項3】 重金属の薄膜が、W,またはTaである
ことを特徴とする請求項1または2に記載の装置較正用
基準マーク。
3. The reference mark for device calibration according to claim 1, wherein the heavy metal thin film is W or Ta.
【請求項4】 請求項1、2、3のいずれかに記載の較
正用基準マークを用いて電子線露光装置の装置較正を行
うことを特徴とする装置較正方法。
4. An apparatus calibration method, which comprises calibrating an electron beam exposure apparatus using the calibration reference mark according to claim 1. Description:
JP34626893A 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method Expired - Lifetime JP2806240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34626893A JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34626893A JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Publications (2)

Publication Number Publication Date
JPH07183360A true JPH07183360A (en) 1995-07-21
JP2806240B2 JP2806240B2 (en) 1998-09-30

Family

ID=18382257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34626893A Expired - Lifetime JP2806240B2 (en) 1993-12-22 1993-12-22 Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method

Country Status (1)

Country Link
JP (1) JP2806240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252204A (en) * 1999-03-03 2000-09-14 Nikon Corp Reference mark structure and its manufacture, and charged particle beam exposure system using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102523A (en) * 1981-12-15 1983-06-18 Toshiba Corp Position aligning marker
JPS6154621A (en) * 1984-08-27 1986-03-18 Hitachi Ltd Positioning mark for overlapping pattern
JPS6430220A (en) * 1987-07-27 1989-02-01 Matsushita Electronics Corp Alignment mark
JPH01117029A (en) * 1987-10-30 1989-05-09 Nec Corp Position detection reference mark for electron beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102523A (en) * 1981-12-15 1983-06-18 Toshiba Corp Position aligning marker
JPS6154621A (en) * 1984-08-27 1986-03-18 Hitachi Ltd Positioning mark for overlapping pattern
JPS6430220A (en) * 1987-07-27 1989-02-01 Matsushita Electronics Corp Alignment mark
JPH01117029A (en) * 1987-10-30 1989-05-09 Nec Corp Position detection reference mark for electron beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252204A (en) * 1999-03-03 2000-09-14 Nikon Corp Reference mark structure and its manufacture, and charged particle beam exposure system using the same
JP4505662B2 (en) * 1999-03-03 2010-07-21 株式会社ニコン Reference mark structure, manufacturing method thereof, and charged particle beam exposure apparatus using the same

Also Published As

Publication number Publication date
JP2806240B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US5641715A (en) Semiconductor IC device fabricating method
US6627903B1 (en) Methods and devices for calibrating a charged-particle-beam microlithography apparatus, and microelectronic-device fabrication methods comprising same
US20020115020A1 (en) Electron beam exposure method having good linearity with respect to producing fine patterns
JPH088176A (en) Reference mark for calibration of electron beam exposure system and calibration method
US6420702B1 (en) Non-charging critical dimension SEM metrology standard
US3875414A (en) Methods suitable for use in or in connection with the production of microelectronic devices
JP2008021435A (en) Beam resolution measuring method of charged particle beam, and charged particle beam device
JP2806240B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method
JP3288767B2 (en) Charged beam drawing equipment
US6841402B1 (en) Alignment-mark detection methods and devices for charged-particle-beam microlithography, and microelectronic-device manufacturing methods comprising same
JP2007188671A (en) Beam intensity distribution measuring method of charged particle beam, and beam resolution capacity measuring method of charged particle beam
US5877505A (en) Apparatus for determining mark position on wafer
JP3353051B2 (en) Line width measurement of integrated circuit structures
US20030197135A1 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor device manufacturing method, and electron beam shape measuring method
JPH02165616A (en) Aligner
US6455332B1 (en) Methodology to mitigate electron beam induced charge dissipation on polysilicon fine patterning
JP2927201B2 (en) Charged particle beam exposure method, apparatus for performing the method, and position detection mark forming body used in the method
US9165746B2 (en) Electron beam drift detection device and method for detecting electron beam drift
JP2007329267A (en) Device and method for charged-particle-beam lithography
JP3039390B2 (en) Electron beam mask, exposure apparatus using electron beam mask and exposure method thereof
JP3334341B2 (en) Electron beam exposure method
JPH0547620A (en) Formation of alignment mark
JP4776870B2 (en) Electron beam projection exposure method
JP3297265B2 (en) Evaluation method for misalignment of electron beam lithography system
JPS58147029A (en) Mark detection in electronic beam exposure