JPH0851809A - Improvement of germination of seed - Google Patents

Improvement of germination of seed

Info

Publication number
JPH0851809A
JPH0851809A JP13408395A JP13408395A JPH0851809A JP H0851809 A JPH0851809 A JP H0851809A JP 13408395 A JP13408395 A JP 13408395A JP 13408395 A JP13408395 A JP 13408395A JP H0851809 A JPH0851809 A JP H0851809A
Authority
JP
Japan
Prior art keywords
seeds
germination
seed
water
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13408395A
Other languages
Japanese (ja)
Other versions
JP3151471B2 (en
Inventor
Takeo Tsujimoto
建男 辻本
Hiroshi Sato
浩 佐藤
Shinya Matsushita
慎哉 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T S SHOKUBUTSU KENKYUSHO KK
DKS Co Ltd
Original Assignee
T S SHOKUBUTSU KENKYUSHO KK
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T S SHOKUBUTSU KENKYUSHO KK, Dai Ichi Kogyo Seiyaku Co Ltd filed Critical T S SHOKUBUTSU KENKYUSHO KK
Priority to JP13408395A priority Critical patent/JP3151471B2/en
Publication of JPH0851809A publication Critical patent/JPH0851809A/en
Application granted granted Critical
Publication of JP3151471B2 publication Critical patent/JP3151471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)

Abstract

PURPOSE:To efficiently improve germination of seed and to facilitate shortening of a culture period and culture control after germination by adding seeds to a highly water absorbing solid polymer having absorbed water and hydrating the seeds under specific conditions. CONSTITUTION:Seeds of spinach are added to a highly water absorbing solid polymer (e.g. cross-linked polyacrylate-based polymer) having absorbed water and hydrated for a time at a temperature sufficient for advancing activity of the seeds but insufficient for germination while supplying an oxygen containing gas such as air or an oxygen gas to the seeds to improve the germination of the seeds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種蒔き前に種子を水和
処理することにより発芽を改善する方法に関する。さら
に詳しくは、播種後の種子の迅速且つ斉一な発芽や不良
環境下での発芽率の改善などを目的とし、播種前の種子
に施す種子水和処理技術に関する。
FIELD OF THE INVENTION The present invention relates to a method for improving germination by hydrating seeds before sowing. More specifically, the present invention relates to a seed hydration treatment technique applied to seeds before sowing for the purpose of rapid and uniform germination of seeds after sowing and improvement of germination rate in a poor environment.

【0002】[0002]

【従来の技術】種子は、播種後、水分・温度・酸素・光
等の環境条件が適当な状態に揃った場合、一定の期間を
経て発芽に至る。
2. Description of the Related Art After sowing, seeds germinate after a certain period of time when the environmental conditions such as water, temperature, oxygen, and light are suitable.

【0003】この播種から発芽に至るまでの発芽準備期
間に、種子内部では様々な代謝が行なわれている。その
期間の長さは、種子個々の登熟度や作物の種類によっ
て、また温度や水分等の環境要因によって異なる。この
発芽準備期間を短縮し、迅速且つ斉一な発芽をもたらす
ことにより、栽培期間の短縮や発芽後の栽培管理が容易
となり、大規模な営利栽培においては生産コストの削減
や省力化などの利点が得られる。
During the germination preparation period from sowing to germination, various metabolisms are carried out inside the seeds. The length of the period depends on the grain filling degree of each seed, the type of crop, and environmental factors such as temperature and moisture. By shortening this germination preparation period and providing rapid and uniform germination, the cultivation period can be shortened and the cultivation management after germination is facilitated, and there are advantages such as reduction of production cost and labor saving in large-scale commercial cultivation. can get.

【0004】このような目的で播種前の種子に施される
水和処理として、従来よりホーレンソウ栽培において
は、種子を井戸水に1日浸漬してから播種する(催芽処
理)等の方法が慣行されている。近年では、プライミン
グ、オスモコンディショニングあるいはマトリコンディ
ショニングなどの種子水和処理技術が開発されており、
発芽の迅速化や不良環境下での発芽率改善などの効果が
あることが確認されている。
As a hydration treatment to be applied to seeds before sowing for such a purpose, conventionally, in spinach cultivation, a method such as soaking seeds in well water for 1 day and then sowing (germination treatment) has been practiced. ing. In recent years, seed hydration treatment techniques such as priming, osmoconditioning or matriconditioning have been developed,
It has been confirmed that it has effects such as faster germination and improved germination rate in poor environments.

【0005】プライミング等の種子水和処理技術の原理
は、種蒔き前の種子に給水し、種子の活力を増進するに
は充分であるが種子発芽をおこさせるには不充分な時間
と温度で種子を処理することにより、播種後の発芽を早
めることにある。現在、様々な種子水和処理技術の研究
・開発の報告がなされているが、その中で主なものとし
て、以下の4方法が挙げられる。
The principle of seed hydration treatment technology such as priming is that water is applied to seeds before sowing to increase seed vitality, but insufficient time and temperature to cause seed germination. It is to accelerate germination after sowing by treating the seed. At present, various researches and developments of seed hydration treatment technology have been reported, and the following four methods are the major ones.

【0006】プライミング(Priming) 1974年にハイデッカー(W. Heydecker)らが開発した技
術で、水溶性ポリマー(ポリエチレングリコール、ソジ
ウム・ポリプロペネイト(Sodium Polypropenate)など)
水溶液もしくは塩類水溶液を媒体として、浸透圧によっ
て種子への水分供給を制御する方法である。(W. Heyde
cker, J. Higgins and R. L. Gulliver,1973, Nature(L
ondon) 246:42-44 )(W. Heydecker, 1974, Univ. Not
tinghamsch. Agr. Rep. 1973/1974: 50-67)(Zuo Wein
eng et al.,1987, Chinese Science Bulletin 32: 143
8)ドラム・プライミング(Drum Priming) 1987年にローズ(H. R. Rowse )らが開発した技術で、
媒体を使用せず、回転するドラム内で噴霧状に水分を与
え、種子への水分供給を直接重量制御する方法である。
(英国特許 2192781)ソリッド・マトリクス・プライミング(Solid Matrix
Priming) 1988年にテイラー(A. G. Taylor)らが開発した技術
で、レオナルダイト頁岩(leonardite shale)粉末資材
(アグロ・リグ、Agro-Lig)を媒体として、種子への水
分供給を制御する方法である。(A. G. Taylor, D. E.
Klein and T. H.Whitlow, 1988, Scientia Horticultur
ae 37(1988)1-11)(米国特許 4912874/ヨーロッパ特
許 0309551B1/特許出願公表 平1-503437)マトリコンディショニング(Matriconditioning) 1990年にカーン(A. A. Khan)らが開発した技術で、水
に不溶性な多孔質素材(Micro-Cel E, Zonolite) を媒体
として、種子への水分供給を制御する方法である。(A.
A. Khan, H.Miura, J.Prusinski and S.Ilyas, Procee
dings of the Symposium on Stand Establishment of H
orticultural Crops / Minneapolis, Minnesota, April
4-6, 1990) 上記4つの方法は、いずれも播種前の種子に対して施す
種子水和処理方法であり、種子へ供給する水分を制御す
ることによって、発芽準備期間に種子内部で行なわれる
様々な代謝のみを播種前に人為的に完了させてしまう点
が共通する。
Priming A technology developed by W. Heydecker in 1974. It is a water-soluble polymer (polyethylene glycol, sodium polypropenate, etc.)
This is a method of controlling water supply to seeds by osmotic pressure using an aqueous solution or an aqueous salt solution as a medium. (W. Heyde
cker, J. Higgins and RL Gulliver, 1973, Nature (L
ondon) 246: 42-44) (W. Heydecker, 1974, Univ. Not.
tinghamsch. Agr. Rep. 1973/1974: 50-67) (Zuo Wein
eng et al., 1987, Chinese Science Bulletin 32: 143
8) Drum Priming A technology developed by Rose (HR Rowse) in 1987.
This is a method of directly controlling the weight of the water supply to the seeds by supplying water in the form of a spray in a rotating drum without using a medium.
(UK Patent 2192781) Solid Matrix Priming
Priming) A technique developed by AG Taylor et al. In 1988, which is a method of controlling the water supply to seeds using a leonardite shale powder material (Agro-Lig) as a medium. (AG Taylor, DE
Klein and THWhitlow, 1988, Scientia Horticultur
ae 37 (1988) 1-11) (US patent 4912874 / European patent 0309551B1 / patent application publication No. 1-503437) Matriconditioning A technology developed by AA Khan et al. in 1990, which is insoluble in water. This is a method of controlling the water supply to the seeds using a porous material (Micro-Cel E, Zonolite) as a medium. (A.
A. Khan, H. Miura, J. Prusinski and S. Ilyas, Procee
dings of the Symposium on Stand Establishment of H
orticultural Crops / Minneapolis, Minnesota, April
4-6, 1990) All of the above four methods are seed hydration treatment methods applied to seeds before sowing, and are performed inside the seeds during the germination preparation period by controlling the water content supplied to the seeds. It is common that only various metabolisms are artificially completed before seeding.

【0007】それらの差異は、水分制御の方法原理にあ
る。においては液体を媒体として使用し、液体の有す
る浸透圧(Osmotic Potential) によって種子への水分供
給の制御を行なっている。においては媒体を使用せ
ず、直接重量で水分制御を行なっている。、におい
ては水に不溶性の固体媒体を使用し、浸透圧用材料(os
moticum )および/または毛管力(Matric Potential)に
よって水分の制御を行なっている。
The difference lies in the method principle of water control. In this method, a liquid is used as a medium, and the water supply to the seeds is controlled by the osmotic pressure (Osmotic Potential) of the liquid. In the above, the water content is controlled directly by weight without using a medium. , Use a solid medium insoluble in water, and
Water is controlled by moticum) and / or capillary force (Matric Potential).

【0008】[0008]

【発明が解決しようとする課題】これらの方法は、いず
れも発芽改善には同等の効果が認められるが、それぞれ
次のような欠点を有している。
All of these methods have the same effect in improving germination, but each of them has the following drawbacks.

【0009】のプライミング法は、使用するポリエチ
レングリコール溶液などの粘度が高く、且つその液は酸
素の溶解度が低く、さらに処理後の種子の乾燥に時間が
かかるなど、工業的な大量処理には無理がある。
The priming method (1) is not suitable for industrial mass treatment because the viscosity of the polyethylene glycol solution used is high, the solubility of oxygen is low, and it takes time to dry the seeds after the treatment. There is.

【0010】のドラムプライミング法は、単純明快な
方法であるが、実際に水量のコントロールを行なうには
精密な機械制御が必要となり、機械設備や操作が実質的
には複雑化するため実施困難である。
The drum priming method (1) is a simple and clear method, but precise mechanical control is required to actually control the water amount, and it is difficult to carry out because the mechanical equipment and operation are substantially complicated. is there.

【0011】水不溶性の固体媒体の持つ毛管力などを利
用するおよびの方法は、簡単な設備で処理が行な
え、酸素供給の問題も解決している。しかし、粉末状の
固体媒体が種子に付着して残り、確実な篩い分けが難し
いといった問題がある。このように処理後の種子に固体
媒体の微粉が付着して残留することは、製品である種子
の包装や流通の場面でダストを発生し、また種子の商品
価値を著しく損なうことにつながる。
The method and method utilizing the capillary force of a water-insoluble solid medium can be processed with simple equipment and solve the problem of oxygen supply. However, there is a problem that the powdery solid medium adheres to the seeds and remains, so that reliable sieving is difficult. When the fine powder of the solid medium adheres to and remains on the treated seed, dust is generated in the packaging and distribution of the seed, which is a product, and the commercial value of the seed is significantly impaired.

【0012】本発明の課題は、種子に固体媒体の微粉が
付着・残留することなく、水和処理後の種子の乾燥も容
易な種子の発芽改善方法を提供する処にある。
An object of the present invention is to provide a method for improving germination of seeds in which fine powder of a solid medium does not adhere and remain on the seeds and the seeds can be easily dried after the hydration treatment.

【0013】[0013]

【課題を解決するための手段】本発明者等は、より優れ
た種子の水和処理技術を検討した結果、高吸水性ポリマ
ーを用いることにより、上述の課題が解決され、発芽の
改善はもとより、工業化し易い種子水和処理技術を見出
し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention, as a result of studying a better technique for hydrating seeds, have solved the above-mentioned problems by using a superabsorbent polymer and have improved germination as well. The present invention has been completed by finding a seed hydration treatment technology that is easy to industrialize.

【0014】すなわち本発明は、水を吸収した固形状の
高吸水性ポリマーに種子を加え、酸素含有気体を供給し
ながら、種子の活力を増進するには充分であるが発芽を
おこさせるには不充分な時間と温度で種子を水和処理す
る種子の発芽改善方法である。
That is, according to the present invention, seeds are added to a solid superabsorbent polymer which has absorbed water, and while oxygen-containing gas is supplied, it is sufficient to enhance the vitality of the seeds, but to cause germination. This is a method for improving seed germination by hydrating seeds for an insufficient time and temperature.

【0015】本発明においては、種子へ水分を供与する
媒体として高吸水性ポリマーを使用し、高吸水性ポリマ
ー特有の水分徐放性を利用して種子への水分供給を制御
している。水分徐放性の原理は不明であるが、高吸水性
ポリマーの吸水力(高吸水性ポリマーと水の親和力、水
のゲルへの浸透圧)と吸水作用を止めようとする力(高
吸水性ポリマーの3次元網目構造に基づく弾性力)の相
互作用によって発現すると考えられ、従来技術のように
浸透圧を利用する方法や毛管現象による方法とは基本的
に異なっている。
In the present invention, a super absorbent polymer is used as a medium for supplying water to the seeds, and the water supply to the seeds is controlled by utilizing the sustained water release characteristic of the super absorbent polymers. Although the principle of sustained water release is unknown, the water absorption of superabsorbent polymers (affinity of superabsorbent polymers and water, osmotic pressure of water to gel) and the ability to stop water absorption (high water absorption) It is considered to be caused by the interaction of the elastic force based on the three-dimensional network structure of the polymer), which is basically different from the method using osmotic pressure and the method using capillary action as in the prior art.

【0016】さらに詳しく述べれば、従来の方法は、種
皮(種子表面)を大量の水で直接濡らし、浸透圧用材料
(osmoticum )および/または毛管力(Matric Potenti
al)を有する媒体を共存させることにより、種皮より種
子内部への水の浸透を制御する技術である。これに対
し、本発明の方法は、種皮を時間的・空間的に直接液状
の水で濡らすことが少なく、大量の水を含み疎水性の表
面を有する高吸水性ポリマーより滲出するごく微量の気
体状あるいは液状の水を、種皮を通して種子に吸収せし
める方法であり、水の供与機構が従来法とは本質的に異
なる。
More specifically, the conventional method involves directly wetting the seed coat (seed surface) with a large amount of water, osmoticum (osmoticum) and / or capillary force (Matric Potenti).
This is a technique for controlling the permeation of water from the seed coat to the inside of the seed by coexisting with a medium having al). On the other hand, the method of the present invention rarely directly wets the seed coat with liquid water temporally and spatially, and a very small amount of gas exuded from the superabsorbent polymer having a hydrophobic surface containing a large amount of water. This is a method of absorbing water in the form of water in the form of seeds through the seed coat, and the mechanism of water supply is essentially different from the conventional method.

【0017】また、用いる高吸水性ポリマーの保水機構
は、高吸水性ポリマーの親水基で固定される不凍水、不
凍水と水素結合する拘束水および拘束水のまわりの自由
水からなることが核磁気共鳴(NMR)法で確認されて
おり、従来法の毛管力あるいは塩や親水性ポリマーの保
水機構とは明確に異なる。
The water retention mechanism of the superabsorbent polymer used is composed of antifreeze water fixed by the hydrophilic groups of the superabsorbent polymer, bound water that hydrogen bonds with the antifreeze water, and free water around the bound water. Has been confirmed by the nuclear magnetic resonance (NMR) method, which is clearly different from the capillary force of the conventional method or the water retention mechanism of salt or hydrophilic polymer.

【0018】このため、本発明の方法によれば、種子に
処理媒体が付着することが少なくて分離が容易であり、
工業的に有用である。
Therefore, according to the method of the present invention, the treatment medium is less likely to adhere to the seeds and the separation is easy,
It is industrially useful.

【0019】本発明に用いられる高吸水性ポリマーは、
市販の製品でよい。高吸水性ポリマーとは、例えば、橋
掛けポリアクリル酸塩系、架橋イソブチレン/マレイン
酸系、架橋デンプン/ポリアクリル酸塩系、架橋ポリビ
ニルアルコール/ポリアクリル酸塩系、橋掛けポリビニ
ルアルコール系、橋掛けポリエチレングリコール系、橋
掛けカルボキシルメチルセルロースなど、高分子電解質
などの水溶性ポリマーを何らかの方法で不溶化した構造
を有する化学製品で、その種類の如何に関わらず、以下
の特性を有するものであれば使用できる。 高い吸水力 適度な水分徐放性 種子に対して無害なpH(中性域:5〜9) 適度な粒径(種子と選別可能な粒度) 吸水後の適度な流動性(吸水したゲルが相互に付着し
にくい) 人体への安全性。
The superabsorbent polymer used in the present invention is
A commercially available product may be used. Superabsorbent polymers include, for example, crosslinked polyacrylate type, crosslinked isobutylene / maleic acid type, crosslinked starch / polyacrylic acid type, crosslinked polyvinyl alcohol / polyacrylic acid type, crosslinked polyvinyl alcohol type, crosslinked A chemical product having a structure in which a water-soluble polymer such as a polyelectrolyte, a cross-linked poly (ethylene glycol) or a cross-linked carboxymethyl cellulose is insolubilized by some method, regardless of its type, and if it has the following characteristics, it is used it can. High water absorption Moderate controlled water release pH harmless to seeds (neutral range: 5-9) Moderate particle size (seed and selectable particle size) Moderate fluidity after water absorption Difficult to adhere to) Safety to the human body.

【0020】さらに、形態としては、粉末状、特に、吸
水しても相互付着が少なく適度な流動性を有する点より
球状のものが好ましく、その大きさは特に限定するもの
ではないが、乾燥状態で粒径10μm〜3mmのものが
市販されており、粒径50〜300μmのものが使用し
やすく好ましい。吸水倍率も特に限定するものではない
が、自重の10〜1000倍のものが好ましく使用でき
る。水を吸収した固形状の高吸水性ポリマーは球状とな
るのが好ましい。
Further, the form is preferably a powder, particularly a spherical form because it has little mutual adhesion even after absorbing water and has appropriate fluidity, and its size is not particularly limited, but it is in a dry state. And the particle size of 10 μm to 3 mm is commercially available, and the particle size of 50 to 300 μm is easy to use and preferred. The water absorption capacity is also not particularly limited, but one having 10 to 1000 times its own weight can be preferably used. The water-absorbed solid superabsorbent polymer is preferably spherical.

【0021】高吸水性ポリマーの表面を疎水化するため
に、乾燥状態の高吸水性ポリマーあるいは任意量の水を
加えて吸水した高吸水性ポリマーに、疎水剤として疎水
性シリカやステアリン酸カルシウム、ステアリン酸マグ
ネシウム、ステアリン酸バリウムなどの金属石鹸の微粉
末を若干量加えると、流動性が向上して高吸水性ポリマ
ー同士の付着が少なくなり、制御された水和処理(cont
rolled hydration)の操作がさらに容易となり好まし
い。また、架橋度あるいは橋掛け度を増して疎水性を増
大させた高吸水性ポリマーを使用することもできる。
In order to make the surface of the superabsorbent polymer hydrophobic, a superabsorbent polymer in a dry state or a superabsorbent polymer absorbed by adding an arbitrary amount of water is used as a hydrophobic agent for hydrophobic silica, calcium stearate, stearin. When a small amount of fine powder of metal soap such as magnesium acid salt or barium stearate is added, the fluidity is improved and the adhesion between superabsorbent polymers is reduced, resulting in a controlled hydration treatment (cont.
Rolled hydration) is easier and more preferable. Further, a super absorbent polymer having an increased degree of cross-linking or a degree of crosslinking to increase hydrophobicity can also be used.

【0022】本発明の一般的な実施方法は次の通りであ
る。
The general method of practicing the present invention is as follows.

【0023】高吸水性ポリマーに、その自重の数倍量の
水を吸収させる。(吸水量は、高吸水性ポリマーの種類
や被処理種子(処理対象種子)によって異なる。)その
際必要に応じて、吸水前あるいは吸水後に、高吸水性ポ
リマーに対して0.1〜5%重量の疎水剤を添加し、混
合し、高吸水性ポリマー粒子の表面を疎水剤でコーティ
ングする。
The superabsorbent polymer is made to absorb several times its own weight of water. (The amount of water absorption varies depending on the type of superabsorbent polymer and the treated seed (target seed).) At that time, if necessary, 0.1 to 5% of the superabsorbent polymer before or after water absorption. A weight of hydrophobic agent is added and mixed to coat the surface of the superabsorbent polymer particles with the hydrophobic agent.

【0024】次いで、吸水後の高吸水性ポリマーの容積
に対して0.2〜5倍量の種子を加え、撹拌混合を行な
う。
Then, seeds in an amount of 0.2 to 5 times the volume of the superabsorbent polymer after absorbing water are added and mixed by stirring.

【0025】その後、この混合物を10〜30℃程度の
温度下(通常は被処理種子の発芽適温)で、1〜14日
間の一定期間(種子内部で行なわれる代謝活動が進行す
るのに要する時間。通常は被処理種子の播種から発芽に
至るまでに要する時間±α)保持する。保持期間の間、
高吸水性ポリマーと種子の混合物に対して、種子の代謝
呼吸に必要な酸素含有気体を供給する。酸素含有気体と
しては、空気、酸素ガス、酸素と他の気体との混合物が
挙げられる。酸素含有気体の供給は、通気や酸素または
空気の封入交換により行なう。通気の際には、系の乾燥
を防ぐため、必要に応じて若干加湿した空気を供給する
のが好ましい。均一な処理を行なうためには、断続的ま
たは連続的に撹拌混合を行なうのが好ましい。
Thereafter, this mixture is kept at a temperature of about 10 to 30 ° C. (usually a suitable temperature for germination of the seeds to be treated) for a fixed period of 1 to 14 days (the time required for the metabolic activity carried out inside the seed to proceed). Normally, the time required from seeding to germination of seeds to be treated ± α) is maintained. During the retention period
The mixture of superabsorbent polymer and seed is supplied with oxygen-containing gas required for metabolic respiration of seed. Examples of the oxygen-containing gas include air, oxygen gas, and a mixture of oxygen and another gas. The oxygen-containing gas is supplied by aeration or encapsulation exchange of oxygen or air. During aeration, it is preferable to supply slightly humidified air to prevent the system from drying. In order to carry out a uniform treatment, it is preferable to carry out the stirring and mixing intermittently or continuously.

【0026】保持期間経過後、適切な目の篩で高吸水性
ポリマーと種子を分離する。高吸水性ポリマーは殆ど種
子に付着しないので、種子を傷めることなく容易に分離
できる。
After the retention period has elapsed, the superabsorbent polymer and the seeds are separated with an appropriate sieve. Since the super absorbent polymer hardly adheres to the seed, it can be easily separated without damaging the seed.

【0027】分離後の種子は必要に応じて乾燥させる
が、種子への付着水は発芽には不充分な少量のため、未
乾燥の状態でも低温低湿下であれば短期間の保存は可能
であり、制御された水和処理(controlled hydration)
の効果を維持させることができる。また、処理後の種子
は、本来耐久体である種子が吸水によって活発な生命活
動を開始しているため、加熱乾燥によるダメージを受け
やすくなっている。そのため、乾燥はできるだけ低温且
つ迅速に行なうのが望ましい。
The seeds after separation are dried if necessary, but the amount of water adhering to the seeds is not enough for germination, so that they can be stored for a short period even in an undried state under low temperature and low humidity. Yes, controlled hydration
The effect of can be maintained. In addition, the treated seeds are susceptible to damage due to heat drying, because the seeds, which are originally durable, start active life activities due to water absorption. Therefore, it is desirable that the drying is performed at the lowest possible temperature and speed.

【0028】本発明に用いられる種子は、ニンジン、レ
タスなどの野菜種子、パンジーその他の草花種子など大
小どんな種子でもよい。
The seeds used in the present invention may be vegetable seeds such as carrots and lettuce, and pansies and other flower seeds of any size.

【0029】また、水和処理前後に殺菌剤などで種子を
処理してもよく、水和処理後にフィルムコーティングや
造粒することも可能である。
The seeds may be treated with a bactericidal agent before or after the hydration treatment, and film coating or granulation may be performed after the hydration treatment.

【0030】[0030]

【実施例】次に本発明の実施例を説明するが、本発明は
これらに限定されるものではない。
EXAMPLES Examples of the present invention will now be described, but the present invention is not limited to these.

【0031】実施例1 高吸水性ポリマーとしてアクリル酸塩系モノマーを用い
た橋掛け重合体(大阪有機化学工業(株)、PQポリマ
ーBL100)を用いた。この高吸水性ポリマーの性状
を表1に示す。
Example 1 A cross-linked polymer (PQ polymer BL100, Osaka Organic Chemical Industry Co., Ltd.) using an acrylate-based monomer was used as the superabsorbent polymer. The properties of this super absorbent polymer are shown in Table 1.

【0032】[0032]

【表1】 被処理種子(処理対象種子)としては、ニンジン(Dauc
us carota L.)、セルリー(Apium graveolens L. )、
ホーレンソウ(Spinacia oleracea L.)、タマネギ(Al
lium Cepa L.)、パンジー(Viola ×wittrockiana)、
レタス(Lactuca sativa L. )の種子を用いた。
[Table 1] As the seeds to be treated (seeds to be treated), carrots (Dauc
us carota L.), celery (Apium graveolens L.),
Spinach (Spinacia oleracea L.), onion (Al
lium Cepa L.), Pansy (Viola x wittrockiana),
Lettuce (Lactuca sativa L.) seeds were used.

【0033】通気用の小穴を備えた密閉可能な円筒型閉
鎖容器(500ml容)に、0.1%チウラム水和剤
(処理中の雑菌繁殖防止のための殺菌剤)混合水150
mlを注ぎ、撹拌しながら高吸水性ポリマー30gを計
量投入した(吸水倍率が×5倍の場合)。
A sealable cylindrical closed container (500 ml volume) equipped with a small hole for aeration is mixed with 0.1% thiuram wettable powder (bactericidal agent for preventing the propagation of various bacteria during treatment) mixed water 150.
30 g of super absorbent polymer was metered in while pouring ml (when the water absorption capacity was × 5).

【0034】高吸水性ポリマーが均一に吸水した後、高
吸水性ポリマー重量に対して1%重量の疎水剤(ステア
リン酸カルシウム0.3g)を添加し、充分に撹拌・混
合を行ない、吸水した高吸水性ポリマー粒子表面に疎水
剤(ステアリン酸カルシウム)をコーティングした。
After the superabsorbent polymer has uniformly absorbed water, 1% by weight of the hydrophobic agent (calcium stearate 0.3 g) is added to the superabsorbent polymer weight, and the mixture is sufficiently stirred and mixed to absorb the superabsorbent polymer. The surface of the water-absorbent polymer particles was coated with a hydrophobic agent (calcium stearate).

【0035】この疎水剤をコーティングした高吸水性ポ
リマーの入った円筒型処理容器内に、被処理種子100
ml量を計量投入し、密封後、ミックスローター(粉体
混合機)を使用して撹拌混合を断続的に行ないながら、
所定の温度に設定された恒温室内で一定期間の処理を行
なった。それぞれの作物の種子処理における諸条件は、
表2に示す通りである。
The seeds 100 to be treated were placed in a cylindrical treatment container containing the super absorbent polymer coated with the hydrophobic agent.
After metering in the amount of ml and sealing, while using a mix rotor (powder mixer) to perform stirring and mixing intermittently,
The treatment was carried out for a certain period in a constant temperature room set to a predetermined temperature. Conditions for seed treatment of each crop are
It is as shown in Table 2.

【0036】なお、高吸水性ポリマーに対する吸水倍率
や種子との混合比率、処理温度、処理日数などは被処理
種子の種類や種子ロットによって若干異なるため、予備
試験を実施して決定した。
The water absorption capacity to the superabsorbent polymer, the mixing ratio with seeds, the treatment temperature, the number of treatment days, and the like are slightly different depending on the type of seeds to be treated and the seed lot, and therefore a preliminary test was conducted to determine.

【0037】処理中の容器内への酸素の供給法は、処理
容器の容積に対して高吸水性ポリマーと種子の混合物が
占める割合や処理期間の長さによって若干異なる。本実
施例では、比較的長期間の処理を必要とするものは連続
通気法により、短期間で処理が終わるものは酸素封入交
換法により行なった。連続通気法は、エアーポンプを用
いて少量の空気を連続的に供給する方法であり、酸素封
入交換法は、酸素供給機を用いて高濃度の酸素ガス(9
0%濃度)を封入し、24時間毎に交換封入する方法で
ある。
The method of supplying oxygen into the container during the treatment is slightly different depending on the ratio of the mixture of the superabsorbent polymer and the seed to the volume of the treatment container and the length of the treatment period. In the present example, those requiring a relatively long period of time were carried out by the continuous aeration method, and those requiring a relatively short period of time were carried out by the oxygen encapsulation exchange method. The continuous aeration method is a method in which a small amount of air is continuously supplied using an air pump, and the oxygen entrapment exchange method is in a high-concentration oxygen gas (9
It is a method of encapsulating (0% concentration) and exchanging every 24 hours.

【0038】[0038]

【表2】 所定の処理期間経過後、適切な目の篩を用いて種子と高
吸水性ポリマーを選別し、通風オーブン内で35℃で種
子乾燥を行なった。乾燥後の種子含水率は、処理前の種
子含水率とおよそ同程度になるように調整した。
[Table 2] After the lapse of a predetermined treatment period, the seeds and the superabsorbent polymer were selected using an appropriate sieve, and the seeds were dried in a ventilation oven at 35 ° C. The water content of seeds after drying was adjusted to be approximately the same as the water content of seeds before treatment.

【0039】乾燥後の処理種子に対して発芽試験を実施
し、発芽改善効果の確認を行なった。発芽試験は、シャ
ーレに播種して行ない、基本的には、国際種子検査規定
(ISTA)の基準に基づいて行なった。
A germination test was carried out on the treated seeds after drying to confirm the germination improving effect. The germination test was carried out by sowing in a petri dish, and basically, it was carried out based on the standards of the International Seed Inspection Regulation (ISTA).

【0040】発芽の締め切りは14日とし、発芽の早さ
の指標として平均発芽日数を計算した。平均発芽日数
は、
The deadline for germination was 14 days, and the average number of germination days was calculated as an index of the speed of germination. The average number of germination days is

【数1】 の式より算出した。この数式において、kは播種後経過
日数、Gkは播種k日後に発芽した種子固体数をそれぞ
れ示す。nは発芽締め切りの14日までとした。
[Equation 1] It was calculated from the formula. In this formula, k represents the number of days elapsed after sowing, and Gk represents the number of seed solids germinated k days after sowing. n is the germination deadline of 14 days.

【0041】発芽試験の結果を表3、4および図1〜5
に示す。
The results of the germination test are shown in Tables 3 and 4 and FIGS.
Shown in

【0042】(発芽の早さの改善)表3および図1〜
3、5に示すように、ニンジン、セルリー、ホーレンソ
ウ、パンジーの各種子において、制御された水和処理に
よる発芽の迅速化が観察された。その効果は、特に無処
理種子で発芽に比較的日数を要するニンジン、セルリ
ー、パンジーで顕著に観察され、平均発芽日数で2日程
度の短縮が観察された。
(Improvement of germination speed) Table 3 and FIGS.
As shown in Figs. 3 and 5, accelerated germination by controlled hydration treatment was observed in carrot, celery, spinach, and pansy species. The effect was remarkably observed in carrots, celery, and pansies, which require relatively long days for germination in untreated seeds, and the average germination time was shortened by about 2 days.

【0043】[0043]

【表3】 (低温下での発芽の早さの改善)タマネギの発芽適温
(20℃)下での発芽試験では、制御された水和処理種
子は無処理種子と変わらない発芽を示した(データ略)
が、低温下(10℃)での発芽試験では無処理種子に比
較して顕著に発芽が早まり、平均発芽日数の短縮が観察
された。表3および図4参照。
[Table 3] (Improvement of germination speed at low temperature) In a germination test of onion at a suitable germination temperature (20 ° C), controlled hydration-treated seeds showed the same germination as untreated seeds (data not shown).
However, in a germination test under low temperature (10 ° C.), germination was remarkably accelerated as compared with untreated seeds, and a shortened average germination period was observed. See Table 3 and Figure 4.

【0044】(高温下での発芽率の改善)レタスの種子
は高温下では二次休眠に入ってしまうが、制御された水
和処理により、供試4品種全てにおいて高温下(35
℃)での発芽率の改善が観察された(表4参照)。無処
理種子の発芽率が0〜12.0%であるのに対し、制御
された水和処理種子の発芽率は74.7〜96.0%を
示し、制御された水和処理の効果は顕著であった。
(Improvement of germination rate at high temperature) Although lettuce seeds enter secondary dormancy at high temperature, all of the four cultivars tested under high temperature (35%) by controlled hydration treatment.
An improvement in the germination rate at (° C) was observed (see Table 4). The germination rate of untreated seeds is 0 to 12.0%, whereas the germination rate of controlled hydration treated seeds is 74.7 to 96.0%, and the effect of controlled hydration treatment is It was remarkable.

【0045】[0045]

【表4】 実施例2 制御された水和処理後の種子と媒体の分離特性、乾燥工
程における処理後の種子の乾燥の難易性、および処理後
の種子への固体媒体の付着残留量を従来処理技術(比較
例)と比較した。
[Table 4] Example 2 The separation characteristics of the seed and the medium after the controlled hydration treatment, the difficulty of drying the seed after the treatment in the drying step, and the residual amount of the solid medium adhered to the seed after the treatment were compared with the conventional treatment technique (comparative). Example)

【0046】すなわち、タマネギとニンジンの種子各5
0gを計量し、プライミング(SMPと区別するために
Osmotic Priming(以下、OPと略記)とする:比較
例)、ソリッド・マトリクス・プライミング(Solid Ma
trix Priming:以下、SMPと略記:比較例)、マトリ
コンディショニング(Matriconditioning :以下、MC
と略記:比較例)、本発明の高吸水性ポリマーによる水
和処理(以下、HSAPと略記:実施例)で、それぞれ
制御された水和処理を行なった。
That is, each of onion and carrot seeds 5
Weighing 0g and priming (to distinguish from SMP
Osmotic Priming (hereinafter abbreviated as OP): Comparative example), Solid Matrix Priming (Solid Ma)
trix Priming: SMP, abbreviated as follows: Comparative example, Matriconditioning: MC,
And abbreviated: Comparative Example), and hydration treatment with the superabsorbent polymer of the present invention (hereinafter, abbreviated as HSAP: Example) was performed respectively controlled hydration treatment.

【0047】制御された水和処理は、表5に示す条件で
行なった。また処理温度と処理期間は、タマネギで15
℃×5日間、ニンジンで20℃×7日間に統一して行な
った。
The controlled hydration treatment was carried out under the conditions shown in Table 5. The treatment temperature and treatment period are 15 for onions.
The test was carried out at 5 ° C. for 5 days and carrot at 20 ° C. for 7 days.

【0048】[0048]

【表5】 制御された水和処理終了後、OPではナイロンメッシュ
袋内で種子を水洗・脱水し、種子と媒体(ソジウム・ポ
リプロペネイト溶液)を分離した。
[Table 5] After the controlled hydration treatment was completed, in OP, the seeds were washed and dehydrated in a nylon mesh bag to separate the seeds and the medium (sodium polypropeneate solution).

【0049】SMP、MC、HSAPでは篩を使って種
子と固体媒体を分離した。その際、種子の粒径により、
タマネギでは12メッシュの篩を、ニンジンでは14メ
ッシュの篩をそれぞれ使用し、篩い選別による種子と媒
体の分離難易性を比較した。
In SMP, MC and HSAP, the seed and the solid medium were separated using a sieve. At that time, depending on the particle size of the seed,
A 12-mesh sieve was used for onions and a 14-mesh sieve was used for carrots, respectively, and the difficulty of separating the seed and the medium by sieving was compared.

【0050】種子と媒体を分離した後、40℃の通風オ
ーブン内で種子の乾燥を行なった。種子の乾燥は、オー
ブン内で種子を均一に広げて行ない、経時的に種子の含
水率を測定記録することで、それぞれの制御された水和
処理種子の乾燥の難易性を比較した。種子含水率は、乾
燥開始時と終了時にチョウ・エレクトロニック・バラン
スMC−30MB(Cho ELECTRONIC BALANCE MC-30MB)
を使って測定し、乾燥途中の種子含水率は重量の減少よ
り計算によって求めた。
After separating the seed and the medium, the seed was dried in a ventilated oven at 40 ° C. The seeds were dried by uniformly spreading the seeds in an oven, and the moisture content of the seeds was measured and recorded over time to compare the difficulty of drying the respective hydrated seeds under controlled conditions. Seed moisture content is Cho ELECTRONIC BALANCE MC-30MB at the beginning and end of drying.
The water content of seeds during drying was calculated from the decrease in weight.

【0051】乾燥後、種子を傷めない程度に擦り合わ
せ、種子表面に付着残留する媒体を強制剥離し、再度篩
い選別にかけて分離採取した。各々の制御された水和処
理で使用した媒体全量に対する剥離・分離採取媒体量の
割合を、付着残留率として計算した。最終的に処理が終
了した種子の表面観察の比較も行なった。
After drying, the seeds were rubbed to such an extent that they were not damaged, the medium remaining on the seed surface was forcibly peeled off, and again subjected to sieving and selection to separate and collect. The ratio of the amount of the peeling / separating and collecting medium to the total amount of the medium used in each controlled hydration treatment was calculated as the adhesion residual rate. A comparison of the surface observations of the seeds that had been finally treated was also made.

【0052】種子と媒体の分離難易性、種子乾燥の難易
性、および種子への媒体付着残留の結果は以下の通りで
ある。
The results of the difficulty of separating the seed and the medium, the difficulty of drying the seed, and the residual adhesion of the medium to the seed are as follows.

【0053】(種子と媒体の分離難易性)OPでは、種
子を水洗することにより、種子と媒体(ソジウム・ポリ
プロペネイト溶液)の分離が容易且つ確実にできた。
(Difficulty of Separation of Seed and Medium) In OP, the seed and the medium (sodium polypropeneate solution) were easily and reliably separated by washing the seed with water.

【0054】SMPとMCでは、保水した媒体(アグロ
・リグ(Agro-Lig)、ミクロ・セルE(Micro-Cel E) )が
種子表面に強固に付着するとともに、媒体が種子粒径よ
り大きな塊を形成し、篩い選別による種子と媒体の確実
な分離はできなかった。特に、種子表面に凹凸が見られ
るニンジン種子では媒体の付着が著しく、タマネギ種子
でも種皮のくぼみ部分への媒体付着が著しく観察され
た。同時に、処理容器や篩など、使用機器への媒体付着
も著しく観察された。
In SMP and MC, the water-retaining medium (Agro-Lig, Micro-Cel E) adheres firmly to the seed surface and the medium is larger than the seed particle size. , The seeds and the medium could not be reliably separated by sieving. Particularly, carrot seeds having irregularities on the seed surface were markedly attached with the medium, and even onion seeds were markedly attached with the medium to the indented portion of the seed coat. At the same time, the adhesion of the medium to the equipment used, such as the processing container and the sieve, was also observed.

【0055】HSAPでは、種子および処理容器・篩な
どの使用機器への媒体付着も無く、篩い選別により、種
子と媒体の分離が容易且つ確実にできた。その操作性
は、疎水性シリカの添加によりさらに向上した。
With HSAP, the medium did not adhere to the seed and the equipment used such as the processing container and sieve, and the seed and medium could be separated easily and reliably by sieving. Its operability was further improved by the addition of hydrophobic silica.

【0056】(種子乾燥の難易性)図6および図7に示
すように、HSAP処理種子は、タマネギもニンジン
も、他の処理と比較して最も短時間で種子含水率が低下
し、効率的な乾燥が行なえた。水和処理種子を、吸水前
の無処理種子の含水率(10%程度)となるまで乾燥す
る速さはHSAP>OP>MC≧SMPの順であった。
MCおよびSMPの乾燥曲線がOPよりも緩やかな傾斜
を示し、種子乾燥に長時間を要したのは、処理後の種子
に保水した固体媒体が多量に付着残留していたことに起
因すると推測される。
(Difficulty in Drying Seeds) As shown in FIGS. 6 and 7, the HSAP-treated seeds were effective in reducing the water content of the seeds in the shortest time compared with other treatments for both onions and carrots. I was able to dry it. The speed of drying the hydrated seeds until the water content of untreated seeds before water absorption (about 10%) was in the order of HSAP>OP> MC ≧ SMP.
The drying curves of MC and SMP showed a more gradual slope than OP, and it took a long time to dry the seeds. It is presumed that a large amount of the solid medium retained in the treated water adhered and remained. It

【0057】(種子への媒体付着残留)結果を表6に示
す。
(Residual adhesion of medium to seeds) The results are shown in Table 6.

【0058】[0058]

【表6】 OPにおいては、媒体が液体であり、種子を水洗して媒
体との分離を行なったため、種子への媒体付着残留は観
察されなかった。
[Table 6] In OP, since the medium was a liquid and the seed was washed with water to separate it from the medium, no residue of the medium adhered to the seed was observed.

【0059】SMPにおいては、制御された水和処理直
後に篩い選別を行なった際に、多量の媒体付着残留が観
察された。種子乾燥後に、付着残留した媒体(アグロ・
リグ)を強制的に剥離除去したところ、多量の媒体が分
離採取された。その付着残留率は、24.3%(タマネ
ギ測定値)と38.1%(ニンジン測定値)であり、高
い値を示した。
In the SMP, a large amount of medium adherence residue was observed when sieving was performed immediately after the controlled hydration treatment. After the seeds are dried, the medium that remains attached (agro /
When the rig) was forcibly peeled off, a large amount of medium was separated and collected. The residual adhesion rate was 24.3% (onion measurement value) and 38.1% (carrot measurement value), which were high values.

【0060】MCにおいては、制御された水和処理直後
に篩い選別を行なった際に、SMPと同様に多量の媒体
付着残留が観察された。種子乾燥後の強制剥離により、
ミクロ・セルEが22.6%(タマネギ測定値)と4
0.4%(ニンジン測定値)の残留率で分離採取され
た。
In MC, when sieving and screening were carried out immediately after the controlled hydration treatment, a large amount of medium adhesion residue was observed as in SMP. By forced peeling after seed drying,
Micro cell E is 22.6% (onion measurement value) and 4
Separated and collected at a residual rate of 0.4% (measured value of carrot).

【0061】HSAPにおいては、制御された水和処理
直後の篩い選別による種子と媒体の分離が確実であった
ため、種子への媒体付着残留率は0%であった。
In HSAP, the separation of the seed and the medium by sieving just after the controlled hydration treatment was reliable, so that the residual ratio of the medium adhered to the seed was 0%.

【0062】また、SMPとMCにおいては、種子付着
媒体を強制的に剥離した後も、媒体の除去は完全ではな
く、種子表面に少量の媒体の残留が観察された。その残
留量は、種子表面の外観から、通常種子に対して薬剤粉
衣を施した場合と同程度の量と観察された。
Further, in SMP and MC, even after the seed-attached medium was forcibly peeled off, the medium was not completely removed, and a small amount of the medium remained on the seed surface. From the appearance of the seed surface, the residual amount was observed to be about the same as when the normal seeds were coated with the drug.

【0063】実施例3 pHが中性域(5〜9)で化学組成の異なる高吸水性ポ
リマー3種を用い、トマト種子の制御された水和処理を
行なった。その処理種子に対して発芽試験を実施し、使
用したポリマーの種類の差による処理効果の比較を行な
った。
Example 3 Tomato seeds were subjected to a controlled hydration treatment using three superabsorbent polymers having different pH and neutral chemical compositions (5 to 9). A germination test was performed on the treated seeds, and the treatment effects were compared by the difference in the type of polymer used.

【0064】すなわち、橋掛けアクリル酸ソーダ重合
体、架橋スターチ・ポリアクリル酸共重合体、架橋ビニ
ルアルコール・ポリアクリル酸共重合体の3種の高吸水
性ポリマーを用い、実施例1と同様にしてトマト種子の
制御された水和処理を行なった。
That is, three kinds of super absorbent polymers of a cross-linked sodium acrylate polymer, a crosslinked starch / polyacrylic acid copolymer, and a crosslinked vinyl alcohol / polyacrylic acid copolymer were used, and the same procedure as in Example 1 was performed. The tomato seeds were subjected to controlled hydration treatment.

【0065】乾燥後の処理種子に対してシャーレ蒔きの
発芽試験を実施し、制御された水和処理に使用した高吸
水性ポリマーの種類の違いによる処理効果の比較を行な
ったところ、高吸水性ポリマーの種類の違いによる顕著
な処理効果の差は観察されなかった。
A germination test of petri dish was carried out on the treated seeds after drying, and the treatment effect was compared by the difference in the type of superabsorbent polymer used for controlled hydration treatment. No significant difference in treatment effect due to the difference in polymer type was observed.

【0066】このことから、制御された水和処理に使用
する高吸水性ポリマーは、その化学組成如何に関わら
ず、種子に対して無害なpHで、且つ適度な諸性状(吸
水力・水分徐放性・粒径・流動性)を有するものであれ
ば、同様な処理効果をあげることができると思われる。
From the above, the superabsorbent polymer used for the controlled hydration treatment has a pH which is harmless to seeds and has appropriate properties (water absorption and moisture retention regardless of its chemical composition). It is considered that the same treatment effect can be achieved as long as it has release property, particle size and fluidity.

【0067】[0067]

【発明の効果】本発明によれば、種子に固体媒体の微粉
が付着・残留することなく、水和処理後の種子の乾燥も
容易であるため、種子を傷めずに、すばやく均一に発芽
する改善された種子を安価に工業的に製造することがで
きる。
EFFECTS OF THE INVENTION According to the present invention, the fine powder of the solid medium does not adhere to or remain on the seeds, and the seeds can be dried easily after the hydration treatment. Therefore, the seeds can be germinated quickly and uniformly without damaging the seeds. Improved seeds can be manufactured industrially at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニンジンの発芽試験における播種後日数と発芽
率との関係を表わす図である。
FIG. 1 is a diagram showing the relationship between the number of days after seeding and the germination rate in a carrot germination test.

【図2】セルリーの発芽試験における播種後日数と発芽
率との関係を表わす図である。
FIG. 2 is a diagram showing a relationship between the number of days after sowing and a germination rate in a celery germination test.

【図3】ホーレンソウの発芽試験における播種後日数と
発芽率との関係を表わす図である。
FIG. 3 is a graph showing the relationship between the number of days after sowing and the germination rate in a spinach germination test.

【図4】タマネギの発芽試験における播種後日数と発芽
率との関係を表わす図である。
FIG. 4 is a diagram showing the relationship between the number of days after sowing and the germination rate in an onion germination test.

【図5】パンジーの発芽試験における播種後日数と発芽
率との関係を表わす図である。
FIG. 5 is a diagram showing the relationship between the number of days after seeding and the germination rate in a pansy germination test.

【図6】タマネギの種子乾燥試験における乾燥時間と種
子含水率との関係を表わす図である。
FIG. 6 is a diagram showing a relationship between a drying time and a seed water content in an onion seed drying test.

【図7】ニンジンの種子乾燥試験における乾燥時間と種
子含水率との関係を表わす図である。
FIG. 7 is a diagram showing the relationship between the drying time and the water content of seeds in a carrot seed drying test.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水を吸収した固形状の高吸水性ポリマー
に種子を加え、酸素含有気体を供給しながら、種子の活
力を増進するには充分であるが発芽をおこさせるには不
充分な時間と温度で種子を水和処理する種子の発芽改善
方法。
1. Addition of seeds to a solid superabsorbent polymer that has absorbed water, and while supplying oxygen-containing gas, is sufficient to enhance the vitality of the seeds, but not sufficient to cause germination. A method for improving seed germination, comprising hydrating seeds for a period of time and temperature.
【請求項2】 水を吸収した固形状の高吸水性ポリマー
が球状であることを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the water-absorbed solid superabsorbent polymer is spherical.
【請求項3】 高吸水性ポリマーが疎水剤で処理された
ことを特徴とする請求項1または2に記載の方法。
3. The method according to claim 1, wherein the superabsorbent polymer is treated with a hydrophobic agent.
【請求項4】 酸素含有気体が、空気、酸素ガスまたは
酸素と他の気体との混合物であることを特徴とする請求
項1〜3のいずれか1項に記載の方法。
4. The method according to claim 1, wherein the oxygen-containing gas is air, oxygen gas or a mixture of oxygen and another gas.
【請求項5】 請求項1〜4のいずれか1項に記載の方
法によって処理された種子。
5. A seed treated by the method according to any one of claims 1 to 4.
JP13408395A 1994-06-10 1995-05-31 How to improve seed germination Expired - Lifetime JP3151471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13408395A JP3151471B2 (en) 1994-06-10 1995-05-31 How to improve seed germination

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-128984 1994-06-10
JP12898494 1994-06-10
JP13408395A JP3151471B2 (en) 1994-06-10 1995-05-31 How to improve seed germination

Publications (2)

Publication Number Publication Date
JPH0851809A true JPH0851809A (en) 1996-02-27
JP3151471B2 JP3151471B2 (en) 2001-04-03

Family

ID=26464535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13408395A Expired - Lifetime JP3151471B2 (en) 1994-06-10 1995-05-31 How to improve seed germination

Country Status (1)

Country Link
JP (1) JP3151471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020558A (en) * 2004-07-07 2006-01-26 Hokuren Federation Of Agricult Coop:The Method for improving germination and seed
KR20160004330A (en) * 2013-04-29 2016-01-12 로버스트 씨드 테크놀로지 에이 앤드 에프 악티에볼라그 Improved method for seed priming
RU2598042C1 (en) * 2015-04-06 2016-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный аграрный университет Северного Зауралья" Method of preplanting treatment of spinach seeds
KR20200017183A (en) * 2018-08-08 2020-02-18 주식회사 엘지화학 Composition for seed enhancement comprising super absorbent polymer and water and method for treating seed enhancement by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509052B1 (en) * 2013-05-02 2015-04-08 대한민국 Method of predicting seed viability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020558A (en) * 2004-07-07 2006-01-26 Hokuren Federation Of Agricult Coop:The Method for improving germination and seed
KR20160004330A (en) * 2013-04-29 2016-01-12 로버스트 씨드 테크놀로지 에이 앤드 에프 악티에볼라그 Improved method for seed priming
RU2598042C1 (en) * 2015-04-06 2016-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный аграрный университет Северного Зауралья" Method of preplanting treatment of spinach seeds
KR20200017183A (en) * 2018-08-08 2020-02-18 주식회사 엘지화학 Composition for seed enhancement comprising super absorbent polymer and water and method for treating seed enhancement by using the same

Also Published As

Publication number Publication date
JP3151471B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US5930949A (en) Hydration of seeds with partially hydrated super absorbent polymer particles
CN102170771B (en) Particulate water-absorbing agent for growth of plant which comprises water-absorptive polyacrylic acid (salt) resin as main ingredient
US10021824B2 (en) Superabsorbent polymer seed coatings and associated methods
JP6493390B2 (en) Rice seed coating material and coated rice seed
CN1291432A (en) Seed coating composition used in low temperature situation
CN108156884A (en) A kind of pill pelleting seed suitable for direct sowing of rice and pelletized method
EP0187341A1 (en) Coated seed and method of coating seeds
JP3151471B2 (en) How to improve seed germination
JP7471681B2 (en) Superabsorbent-based suspensions suitable for the moisture-stimulating coating of seeds and a method for coating seeds with the suspensions
JPS6123016B2 (en)
JP2004129614A (en) Method for improving germination of seed, germination improved seed and coated seed
JP3680403B2 (en) Seed germination improvement method
JP3205896B2 (en) How to improve seed germination
KR920005558B1 (en) Controlled release formulation
JP4694810B2 (en) Water-retaining material for plant growth mainly composed of water-absorbent resin
JP4054783B2 (en) Germination improvement method and seed
JP3680448B2 (en) Production method of germination seed
JP2010088388A (en) Wrapping material for growing plant, and method of sowing by using the same
JPS6049443B2 (en) Seeding method
JPH11341904A (en) Coating material for seed, coating and preservation
CN107455368A (en) A kind of compound biological bacterium dressing agent for rice and preparation method thereof
JP2005058221A (en) Seed coating composition, coated seed, and method for coating the same
JPH02286001A (en) Tacky sheet for seeding and raising of seedling and seeding and raising of seedling
JPS58149604A (en) Induction of germination of seed
JPH01243927A (en) Soil water-retaining material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160126

Year of fee payment: 15

EXPY Cancellation because of completion of term