JPH085164B2 - Flexible gas barrier laminated packaging container with excellent bending fatigue resistance - Google Patents

Flexible gas barrier laminated packaging container with excellent bending fatigue resistance

Info

Publication number
JPH085164B2
JPH085164B2 JP5142382A JP14238293A JPH085164B2 JP H085164 B2 JPH085164 B2 JP H085164B2 JP 5142382 A JP5142382 A JP 5142382A JP 14238293 A JP14238293 A JP 14238293A JP H085164 B2 JPH085164 B2 JP H085164B2
Authority
JP
Japan
Prior art keywords
layer
laminated packaging
density polyethylene
packaging container
linear low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5142382A
Other languages
Japanese (ja)
Other versions
JPH06166152A (en
Inventor
靖夫 本石
賢司 佐藤
恭一郎 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59017485A external-priority patent/JPS60161146A/en
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5142382A priority Critical patent/JPH085164B2/en
Publication of JPH06166152A publication Critical patent/JPH06166152A/en
Publication of JPH085164B2 publication Critical patent/JPH085164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はきわめてはげしい屈曲疲
労にも、気体遮断性の低下のないフレキシブル積層包装
材に関する。詳しくは酸素、炭酸ガスなどの気体遮断性
を有するエチレン−酢酸ビニル共重合体けん化物(以下
EVOHと記す)からなる薄膜を中間層とする、フレキ
シブル積層包装材であって、該積層包装材の表面層のい
ずれにも示差走査型熱量計の熱分析に基づく融解熱が2
5cal/g以下である直鎖状の低密度ポリエチレン層
を用いることによって、該包装材で包装された、変質し
易い物品の気密包装体が輸送、取扱い時に該包装が受け
るきわめてはげしい屈曲疲労に対してもすぐれた気体遮
断性を保持することができ、被包装物の変質を防止する
ために有効な積層フレキシブル包装容器を提供するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible laminated packaging material which does not deteriorate in gas barrier property even under extremely severe bending fatigue. Specifically, it is a flexible laminated packaging material having a thin film made of a saponified ethylene-vinyl acetate copolymer (hereinafter referred to as EVOH) having a gas barrier property against oxygen, carbon dioxide gas and the like as an intermediate layer. The heat of fusion based on the thermal analysis of the differential scanning calorimeter is 2 in any of the surface layers.
By using a linear low-density polyethylene layer of 5 cal / g or less, an airtight package of an easily-deteriorated article packaged with the packaging material is subjected to extremely severe bending fatigue when the package is transported or handled. (EN) Provided is a laminated flexible packaging container which can maintain excellent gas barrier property and is effective for preventing alteration of a packaged object.

【0002】[0002]

【従来の技術】フレキシブル積層包装材の機能は、基本
的には被包装物の保存性、すなわち変質防止であり、そ
のために、該包装材にあっては、特に輸送振動強度、耐
屈曲疲労性が要求され、就中、所謂バッグインボックス
−折り畳み可能なプラスチックの薄肉内容器と積み重ね
性、持運び性、印刷適性を有する外装段ボール箱とを
組み合わせた容器−の内容器として用いられる場合に
は、高度の該特性が要求される。該包装材は、各種プラ
スチック・フィルムがそれぞれの素材の特性を活かして
積層されて用いられるが、たとえば機械的強度を保持す
るための基材フィルムと熱シール可能な素材との組合せ
が最も一般的であり、被包装物の要請に応じて、素材が
選択される。就中、基材フィルムの酸素等のガス遮断性
で、不満足な用途については、さらに高度なガス遮断性
を有するバリヤー層を基材層上に設け、このバリヤー層
を中間層としてヒートシール可能な素材を、少なくとも
一外層となる如く熱可塑性樹脂層を積層する方法が採用
される。たとえば従来のバッグインボックスの内容器の
材質の基本は、必ずヒートシール部分があるので、ヒー
トシール可能なポリエチレン、特に軟質ポリエチレンを
主体としているが、バッグインボックスの特徴である折
り畳み可能であること、内容物が液体であること、等か
ら物理的強度、前述の如く特に輸送振動強度、耐屈曲疲
労性が求められ、このために耐ストレスクラック性が良
好であること等と相俟って、エチレン−酢酸ビニル共重
合体樹脂がより好ましく用いられる。
2. Description of the Related Art The function of a flexible laminated packaging material is basically storage stability of a packaged article, that is, prevention of alteration, and therefore, the packaging material has, in particular, transport vibration strength and bending fatigue resistance. when used as the inner container - but is required, inter alia, so-called bag-in-box - thin inner container of foldable plastic and stackability, lifting Chi carry of a container combining the outer cardboard box having printability Require a high degree of this property. The packaging material is used by laminating various plastic films by taking advantage of the characteristics of each material. For example, a combination of a base material film for maintaining mechanical strength and a heat sealable material is the most common. Therefore, the material is selected according to the request of the object to be packaged. In particular, for unsatisfactory uses of the base film for blocking gas such as oxygen, a barrier layer having a higher gas blocking property is provided on the base layer, and the barrier layer can be heat-sealed as an intermediate layer. A method of laminating a thermoplastic resin layer so that the material is at least one outer layer is adopted. For example, the basic material of the inner container of the conventional bag-in-box is that there is always a heat-sealable part, so heat-sealable polyethylene, especially soft polyethylene, is mainly used, but the characteristic feature of the bag-in-box is that it can be folded. In view of the fact that the content is a liquid, physical strength, transport vibration strength, and bending fatigue resistance are required as described above, which is combined with good stress crack resistance. An ethylene-vinyl acetate copolymer resin is more preferably used.

【0003】さらに要求性能の高度化に伴って酸素等の
ガス遮断性が要求される場合には、ナイロンフィルム、
サランコートナイロンフィルム、アルミ蒸着ナイロンフ
ィルム、アルミ蒸着ポリエステルフィルム等を組合せた
該内容器が実用化され始めている。高度なガス遮断性を
付与するためには、エチレン−酢酸ビニル共重合体けん
化物ポリ塩化ビニリデン、アルミ箔、金属などの蒸着
フィルムなどが用いられる。しかしこれらはガス遮断性
については優れるが、機械的強度は一般的に低く、特に
屈曲疲労に耐えられるものではない。従って機械的強度
の優れた基材層とヒートシール可能な素材の間に積層さ
れて用いられるが、なおたとえばバッグインボックス内
容器の構成材として用いた場合、該構成材にピンホール
を生じたり、該構成材にピンホールを生じない段階にお
いてさえ、中間層として用いた該バリヤー層に生ずるク
ラックやピンホール等に起因してバリヤー性の低下を生
ずるなどのためきわめてはげしい屈曲疲労に対して、す
ぐれた気体遮断性を保持することができず、実用的に満
足なものは見出されていない。
In the case where gas barrier properties such as oxygen are required as the required performance becomes higher, nylon film,
The inner container in which a Saran-coated nylon film, an aluminum-deposited nylon film, an aluminum-deposited polyester film and the like are combined has begun to be put into practical use. In order to impart a high gas barrier property, a saponified product of an ethylene-vinyl acetate copolymer , polyvinylidene chloride, an aluminum foil, a vapor deposited film of metal or the like is used. However, although these have excellent gas barrier properties, they generally have low mechanical strength and cannot withstand bending fatigue. Therefore, it is used by being laminated between a base material layer having excellent mechanical strength and a heat-sealable material. However, when it is used as a constituent material of a bag-in-box container, pinholes are generated in the constituent material. , Even at the stage where no pinholes are formed in the constituent material, due to cracks and pinholes etc. occurring in the barrier layer used as the intermediate layer, the deterioration of the barrier property, etc. It has not been found to be practically satisfactory because it cannot maintain an excellent gas barrier property.

【0004】ポリ塩化ビニリデン樹脂を主体とする層、
アルミ箔、金属などの蒸着樹脂層などをバリヤー層とす
る積層包装材についての挙動は、たとえば特開昭55−
7477号公報に示されている。すなわち実際に該包装
材を使用し、包装された包装体の輸送、取り扱い後のガ
ス遮断性が必ずしも満足できるものではなく、最も必要
性の高い一次流通後の実用保存性がしばしば裏切られる
のは、中間層に位置する該バリヤー層の損傷に起因す
る。ガス遮断性向上のために設ける中間層の素材として
は、EVOH樹脂が最も優れており各種の多層フイル
ム、多層構造をもつ容器のバリヤー材として好んで用い
られる。
A layer mainly composed of polyvinylidene chloride resin,
The behavior of a laminated packaging material having a barrier layer of a vapor-deposited resin layer of aluminum foil or metal is described in, for example, JP-A-55-55.
No. 7477. That is, actually using the packaging material, transportation of the packaged package, the gas barrier property after handling is not always satisfactory, and the most necessary practical preservation after primary distribution is often betrayed. , Due to damage to the barrier layer located in the intermediate layer. EVOH resin is the most excellent material for the intermediate layer provided to improve gas barrier properties, and is preferably used as a barrier material for various multilayer films and containers having a multilayer structure.

【0005】これらの樹脂が抜群のガスバリヤー性を有
するだけでなく、透明性、耐油性、印刷性、成形性など
にもすぐれていて、基材樹脂の特性を損なうことがない
というきわめて有利な性質をもつからである。しかるに
耐屈曲疲労性を特に要求される分野には、積層包装材の
バリヤー層としてEVOH樹脂が満足に用いられる例は
みられない。就中前述の如く輸送振動による屈曲疲労に
耐えることが強く求められている。酸素等の気体遮断性
を有すバツグインボックスの内容器にEVOH樹脂が用
いられて、該要求を満足するものは見出されておらず、
EVOH層をバリヤー層とする優れたバリヤー性と輸送
振動に耐える屈曲疲労強度をもったフレキシブル積層包
装材の開発は重要課題の一つであった。
These resins not only have excellent gas barrier properties, but also have excellent transparency, oil resistance, printability, moldability, etc., and are extremely advantageous in that they do not impair the characteristics of the base resin. This is because it has properties. However, there is no example in which EVOH resin is satisfactorily used as a barrier layer of a laminated packaging material in a field where flex fatigue resistance is particularly required. Above all, it is strongly demanded to withstand bending fatigue due to transportation vibration as described above. EVOH resin is used for the inner container of a bag-in box having a property of blocking gas such as oxygen, and no one satisfying the requirement has been found.
Development of a flexible laminated packaging material having excellent barrier properties using the EVOH layer as a barrier layer and flexural fatigue strength to withstand transport vibration was one of the important issues.

【0006】また実開昭47−23353号公報には、
EVOHを中間層とし、内外層に高圧法低密度ポリエチ
レン(分岐状低密度ポリエチレン)を設けた積層包装材
について記載されているが、このような積層包装材は後
述する比較例1に示すように耐屈曲疲労性は著しく劣っ
ている。また特開昭55−12008号公報には直鎖状
低密度ポリエチレンにEVOHを積層した包装材につい
ても記載されているが、このような構成からなる包装材
でも後述する比較例2に示すように耐屈曲疲労性はまだ
充分でない。
Further, Japanese Utility Model Publication No. 47-23353 discloses that
A description is given of a laminated packaging material in which EVOH is used as an intermediate layer and high pressure low density polyethylene (branched low density polyethylene) is provided in the inner and outer layers. Such a laminated packaging material is as shown in Comparative Example 1 described later. Flex fatigue resistance is extremely poor. Further, Japanese Patent Laid-Open No. 55-12008 describes a packaging material in which EVOH is laminated on linear low-density polyethylene, but a packaging material having such a structure is also shown in Comparative Example 2 described later. Flex fatigue resistance is not yet sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明者等はEVOH
フイルムは前記優れた諸特性をもっている反面、ポリエ
チレン、ポリプロピレン、ナイロン、熱可塑性ポリエス
テルなどの熱可塑性樹脂のフイルムに比べ、耐屈曲疲労
性に著しく劣るという大きな欠点を有するのみならず、
前記屈曲疲労に強い樹脂層と積層し中間層としてEVO
H樹脂層を用いた複層フレキシブル包装材において予想
外にも、EVOHの剛性等の物理的特性とも関連がある
ものとみられるが、該包装材の耐屈曲疲労性は前記屈曲
疲労に強い熱可塑性樹脂が単体で示す耐屈曲疲労性より
顕著に低下し、より少ない屈曲疲労で積層包装材にピン
ホールを生ずるようになること、さらに驚くべきことに
該ピンホールの発生に至るまでは該EVOH層が単独で
耐え得る屈曲疲労をこえてもなお屈曲疲労によるクラッ
ク、ピンホール等が該EVOH層に発生しないことに起
因するとみられるが、バリヤー性の低下が殆んど認めら
れない点で前記塩化ビニリデン樹脂等をバリヤー層とし
て中間層に用いた従来の積層包装材の挙動と著しく異な
っていることを見出し、該観点からEVOH層をバリヤ
ー層とする耐屈曲疲労に優れたフレキシブルな気体遮断
性積層包装容器に関し鋭意検討を進めて本発明を完成す
るに至った。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
While the film has the above-mentioned various excellent properties, polyethylene, polypropylene, nylon, as compared with a film of a thermoplastic resin such as thermoplastic polyester, not only has a major drawback of being significantly inferior in bending fatigue resistance,
EVO is used as an intermediate layer by laminating with a resin layer resistant to bending fatigue.
Unexpectedly, in a multi-layer flexible packaging material using an H resin layer, it seems to be related to physical properties such as rigidity of EVOH, but the bending fatigue resistance of the packaging material is thermoplasticity that is strong against the bending fatigue. The resin is significantly lower than the bending fatigue resistance shown by itself, and pinholes are formed in the laminated packaging material with less bending fatigue. Even more surprisingly, the EVOH layer is formed until the pinholes are generated. Is considered to be caused by the fact that cracks and pinholes due to bending fatigue do not occur in the EVOH layer even if it exceeds the bending fatigue that can withstand by itself. It was found that the behavior of a conventional laminated packaging material using a vinylidene resin or the like as a barrier layer in the intermediate layer is remarkably different, and from this viewpoint, the EVOH layer as a barrier layer is resistant to bending. And we have completed the present invention to promote an extensive study relates superior flexible gas barrier laminated packaging containers labor.

【0008】[0008]

【課題を解決するための手段】本発明はEVOHの薄膜
を中間層とし該中間層の両側に表面層を有し、該各層が
接着性樹脂層を介して配されてなる積層包装材におい
て、該表面層のいずれもが示差走査型熱量計の熱分析に
基づく融解熱が25cal/g以下である直鎖状低密度
ポリエチレン層からなることを特徴とする耐屈曲疲労に
優れたフレキシブルな気体遮断性積層包装容器を提供す
るものである。
The present invention provides a laminated packaging material comprising an EVOH thin film as an intermediate layer and surface layers on both sides of the intermediate layer, each layer being provided with an adhesive resin layer interposed therebetween. Any of the surface layers can be used for thermal analysis of a differential scanning calorimeter.
It is intended to provide a flexible gas barrier laminated packaging container excellent in bending fatigue resistance, characterized by comprising a linear low-density polyethylene layer having a heat of fusion of 25 cal / g or less .

【0009】耐屈曲疲労性は所謂ゲルボフレックステス
ターを用いて行う評価テストにおけるガスバリヤー性低
下の屈曲回数依存性、ピンホール発生に至るまでの屈曲
回数等のデータから種々の素材、または種々の素材から
なる積層包装材の耐屈曲疲労性の優劣を判断することが
できる。本発明者らは各種熱可塑性樹脂の単体フイルム
及び各種樹脂からなる多層構成のラミネートフイルムに
ついてゲルボフレックステスターを用い、屈曲回数とピ
ンホール発生数との関係、ピンホール発生に至る屈曲回
数、さらに多層構成のラミネート物についてはピンホー
ル発生に至るまでの過程における屈曲回数とバリヤー性
(たとえば酸素透過量)との関係を多岐に旦って測定し
た結果いくつかの事実を見出した。
The bending fatigue resistance is determined by various materials or various materials from data such as the bending number dependency of the gas barrier property deterioration in the evaluation test performed using a so-called gelbo flex tester, the bending number of times until the pinhole is generated, and the like. It is possible to judge the superiority or inferiority of the bending fatigue resistance of the laminated packaging material made of the material. The inventors of the present invention used a Gelbo flex tester for a single-layer film of various thermoplastic resins and a laminated film of various resins, and used a gelbo flex tester to show the relationship between the number of times of bending and the number of pinholes, the number of times of bending to generate pinholes, and As for the laminate having a multi-layered structure, several facts were found as a result of variously measuring the relationship between the number of times of bending and the barrier property (for example, the amount of oxygen permeation) in the process leading to the occurrence of pinholes.

【0010】すなわち(1)EVOH樹脂フイルムはい
ずれも耐屈曲疲労性は極めて不良であり、実用に耐える
輸送振動強度水準に遥かに及ばないこと、(2)従来一
般的に使用されている高圧法低密度ポリエチレン、低圧
法高密度ポリエチレン、ナイロン、ポリプロピレン、熱
可塑性ポリエステルなどの各樹脂のフイルムは該EVO
H樹脂フイルムに比し、耐屈曲疲労性は顕著に優れてい
るけれども、該樹脂フイルムをEVOHを中間層として
積層したラミネートフイルムの耐屈曲疲労性は詳細は明
らかでないが、EVOH層が存在することに起因すると
みられる顕著な低下、つまり該樹脂単体フイルムの優れ
た耐屈曲疲労性に比し顕著な低下がみられること、
(3)更に驚くべきことにEVOH層を中間層とした該
積層物にピンホール発生を見るに至るまでは、ガスバリ
ヤー性の低下の殆んどないこと、(4)就中、両表面層
示差走査型熱量計の熱分析に基づく融解熱が25ca
l/g 以下である直鎖状低密度ポリエチレン層を用いた
該積層物は耐屈曲疲労性の改善が著しいことを認めた。
That is, (1) all EVOH resin films have extremely poor flexural fatigue resistance, which is far below the level of transportation vibration strength that can be practically used. (2) Conventional high pressure method The film of each resin such as low density polyethylene, low pressure high density polyethylene, nylon, polypropylene, thermoplastic polyester is EVO.
Although the flex fatigue resistance is remarkably superior to that of the H resin film, the flex fatigue resistance of the laminate film in which the resin film is laminated with EVOH as an intermediate layer is not clear in detail, but an EVOH layer is present. Due to the remarkable decrease, that is, a remarkable decrease compared to the excellent flex fatigue resistance of the resin single film,
(3) Surprisingly, almost no deterioration in gas barrier property was observed until the occurrence of pinholes in the laminate having the EVOH layer as an intermediate layer. (4) Above all, both surface layers Has a heat of fusion of 25 ca based on the thermal analysis of a differential scanning calorimeter.
It was found that the laminate using the linear low-density polyethylene layer having a ratio of 1 / g or less has a remarkable improvement in bending fatigue resistance.

【0011】示差走査型熱量計の熱分析に基づく融解熱
が25cal/g以下である直鎖状低密度ポリエチレン
を表面層のいずれにも用いたときにのみ耐屈曲疲労性の
改善が、EVOHを中間層とする構成を採った積層物に
おいて顕著である。また該現象についての詳細は未だ明
らかではないが、該改善の効果は該直鎖状低密度ポリエ
チレンの示差走査型熱量計の熱分析に基づく融解熱に顕
著にかかわり、併せて共重合成分であるα−オレフィン
の炭素数およびヤング率にも深くかかわっており、これ
らが選定された特定の領域にある直鎖状低密度ポリエチ
レンを採用したときに特に顕著である。
Heat of fusion based on thermal analysis of differential scanning calorimeter
The improvement in flexural fatigue resistance is remarkable only in the case where the linear low-density polyethylene having a viscosity of 25 cal / g or less is used for any of the surface layers in the laminate having the constitution in which EVOH is the intermediate layer. Further, although the details of the phenomenon are not yet clear, the effect of the improvement is revealed in the heat of fusion based on the thermal analysis of the linear low density polyethylene differential scanning calorimeter.
In addition, it is deeply involved in the carbon number and Young's modulus of the α-olefin which is a copolymerization component, and it is particularly remarkable when linear low density polyethylene in these selected specific regions is adopted. Is.

【0012】本発明に使用される直鎖状低密度ポリエチ
レンとは実質的に長鎖分岐を持たない直鎖状の低密度ポ
リエチレンである。一般には長鎖分岐数の定量的な尺度
G=〔η〕b/〔η〕l(〔η〕bは分岐ポリエチレン
の極限粘度、〔η〕lは分岐ポリエチレンと同じ分子量
を持つ直鎖状ポリエチレンの極限粘度)がほぼl(一般
的には0.9〜1の範囲にあり1に近い場合が多い)で
あり、密度が0.910〜0.945のものである。
(なお従来の通常の高圧法低密度ポリエチレンのG値は
0.1〜0.6である。)直鎖状低密度ポリエチレンの
製造法は特に制限されない。
The linear low-density polyethylene used in the present invention is a linear low-density polyethylene having substantially no long-chain branch. Generally, a quantitative measure of the number of long chain branches G = [η] b / [η] l ([η] b is the intrinsic viscosity of branched polyethylene, [η] l is a linear polyethylene having the same molecular weight as branched polyethylene) Has an intrinsic viscosity of about 1 (generally in the range of 0.9 to 1 and often close to 1) and a density of 0.910 to 0.945.
(The G value of the conventional ordinary high-pressure low-density polyethylene is 0.1 to 0.6.) The method for producing linear low-density polyethylene is not particularly limited.

【0013】代表的な製造方法を例示すれば7〜45k
g/cm2の圧力(高圧法低密度ポリエチレンの場合は
通常2000〜3000kg/cm2)、75〜100
℃の温度(高圧法低密度ポリエチレンの場合は120〜
250℃)で、クロム系触媒またはチーグラー触媒を用
いて炭素数3以上、好ましくは4以上、さらに好ましく
は5〜10のα−オレフィン、たとえばプロピレン、ブ
テン−1、メチルペンテン−1、ヘキセン−1、オクテ
ン−1等のα−オレフィンを共重合成分として、エチレ
ンの共重合を行う方法がある。重合方法としては溶液法
液相法、スラリー法液相法、流動床気相法、撹拌床気相
法等が用いられる。
A typical manufacturing method is 7 to 45 k.
pressure of g / cm 2 (typically 2000~3000kg / cm 2 in the case of high-pressure low-density polyethylene), 75-100
Temperature of ℃ (120 ~ for high density low density polyethylene)
250 ° C.) using a chromium-based catalyst or Ziegler catalyst, an α-olefin having 3 or more, preferably 4 or more, more preferably 5 to 10 carbon atoms, such as propylene, butene-1, methylpentene-1, hexene-1. , Octene-1, etc. as a copolymerization component, there is a method of copolymerizing ethylene. As the polymerization method, a solution method liquid phase method, a slurry method liquid phase method, a fluidized bed gas phase method, a stirred bed gas phase method and the like are used.

【0014】本発明の効果と該α−オレフィンの炭素数
と該直鎖状低密度ポリエチレンの示差走査型熱量計の熱
分析による融解熱、さらにヤング率とに深くかかわって
いることは前述の通りであるが、より具体的に述べれば
次の通りである。すなわち、本発明で用いられる直鎖状
低密度ポリエチレンは、該融解熱が25cal/g以下
のものである。該融解熱が25cal/gを越える場合
は、比較例3で示すように耐屈曲疲労性が充分ではなか
った。かかる直鎖状低密度ポリエチレンは、その融解熱
好ましくは25〜5cal/gであるか、または20
℃におけるヤング率が2kg/mm2以下、好ましくは
22〜3kg/mm2、さらに好ましくは22〜5kg
/mm2である該ポリエチレンについて本発明の効果が
より顕著であり、特 に両者が前記領域にある場合に最
も顕著である。
As described above, the effects of the present invention, the carbon number of the α-olefin, the heat of fusion of the linear low-density polyethylene by the thermal analysis of the differential scanning calorimeter, and the Young's modulus are deeply concerned. However, more specifically, it is as follows. That is, the linear chain used in the present invention
Low density polyethylene has a heat of fusion of 25 cal / g or less
belongs to. When the heat of fusion exceeds 25 cal / g
Shows that the bending fatigue resistance is not sufficient as shown in Comparative Example 3.
It was. Such linear low density polyethylene has a heat of fusion
Is preferably 25-5 cal / g, or 20
Young's modulus at 0 ° C is 2 kg / mm 2 or less, preferably 22 to 3 kg / mm 2 , and more preferably 22 to 5 kg.
The effect of the present invention is more remarkable with respect to the polyethylene having the ratio of 1 / mm 2 , particularly, when both are in the above range.

【0015】該融解熱、ヤング率が前記領域にあるもの
は重合法、重合条件によって多少異なるが、概していえ
ば共重合成分である該α−オレフィンの含有量が約2モ
ル%以上、好ましくは約2〜7モル%の領域で得られる
場合が多い。共重合成分がブテン−1である直鎖状低密
度ポリエチレンについては該融解熱が15cal/g以
下であるか、または20℃におけるヤング率が12kg
/mm2以下である場合に本発明の効果はより顕著であ
り、特に該両者が前記領域にある場合に最も顕著に該効
果を享受することができる。該融解熱、ヤング率が前記
領域にある該低密度ポリエチレンは、概していえばブテ
ン−1の含有量が約4モル%以上の領域で得られる場合
が多い。該含有量が多くなり過ぎると、該ポリエチレン
のもつ他の物理的特性が不満足なものとなり、好ましく
なく、該含有量は高々数モル%、たとえば7モル%であ
ることが望ましい。
Although the heat of fusion and Young's modulus in the above range are slightly different depending on the polymerization method and the polymerization conditions, generally, the content of the α-olefin as a copolymerization component is about 2 mol% or more, preferably It is often obtained in the range of about 2 to 7 mol%. For the linear low-density polyethylene whose copolymerization component is butene-1, the heat of fusion is 15 cal / g or less, or the Young's modulus at 20 ° C. is 12 kg.
The effect of the present invention is more prominent when the ratio is / mm 2 or less, and the effect can be most remarkably exerted when the both are in the above-mentioned region. The low-density polyethylene having the heat of fusion and Young's modulus in the above-mentioned range is generally obtained in a range where the content of butene-1 is about 4 mol% or more. If the content is too large, the other physical properties of the polyethylene will be unsatisfactory, which is not preferable, and the content is preferably at most several mol%, for example, 7 mol%.

【0016】また本発明の効果は前述の如く該融解熱ま
たは/およびヤング率が前記特定の領域にある直鎖状低
密度ポリエチレンについて享受し得るが、特に炭素数5
以上、たとえば5〜10のα−オレフィンを共重合成分
とする該ポリエチレンについてより顕著に該効果を享受
することができる。この場合前述と同様の理由から、該
α−オレフィンの含有量は2〜7モル%、より具体的に
は2〜6モル%が好ましく、また該融解熱は前記の如く
該α−オレフィン含有量等と関連しているが、就中該融
解熱は25〜5cal/gであることが好ましく、また
ヤング率は22kg/mm2以下、好ましくは22〜3
kg/mm2、さらに好ましくは22〜5kg/mm2
ある。該オレフィンの中でも本発明の効果がより顕著で
あり、工業的にも容易に得られる4−メチル−1−ペン
テンを共重合成分とする直鎖状低密度ポリエチレンは最
も好適なものの一つである。従来の高圧法低密度ポリエ
チレンの場合は示差走査型熱量計の熱分析による融解熱
または/およびヤング率が前記領域にあっても本発明の
効果を享受することはできない。
Further, the effects of the present invention can be enjoyed for the linear low-density polyethylene having the heat of fusion and / or Young's modulus in the above-mentioned specific region as described above.
As described above, for example, the effect can be more remarkably applied to the polyethylene containing 5 to 10 α-olefin as a copolymerization component. In this case, for the same reason as described above, the content of the α-olefin is preferably 2 to 7 mol%, more specifically 2 to 6 mol%, and the heat of fusion is as described above. In particular, the heat of fusion is preferably 25 to 5 cal / g, and the Young's modulus is 22 kg / mm 2 or less, preferably 22 to 3
kg / mm 2, more preferably from 22~5kg / mm 2. Among these olefins, the linear low-density polyethylene containing 4-methyl-1-pentene as a copolymerization component, which is more advantageous in the effect of the present invention and is easily obtained industrially, is one of the most preferable ones. . In the case of the conventional high-pressure low-density polyethylene, the effect of the present invention cannot be obtained even if the heat of fusion and / or Young's modulus by the thermal analysis of the differential scanning calorimeter are within the above range.

【0017】EVOH単体フイルムの耐ピンホール性が
極めて不良であるにも拘わらず、本発明の該直鎖状低密
度ポリエチレンをいずれの表面層にも用い、EVOH層
を中間層とした積層フイルムの耐ピンホール性が著しく
向上した点つまりEVOH単体フイルムの特性に鑑みて
判断すれば、当然に中間層にクラックないしはピンホー
ルが発生し該積層包装材のバリヤー性が低下することが
予想される段階において、該積層包装材のバリヤー性の
低下が認められない点は前記塩化ビニリデン等のバリヤ
ー材を用いた従来の積層包装材と異なり極めて特異的で
ある。
Despite the extremely poor pinhole resistance of the EVOH single film, the linear low-density polyethylene of the present invention is used for any surface layer, and a laminated film having an EVOH layer as an intermediate layer is used. A stage in which cracks or pinholes naturally occur in the intermediate layer and the barrier property of the laminated packaging material is expected to be deteriorated, judging from the point that the pinhole resistance is remarkably improved, that is, in view of the characteristics of the EVOH single film. In the above, the point that the barrier property of the laminated packaging material is not recognized is extremely specific unlike the conventional laminated packaging material using the barrier material such as vinylidene chloride.

【0018】該直鎖状低密度ポリエチレンの溶融粘性に
ついては、特に共押出法により該積層材を得る場合には
EVOH樹脂等との溶融粘性整合性の見地から比較的類
似の溶融粘性を有するものを選定し用いるのが好まし
い。この直鎖状低密度ポリエチレンのメルトインデック
ス(MI)(ASTMD−1238−65Tにより19
0℃、2160g荷重の条件下で測定した値)は0.1
〜20g/10分、好ましくは0.2〜10g/10分
である。
Regarding the melt viscosity of the linear low-density polyethylene, particularly when the laminated material is obtained by a coextrusion method, the melt viscosity is relatively similar from the viewpoint of melt viscosity matching with EVOH resin and the like. Is preferably selected and used. This linear low-density polyethylene has a melt index (MI) of 19 according to ASTM D-1238-65T.
The value measured under the condition of 0 ° C. and 2160 g load) is 0.1
It is -20 g / 10 minutes, preferably 0.2-10 g / 10 minutes.

【0019】本発明の該積層包装材にあっては、該直鎖
状低密度ポリエチレンからなる表面層が薄すぎると、た
とえば各層が10μ以下に至ると他の物理的特性が低下
するので、10μ以上であることが好ましく、20μ以
上であることがより好適である。またあまり厚さが増加
しすぎると本発明の効果が減殺されるので、該表面層の
各層は60μ以下で用いることがより好ましい。特にバ
ックインボックス内容器の構成材には通常25〜60μ
の厚さ(各表面層の厚さ)領域から内容量に応じて選定
し好適に用いることができる。
In the laminated packaging material of the present invention, if the surface layer made of the linear low-density polyethylene is too thin, for example, when each layer reaches 10 μm or less, other physical properties are deteriorated. It is preferably at least 20 μm, more preferably at least 20 μm. Further, if the thickness is increased too much, the effect of the present invention is diminished, so it is more preferable to use each surface layer of 60 μm or less. In particular, the composition of the container in the back-in-box is usually 25-60μ
Can be suitably used by selecting it from the thickness region (thickness of each surface layer) according to the internal capacity.

【0020】本発明の積層包装材は各層が接着性樹脂層
を介して配されて成るものであることが必要であり、該
ゲルボフレックステスターによる耐屈曲疲労性テスト時
にデラミネーションを起こすものであってはならない。
該デラミネーションを起こす場合には中間層に位置する
EVOH層の耐屈曲疲労性の該積層による向上効果は認
められず、EVOH層の損傷に起因するバリヤー性の低
下現象が該積層フイルムにピンホールの発生が認められ
ない段階で既に認められるので、本発明の効果を享受す
ることができない。
The laminated wrapping material of the present invention is required to have each layer arranged through an adhesive resin layer, and causes delamination during a bending fatigue resistance test by the Gelbo Flex Tester. It shouldn't be.
When the delamination is caused, the effect of improving the bending fatigue resistance of the EVOH layer located in the intermediate layer by the lamination is not recognized, and the phenomenon of deterioration of the barrier property due to the damage of the EVOH layer causes a pinhole in the lamination film. The effect of the present invention cannot be enjoyed because it has already been recognized at a stage where the occurrence of is not recognized.

【0021】本発明に用いる接着性樹脂は、実用段階で
該デラミネーションを起さないものであればよく、特に
限定されないが、強いて言えば柔軟性に富んだ接着性樹
脂がより好適であり、就中直鎖状低密度ポリエチレン
層、EVOH層との接着性とも相俟って、エチレン−酢
酸ビニル共重合体のカルボキシル基含有変性物およびエ
チレン−アクリル酸エチルエステル共重合体のカルボキ
シル基含有変性物が好ましい。該カルボキシル基含有変
性物が無水マレイン酸変性物であることが特に好適であ
る。またエチレン−酢酸ビニル共重合体が少なくとも8
重量%以上の酢酸ビニルを含有するものであることがよ
り好ましい。
The adhesive resin used in the present invention is not particularly limited as long as it does not cause the delamination at a practical stage, but if it is strongly said, an adhesive resin rich in flexibility is more preferable, Particularly, in combination with the linear low-density polyethylene layer and the adhesion to the EVOH layer, a carboxyl group-containing modified product of an ethylene-vinyl acetate copolymer and a carboxyl group-containing modification of an ethylene-acrylic acid ethyl ester copolymer The thing is preferable. It is particularly preferred that the carboxyl group-containing modified product is a maleic anhydride modified product. In addition, ethylene-vinyl acetate copolymer is at least 8
It is more preferable that the vinyl acetate content is at least wt%.

【0022】本発明に用いられるEVOH樹脂はエチレ
ン含有量20〜60モル%、好ましくは25〜60モル
%、けん化度95%以上のものが好適に用いられる。エ
チレン含有量が20モル%以下、さらには25モル%以
下では成形性が低下するのみならず、該EVOHの剛性
が増加することと関連があるとみられるが、本発明の効
果が減殺され、またエチレン含有量が60モル%を越え
ると剛性は減少するものの該樹脂の最も特徴とする酸素
等のガスバリヤー性が低下して不満足なものとなる。該
EVOH樹脂は20〜60モル%、好ましくは25〜6
0モル%の領域内のエチレン含有量をもつ2種またはそ
れ以上のエチレン含有量の異なる該樹脂のブレンド物で
あっても相容性を示す範囲内のものであれば本発明の効
果を享受することができる。該樹脂のけん化度は95%
以上が好適であり、95%未満では該バリヤー性が低下
するので好ましくない。さらにホウ酸などのホウ素化合
物で処理したEVOH、ケイ素含有オレフィン性不飽和
単量体など第3成分をエチレン及び酢酸ビニルとともに
共重合し、けん化して得られる変性EVOHについても
溶融成形が可能でバリヤー性を害しない範囲の変性度の
ものであれば本発明の効果を享受することができる。こ
のEVOHのメルトインデックス(MI)(ASTMD
−1238−65Tにより190℃、2160g荷重の
条件下で測定された値)は0.1〜25g/10分、好
ましくは0.3〜20g/10分である。
The EVOH resin used in the present invention preferably has an ethylene content of 20 to 60 mol%, preferably 25 to 60 mol%, and a saponification degree of 95% or more. When the ethylene content is 20 mol% or less, further 25 mol% or less, it is considered that not only the moldability is lowered but also the rigidity of the EVOH is increased, but the effect of the present invention is diminished, and When the ethylene content exceeds 60 mol%, the rigidity decreases, but the gas barrier property against oxygen and the like, which is the most characteristic of the resin, decreases and the resin becomes unsatisfactory. The EVOH resin is 20 to 60 mol%, preferably 25 to 6
Even if a blend of two or more resins having different ethylene contents having an ethylene content within the range of 0 mol% is within the range showing compatibility, the effects of the present invention are enjoyed. can do. The saponification degree of the resin is 95%
The above is preferable, and if it is less than 95%, the barrier property is deteriorated, which is not preferable. Furthermore, EVOH treated with a boron compound such as boric acid and a third component such as a silicon-containing olefinically unsaturated monomer are copolymerized with ethylene and vinyl acetate, and modified EVOH obtained by saponification is also melt-moldable. The effects of the present invention can be enjoyed as long as the degree of modification does not impair the properties. This EVOH melt index (MI) (ASTMD
The value measured by -1238-65T at 190 ° C. under a load of 2160 g) is 0.1 to 25 g / 10 minutes, preferably 0.3 to 20 g / 10 minutes.

【0023】前述の如くEVOH単層の場合、耐屈曲疲
労性は、極めて不良でありただ厚みの減少に伴って若干
の改善傾向を示すが、これは実用的に要求される輸送振
動強度を満たすに足る耐屈曲疲労性の程度に遥かに及ば
ない領域における現象に過ぎない。しかるに本発明の積
層包装材の構成においては屈曲疲労によりピンホールを
発生するに至るゲルボフレックステスターの屈曲回数へ
の、中間層として存在するEVOHの層厚依存性が極め
て顕著に発現するという特異性が認められる。該EVO
H層の厚さが20μを越えると耐屈曲疲労性が低下し、
本発明の効果が減殺されるので好ましくない。本発明の
効果を充分に享受するためにはEVOH層の厚さは20
μ以下が好適であり、15μ以下がより好ましい。耐屈
曲疲労性のみの観点からは、特に10μ以下が最も好適
である。
As described above, in the case of the EVOH single layer, the flexural fatigue resistance is extremely poor and shows a slight improvement tendency as the thickness decreases, which satisfies the practically required transport vibration strength. It is only a phenomenon in a region far below the level of flex fatigue resistance. However, in the constitution of the laminated packaging material of the present invention, the peculiarity of the EVOH existing as an intermediate layer to the layer thickness dependence on the number of times of bending of the Gelbo flex tester, which causes pinholes due to bending fatigue, is extremely remarkable. Sex is recognized. The EVO
If the thickness of the H layer exceeds 20μ, the bending fatigue resistance decreases,
This is not preferable because the effects of the present invention are diminished. In order to fully enjoy the effects of the present invention, the EVOH layer has a thickness of 20.
It is preferably μ or less, and more preferably 15 μ or less. From the viewpoint of only flex fatigue resistance, 10 μm or less is most preferable.

【0024】しかし酸素等のガスバリヤー性に関してよ
り高度な要求がある場合、20μ以下の該中間層の厚さ
では該要求を満足できない場合がしばしば生じる。耐屈
曲疲労性及び該バリヤー性に関し、より高度な要求を満
足させる本発明の最も好適な実施態様は該EVOH層の
厚さを20μ以下、好ましくは15μ以下、より好まし
くは10μ以下に選定して、該バリヤー性についての高
度の要求の程度の応じて該EVOH層を2またはそれ以
上の複数設ける構成である。耐屈曲疲労性の観点からは
EVOH層の厚さは出来る限り、小さい方が好ましい
が、成形加工の技術の面からの困難性は、それだけ増加
する。実用的には2μ以上が好ましく、5μ以上が該観
点から比較的困難性も少なくより好適である。2μ以下
では、しばしばピンホールの発生がEVOH層に生じ、
良品の歩留まりが低下する。
However, when there is a higher requirement for the gas barrier property against oxygen or the like, the requirement often cannot be satisfied with a thickness of the intermediate layer of 20 μm or less. The most preferred embodiment of the present invention satisfying higher requirements regarding flex fatigue resistance and the barrier property is that the thickness of the EVOH layer is selected to be 20μ or less, preferably 15μ or less, more preferably 10μ or less. The EVOH layer is provided in a plurality of two or more in accordance with the degree of high requirement for the barrier property. From the viewpoint of resistance to bending fatigue, it is preferable that the thickness of the EVOH layer is as small as possible, but the difficulty in terms of molding technology increases accordingly. Practically, it is preferably 2 μm or more, and 5 μm or more is more preferable from the viewpoint of being relatively difficult. Below 2μ, pinholes often occur in the EVOH layer,
The yield of non-defective products decreases.

【0025】複数の該バリヤー層を設けるに当たって
は、該層のすべてにエチレン含有量の同じEVOHを用
いてもよく、また容器等の内部の相対湿度が該容器の外
部の相対湿度より大きい場合、たとえば被包装物がワイ
ンなどの水性混合物である場合などEVOHのバリヤー
性の湿度依存性とも関連して該複数のバリヤー層の各層
の位置関係は、よりエチレン含有量の小さいEVOH層
を外側に配し、よりエチレン含有量の大きいEVOH層
を内側に配するのがより好適であり、該相対湿度の関係
が逆の場合には該EVOH層の位置関係は逆に配するの
が好ましいなど、それぞれの目的に応じて最適の構成を
選定することができる。この場合該構成を採った効果を
得るためには該バリヤー層の少なくとも2層が、5モル
%以上エチレン含有量を異にするEVOHで構成される
ことが好ましい。
In providing a plurality of the barrier layers, EVOH having the same ethylene content may be used for all of the layers, and when the relative humidity inside the container is larger than the relative humidity outside the container, For example, when the material to be packaged is an aqueous mixture such as wine, the positional relationship between the layers of the plurality of barrier layers is such that the EVOH layer having a smaller ethylene content is arranged on the outside in relation to the humidity dependency of the barrier property of EVOH. However, it is more preferable to dispose an EVOH layer having a larger ethylene content on the inner side, and when the relationship of the relative humidity is reverse, it is preferable to dispose the positional relationship of the EVOH layer in reverse. The optimum configuration can be selected according to the purpose. In this case, it is preferable that at least two layers of the barrier layers are composed of EVOH having different ethylene contents of 5 mol% or more in order to obtain the effect of adopting the constitution.

【0026】本発明に用いる積層包装材は共押出法、押
出ラミネーション法、ドライラミネーション法などの公
知の方法により得られ、また該積層包装材を用いた容
器、たとえばバッグインボックス内容器は該積層構成の
フイルムを公知の方法で得た後、ヒートシールし、口部
を装着するフイルム・シール方式、製品の形状に合わせ
て、あらかじめ成膜し得た該積層構成のシートより成形
した後、口金を物理的に固定する真空成形方式、多層溶
融押出成形で本発明の素材の組合わせからなる多層バリ
ソンを口金を挿入した金型ではさみ、圧縮空気で成形
し、この時のバリソンの熱と空気圧力で本体と口金を熱
接着するブロー成形方式など公知の方法で得ることがで
きる。
The laminated packaging material used in the present invention can be obtained by a known method such as a co-extrusion method, an extrusion lamination method, a dry lamination method, and a container using the laminated packaging material, for example, a container in a bag-in-box is laminated. After obtaining a film having a constitution by a known method, it is heat-sealed, a film-sealing method in which a mouth portion is attached, and a die having a laminated constitution formed according to the shape of the product, which is preliminarily formed into a film, and then a die. Is a vacuum molding method to physically fix the, multi-layer melt extrusion molding multi-layer varison consisting of the material of the present invention is sandwiched by a mold with a die inserted, and is molded with compressed air. It can be obtained by a known method such as a blow molding method in which the main body and the die are heat-bonded by pressure.

【0027】また本発明においてはEVOHを中間層と
し、この両側に直鎖状低密度ポリエチレン層を設けた積
層材に、さらに他の層(樹脂層など)を設けることは、
本発明の目的が阻害されないかぎり自由である。このよ
うにして得られた本発明の積層包装材は食品、とくに液
状食品、たとえばワイン、酒などのアルコール類、しょ
う油を運搬する際の容器材料として好適である。
In the present invention, EVOH is used as an intermediate layer, and a layered material having linear low-density polyethylene layers on both sides thereof may be provided with another layer (resin layer or the like).
It is free as long as the object of the invention is not impaired. The thus obtained laminated packaging material of the present invention is suitable as a container material for carrying foods, particularly liquid foods, for example, alcohols such as wine and sake, and soy sauce.

【0028】[0028]

【実施例】以下実施例により、本発明をさらに説明する
が、本発明はこれに限定されるものではない。 実施例1 エチレン含有量31モル%、けん化度99.4%、MI
1.3g/10分のEVOH樹脂からなる厚さ12μの
中間層と、該中間層の両側に厚さ各35μの4−メチル
−1−ペンテンを共重合成分とし、該共重合成分を3.
2モル%含み、MI2.1g/10分、示差走査型熱量
計による融解熱{ASTM D3417−75に基づい
て測定し、同ASTM(9.7)に記載の方法で求めた
値}が19cal/gの直鎖状低密度ポリエチレン(以
下LLDPEと記す)からなる表面層を有し、各層間に
厚さ5μの酢酸ビニル含有量33重量%、無水マレイン
酸変性度1.5重量%の変性エチレン−酢酸ビニル共重
合体からなるMI1.5g/10分の接着性樹脂層を介
して配された積層フイルムを3基の押出機、3種5層用
多層ダイヘッドを用いて共押出法により得た。得られた
積層フイルムについて屈曲疲労テストを該積層フイルム
にピンホールの発生を認めるまで行うとともに、該ピン
ホール発生に至るまでの各段階での酸素ガス透過量を測
定した。
The present invention will be further described with reference to the following examples, but the present invention is not limited thereto. Example 1 Ethylene content 31 mol%, Saponification degree 99.4%, MI
2. A 12 μm-thick intermediate layer made of EVOH resin of 1.3 g / 10 min, and 4-methyl-1-pentene having a thickness of 35 μm on both sides of the intermediate layer as a copolymerization component, and the copolymerization component was added to 3.
Containing 2 mol%, MI 2.1 g / 10 min, heat of fusion by differential scanning calorimeter {based on ASTM D3417-75
And measured by the method described in ASTM (9.7).
Value} is 19 cal / g and has a surface layer made of linear low-density polyethylene (hereinafter referred to as LLDPE), the thickness of vinyl acetate content of 5 μm is 33% by weight, and the degree of modification with maleic anhydride is 1.5. A laminated film having an MI of 1.5% by weight of a modified ethylene-vinyl acetate copolymer and having an MI of 1.5 g / 10 min. Was laminated through an adhesive resin layer using three extruders and a three-layer five-layer multilayer die head. Obtained by the extrusion method. A bending fatigue test was performed on the obtained laminated film until generation of pinholes was observed in the laminated film, and the oxygen gas permeation amount at each stage until the generation of the pinholes was measured.

【0029】屈曲疲労テストは、ゲルボフレックステス
ター(理学工業(株)製)を用い12in×8inの試
料片を直径3l/2inの円筒状となし、両端を把持
し、初期把持間隔7in、最大屈曲時の把持間隔1i
n、ストロークの最初の3l/2inで、440℃の角
度のひねりを加え、その後の2l/2inは直線水平動
である動作をくり返し往復動を40回/分の速さで20
℃、相対湿度65%の条件下に行うものである。
In the bending fatigue test, a gelbo flex tester (manufactured by Rigaku Kogyo Co., Ltd.) was used to make a 12 in.times.8 in sample piece into a cylindrical shape with a diameter of 3 l / 2 in, and both ends were gripped. Gripping interval when bending 1i
n, the first 3l / 2 in of the stroke, a twist of 440 ° C was applied, and the subsequent 2l / 2 in repeated linear horizontal motion, and reciprocating motion at a speed of 40 times / min.
It is carried out under conditions of ° C and relative humidity of 65%.

【0030】酸素ガス透過量の測定は、Modern
Control社製OX−TRAN100を使用し、2
0℃相対湿度(RHと記す)65%および20℃80%
RHで測定した。各段階の屈曲疲労テスト後の試料につ
いては12in×8inの平面となし、その中央部で測
定した。またヤング率はASTM D−882−67に
準じて20℃、相対湿度65%で測定した。測定結果を
表1に示す。ピンホール発生に至るまでの屈曲疲労テス
ト過程においては、酸素透過量の変化は殆んどなかっ
た。またピンホール発生は該屈曲疲労テスト4000往
復を経過するまで認められず、4050往復経過後、ピ
ンホールの有無を検査に付した時点でピンホール1ケが
既に発生しているのを認めた。また各層間のデラミネー
ションは、全くみられなかった。なお該LLDPEのフ
イルムを別に得て20℃においてヤング率を測定した結
果13kg/mm2であった。
The oxygen gas permeation amount is measured by Modern.
Using OX-TRAN100 manufactured by Control, 2
65% at 0 ° C relative humidity (denoted as RH) and 80% at 20 ° C
It was measured by RH. The sample after the bending fatigue test at each stage was formed into a 12 in x 8 in plane, and the measurement was made at the center thereof. The Young's modulus was measured according to ASTM D-882-67 at 20 ° C. and 65% relative humidity. Table 1 shows the measurement results. There was almost no change in the oxygen permeation amount during the bending fatigue test process until the occurrence of pinholes. No pinholes were observed until the flex fatigue test was repeated 4000 times, and after 4050 cycles, it was confirmed that one pinhole had already been generated at the time of inspecting the presence or absence of pinholes. Moreover, delamination between the layers was not observed at all. The LLDPE film was separately obtained, and the Young's modulus was measured at 20 ° C. The result was 13 kg / mm 2 .

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2 エチレン含有量45モル%、けん化度99.2%のEV
OH樹脂を中間層とし、また該中間層の両側に配される
表面層(LLDPE)の厚さを一方を40μ、他方を3
0μとした以外は実施例1と同様に行った。該屈曲疲労
テスト4500往復経過をするまでピンホールは認めら
れず、4600往復経過後ピンホール2ケ発生している
のを認めた。酸素透過量の測定値を表2に示す。各層間
のデラミネーションは認めらなかった。
Example 2 EV having ethylene content of 45 mol% and saponification degree of 99.2%
The intermediate layer is OH resin, and the thickness of the surface layer (LLDPE) disposed on both sides of the intermediate layer is 40 μm for one side and 3 μm for the other side.
The same procedure was performed as in Example 1 except that the value was 0 μ. No pinholes were observed until the bending fatigue test was repeated 4500 times, and two pinholes were observed after 4600 cycles. Table 2 shows the measured values of the oxygen permeation amount. No delamination between layers was observed.

【0033】[0033]

【表2】 [Table 2]

【0034】実施例3 D/Ad/E/Ad/F/Ad/Gなる構成の積層フイ
ルムを3種7層用多層ダイヘッドを有する共押出設備を
用いて得た。各層はそれぞれ次に示めす各樹脂及び層厚
さからなる。Ad:酢酸ビニル含有量35重量%、無水
マレイン酸変性度1.0重量%の、MI1.8g/10
分の変性エチレン−酢酸ビニル共重合体からなる厚さ5
μの接着性樹脂層 D、G:4−メチル−1−ペンテン4.0モル%を共重
合成分として含有するMI2.3g/10分、示差走査
型熱量計による融解熱15cal/gの厚さ38μのL
LDPE層 E、F:エチレン含有量38モル%、けん化度99.4
%、MI1.6g/10分、厚さ6μのEVOH樹脂層 実施例1に準じて屈曲疲労テストを行った。該屈曲疲労
テスト5000往復経過後もピンホールの発生を認めな
かった。該5000往復に至る各段階における酸素透過
量の測定値を表3に示す。各層間のデラミネーションは
認めらなかった。なお該LLDPEのフイルムを別に得
て20℃で測定したヤング率は7.5kg/mm2であ
った。
Example 3 A laminated film having a constitution of D / Ad / E / Ad / F / Ad / G was obtained by using a coextrusion equipment having a multilayer die head for 3 kinds of 7 layers. Each layer is composed of each resin and layer thickness shown below. Ad: vinyl acetate content 35% by weight, maleic anhydride modification degree 1.0% by weight, MI 1.8 g / 10
Minute thickness consisting of modified ethylene-vinyl acetate copolymer 5
μ Adhesive resin layer D, G: MI containing 4.0 mol% of 4-methyl-1-pentene as a copolymerization component 2.3 g / 10 min, heat of fusion 15 cal / g by differential scanning calorimeter 38μ L
LDPE layer E, F: ethylene content 38 mol%, saponification degree 99.4
%, MI 1.6 g / 10 min, EVOH resin layer having a thickness of 6 μ A bending fatigue test was conducted in accordance with Example 1. Generation of pinholes was not recognized even after 5000 cycles of the bending fatigue test. Table 3 shows the measured values of the oxygen permeation amount at each stage up to the 5000 reciprocations. No delamination between layers was observed. The Young's modulus of the LLDPE film separately obtained and measured at 20 ° C. was 7.5 kg / mm 2 .

【0035】[0035]

【表3】 [Table 3]

【0036】実施例4 Eを実施例1と同じEVOH樹脂からなる厚さ8μの
層、Fを実施例2と同じEVOH樹脂からなる厚さ6μ
の層とした以外は実施例3と同様に行った。該屈曲疲労
テスト5000往復経過後もピンホールの発生を認めな
かった。該5000往復に至る各段階における酸素透過
量の測定値を表4に示す。なお各層間のデラミネーショ
ンは認められなかった。
Example 4 E is a layer of the same EVOH resin as in Example 1 with a thickness of 8 μ, and F is the same EVOH resin as in Example 2 with a thickness of 6 μ.
The same procedure as in Example 3 was carried out except that the above layer was used. Generation of pinholes was not recognized even after 5000 cycles of the bending fatigue test. Table 4 shows the measured values of the oxygen permeation amount at each stage up to the 5000 round trips. No delamination between the layers was observed.

【0037】[0037]

【表4】 [Table 4]

【0038】実施例5 実施例1において、EVOH樹脂層の厚さを19μと
し、接着性樹脂の厚さを19μとし、接着性樹脂とし
て、厚み7μのアクリル酸エチル含有量25重量%、無
水マレイン酸変性度1.7重量%の変性エチレン−アク
リル酸エチルエステル共重合体を用いた以外は実施例1
に準じて行った。該屈曲疲労テスト3600往復を経過
するまではピンホールの発生は認められなかった。40
00往復経過後3ケのピンホールの発生を認めた。40
00往復までの該屈曲疲労テストの各段階の酸素透過量
を表5に示す。なお各層間のデラミネーションは認めら
れなかった。
Example 5 In Example 1, the EVOH resin layer had a thickness of 19μ, the adhesive resin had a thickness of 19μ, and the adhesive resin had a thickness of 7μ and contained 25% by weight of ethyl acrylate and maleic anhydride. Example 1 except that a modified ethylene-acrylic acid ethyl ester copolymer having an acid modification degree of 1.7% by weight was used.
It was carried out according to. No pinhole was observed until the bending fatigue test was repeated 3600 times. 40
Generation of three pinholes was observed after the time of 00 round trips. 40
Table 5 shows the oxygen permeation amount at each stage of the bending fatigue test up to 00 reciprocations. No delamination between the layers was observed.

【0039】[0039]

【表5】 [Table 5]

【0040】実施例6 実施例1において、両表面層に共重合成分を1−ヘプテ
ンとし、該含有量が2.9モル%、示差走査型熱量計に
よる融解熱が20cal/g、20℃で測定したヤング
率が15kg/mm2のLLDPEを用いた以外は実施
例1と同様に行った。該屈曲疲労テスト3500往復経
過するもピンホールの発生は認められず、酸素透過量の
値は殆んど変化がなく、ほぼ1.4cc/m2、24h
r(20℃、80%RH)であった。
Example 6 In Example 1, 1-heptene was used as a copolymerization component in both surface layers, the content was 2.9 mol%, the heat of fusion by a differential scanning calorimeter was 20 cal / g, and the temperature was 20 ° C. The same procedure as in Example 1 was performed except that LLDPE having a measured Young's modulus of 15 kg / mm 2 was used. Generation of pinholes was not recognized even after the bending fatigue test of 3500 reciprocations, and the value of oxygen permeation value was almost unchanged, being approximately 1.4 cc / m 2 , 24 h.
r (20 ° C., 80% RH).

【0041】実施例7 実施例1において、ブテン−1を共重合成分とし、該成
分含有量5.1モル%、示差走査型熱量計による融解熱
が12cal/g、20℃で測定したヤング率が8kg
/mm2のLLDPEで両表面層を構成した以外は実施
例1と同様に行った。該屈曲疲労テスト4000往復を
経過するもピンホールの発生は認められず、また酸素透
過量の値にも殆んど変化がなく、1.5cc/m2、2
4hr(20℃、80%RH)であった。
Example 7 In Example 1, butene-1 was used as a copolymerization component, the content of the component was 5.1 mol%, the heat of fusion by a differential scanning calorimeter was 12 cal / g, and the Young's modulus measured at 20 ° C. Is 8 kg
Example 1 was repeated except that both surface layers were made of LLDPE of / mm 2 . Generation of pinholes was not observed even after passing through 4000 cycles of the bending fatigue test, and there was almost no change in the value of oxygen permeation, which was 1.5 cc / m 2 , 2
It was 4 hr (20 ° C., 80% RH).

【0042】実施例8 実施例7において、ブテン−1含有量3.6モル%、示
差走査型熱量計による融解熱が19cal/g、該ヤン
グ率が16kg/mm2のLLDPEを用いた以外は実
施例7と同様に行った。該屈曲疲労テスト850往復経
過するもピンホールの発生は認められなかったが、該往
復数900経過後、該発生を認めた。なおピンホール発
生に至るまでの段階においては酸素透過量の値には殆ん
ど変化がなかった。
Example 8 Example 7 was repeated except that LLDPE having a butene-1 content of 3.6 mol%, a heat of fusion by a differential scanning calorimeter of 19 cal / g and a Young's modulus of 16 kg / mm 2 was used. The same procedure as in Example 7 was performed. No pinhole was found after 850 cycles of the bending fatigue test, but the occurrence of pinholes was observed after 900 cycles of the cycle. The oxygen permeation value did not change at all until the pinhole was generated.

【0043】比較例1 実施例1において、従来の各種高圧法低密度ポリエチレ
ンを用いて両表面層を構成した以外は、実施例1と同様
に行った。該屈曲疲労テストにおいて、ピンホール発生
を認めるに至る往復回数はいづれも高々200往復であ
った。
Comparative Example 1 The same procedure as in Example 1 was carried out except that both surface layers were formed using various conventional high-pressure low-density polyethylene. In the bending fatigue test, the number of reciprocations required until the occurrence of pinholes was 200 at most.

【0044】比較例2 実施例3と同じ材料を用いて、F(15μ)/Ad(7
μ)/G(40μ)なる構成の積層フイルムを3種3層
用多層ダイヘッドを有する共押出設備を用いて得た。実
施例1に準じて屈曲疲労テスト(ゲルボフレックステス
ターによる)を行った結果、ピンホール発生を認めるに
至る往復回数はたかだか250回であった。
Comparative Example 2 Using the same material as in Example 3, F (15μ) / Ad (7
μ) / G (40 μ) was obtained by using a coextrusion equipment having a multi-layer die head for three kinds of three layers. As a result of performing a bending fatigue test (using a Gelbo flex tester) according to Example 1, the number of reciprocations until the occurrence of pinholes was recognized was 250 at most.

【0045】比較例3 実施例1において、ブテン−1含有量1.9モル%、示
差熱走査熱量計による融解熱が32cal/g、該ヤン
グ率が27kg/mm 2 のLLDPEを用いた以外は実
施例1と同様に行った。実施例1に準じて屈曲疲労テス
ト(ゲルボフレックステスターによる)を行った結果、
ピンホール発生を認めるに至る往復回数はたかだか30
0回であった。
Comparative Example 3 In Example 1, butene-1 content was 1.9 mol%,
The heat of fusion measured by a differential scanning calorimeter is 32 cal / g,
Except for using LLDPE with a loading rate of 27 kg / mm 2.
The same procedure as in Example 1 was performed. Bending fatigue test according to Example 1
As a result of performing (by Gelbo flex tester),
The number of round trips to confirm the occurrence of pinhole is at most 30
It was 0 times.

【0046】実施例9 実施例1〜8および比較例1〜2において得られた積層
包装材をヒートシールと、さらに口金を装着して包装袋
を得た。この包装袋に液状食品1kgを入れ、袋の口金
部を密封した。この密封した袋20袋をそれぞれ段ボー
ル箱の中に詰め、バックインボックスを作成した。この
バックインボックスを20℃−60%RHで2日間状態
調節を行ったのち、回転型振動試験機(振動条件267
r.p.m)により振動テストを行った。その結果は表
6に示すとおりであった。
Example 9 The laminated packaging materials obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were heat-sealed and further fitted with a mouthpiece to obtain a packaging bag. 1 kg of liquid food was put in this packaging bag, and the mouthpiece part of the bag was sealed. Each of the 20 sealed bags was packed in a cardboard box to form a back-in box. After conditioning this back-in-box at 20 ° C.-60% RH for 2 days, it was subjected to a rotary vibration tester (vibration condition 267).
r. p. Vibration test was performed according to m). The results are shown in Table 6.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】耐屈曲疲労に優れ、フレキシブルで、気
体遮断性に優れている。
EFFECTS OF THE INVENTION Excellent flex fatigue resistance, flexibility, and excellent gas barrier properties.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 エチレン−酢酸ビニル共重合体けん化物
の薄膜を中間層とし、該中間層の両側に表面層を有し、
該各層が接着性樹脂層を介して配されてなる積層包装材
において、該表面層のいずれもが示差走査型熱量計の熱
分析に基づく融解熱が25cal/g以下である直鎖状
低密度ポリエチレン層からなることを特徴とする耐屈曲
疲労に優れたフレキシブルな気体遮断性積層包装容器。
1. A thin film of a saponified product of an ethylene-vinyl acetate copolymer is used as an intermediate layer, and surface layers are provided on both sides of the intermediate layer.
In a laminated packaging material in which each of the layers is arranged via an adhesive resin layer, all of the surface layers are heat of a differential scanning calorimeter.
A flexible gas barrier laminated packaging container excellent in bending fatigue resistance, characterized by comprising a linear low-density polyethylene layer having a heat of fusion of 25 cal / g or less based on analysis .
【請求項2】 直鎖状低密度ポリエチレンが炭素数4以
上のα−オレフィンを共重合成分とするものである請求
項1記載の積層包装容器。
2. The laminated packaging container according to claim 1, wherein the linear low-density polyethylene has an α-olefin having 4 or more carbon atoms as a copolymerization component.
【請求項3】 直鎖状低密度ポリエチレンがブテン−1
を共重合成分とし、示差走査型熱量計の熱分析による融
解熱が15cal/g以下である請求項1記載の積層包
装容器。
3. The linear low-density polyethylene is butene-1.
2. The laminated packaging container according to claim 1, wherein the heat of fusion is 15 cal / g or less as determined by the thermal analysis of the differential scanning calorimeter.
【請求項4】 直鎖状低密度ポリエチレンの20℃にお
けるヤング率が22kg/mm2以下である請求項1
たは2のいずれかに記載の積層包装容器。
4. The method of claim 1 Young's modulus at 20 ° C. of linear low density polyethylene is 22 kg / mm 2 or less or
Or the laminated packaging container according to any one of 2 .
【請求項5】 直鎖状低密度ポリエチレンがブテン−1
を共重合成分とし、20℃におけるヤング率が12kg
/mm2以下である請求項1または記載の積層包装容
器。
5. The linear low-density polyethylene is butene-1.
As a copolymerization component, Young's modulus at 20 ° C is 12 kg
/ Mm 2 or less, the laminated packaging container according to claim 1 or 3 .
【請求項6】 直鎖状低密度ポリエチレンが炭素数5以
上のα−オレフィンを共重合成分とするものである請求
項1または4記載の積層包装容器。
6. linear low density polyethylene is one which the copolymer component of 5 or more α- olefins having a carbon number claim 1 or 4 laminated packaging container according.
【請求項7】 直鎖状低密度ポリエチレンが4−メチル
−1−ペンテンを共重合成分とするものである請求項1
記載の積層包装容器。
7. The linear low-density polyethylene has 4-methyl-1-pentene as a copolymerization component.
The laminated packaging container described.
【請求項8】 中間層の厚さが5〜20μであり、表面
層の各層の厚さが25〜60μである請求項1〜のい
ずれかに記載の積層包装容器。
8. A thickness of the intermediate layer is 5~20Myu, laminated packaging container according to any one of claims 1-7 thickness of each layer of the surface layer is 25~60Myu.
JP5142382A 1984-01-31 1993-06-14 Flexible gas barrier laminated packaging container with excellent bending fatigue resistance Expired - Fee Related JPH085164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142382A JPH085164B2 (en) 1984-01-31 1993-06-14 Flexible gas barrier laminated packaging container with excellent bending fatigue resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59017485A JPS60161146A (en) 1984-01-31 1984-01-31 Flexible gas stopping laminated packaging material having excellent resistance to fatigue from flexing
JP5142382A JPH085164B2 (en) 1984-01-31 1993-06-14 Flexible gas barrier laminated packaging container with excellent bending fatigue resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59017485A Division JPS60161146A (en) 1984-01-31 1984-01-31 Flexible gas stopping laminated packaging material having excellent resistance to fatigue from flexing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11068121A Division JP3011934B2 (en) 1999-03-15 1999-03-15 Flexible gas barrier laminate packaging with excellent bending fatigue resistance

Publications (2)

Publication Number Publication Date
JPH06166152A JPH06166152A (en) 1994-06-14
JPH085164B2 true JPH085164B2 (en) 1996-01-24

Family

ID=26354012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142382A Expired - Fee Related JPH085164B2 (en) 1984-01-31 1993-06-14 Flexible gas barrier laminated packaging container with excellent bending fatigue resistance

Country Status (1)

Country Link
JP (1) JPH085164B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142848A (en) * 1982-02-19 1983-08-25 呉羽化学工業株式会社 Laminated film

Also Published As

Publication number Publication date
JPH06166152A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JPH0378257B2 (en)
US4977022A (en) Barrier stretch film
US4939076A (en) Barrier stretch film
JP4538313B2 (en) Barrier layer structure for packaging beverages
TW202003247A (en) Multilayer film and food packaging bag
JPH0450906B2 (en)
JP2002205359A (en) Laminate for packaging material
EP1342566B1 (en) Laminate for packaging material
JPH085164B2 (en) Flexible gas barrier laminated packaging container with excellent bending fatigue resistance
JP3011934B2 (en) Flexible gas barrier laminate packaging with excellent bending fatigue resistance
JPS62152847A (en) Laminated packaging material having excellent resistance to fatigue from flexing and gas barriering property
JPH0376669B2 (en)
JP3808142B2 (en) Easy tear coextruded composite film
JPH0427941B2 (en)
JPH0378258B2 (en)
WO2002038379A1 (en) Laminate for packaging material
JP3145206B2 (en) Inner container for bag-in-box
JPH0439423B2 (en)
JP3808143B2 (en) Co-extrusion composite film
JPS62152848A (en) Laminated packaging material having excellent resistance to fatigue from flexing
JPH0376670B2 (en)
JPH0554429B2 (en)
WO2024111580A1 (en) Laminate and paper container for liquid
JPH1076616A (en) Co-extruded composite film
JP2002205358A (en) Paper laminate for packaging material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees