JPH085159B2 - Laminated steel sheet having a two-layer coating structure and method for producing the same - Google Patents

Laminated steel sheet having a two-layer coating structure and method for producing the same

Info

Publication number
JPH085159B2
JPH085159B2 JP63015837A JP1583788A JPH085159B2 JP H085159 B2 JPH085159 B2 JP H085159B2 JP 63015837 A JP63015837 A JP 63015837A JP 1583788 A JP1583788 A JP 1583788A JP H085159 B2 JPH085159 B2 JP H085159B2
Authority
JP
Japan
Prior art keywords
steel sheet
resin
layer
melting point
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63015837A
Other languages
Japanese (ja)
Other versions
JPH01192546A (en
Inventor
宏治 谷村
知彦 林
八七 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63015837A priority Critical patent/JPH085159B2/en
Publication of JPH01192546A publication Critical patent/JPH01192546A/en
Publication of JPH085159B2 publication Critical patent/JPH085159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2層被膜構造を有するラミネート鋼板および
その製造方法に関し、特に容器用の2ピースの2回絞り
缶(以下DRD缶とする)、絞り−しごき缶(以下DI缶と
する)、あるいは開缶容易な天蓋(以下EOEとする)用
として優れた性能を発揮するラミネート鋼板およびその
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a laminated steel sheet having a two-layer coating structure and a method for producing the same, and in particular, a two-piece double-drawing can for containers (hereinafter referred to as a DRD can), The present invention relates to a laminated steel sheet that exhibits excellent performance for a squeezed and ironed can (hereinafter referred to as DI can) or a canopy (hereinafter referred to as EOE) that can be easily opened, and a manufacturing method thereof.

(従来の技術) 従来熱可塑性樹脂フィルムを鋼板にラミネートした複
合鋼板は、電気部品、家具、内外装建材等種々の分野で
広く使用されている。鋼板に樹脂フィルムをラミネート
する方法としては、以下の二つの方法がよく知られてい
る。一つは特開昭58−39448号公報に見られるように、
鋼板表面に溶剤系の接着剤をロールコーター、スプレー
等で塗布し、溶剤等の揮発性物質を蒸発させた後、ラミ
ネートする方法である。他の一つは特公昭57−23584号
公報、特開昭61−149340号公報に見られるように熱接着
可能な熱可塑性樹脂を、その融点以上に加熱した鋼板上
にロールによって熱圧着させる方法である。
(Prior Art) Conventionally, a composite steel sheet obtained by laminating a thermoplastic resin film on a steel sheet has been widely used in various fields such as electric parts, furniture, interior and exterior building materials. The following two methods are well known as methods for laminating a resin film on a steel plate. One is, as seen in JP-A-58-39448,
In this method, a solvent-based adhesive is applied to the surface of the steel sheet with a roll coater, a spray, or the like to evaporate a volatile substance such as a solvent, and then laminating. The other one is a method in which a thermo-bondable thermoplastic resin is thermocompression-bonded by a roll onto a steel plate heated above its melting point, as shown in JP-B-57-23584 and JP-A-61-149340. Is.

(発明が解決しようとする問題点) しかし上記二つの方法によるラミネート鋼板では深絞
り加工、しごき加工後の加工密着性、加工耐食性が十分
得られず、特に接着剤を塗布してフィルムをラミネート
する方法では、接着剤塗布工程および溶剤等の揮発性物
質を蒸発させるオーブン設備等が必要となり作業性も著
しく低下していた。また特開昭61−149340号公報によっ
て得られるラミネート鋼板は5〜300μmという非常に
薄い一層のフィルムを配向性部分と無配向性部分とに作
りわけるというもので、作業条件が複雑でしかも配向性
部分と無配向性部分の厚みを厳密にコントロールするこ
とが非常に困難である。またラミネートする鋼板のラミ
ネート直前の温度を300℃付近まで上げる必要があるた
め、ブリキのようにめっきしている金属の融点の低いも
のは、めっき金属がほとんど合金化してしまうために鋼
板自身の耐食性、加工性を著しく低下させる。こうした
理由からラミネートする鋼板が限定されてしまう、とい
う問題点を有している。
(Problems to be solved by the invention) However, the laminated steel sheets obtained by the above two methods do not have sufficient processing adhesion and corrosion resistance after deep drawing and ironing, and in particular, an adhesive is applied to laminate the film. The method requires an adhesive coating step and an oven facility for evaporating a volatile substance such as a solvent. Further, the laminated steel sheet obtained by Japanese Patent Laid-Open No. 61-149340 is such that a very thin one-layer film of 5 to 300 μm is divided into an oriented portion and a non-oriented portion, which makes working conditions complicated and the orientation It is very difficult to strictly control the thickness of the portion and the non-oriented portion. Since the temperature of the steel sheet to be laminated immediately before lamination needs to be raised to around 300 ° C, if the metal with a low melting point, such as tin plate, has a low melting point, the plated metal almost alloys and the corrosion resistance of the steel sheet itself , Significantly lowers workability. For this reason, there is a problem that the steel sheets to be laminated are limited.

(問題点を解決するための手段) 本発明はこのような背景ら、融点の異る樹脂フィルム
を2層に積層することによって前記の問題点を解決する
ことに特徴があり、上層フィルムの配向性を完全に残す
ことにより、簡単に深絞り加工性、しごき加工性に優れ
た容器用の樹脂フィルムラミネート鋼板が得られること
を見い出した。
(Means for Solving the Problems) The present invention is characterized by solving the above problems by laminating two layers of resin films having different melting points from such a background. It has been found that a resin film-laminated steel sheet for containers, which is excellent in deep drawing workability and ironing workability, can be easily obtained by completely retaining the properties.

すなわち本発明のラミネート鋼板は、少なくとも鋼板
の片面に2軸配向ポリエチレンテレフタレート樹脂を表
層とし、その下層に2軸配向ポリエチレンテレフタレー
ト樹脂の熱固定温度より融点が10〜40℃低い無配向性の
ポリエステル樹脂被膜を有することを特徴とするラミネ
ート鋼板である。また本発明のラミネート鋼板の製造方
法は少なくとも鋼板の片面に2軸配向ポリエチレンテレ
フタレート樹脂を表層とし、この2軸配向ポリエチレン
テレフタレート樹脂の熱固定温度より融点が10〜40℃低
いポリエステル樹脂を下層として、2軸配向ポリエチレ
ンテレフタレート樹脂の熱固定温度以下から前記低融点
ポリエステル樹脂の融点以上の温度で熱圧着することを
特徴とするラミネート鋼板の製造方法である。
That is, the laminated steel sheet of the present invention has a biaxially oriented polyethylene terephthalate resin as a surface layer on at least one surface of the steel sheet, and a non-oriented polyester resin having a melting point of 10 to 40 ° C. lower than the heat setting temperature of the biaxially oriented polyethylene terephthalate resin as a lower layer. A laminated steel sheet having a coating film. Further, in the method for producing a laminated steel sheet of the present invention, a biaxially oriented polyethylene terephthalate resin is used as a surface layer on at least one side of the steel sheet, and a polyester resin having a melting point 10 to 40 ° C. lower than the heat setting temperature of the biaxially oriented polyethylene terephthalate resin is used as a lower layer. A method for producing a laminated steel sheet, comprising thermocompression bonding at a temperature not higher than the heat setting temperature of the biaxially oriented polyethylene terephthalate resin to a temperature not lower than the melting point of the low melting point polyester resin.

以下本発明をその作用とともに説明する。 The present invention will be described below together with its operation.

一般にPET樹脂を含むポリエステル樹脂はその結晶の
配向性の有無によって大きく異なった性質を示す。配向
性を有するポリエステル樹脂は機械的特性、耐熱性、バ
リアー性に優れている。一方配向性のないポリエステル
樹脂は機械的特性、耐熱性、バリアー性は配向性のポリ
エステル樹脂に著しく劣るものの、非常にすぐれた接着
性を有している。
Generally, the polyester resin including the PET resin shows greatly different properties depending on the presence or absence of crystal orientation. The oriented polyester resin has excellent mechanical properties, heat resistance, and barrier properties. On the other hand, the polyester resin having no orientation is extremely inferior to the oriented polyester resin in mechanical properties, heat resistance and barrier properties, but has very excellent adhesiveness.

本発明によるラミネート鋼板は、下層に用いた低融点
ポリエステル樹脂がその融点以上に加熱されることによ
り、無配向性となり、すぐれた接着性を示すとともに、
上層の2軸配向ポリエチレンテレフタレート(以後PET
−BOと称する)フィルムはその熱固定温度まで加熱され
ないことから100%配向性を残している。つまり鋼板と
の接着剤としての下層の低融点樹脂と水または各種イオ
ンに対するバリアー性および加工密着性、加工耐食性と
いった機械的特性に非常に優れた上層のPET−BOフィル
ムを有することから、DRD缶、DI缶、EOEといった容器用
材料として優れた性能を示す。
Laminated steel sheet according to the present invention, the low melting point polyester resin used in the lower layer is heated to the melting point or higher, becomes non-oriented, and exhibits excellent adhesiveness,
Upper biaxially oriented polyethylene terephthalate (hereinafter PET
The film (referred to as BO) remains 100% oriented because it is not heated to its heat setting temperature. In other words, because it has a lower layer low melting point resin as an adhesive with steel plates and an upper layer PET-BO film with excellent mechanical properties such as barrier properties against water or various ions, processing adhesion, and processing corrosion resistance, DRD can It has excellent performance as a material for containers such as, DI can and EOE.

本発明に用いる上層のPET−BOフィルムは、2軸配向
性を有する、融点265℃、熱固定温度220〜230℃のPET−
BOフィルムである。また下層は接着剤としての機能を有
し、上層のPET−BOフィルムの熱固定温度より融点が10
〜40℃低い低融点樹脂である。この下層の接着樹脂に、
上層フィルムの熱固定温度より10〜40℃融点の低い樹脂
を用いていることが、本発明における重要な要件となっ
ている。すなわち単にPET−BOフィルムをその融点以上
に加熱した鋼板に、単独で熱圧着によるラミネートをし
たのでは、加熱密着性、加工耐食性に必要なその配向性
を壊してしまう。また接着樹脂を用いる際も、下層の接
着樹脂の融点が上層のPET−BOフィルムの熱固定温度よ
りも高いと、やはりPET−BOフィルムの一部またはすべ
ての配向性を壊してしまうことになる。これでは良好な
加工密着性、加工耐食性は得られない。
The upper layer PET-BO film used in the present invention is biaxially oriented PET-BO having a melting point of 265 ° C. and a heat setting temperature of 220 to 230 ° C.
It is a BO film. Further, the lower layer has a function as an adhesive, and has a melting point of 10 or higher than the heat setting temperature of the upper PET-BO film.
It is a low melting point resin that is lower by ~ 40 ° C. This lower layer adhesive resin,
Using a resin having a melting point of 10 to 40 ° C. lower than the heat setting temperature of the upper layer film is an important requirement in the present invention. That is, if the PET-BO film is simply laminated on a steel sheet heated above its melting point by thermocompression bonding, the orientation required for heat adhesion and processing corrosion resistance will be destroyed. Also, when using the adhesive resin, if the melting point of the adhesive resin of the lower layer is higher than the heat setting temperature of the PET-BO film of the upper layer, it will also destroy some or all of the orientation of the PET-BO film. . With this, good work adhesion and work corrosion resistance cannot be obtained.

また、上層フィルムの熱固定温度より融点が10〜40℃
低い低融点樹脂を接着剤として用いているのには、もう
一つ大きな理由がある。現在2ピースのビール、炭酸飲
料缶として広く使用されているDI缶用の素材としては、
Snめっきを施したブリキが最適である。特にしごき加工
を受ける缶外面は、純Snの持つ潤滑作用が重要で、今ま
での検討結果によると、純Snの量は少なくとも2g/m2
必要である。一方、ブリキ鋼板をSnの融点である。232
℃以上に加熱することによって生じるSn−Fe合金層は、
逆にDI成形性を阻害することがわかっている。ゆえにSn
系のめっき被膜を有する鋼板に熱圧着ラミネートを行っ
て製造した複合鋼板を用いてDIに供する場合、Sn−Fe合
金層の生成に配慮する必要がある。このような理由か
ら、Snの融点より高い融点の樹脂を熱圧着することは好
ましくない。それゆえ接着剤として用いる下層の低融点
樹脂は、Sn−Fe合金層を生成しない、Snの融点である23
2℃以下の融点の樹脂である必要がある。上層のPET−BO
フィルムの熱固定温度は220〜230℃であるから、接着樹
脂の融点は最低でもそれより10℃低くなければならな
い。これが低融点樹脂の融点の上限を定めた理由であ
る。また容器用材料としての使用を考えた場合、後工程
で外面印刷を行うことになる。そうすると塗料の焼付け
温度等の関係から、あまり融点の低いポリエステル樹脂
を接着剤として用いると、印刷性に悪影響を及ぼす。さ
らに缶に充填する内容物によっては高温のレトルト処理
を必要とするので、接着樹脂にもある程度の耐熱性が要
求される。これらの理由から接着樹脂の融点の下限をPE
T−BOフィルムの熱固定温度より40℃低いものと限定し
た。従ってこれらから下層の接着剤として用いられる低
融点樹脂の融点を、上層のPET−BOフィルムの熱固定温
度より10〜40℃低いものと限定した。
In addition, the melting point is 10-40 ° C from the heat setting temperature of the upper layer film.
There is another major reason why low-melting point resins are used as adhesives. As a material for DI cans that are currently widely used as 2-piece beer and carbonated drink cans,
Tinplate with Sn plating is most suitable. Especially, the lubrication effect of pure Sn is important on the outer surface of the can that is subjected to ironing, and according to the results of the study so far, the amount of pure Sn must be at least 2 g / m 2 . On the other hand, tin steel plate has a melting point of Sn. 232
The Sn-Fe alloy layer generated by heating above ℃,
On the contrary, it is known that DI moldability is impaired. Therefore Sn
When a composite steel sheet produced by performing thermocompression laminating on a steel sheet having a system-based plating film is used for DI, it is necessary to consider generation of a Sn-Fe alloy layer. For this reason, it is not preferable to thermocompression-bond a resin having a melting point higher than that of Sn. Therefore, the lower melting point resin used as an adhesive has a melting point of Sn that does not form a Sn--Fe alloy layer.
It must be a resin with a melting point of 2 ° C or less. Upper layer PET-BO
Since the heat setting temperature of the film is 220 to 230 ° C, the melting point of the adhesive resin must be at least 10 ° C lower than that. This is the reason for setting the upper limit of the melting point of the low melting point resin. Further, when considering use as a material for a container, outer surface printing will be performed in a later step. Then, in view of the baking temperature of the paint and the like, if a polyester resin having a too low melting point is used as the adhesive, the printability is adversely affected. Further, since a high temperature retort treatment is required depending on the contents filled in the can, the adhesive resin is also required to have some heat resistance. For these reasons, the lower limit of the melting point of the adhesive resin is PE
It was limited to 40 ° C lower than the heat setting temperature of the T-BO film. Therefore, the melting point of the low melting point resin used as an adhesive for the lower layer is limited to 10 to 40 ° C. lower than the heat setting temperature of the upper layer PET-BO film.

さらに、下層および上層の樹脂の厚みを、それぞれ1
〜20μm、8〜45μm、そして総厚みを10〜60μmに限
定した理由について以下に述べる。
Further, the thickness of the resin in the lower layer and the thickness of the resin in the upper layer are 1
The reason why the total thickness is limited to -20 µm, 8-45 µm, and 10-60 µm will be described below.

今まで述べてきたように、下層の低融点樹脂は上層の
PET−BOフィルムを鋼板にラミネートするための接着剤
として用いている。したがって下限の1μmというの
は、上層のPET−BOフィルムと鋼板を十分接着するのに
必要な最低限の厚みである。また、上限の20μmという
のはDI加工性、DRD加工性に悪影響を与えない限界の厚
みである。
As mentioned above, the low melting point resin in the lower layer is
It is used as an adhesive for laminating PET-BO films on steel plates. Therefore, the lower limit of 1 μm is the minimum thickness necessary to sufficiently bond the upper layer PET-BO film and the steel sheet. The upper limit of 20 μm is the limit thickness that does not adversely affect DI processability and DRD processability.

以上が下層樹脂の厚みを1〜20μmに限定した理由で
あり、鋼板との接着性、DI缶、DRD缶の加工成形性から
2〜6μmが好ましい。
The above is the reason why the thickness of the lower layer resin is limited to 1 to 20 μm, and 2 to 6 μm is preferable from the viewpoint of adhesiveness to a steel plate and workability of DI can and DRD can.

次に、上層のPET−BOフィルムの厚みを8〜45μmと
限定した理由について述べる。前述したように、良好な
加工密着性、加工耐食性はこのPET−BOフィルムの配向
性に起因している。したがって厚みの下限を8μmとし
たのは、下層の低融点接着樹脂と熱圧着した後も良好な
加工密着性と加工耐食性を維持するのに必要な最低限の
厚みである。上限値の45μmを超えると、下層の接着樹
脂層との関係もあるが、加工成形性への効果は飽和して
しまい、時として劣ってくる場合もある。また、コスト
的にも不利である。
Next, the reason why the thickness of the upper PET-BO film is limited to 8 to 45 μm will be described. As described above, good processing adhesion and processing corrosion resistance are due to the orientation of the PET-BO film. Therefore, the lower limit of the thickness is set to 8 μm, which is the minimum thickness required to maintain good work adhesion and work corrosion resistance even after thermocompression bonding with the lower layer low melting point adhesive resin. If the upper limit value of 45 μm is exceeded, the effect on the workability is saturated, although it may have a relationship with the lower adhesive resin layer, and in some cases it may be inferior. Also, it is disadvantageous in terms of cost.

さらに、下層と上層の厚みの総計を10〜60μmと限定
した理由について述べる。下限値である10μm以下で
は、DI成形後のフィルムに多数の膜欠陥が発生し易く、
耐食性に問題がある。また上限値である60μmを超えて
も耐食性に対してさほど有効ではなく、性能的にも飽和
してくる。
Furthermore, the reason why the total thickness of the lower layer and the upper layer is limited to 10 to 60 μm will be described. If the lower limit is 10 μm or less, many film defects are likely to occur in the film after DI molding,
There is a problem with corrosion resistance. Further, when the upper limit value of 60 μm is exceeded, it is not so effective for corrosion resistance and the performance is saturated.

下層接着樹脂と上層PET−BOフィルムの厚みの総計
は、当然のことながら加工密着性と加工耐食性のバラン
スを考えて設定する必要がある。このような理由から下
層の厚みは2〜6μm、上層の厚みは8〜40μm、厚み
の総計は10〜60μmが好ましい。
As a matter of course, the total thickness of the lower layer adhesive resin and the upper layer PET-BO film must be set in consideration of the balance between processing adhesion and processing corrosion resistance. For these reasons, the thickness of the lower layer is preferably 2 to 6 μm, the thickness of the upper layer is preferably 8 to 40 μm, and the total thickness is preferably 10 to 60 μm.

次に本発明に用いられる素地鋼板としては、下地処理
されていない鋼板、Snめっき鋼板のブリキ、Niめっき鋼
板、あるいはそれらにさらに化成処理を施した鋼板、さ
らには下層が金属Cr、上層がCr水和酸化物の2層構造を
有するティンフリースチールが好ましい。なお前記の化
成処理は通常、ブリキに施されているケミカル処理と呼
ばれるクロメート処理や、前記のティンフリースチール
皮膜のクロム・クロメート処理、燐酸塩処理等を指すも
のである。
Next, as the base steel sheet used in the present invention, a steel sheet that is not subjected to a base treatment, a tin-plated steel sheet tin, a Ni-plated steel sheet, or a steel sheet that has been further subjected to a chemical conversion treatment, further, the lower layer is metallic Cr, and the upper layer is Cr. Tin-free steel with a two-layer structure of hydrated oxide is preferred. The above chemical conversion treatment usually refers to a chromate treatment called a chemical treatment applied to tinplate, a chromium / chromate treatment of the tin-free steel film, a phosphate treatment and the like.

また、本発明では樹脂を片面にのみラミネートする場
合と両面にラミネートする場合を問はず、前記の鋼板の
下地処理被膜は両面と同一としても良く、また両面を異
種のものとしても良く、その用途によって選択すれば良
い。例えばDI缶用鋼板として使用する場合には缶外面と
なる面にはSnめっき被膜を必要とするが、缶内面となる
面には必ずしもSnめっき被膜は必要としない。
Further, in the present invention, regardless of whether the resin is laminated on only one side or both sides, the above-mentioned base treatment film of the steel sheet may be the same as both sides, or both sides may be different types. You can select by. For example, when used as a steel sheet for DI cans, a Sn plating film is required on the outer surface of the can, but a Sn plating film is not necessarily required on the inner surface of the can.

(実施例) 以下、実施例により本発明の効果を具体的に示す。(Examples) Hereinafter, the effects of the present invention will be specifically shown by examples.

<実施例1> Sn付着量が缶外面側2.8g/m2、缶内面側0.5g/m2にクロ
メート処理を行ったブリキ(板厚み0.30mm、T−1)
に、厚み6μm、融点が216℃のポリエステル樹脂を下
層として、板温220℃でSn付着量0.5g/m2の面にPET−BO
フィルム16μm、25μm40μmとともに熱圧着を行い、
各々複合鋼板A、B、Cを得た。
<Example 1> A tin plate having a Sn adhesion amount of 2.8 g / m 2 on the outer surface side of the can and 0.5 g / m 2 on the inner surface side of the can, which had been chromated (plate thickness: 0.30 mm, T-1)
The thickness 6 [mu] m, a melting point 216 ° C. of the polyester resin as a lower layer, PET-BO to the plane of the Sn coating weight 0.5 g / m 2 at a sheet temperature 220 ° C.
Thermo-compression bonding with films 16μm, 25μm 40μm,
Composite steel sheets A, B and C were obtained respectively.

こうして得られた複合鋼板A、B、Cについて樹脂フ
ィルムを缶内面にして連続DI成形性を、缶径211φ(350
mlビール缶サイズ)のDI缶を成形することで検討を行っ
た。その結果は、複合鋼板A、B、C共に100缶以上の
連続DI成形が可能であった。
For the composite steel sheets A, B, and C thus obtained, the resin film was used as the inner surface of the can to obtain continuous DI formability, and the can diameter was 211φ (350 mm).
The study was carried out by molding DI cans of ml beer can size). As a result, all the composite steel sheets A, B, and C were capable of continuous DI molding of 100 cans or more.

さらにDI成形缶のフィルム健全性を調べるために、缶
の中に1% NaClに界面活性剤0.2%を含む溶液を入れ、
缶体をアノード、白金電極をカソードとして+6Vの電圧
をかけた時の電流値を測定した(以下この試験をQTV試
験という)。
Furthermore, in order to investigate the film soundness of the DI molded can, put a solution containing 1% NaCl and 0.2% of a surfactant in the can,
The current value was measured when a voltage of + 6V was applied using the can as the anode and the platinum electrode as the cathode (hereinafter this test is referred to as the QTV test).

またDI成形缶の内面にエポキシフェノール系缶用塗料
を膜厚が8μmになるようにスプレーで上塗り塗装し、
205℃で10分間焼き付けた。この上塗り塗装を行ったDI
缶についてもQTV試験を行った。
In addition, the inner surface of the DI molded can is top-coated with a spray to coat the epoxy phenolic can paint to a film thickness of 8 μm.
It was baked at 205 ° C for 10 minutes. DI with this topcoat
QTV tests were also conducted on cans.

なお比較のため市販されているスチールDI缶(以下DI
−S缶という)についてもQTV試験を行った。
Steel DI cans that are commercially available for comparison (hereinafter DI
QTV test was also performed for -S can).

以上の試験の結果を第1表に示す。 The results of the above tests are shown in Table 1.

本発明で得られる複合鋼板は、連続DI成形性が可能で
あり、また第1表からわかるように、上塗り塗装後のQT
V試験値は市販のDI−S缶より優れている。
The composite steel sheet obtained by the present invention is capable of continuous DI formability, and as can be seen from Table 1, the QT after the top coating is applied.
The V test value is superior to the commercially available DI-S can.

<実施例2> 下層の金属Cr量が80mg/m2、上層が15mg/m2の両面ティ
ンフリー鋼板(板厚0.19mm、硬度T−4CA)の片面に厚
み5μmの低融点PETフィルムを下層として、板温210℃
でPET−BOフィルム16μm、25μm40μmとともに熱圧着
を行い、各々複合鋼板D、E、Fを得た。
<Example 2> A lower melting PET film having a thickness of 5 μm is formed on one side of a double-sided tin-free steel plate (plate thickness 0.19 mm, hardness T-4CA) having a lower layer metal Cr content of 80 mg / m 2 and an upper layer 15 mg / m 2. As the plate temperature 210 ℃
Then, thermocompression bonding was performed together with the PET-BO films 16 μm, 25 μm and 40 μm to obtain composite steel sheets D, E and F, respectively.

こうして得られた複合鋼板D、E、Fについて樹脂フ
ィルムを缶内面にして加工を行い、DRD成形性を缶径211
φで検討を行ったが、問題はなかった。
The composite steel sheets D, E, and F thus obtained were processed by using the resin film as the inner surface of the can to improve DRD formability.
We examined with φ, but there was no problem.

さらにDRD成形缶のフィルムの健全性を調べるため
に、QTV試験を行った。なお比較のため市販のDRD缶につ
いてもQTV試験を行った。以上の試験の結果を第2表に
示す。
In addition, a QTV test was conducted to investigate the film integrity of DRD molded cans. For comparison, we also conducted a QTV test on commercially available DRD cans. The results of the above tests are shown in Table 2.

本発明で得られる複合鋼板は、第2表からわかるよう
にQTV試験値は市販のDRD缶とほぼ同等であった。
As can be seen from Table 2, the composite steel sheet obtained by the present invention had a QTV test value almost equal to that of a commercially available DRD can.

(発明の効果) 以上の結果から本発明で得られる複合鋼板は、DI、DR
D成形後の品質に優れており、良好な加工密着性、加工
耐食性を有することがわかる。したがって従来製品と比
べて製缶メーカーでの工程省略化が可能となることか
ら、コストダウンを図ることができる。
(Effect of the invention) From the above results, the composite steel sheet obtained in the present invention is
It can be seen that the quality after D molding is excellent and that it has good processing adhesion and processing corrosion resistance. Therefore, compared with the conventional product, the process can be omitted in the can manufacturing maker, and the cost can be reduced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−149340(JP,A) 実開 昭63−104029(JP,U) 特公 昭59−35344(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-149340 (JP, A) Sekikai-63-104029 (JP, U) JP-B-59-35344 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも鋼板の片面に2軸配向ポリエチ
レンテレフタレート樹脂を表層とし、その下層に2軸配
向ポリエチレンテレフタレート樹脂の熱固定温度より融
点が10〜40℃低い無配向性のポリエステル樹脂被膜を有
することを特徴とする2層被膜構造を有するラミネート
鋼板。
1. A biaxially oriented polyethylene terephthalate resin as a surface layer on at least one surface of a steel sheet, and a non-oriented polyester resin coating having a melting point 10-40 ° C. lower than the heat setting temperature of the biaxially oriented polyethylene terephthalate resin as a surface layer thereunder. A laminated steel sheet having a two-layer coating structure characterized by the above.
【請求項2】両面にめっき皮膜を有するSnめっき鋼板、
Niめっき鋼板、あるいはこれらの表面に化成処理を施し
た鋼板、下層が金属Cr、上層がCr水和酸化物の2層構造
を有するティンフリースチールのいずれかの片面に樹脂
被膜を積層した特許請求の範囲第1項記載のラミネート
鋼板。
2. A Sn-plated steel sheet having a plating film on both sides,
Ni plated steel sheet or steel sheet whose surface is subjected to chemical conversion treatment, a lower layer of metal Cr, an upper layer of tin-free steel having a two-layer structure of Cr hydrate oxide 2. The laminated steel sheet according to item 1 above.
【請求項3】下層の低融点樹脂の厚みが1〜20μm、上
層の2軸配向ポリエチレンテレフタレート樹脂の厚みが
8〜45μm、樹脂の総厚みが10〜60μmである特許請求
の範囲第1項、あるいは第2項記載のラミネート鋼板。
3. The low-melting-point resin of the lower layer has a thickness of 1 to 20 μm, the biaxially oriented polyethylene terephthalate resin of the upper layer has a thickness of 8 to 45 μm, and the total thickness of the resin is 10 to 60 μm. Alternatively, the laminated steel sheet according to item 2.
【請求項4】少なくとも鋼板の片面に2軸配向ポリエチ
レンテレフタレート樹脂を表層とし、この2軸配向ポリ
エチレンテレフタレート樹脂の熱固定温度より融点が10
〜40℃低いポリエステル樹脂を下層として、2軸配向ポ
リエチレンテレフタレート樹脂の熱固定温度以下から前
記低融点ポリエステル樹脂の融点以上の温度で熱圧着す
ることを特徴とする2層被膜構造を有するラミネート鋼
板の製造方法。
4. A biaxially oriented polyethylene terephthalate resin is provided as a surface layer on at least one side of a steel sheet, and the melting point is 10 or more from the heat setting temperature of this biaxially oriented polyethylene terephthalate resin.
A laminated steel sheet having a two-layer coating structure, characterized in that a polyester resin lower by -40 ° C. is used as a lower layer, and thermocompression bonding is performed at a temperature not higher than the heat setting temperature of the biaxially oriented polyethylene terephthalate resin to a temperature not lower than the melting point of the low melting point polyester resin. Production method.
JP63015837A 1988-01-28 1988-01-28 Laminated steel sheet having a two-layer coating structure and method for producing the same Expired - Lifetime JPH085159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015837A JPH085159B2 (en) 1988-01-28 1988-01-28 Laminated steel sheet having a two-layer coating structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015837A JPH085159B2 (en) 1988-01-28 1988-01-28 Laminated steel sheet having a two-layer coating structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01192546A JPH01192546A (en) 1989-08-02
JPH085159B2 true JPH085159B2 (en) 1996-01-24

Family

ID=11899950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015837A Expired - Lifetime JPH085159B2 (en) 1988-01-28 1988-01-28 Laminated steel sheet having a two-layer coating structure and method for producing the same

Country Status (1)

Country Link
JP (1) JPH085159B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240779A (en) * 1989-08-30 1993-08-31 Teijin Limited Polyester film for fabrication
DE69017314T2 (en) * 1989-08-30 1995-08-24 Teijin Ltd Polyester film.
JP2587302B2 (en) * 1990-02-16 1997-03-05 東洋鋼鈑 株式会社 Polyester resin film laminated surface treated steel sheet excellent in processing corrosion resistance and method for producing the same
JPH04105931A (en) * 1990-08-27 1992-04-07 Nippon Steel Corp Composite steel plate for eoe and preparation thereof
JP2532002B2 (en) * 1990-12-26 1996-09-11 東洋鋼鈑株式会社 Resin coated metal plate for thin-walled deep drawing
CA2129435C (en) * 1992-12-04 2007-01-09 Masahiro Kimura Polyester film for thermal lamination
GB2276347B (en) * 1993-03-26 1997-01-29 Toyo Kohan Co Ltd Double layered thermoplastic resin laminated metal sheet
US5876851A (en) * 1993-05-19 1999-03-02 Teijin Limited Film from polycarbonate, polyester to be laminated on metal
US5874163A (en) * 1993-12-06 1999-02-23 Teijin Limited Laminated polyester film to be laminated on metal plate
EP0719636B1 (en) * 1994-07-19 2000-05-17 Teijin Limited Laminated polyester film for metallic lamination
JP2980817B2 (en) * 1994-10-18 1999-11-22 帝人株式会社 Polyester film for metal plate lamination processing
US5780158A (en) * 1996-02-09 1998-07-14 Teijin Limited Biaxially oriented film to be laminated on a metal
ID20755A (en) * 1996-09-18 1999-02-25 Teijin Ltd POLYESTER FILM FOR COATING ON METAL PLATES AND PRINTED
DE69718443T2 (en) 1996-10-18 2003-10-23 Teijin Ltd., Osaka WHITE MULTILAYER POLYESTER FILM FOR LAMINATION
WO1999052969A1 (en) 1998-04-13 1999-10-21 Teijin Limited Biaxially oriented polyester film for fabrication in lamination with metal plate
GB9902299D0 (en) * 1999-02-02 1999-03-24 Du Pont Polymeric film
TW546330B (en) 2000-01-07 2003-08-11 Teijin Ltd Biaxially oriented polyester film for metal sheet laminating molding
JP4675454B2 (en) * 2000-04-27 2011-04-20 三菱アルミニウム株式会社 Resin coated metal plate
DE102005015340B4 (en) * 2005-04-01 2011-11-17 Jowat Ag Process for the preparation of printed or decorated moldings and moldings produced in this way
US20140339123A1 (en) 2011-12-26 2014-11-20 Jfe Steel Corporation Laminated metal sheet and food can container
WO2013157379A1 (en) 2012-04-19 2013-10-24 Jfeスチール株式会社 Laminated metal sheet, and canning container for food
JP5874659B2 (en) 2013-02-28 2016-03-02 Jfeスチール株式会社 Laminated metal plate for 2-piece can and 2-piece laminated can body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168643A (en) * 1984-02-14 1985-09-02 東洋製罐株式会社 Coated steel plate for drawing die can and drawing die can
JPS613676A (en) * 1984-06-15 1986-01-09 Mitsubishi Electric Corp Follow-up device for weld line
JPS61149340A (en) * 1984-12-25 1986-07-08 Toyo Kohan Co Ltd Manufacture of polyester resin film-covered metal plate
JPS6261427A (en) * 1985-09-12 1987-03-18 Canon Inc Coding system
JPS62286734A (en) * 1986-06-06 1987-12-12 東洋鋼鈑株式会社 Resin coated steel plate for vessel

Also Published As

Publication number Publication date
JPH01192546A (en) 1989-08-02

Similar Documents

Publication Publication Date Title
JPH085159B2 (en) Laminated steel sheet having a two-layer coating structure and method for producing the same
US9410251B2 (en) Resin-coated aluminum alloy sheet and formed body using resin-coated aluminum alloy sheet
JPS5882717A (en) Manufacture of polyester resin film-coated metal plate
WO2008029916A1 (en) Steel plate for container, and method for production thereof
EP1939100B1 (en) Easy open lid
JP2817562B2 (en) Laminated steel sheet for cans
JP4056210B2 (en) Resin film laminated plated steel sheet, can using the same, and method for producing resin film laminated plated steel sheet
JP2010255065A (en) Surface treated steel sheet and method of manufacturing the same
JPH06320669A (en) Resin-coated metal plate for thin and deeply drawn can
WO2001004380A1 (en) Steel plate for laminated container, and method for producing can using the same and can
JPH04105931A (en) Composite steel plate for eoe and preparation thereof
JP2000263692A (en) Resin-coated metal plate for liquid container
JP4898130B2 (en) Steel plate for canned ironing can excellent in inner surface corrosion resistance and outer surface printability, can body and manufacturing method thereof
JP3218923B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JPH1016127A (en) Easy open can cover
JP3218925B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3781156B2 (en) Resin film for metal plate lamination, resin film laminated metal plate, manufacturing method thereof, and container using resin film laminated metal plate
JP3218924B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3088507B2 (en) Film-laminated steel sheet for food cans
JPS63270581A (en) Coated welded can for canning
JP2807482B2 (en) Double coated steel sheet for can making and its manufacturing method
JP2631797B2 (en) Metal plate for gasket
JP3147715B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JPH07112724B2 (en) Composite steel sheet excellent in DI workability and method for producing the same
JP5895879B2 (en) Surface-treated steel sheet, resin-coated steel sheet, production method thereof, can and can lid