JPH0851131A - X-ray inspecting method - Google Patents

X-ray inspecting method

Info

Publication number
JPH0851131A
JPH0851131A JP6186006A JP18600694A JPH0851131A JP H0851131 A JPH0851131 A JP H0851131A JP 6186006 A JP6186006 A JP 6186006A JP 18600694 A JP18600694 A JP 18600694A JP H0851131 A JPH0851131 A JP H0851131A
Authority
JP
Japan
Prior art keywords
component
coordinates
calculated
ray
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6186006A
Other languages
Japanese (ja)
Inventor
Yasunori Kakebayashi
康典 掛林
Shoichi Mure
祥一 牟礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6186006A priority Critical patent/JPH0851131A/en
Publication of JPH0851131A publication Critical patent/JPH0851131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To accurately detect the positional coordinates and the deviation of the rotating direction of a material to be inspected by obtaining a binary image of the material to be inspected by thresholding the X-ray transmission image of the material to be inspected, detecting the coordinates of the center of the gravity and the inclination of the centerline of a component based on the binary image, and comparing it with a preset reference value. CONSTITUTION:The X-ray transmission distribution image data of a mounting board 3 is input to a computer 5. The data of the board 3 on which the components are mounted at proper locations is previously stored in the computer 5. The inspecting area of the component to be inspected is set from the data, and a binary image is so formed by using a threshold value to threshold the entire component for the region. The center of the gravity of the component and the inclination of the straight line in which the sum of squares of the distances to the pixels becomes minimum are calculated from the binary image, compared, and the absolute value of the difference is calculated as the deviation of the component. This deviation is compared with the allowable value of the preset deviation, and the propriety of the position of the component is decided according to whether it falls within the allowable range or not. Thus, the deviation of the rotating direction can be accuraately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,被検査物にX線を照射
して,その透過X線を検出することにより被検査物の配
設位置の良否を検査するもので,主として基板に実装さ
れた部品の実装位置の良否を検査することに用いられる
X線検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to inspect an object to be inspected for X-rays and detect the transmitted X-rays to inspect the quality of the position of the object to be inspected. The present invention relates to an X-ray inspection method used for inspecting the quality of the mounting position of the mounted component.

【0002】[0002]

【従来の技術】基板に実装された部品の実装位置を検査
する手段として,実装基板をビデオカメラで撮像して,
その画像データから部品のエッジを検出し,得られたエ
ッジデータから部品の各コーナの座標値を求め,予め設
定された基準値と比較する方法が知られている。又,実
装基板の半田付け状態の検査を行うため,実装基板にX
線を照射して,X線透過量分布から半田付け部の状態を
検出する場合に,検査位置を特定するたことが必要とな
る。この検査位置を特定する方法として実装基板のマウ
ンタデータから得る方法と,X線透過画像から半田付け
部を検出する方法とが知られている。
2. Description of the Related Art As a means for inspecting the mounting position of a component mounted on a board, the mounting board is imaged by a video camera,
A method is known in which an edge of a component is detected from the image data, the coordinate value of each corner of the component is obtained from the obtained edge data, and the coordinate value is compared with a preset reference value. Also, in order to inspect the soldering state of the mounting board, X
When the state of the soldering portion is detected from the X-ray transmission amount distribution by irradiating the X-ray, it is necessary to specify the inspection position. As a method of specifying the inspection position, a method of obtaining from the mounter data of the mounting board and a method of detecting the soldered portion from the X-ray transmission image are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記従
来技術における実装位置の検出では,部品のコーナー部
分が丸みをおびていたり,不利な条件のもとで撮像され
て輪郭が不鮮明であるような場合に,エッジの検出が困
難となるため,コーナー部分を誤検出する可能性が高
く,特に回転方向のずれ量が誤判定されやすい問題点が
あった。(第1の課題) 又,上記X線透過画像から半田付け検査の検査位置を特
定する方法では,部品の実装位置がずれていたり,半田
付け不良があった場合に検査位置に誤差が生じる問題点
があった(第2の課題)。そこで,本発明が目的とする
ところは,上記第1の課題に鑑みて,X線透過による画
像データから被検査物の位置座標と回転方向のずれを正
確に検出し,更に,上記第2の課題に鑑みて,検査位置
を特定する正確な部品位置データを検出するX線検査方
法を提供することにある。
However, in the detection of the mounting position in the above-mentioned prior art, when the corner portion of the component is rounded or the image is picked up under an unfavorable condition and the contour is unclear. In addition, since it is difficult to detect the edge, there is a high possibility that the corner portion will be erroneously detected, and in particular, the misregistration amount of the rotational direction tends to be erroneously determined. (First Problem) Further, in the method of specifying the inspection position of the soldering inspection from the X-ray transmission image, an error occurs in the inspection position when the mounting position of the component is deviated or there is a soldering failure. There was a point (the second task). In view of the first problem, therefore, the object of the present invention is to accurately detect the positional coordinates of the object to be inspected and the deviation in the rotation direction from the image data by X-ray transmission, and further to detect the second problem. In view of the problem, an object of the present invention is to provide an X-ray inspection method that detects accurate component position data that specifies an inspection position.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の第1の発明は,被検査物にX線を照射して,該被検査
物を透過したX線透過画像から被検査物の位置の良否を
検査するX線検査方法において,上記X線透過画像を二
値化して被検査物の二値画像を求め,上記二値画像から
被検査物の重心座標を算出し,上記重心座標から被検査
物の中心線を算出すると共に,その傾きを求め,上記重
心座標と中心線の傾きとを設定された基準値と比較し
て,その差から被検査物の位置の良否を判定することを
特徴とするX線検査方法として構成される。上記被検査
物が実装基板上に配置された部品であるとき,検査対象
部品の特徴点となる部位が検出できる閾値で上記X線透
過画像を二値化して二値画像を求め,上記二値画像から
特徴点の中心座標を求め,上記各中心座標から部品の重
心座標を算出し,上記重心座標から部品の中心線の傾き
を求め,上記重心座標と中心線の傾きとを設定された基
準値と比較して,その差から部品の実装位置の良否を判
定することを特徴とするX線検査方法として構成するこ
とができる。又,第2の発明は,プリント基板に部品が
実装される前の基板にX線を照射して,該基板を透過し
たX線の透過画像から上記部品の実装位置を検出するX
線検査方法において,上記X線透過画像を二値化して基
板上に形成された半田付けランドの二値画像を求め,上
記二値画像から各半田付けランドの中心座標を求め,部
品の配置データをもとに上記各中心座標から部品の重心
座標を算出し,上記重心座標から部品の中心線の傾きを
求め,上記重心座標を部品の取り付け位置,上記中心線
の傾きを部品の取り付け角度として部品の実装位置デー
タを作成することを特徴とするX線検査方法として構成
することができる。上記各検査方法における上記中心線
は,二値画像の各画素との距離の二乗和が最小となる直
線を検出することでなされる。
According to a first aspect of the present invention, an object to be inspected is irradiated with X-rays, and the position of the object to be inspected is determined from an X-ray transmission image transmitted through the object. In the X-ray inspection method for inspecting the quality of the object, the X-ray transmission image is binarized to obtain a binary image of the inspection object, and the barycentric coordinates of the inspection object are calculated from the binary image. The center line of the object to be inspected is calculated, the inclination thereof is obtained, the barycentric coordinates and the inclination of the center line are compared with a set reference value, and the quality of the position of the object to be inspected is judged from the difference. Is configured as an X-ray inspection method. When the object to be inspected is a component arranged on a mounting board, the X-ray transmission image is binarized to obtain a binary image by a threshold value that can detect a part that is a characteristic point of the inspection target component. The center coordinates of the feature points are obtained from the image, the barycentric coordinates of the component are calculated from the respective center coordinates, the inclination of the center line of the component is obtained from the center of gravity coordinates, and the barycentric coordinates and the inclination of the center line are set as a reference. It can be configured as an X-ray inspection method characterized by comparing the value with the value and judging the quality of the mounting position of the component from the difference. In a second aspect of the present invention, an X-ray is applied to a board before the part is mounted on a printed board, and the mounting position of the part is detected from a transmission image of the X-ray transmitted through the board.
In the line inspection method, the X-ray transmission image is binarized to obtain a binary image of the soldering land formed on the substrate, the center coordinates of each soldering land are obtained from the binary image, and the component placement data is obtained. Based on the above, the center of gravity coordinates of the part are calculated from the above center coordinates, the inclination of the center line of the part is obtained from the above center of gravity coordinates, the above center of gravity coordinates are the mounting position of the part, and the inclination of the center line is the mounting angle of the part. It can be configured as an X-ray inspection method characterized by creating mounting position data of the component. The center line in each of the inspection methods is made by detecting a straight line that minimizes the sum of squares of the distance from each pixel of the binary image.

【0005】[0005]

【作用】第1の発明によれば,被検査物のX線透過画像
を二値化して被検査物の二値画像を求め,二値画像を構
成する画素から被検査物の重心を算出すると共に,各画
素との距離の二乗和が最小となる直線を算出することに
より,部品の重心座標と中心線の傾きが検出される。こ
れを予め設定された基準値と比較することにより,被検
査物の位置の良否を判定することができる。請求項1が
これに該当する。上記被検査物が実装基板上に取り付け
られたX線透過率の高い部品であるとき,被検査物の二
値画像が得難いので,部品の半田付け部等のX線透過率
の低い点を特徴点として設定する。この特徴点の二値画
像から部品の重心座標と中心線の傾きとを検出すること
ができる。請求項2がこれに該当する。又,第2の発明
によれば,部品が実装されていない基板のX線透過画像
から基板上に形成された半田付けランドの二値画像を求
め,各半田付けランドの中心座標を求め,各中心座標か
ら半田付けランドに取り付けられる部品の重心座標を算
出する。上記各中心座標から中心線の傾きを算出して,
重心座標を部品の取り付け位置,中心線の傾きを部品の
取り付け角度として検出する。請求項3がこれに該当す
る。
According to the first invention, the X-ray transmission image of the inspection object is binarized to obtain the binary image of the inspection object, and the center of gravity of the inspection object is calculated from the pixels forming the binary image. At the same time, by calculating a straight line that minimizes the sum of squares of the distance to each pixel, the barycentric coordinates of the component and the inclination of the center line are detected. By comparing this with a preset reference value, the quality of the position of the inspection object can be determined. Claim 1 corresponds to this. When the object to be inspected is a component mounted on the mounting board and having a high X-ray transmittance, it is difficult to obtain a binary image of the object to be inspected, and therefore it is characterized in that the soldered portion of the component has a low X-ray transmittance. Set as a point. From the binary image of the characteristic points, the barycentric coordinates of the component and the inclination of the center line can be detected. Claim 2 corresponds to this. Further, according to the second invention, a binary image of the soldering land formed on the substrate is obtained from the X-ray transmission image of the substrate on which no component is mounted, and the center coordinates of each soldering land are obtained. From the center coordinates, the barycentric coordinates of the parts attached to the soldering land are calculated. Calculate the inclination of the center line from the above center coordinates,
The center of gravity coordinates are detected as the mounting position of the component, and the inclination of the center line is detected as the mounting angle of the component. Claim 3 corresponds to this.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。本実施例は,基
板に部品が半田付けにより実装された実装基板における
部品の実装位置の良否を検査するものである。ここに,
図1は本発明の第1実施例に係るX線検査方法の手順を
示すフローチャート,図2は実施例に係るX線検査方法
を実行するためのX線検査装置の構成を示すブロック図
である。図2に示すように,実装基板3にX線源2から
X線を照射して,その透過X線はイメージングプレート
4により検出され,画像読み取り装置7によりX線透過
量分布画像として作成される。この画像データはA/D
変換された後,計算機5に入力される。計算機5はX線
制御部6を制御してX線源2からのX線照射位置を操作
し,実装基板3全面の透過画像を得ると共に,入力され
た教示データ等をもとに画像データから部品の実装位置
の良否判定を行う。上記計算機5で実行される検査方法
の手順を図1に示すフローチャートを参照して説明す
る。本検査方法は,コンデンサチップ等のX線の透過率
が低い部品の実装位置の検査方法である。尚,同図に示
すS1,S2…は処理手順を示すステップ番号で,本文
中の符号と一致する。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples embodying the present invention and do not limit the technical scope of the present invention. In the present embodiment, the quality of the mounting position of the component on the mounting substrate on which the component is mounted by soldering is inspected. here,
FIG. 1 is a flow chart showing the procedure of the X-ray inspection method according to the first embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of an X-ray inspection apparatus for executing the X-ray inspection method according to the embodiment. . As shown in FIG. 2, the mounting substrate 3 is irradiated with X-rays from the X-ray source 2, the transmitted X-rays are detected by the imaging plate 4, and the image reading device 7 creates an X-ray transmission amount distribution image. . This image data is A / D
After being converted, it is input to the computer 5. The computer 5 controls the X-ray control unit 6 to operate the X-ray irradiation position from the X-ray source 2 to obtain a transmission image of the entire surface of the mounting board 3 and also from the image data based on the input teaching data and the like. The quality of the mounting position of the component is determined. The procedure of the inspection method executed by the computer 5 will be described with reference to the flowchart shown in FIG. This inspection method is an inspection method of the mounting position of a component having a low X-ray transmittance such as a capacitor chip. Note that S1, S2, ... Shown in the figure are step numbers indicating the processing procedure, and coincide with the reference numerals in the text.

【0007】まず,実装基板3のX線透過量分布画像デ
ータが計算機5に入力される(S1)。計算機5には部
品が正常な位置に実装された状態の実装基板3のデータ
が教示データとして予め格納されているので,この教示
データから検査対象とする部品の検査領域が設定される
(S2)。この検査領域について部品全体が二値化され
るような閾値を用いて二値画像化される(S3)。上記
二値画像から部品の重心座標(xg ,yg )を下式
(1)により算出する(S4)。式(1)において,
(xi ,yi )は二値画像の各画素の座標,Nは二値画
像の総画素数である。 xg =Σxi /N ,yg =Σyi /N…(1)
First, the X-ray transmission amount distribution image data of the mounting board 3 is input to the computer 5 (S1). Since the data of the mounting board 3 in a state where the components are mounted in the normal positions are stored in the computer 5 in advance as teaching data, the inspection area of the component to be inspected is set from this teaching data (S2). . The inspection area is binarized using a threshold value such that the entire component is binarized (S3). The barycentric coordinates (x g , y g ) of the component are calculated from the binary image by the following equation (1) (S4). In equation (1),
(X i , y i ) is the coordinate of each pixel of the binary image, and N is the total number of pixels of the binary image. x g = Σx i / N, y g = Σy i / N (1)

【0008】次いで,上記重心座標を原点とした座標系
に二値画像の各画素の座標を座標変換する(S5)。こ
こで変換された各画素の座標を(Xi ,Yi )とする。
この各画素の座標との距離の二乗和が最小となる直線の
傾きaを下式(2)から算出する(S6)。 aΣXi 2 −aΣYi 2 +(a2 −1)ΣXi i =0…(2) 式(2)は,直線y=axと,点(Xi ,Yi )との距
離の二乗和が最小となる傾きaを導出する最小二乗法を
変形した式で,以下のようにして導出される。直線y=
axと点(Xi ,Yi )との距離の二乗和Σli 2 は,
下式(3)のように表される。 Σli 2 =Σ{(aXi −Yi 2 /(a2 +1)}…(3) 式(3)をaについて微分すると,下式(4)のように
表される。 ∂Σli 2 /∂a= 2{aΣXi 2 −aΣYi 2 +(a2 −1)ΣXi i }/(a2 +1)2 …(4) 上記二乗和Σli 2 が最小値をとる傾きaは,式(4)
で∂Σli 2 /∂a=0となるときであることから上式
(2)が導出される。上記S5で重心座標を基準とした
座標系に各画素の座標を変換しているので,重心を通る
直線式はy=axとおくことができ,これを部品の中心
線とする。上記処理により検出された重心座標及び中心
線を計算機5に格納されている教示データの部品の重心
座標及び中心線の傾きと比較して,その差の絶対値を部
品のずれ量として算出する(S7)。算出されたずれ量
と,予めオペレータにより設定されたずれ量の許容値と
を比較し(S8),これが許容範囲内にあるか否かによ
って部品位置の良否が判定される(S9)。以上はチッ
プ部品等のX線透過率が低い部品の位置検出であるが,
IC部品等のX線透過率の高い部品の場合についての検
査方法について,第2実施例として次に示す。
Next, the coordinates of each pixel of the binary image are coordinate-converted into a coordinate system having the center of gravity as the origin (S5). The coordinates of each pixel converted here are defined as (X i , Y i ).
The slope a of the straight line that minimizes the sum of squares of the distance from the coordinates of each pixel is calculated from the following equation (2) (S6). aΣX i 2 −aΣY i 2 + (a 2 −1) ΣX i Y i = 0 (2) Equation (2) is the sum of squares of the distance between the straight line y = ax and the point (X i , Y i ). Is a modified expression of the least-squares method for deriving the slope a that minimizes, and is derived as follows. Straight line y =
The sum of squares Σl i 2 of the distance between ax and the point (X i , Y i ) is
It is expressed as the following formula (3). Σl i 2 = Σ {(aX i −Y i ) 2 / (a 2 +1)} (3) When the expression (3) is differentiated with respect to a, it is expressed as the following expression (4). ∂Σl i 2 / ∂a = 2 {aΣX i 2 −aΣY i 2 + (a 2 −1) ΣX i Y i } / (a 2 +1) 2 (4) The sum of squares Σl i 2 represents the minimum value. The inclination a to be taken is given by the equation (4)
Since ∂Σl i 2 / ∂a = 0, the above equation (2) is derived. Since the coordinates of each pixel are converted into the coordinate system based on the barycentric coordinates in S5, the linear equation passing through the barycenter can be set as y = ax, which is the center line of the component. The barycentric coordinates and center line detected by the above processing are compared with the barycentric coordinates and center line inclination of the parts of the teaching data stored in the computer 5, and the absolute value of the difference is calculated as the deviation amount of the parts ( S7). The calculated deviation amount is compared with the tolerance value of the deviation amount preset by the operator (S8), and the quality of the component position is determined by whether or not it is within the tolerance range (S9). The above is the position detection of the parts with low X-ray transmittance such as chip parts.
The inspection method for the case of a component having a high X-ray transmittance such as an IC component will be described below as a second embodiment.

【0009】ここに,図3は第2実施例に係る部品位置
検査の手順を示すフローチャート,図4はIC部品の半
田付け部の例を示す側面図,図5は第2実施例に係る二
値画像の例を示す模式図である。図3に示すフローチャ
ートを用いて第2実施例に係る検査手順について説明す
る。尚,同図に示すS1,S2…は処理手順を示すステ
ップ番号で,本文中の符号と一致する。まず,X線透過
量分布画像データを計算機5に入力する(S1)。この
画像に対して教示データから検査対象とする部品の特徴
点が得やすい領域を検査領域として設定する(S2)。
上記特徴点として,X線透過率の高いIC部品のような
場合では,部品本体の画像は得難いが,図4に示すよう
にリード8が半田付けランド10ら立ち上がる位置の半
田部9が厚くなっているので,X線の透過率が低く明確
な画像として検出される。このリード立ち上がり位置を
特徴点とすることができる。そこで,上記リード8の立
ち上がり位置を特徴点として二値化できるような閾値で
検査領域画像を二値化する(S3)。IC部品のリード
8は部品の両側に対称的に配置されているので,二値画
像は図5に示すようになる。図5に示す斜線部がリード
の立ち上がり位置,即ち,特徴点11である。二値画像
から特徴点11の中心座標を検出する(S4)。これを
全ての特徴点11について行う(S5)。求められた各
中心座標から部品の重心座標(xg ,yg )を算出する
(S6)。この重心座標を原点とした座標系に各中心座
標(xc ,yc )を変換する(S7)。変換された各中
心座標を(Xi ,Yi )とする。上記各中心座標
(Xi ,Yi )との距離の二乗和が最小となる直線の傾
きaを上式(2)により算出する(S8)。この直線
は,図5に示すように実装された部品の中心線12とな
る。上記処理により検出された重心座標及び中心線を計
算機5に格納されている教示データの部品の重心座標及
び中心線の傾きと比較して,その差の絶対値を部品のず
れ量として算出する(S9)。算出されたずれ量と,予
めオペレータにより設定されたずれ量の許容値とを比較
し(S10),これが許容範囲内にあるか否かによって
部品位置の良否が判定される(S11)。上記検査方法
において,リード8の立ち上がり位置に形成される半田
部9の頂点を検出して,この点(xp ,yp )を上記中
心座標に置き換え,S5以下の処理を実行することもで
きる。
FIG. 3 is a flow chart showing the procedure of the component position inspection according to the second embodiment, FIG. 4 is a side view showing an example of a soldering part of an IC component, and FIG. It is a schematic diagram which shows the example of a value image. The inspection procedure according to the second embodiment will be described with reference to the flowchart shown in FIG. Note that S1, S2, ... Shown in the figure are step numbers indicating the processing procedure, and coincide with the reference numerals in the text. First, the X-ray transmission amount distribution image data is input to the computer 5 (S1). An area in which the feature points of the component to be inspected are easily obtained from the teaching data for this image is set as the inspection area (S2).
As a characteristic point, in the case of an IC component having high X-ray transmittance, it is difficult to obtain an image of the component body, but as shown in FIG. 4, the solder portion 9 at the position where the lead 8 rises from the soldering land 10 becomes thick. Therefore, the X-ray transmittance is low and it is detected as a clear image. This lead rising position can be used as a characteristic point. Therefore, the inspection area image is binarized with a threshold value such that the rising position of the lead 8 can be binarized using the rising position of the lead 8 (S3). Since the leads 8 of the IC component are symmetrically arranged on both sides of the component, the binary image is as shown in FIG. The hatched portion shown in FIG. 5 is the rising position of the lead, that is, the feature point 11. The center coordinates of the feature point 11 are detected from the binary image (S4). This is performed for all feature points 11 (S5). The barycentric coordinates (x g , y g ) of the component are calculated from the obtained center coordinates (S6). Each center coordinate (x c , y c ) is converted into a coordinate system with the barycentric coordinate as the origin (S7). Let each transformed center coordinate be (X i , Y i ). The slope a of the straight line that minimizes the sum of squares of the distances from the center coordinates (X i , Y i ) is calculated by the above equation (2) (S8). This straight line becomes the center line 12 of the mounted components as shown in FIG. The barycentric coordinates and center line detected by the above processing are compared with the barycentric coordinates and center line inclination of the parts of the teaching data stored in the computer 5, and the absolute value of the difference is calculated as the deviation amount of the parts ( S9). The calculated deviation amount is compared with the allowable value of the deviation amount set in advance by the operator (S10), and the quality of the component position is determined by whether the deviation amount is within the allowable range (S11). In the above inspection method, it is also possible to detect the apex of the solder portion 9 formed at the rising position of the lead 8 and replace this point (x p , y p ) with the central coordinate, and execute the processing from S5 onward. .

【0010】次に,上記検査方法を実行するために計算
機5に格納される教示データ,あるいはX線透過による
半田付け検査のための部品位置を示す教示データの作成
例を第3実施例として説明する。ここに,図6はX線検
査教示データ作成装置の構成を示す模式図,図7は教示
データ作成の手順を示すフローチャートである。図6に
おいて,先に図2に示したX線検査装置1に,部品が実
装されていない基板13を配置して,X線源2からX線
を照射して,イメージングプレート4により検出されて
透過X線を画像読み取り装置7に入力する。この基板1
3のX線透過画像を用いて教示データ作成装置19によ
り教示データが作成される。この教示データ作成の手順
を図7にフローチャートを参照して以下に説明する。上
記X線検査装置1により基板13のX線透過画像を求め
て(S1),これが教示データ作成装置19に入力され
る。画像データは一旦基板画像記憶部15に格納され,
ランド画像抽出部14により基板13上に形成された半
田付けランドが抽出できる閾値により二値化がなされ,
二値画像が作成される(S2)。この二値画像をディス
プレイ17に表示して,マウス等の入力装置18により
半田付けランドを指定することにより(S3),演算処
理部16により指定された半田付けランドの中心座標が
算出される(S4)。この半田付けランドに取り付けら
れる部品のデータ(電極やリードの数)から,部品の重
心座標を各中心座標を用いて算出する(S5)。上記重
心座標を原点とした座標系に各半田付けランドの中心座
標を変換する(S6)。更に,変換された各中心座標と
の距離の二乗和が最小となる直線の傾きを,先に示した
式(2)により算出する(S7)。ここで求められた重
心座標を部品の取り付け位置,直線の傾きを部品の取り
付け角度として教示データが作成される。この教示デー
タは計算機5に入力され,上記基板13を用いた実装基
板の部品取り付け位置の検査,あるいは半田付け検査に
利用される。
Next, an example of creating teaching data stored in the computer 5 for executing the above-described inspection method or teaching data indicating a component position for soldering inspection by X-ray transmission will be described as a third embodiment. To do. Here, FIG. 6 is a schematic diagram showing the configuration of the X-ray inspection teaching data creation device, and FIG. 7 is a flowchart showing the procedure of teaching data creation. In FIG. 6, a substrate 13 on which no component is mounted is arranged in the X-ray inspection apparatus 1 shown in FIG. 2, and X-rays are emitted from the X-ray source 2 and detected by the imaging plate 4. The transmitted X-ray is input to the image reading device 7. This board 1
Teaching data is created by the teaching data creating device 19 using the X-ray transmission image of No. 3. The procedure for creating this teaching data will be described below with reference to the flowchart in FIG. The X-ray inspection apparatus 1 obtains an X-ray transmission image of the substrate 13 (S1), and this is input to the teaching data creation apparatus 19. The image data is once stored in the board image storage unit 15,
The land image extracting unit 14 binarizes the soldering lands formed on the substrate 13 by a threshold value that can be extracted,
A binary image is created (S2). By displaying this binary image on the display 17 and designating a soldering land by the input device 18 such as a mouse (S3), the center coordinates of the soldering land designated by the arithmetic processing unit 16 are calculated ( S4). From the data (number of electrodes and leads) of the component attached to the soldering land, the center of gravity coordinate of the component is calculated using each center coordinate (S5). The center coordinates of each soldering land are converted into a coordinate system with the barycentric coordinates as the origin (S6). Further, the slope of the straight line that minimizes the sum of squares of the distances to the respective transformed center coordinates is calculated by the above-described equation (2) (S7). Teaching data is created with the barycentric coordinates obtained here as the mounting position of the component and the inclination of the straight line as the mounting angle of the component. This teaching data is input to the computer 5 and used for inspection of the component mounting position of the mounting board using the board 13 or for soldering inspection.

【0011】[0011]

【発明の効果】以上の説明の通り本願の第1の発明によ
れば,被検査物のX線透過画像を二値化して被検査物の
二値画像を求め,二値画像を構成する画素から被検査物
の重心を算出すると共に,各画素との距離の二乗和が最
小となる直線を算出することにより,部品の重心座標と
中心線の傾きが検出される。これを予め設定された基準
値と比較することにより,被検査物の位置の良否を判定
することができる。二値化の閾値に依存する不確定なエ
ッジ情報だけでなく,確定した情報から大半がなる被対
象物全体の情報を用いるため,コーナー検出が困難な画
像からも回転方向のずれ量を検出することができる。
(請求項1) 上記被検査物が実装基板上に取り付けられたX線透過率
の高い部品であるとき,被検査物の二値画像が得難いの
で,部品の半田付け部等のX線透過率の低い点を特徴点
として設定する。この特徴点の二値画像から部品の重心
座標と中心線の傾きとを検出することができる。二値画
像が得やすい特徴点から部品の重心座標と中心線の傾き
とを検出できるので,二値化が困難な不鮮明画像からも
位置ずれ量を検出することができる。(請求項2)
As described above, according to the first invention of the present application, the X-ray transmission image of the inspection object is binarized to obtain the binary image of the inspection object, and the pixels forming the binary image are obtained. By calculating the center of gravity of the object to be inspected and the straight line that minimizes the sum of squares of the distances from the respective pixels, the barycentric coordinates of the component and the inclination of the center line are detected. By comparing this with a preset reference value, the quality of the position of the inspection object can be determined. Not only uncertain edge information that depends on the threshold of binarization but also the information of the entire object, which mostly consists of the confirmed information, is used to detect the amount of deviation in the rotation direction even from images where corner detection is difficult. be able to.
(Claim 1) When the object to be inspected is a component mounted on a mounting board and having a high X-ray transmittance, it is difficult to obtain a binary image of the object to be inspected. The low point of is set as the feature point. From the binary image of the characteristic points, the barycentric coordinates of the component and the inclination of the center line can be detected. Since the barycentric coordinates of the component and the inclination of the center line can be detected from the feature points where a binary image can be easily obtained, it is possible to detect the amount of positional deviation even from an unclear image that is difficult to binarize. (Claim 2)

【0012】又,本願の第2の発明によれば,部品が実
装されていない基板のX線透過画像から基板上に形成さ
れた半田付けランドの二値画像を求め,各半田付けラン
ドの中心座標を求め,各中心座標から半田付けランドに
取り付けられる部品の重心座標を算出する。上記各中心
座標から中心線の傾きを算出して,重心座標を部品の取
り付け位置,中心線の傾きを部品の取り付け角度として
検出し,これを基準値とする。検査対象とする実装基板
の元の基板から基準値を検出するので,実装位置の良否
判定を正確に実施することができる。(請求項3)
According to the second invention of the present application, the binary image of the soldering land formed on the substrate is obtained from the X-ray transmission image of the substrate on which no component is mounted, and the center of each soldering land is obtained. The coordinates are obtained, and the barycentric coordinates of the component attached to the soldering land are calculated from each center coordinate. The inclination of the center line is calculated from the respective center coordinates, the barycentric coordinate is detected as the mounting position of the component, and the inclination of the center line is detected as the mounting angle of the component, and this is used as the reference value. Since the reference value is detected from the original board of the mounting board to be inspected, the quality of the mounting position can be accurately determined. (Claim 3)

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る検査手順を示すフ
ローチャート。
FIG. 1 is a flowchart showing an inspection procedure according to a first embodiment of the present invention.

【図2】 実施例に係るX線検査装置の構成を示すブロ
ック図。
FIG. 2 is a block diagram showing a configuration of an X-ray inspection apparatus according to an embodiment.

【図3】 第2実施例に係る検査手順を示すフローチャ
ート。
FIG. 3 is a flowchart showing an inspection procedure according to the second embodiment.

【図4】 第2実施例に係る特徴点となる半田付け部の
側面図。
FIG. 4 is a side view of a soldering portion which is a characteristic point according to the second embodiment.

【図5】 第2実施例に係る特徴点の分布を示す模式
図。
FIG. 5 is a schematic diagram showing distribution of feature points according to the second embodiment.

【図6】 第3実施例に係る教示データ作成装置の構成
を示すブロック図。
FIG. 6 is a block diagram showing the configuration of a teaching data creation device according to a third embodiment.

【図7】 第3実施例に係る検査手順を示すフローチャ
ート。
FIG. 7 is a flowchart showing an inspection procedure according to the third embodiment.

【符号の説明】[Explanation of symbols]

1…X線検査装置 2…X線源 3…実装基板 4…イメージングプレート 5…計算機 11…特徴点 12…中心線 13…基板 19…教示データ作成装置 DESCRIPTION OF SYMBOLS 1 ... X-ray inspection apparatus 2 ... X-ray source 3 ... Mounting board 4 ... Imaging plate 5 ... Calculator 11 ... Characteristic point 12 ... Center line 13 ... Board 19 ... Teaching data creation apparatus

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検査物にX線を照射して,該被検査物
を透過したX線透過画像から被検査物の位置の良否を検
査するX線検査方法において,上記X線透過画像を二値
化して被検査物の二値画像を求め,上記二値画像から被
検査物の重心座標を算出し,上記重心座標から被検査物
の中心線を算出して,その傾きを求め,上記重心座標及
び中心線の傾きを設定された基準値と比較して,その差
から被検査物の位置の良否を判定することを特徴とする
X線検査方法。
1. An X-ray inspection method for irradiating an object to be inspected with X-rays and inspecting the quality of the position of the object to be inspected from the X-ray image transmitted through the object to be inspected. The binary image of the inspection object is obtained by binarization, the barycentric coordinates of the inspection object are calculated from the binary image, the center line of the inspection object is calculated from the barycentric coordinates, and the inclination thereof is calculated. An X-ray inspection method characterized in that the barycentric coordinates and the inclination of the center line are compared with a set reference value, and the quality of the position of the inspection object is judged from the difference.
【請求項2】 プリント基板に半田付けにより部品が実
装されてなる実装基板にX線を照射して,実装基板を透
過したX線の透過画像から上記部品の実装位置の良否を
検査するX線検査方法において,上記部品に対称的に配
置された複数の特徴点となる部位が検出できる閾値によ
り上記X線透過画像を二値化して二値画像を求め,上記
二値画像から上記各特徴点の中心座標を求め,上記各中
心座標から部品の重心座標を算出し,上記重心座標から
部品の中心線を算出して,その傾きを求め,上記重心座
標及び中心線の傾きを設定された基準値と比較して,そ
の差から部品の実装位置の良否を判定することを特徴と
するX線検査方法。
2. An X-ray for inspecting the mounting position of the component from a transmission image of the X-ray transmitted through the mounting substrate by irradiating the mounting substrate on which the component is mounted on the printed circuit board by soldering. In the inspection method, a binary image is obtained by binarizing the X-ray transmission image with a threshold value capable of detecting a plurality of feature points symmetrically arranged on the component, and each of the feature points is obtained from the binary image. The center coordinates of the part are calculated, the barycentric coordinates of the part are calculated from the respective center coordinates, the centerline of the part is calculated from the barycentric coordinates, the inclination thereof is calculated, and the barycenter coordinates and the inclination of the centerline are set as a reference. An X-ray inspection method characterized by comparing the value with a value and judging the quality of the mounting position of the component from the difference.
【請求項3】 プリント基板に部品が実装される前の基
板にX線を照射して,該基板を透過したX線の透過画像
から上記部品の実装位置を検出するX線検査方法におい
て,上記X線透過画像を二値化して基板上に形成された
半田付けランドの二値画像を求め,上記二値画像から各
半田付けランドの中心座標を求め,部品の配置データを
もとに上記各中心座標から部品の重心座標を算出し,上
記重心座標から部品の中心線を算出して,その傾きを求
め,上記重心座標を部品の取り付け位置,上記中心線の
傾きを部品の取り付け角度として部品の実装位置を検出
することを特徴とするX線検査方法。
3. An X-ray inspection method for irradiating a board before mounting a component on a printed board with X-rays and detecting a mounting position of the component from a transmission image of the X-rays transmitted through the board. The X-ray transmission image is binarized to obtain the binary image of the soldering land formed on the board, the center coordinates of each soldering land are obtained from the binary image, and the above-mentioned each is obtained based on the component arrangement data. The center of gravity of the part is calculated from the center coordinates, the center line of the part is calculated from the center of gravity coordinates, and the inclination is obtained. The center of gravity coordinates are the mounting position of the part, and the inclination of the center line is the mounting angle of the part. An X-ray inspection method comprising detecting the mounting position of the.
【請求項4】 上記中心線が,二値画像の各画素との距
離の二乗和が最小となる直線を検出することにより算出
される請求項1,2,3記載のX線検査方法。
4. The X-ray inspection method according to claim 1, 2, or 3, wherein the center line is calculated by detecting a straight line having a minimum sum of squares of distances from pixels of a binary image.
JP6186006A 1994-08-08 1994-08-08 X-ray inspecting method Pending JPH0851131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186006A JPH0851131A (en) 1994-08-08 1994-08-08 X-ray inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186006A JPH0851131A (en) 1994-08-08 1994-08-08 X-ray inspecting method

Publications (1)

Publication Number Publication Date
JPH0851131A true JPH0851131A (en) 1996-02-20

Family

ID=16180725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186006A Pending JPH0851131A (en) 1994-08-08 1994-08-08 X-ray inspecting method

Country Status (1)

Country Link
JP (1) JPH0851131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020181A (en) * 2014-05-26 2014-09-03 中国电子科技集团公司第三十八研究所 Method for detecting integrated circuit material by nondestructive detecting apparatus
WO2016139756A1 (en) * 2015-03-03 2016-09-09 株式会社ニコン Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
JP2018141737A (en) * 2017-02-28 2018-09-13 アンリツインフィビス株式会社 X-ray inspection device and x-ray inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020181A (en) * 2014-05-26 2014-09-03 中国电子科技集团公司第三十八研究所 Method for detecting integrated circuit material by nondestructive detecting apparatus
WO2016139756A1 (en) * 2015-03-03 2016-09-09 株式会社ニコン Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
CN107407646A (en) * 2015-03-03 2017-11-28 株式会社尼康 Measurement processing device, X ray checking device, measurement processing method, the manufacture method of measurement processing program and works
JPWO2016139756A1 (en) * 2015-03-03 2017-12-28 株式会社ニコン Measurement processing apparatus, X-ray inspection apparatus, measurement processing method, measurement processing program, and structure manufacturing method
US20180120243A1 (en) 2015-03-03 2018-05-03 Nikon Corporation Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
US10481106B2 (en) 2015-03-03 2019-11-19 Nikon Corporation Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
US10809209B2 (en) 2015-03-03 2020-10-20 Nikon Corporation Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
JP2018141737A (en) * 2017-02-28 2018-09-13 アンリツインフィビス株式会社 X-ray inspection device and x-ray inspection method

Similar Documents

Publication Publication Date Title
US6496270B1 (en) Method and system for automatically generating reference height data for use in a three-dimensional inspection system
JP3092809B2 (en) Inspection method and inspection apparatus having automatic creation function of inspection program data
US6526165B1 (en) Methods and apparatuses for refining a geometric description of an object having a plurality of extensions
JPH0851131A (en) X-ray inspecting method
CN110199173B (en) Position deviation amount acquisition device, inspection device, position deviation amount acquisition method, and inspection method
JP3049488B2 (en) Pattern inspection method and pattern inspection device
JP3579247B2 (en) Pattern alignment method
JP3857668B2 (en) Pattern alignment method
JP2005030793A (en) Substrate inspection device and inspection method
CN116133233B (en) Printed circuit typesetting uniformity degree analysis system
JP3447538B2 (en) Pattern inspection method
JPS62233746A (en) Checker for chip mounted board
JP2658594B2 (en) Surface mount IC lead displacement inspection equipment
JP2624322B2 (en) Method for detecting the position of a feature of an object
JPH02150704A (en) Object inspecting device
JP4087973B2 (en) Inter-component inspection method and apparatus for mounted components
JPH02165004A (en) Object testing apparatus
JP3480642B2 (en) Pattern inspection method
JP3480643B2 (en) Pattern inspection method
JP3511456B2 (en) Pattern inspection method
JPH07104136B2 (en) Terminal tilt detection method
JPH10141930A (en) Method and device for inspecting pattern
TW202215038A (en) Inspection of circuit boards for unauthorized modifications
KR920004326B1 (en) Auto detecting system of p.c.b. using camera
JPH02105262A (en) Method for deciding optimum position correction area in inspection of wiring pattern