JPH08502645A - 表面レセプター及び表面異種タンパク質を同時発現するファージミド - Google Patents

表面レセプター及び表面異種タンパク質を同時発現するファージミド

Info

Publication number
JPH08502645A
JPH08502645A JP6507492A JP50749294A JPH08502645A JP H08502645 A JPH08502645 A JP H08502645A JP 6507492 A JP6507492 A JP 6507492A JP 50749294 A JP50749294 A JP 50749294A JP H08502645 A JPH08502645 A JP H08502645A
Authority
JP
Japan
Prior art keywords
polypeptide
phage
filamentous phage
membrane anchor
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6507492A
Other languages
English (en)
Inventor
ジェームズ ポール ザ セカンド ライト
リチャード エイ ラーナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scripps Research Institute
Original Assignee
Scripps Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scripps Research Institute filed Critical Scripps Research Institute
Publication of JPH08502645A publication Critical patent/JPH08502645A/ja
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】 第一繊維状ファージ外殻タンパク質膜アンカーに融合された異種ポリペプチドを含むマトリックスと、第一レセプターポリペプチド及び第二レセプターポリペプチドを含むヘテロダイマーレセプター(そのレセプターポリペプチドの一つは第二繊維状ファージ外殻タンパク質膜アンカーに融合されている)とを含む繊維状ファージが記載されている。また、つなぎ止められたヘテロダイマーレセプターと、異種ポリペプチドのダイマー(この場合、そのダイマーの第一サブユニットは外殼タンパク質膜アンカーに融合されており、またダイマーの第二サブユニットは可溶性ヘテロマーレセプターである)とを発現する繊維状ファージが記載されている。

Description

【発明の詳細な説明】 表面レセプター及び表面異種タンパク質を同時発現するファージミド技術分野 本発明は、繊維状ファージ粒子の表面でヘテロダイマーレセプター及び第二ダ イマー異種指示薬融合ポリペプチドを発現できるDNA分子のライブラリーを生産 するためのクローニングベクター及びその方法に関する。背景 繊維状バクテリオファージはバクテリアを感染する関連ウイルスの群である。 それらはバクテリオファージゲノムを形成するデオキシリボ核酸(DNA)を囲う 細長いカプセルを含む長くかつ細い粒子であるので、それらは繊維状と称される 。F線毛繊維状バクテリオファージ(Ffファージ)は、F線毛の先端に特異的に 吸着することによりグラム陰性バクテリアのみを感染し、fd、fl及びM13を含む 。 Ffファージの成熟カプセルは5種のファージによりコードされた遺伝子産物: カプセルの本体を形成する遺伝子VIIIの主要外殻タンパク質産物であるcpVIIIと 、4種の非主要外殻タンパク質、即ち、カプセルの一端にあるcpIII及びcpIV並 びにカプセルの他端にあるcpVII及びcpIXのコートを含む。カプセルの長さは、 特徴的な繊維構造を形成する規則的ならせんアレイのcpVIIIの2500〜3000のコピ ーにより形成される。非主要外殻タンパク質の約5のコピーの夫々がカプセルの 端部に存在する。遺伝子IIIによりコードされたタンパク質(cpIII)は典型的に はカプセルの一端で4〜6のコピー中に存在し、そして感染の初期にそのバクテ リア宿主へのファージの結合のレセプターとして利用できる。Ffファージ構造の 詳細な総説につき、Raschedら,Microbiol.Rev.,50:401-427(1986);及びM odelら,“バクテリオファージ、2巻”,R.Calendar編集,Plenum Press,375- 456頁(1988)を参照のこと。 Ffファージ粒子のアセンブリーは高度に複雑な力学を伴う。ファージ粒子は宿 主細胞内で集合されない。むしろ、それらは宿主細胞膜中のウイルスゲノムの排 出中に集合される。排出の前に、主要外殻タンパク質cpVIII及び非主要外殻タン パク質cpIIIが合成され、宿主細胞膜に輸送される。cpVIII及びcpIIIの両方が成 熟粒子へのそれらのとり込みの前に宿主細胞膜につなぎ止められる。加えて、ウ イルスゲノムが生産され、cpVタンパク質で被覆される。排出プロセス中に、cpv 被覆ゲノムDNAがcpV外殼を取り去られ、同時に成熟外殼タンパク質で再度被覆さ れる。膜から粒子へのこれらのタンパク質の移動を調節するアセンブリー機構は 現在知られていない。 cpIIIタンパク質及びcpVIIIタンパク質の両方が、成熟ファージ粒子のアセン ブリーのシグナルを与える二つのドメインを含む。第一ドメインは、新たに合成 されたタンパク質を宿主細胞膜に誘導する分泌シグナルである。分泌シグナルは ポリペプチドのアミノ末端に配置され、そして少なくとも細胞膜に対してポリペ プチドを標的とする。第二ドメインは、宿主細胞膜との会合及びアセンブリー中 のファージ粒子との会合のシグナルを与える膜アンカードメインである。cpVIII 及びcpIIIの両方に関するこの第二シグナルは、膜を横切って伸びるために少な くとも疎水性領域を含む。 cpVIIIはモデル膜タンパク質として徹底的に研究されていた。何となれば、そ れは外部に向いた酸性アミノ末端と膜の100の内部に向いた塩基性カルボキシ末 端とによる非対称性配向で細胞膜の如き脂質二層に統合し得るからである。成熟 タンパク質は長さが約50のアミノ酸残基であり、そのうちの11の残基がカルボキ シ末端を与え、19の残基が疎水性トランスメンブラン領域を与え、また残りの残 基がアミノ末端を構成する。かなりの研究がcpVIIIの分泌シグナル領域につきな されて、膜タンパク質合成及び膜へのターゲッティングの研究を進展させた。し かしながら、ファージ粒子のアセンブリーを可能にするcpVIII膜アンカー領域の 構造において許される変化については殆ど知られていない。 cpIIIの配列の操作は、膜アンカー機能を通常担当する疎水性アミノ酸のC末 端の23のアミノ酸残基伸長が種々の方法で変化でき、かつ膜と会合する能力を保 持し得ることを示す。しかしながら、これらのアンカー修飾cpIIIタンパク質は 遺伝子III変異体を遺伝的に相補するそれらの能力を失い、これは機能的アセン ブリーに関する膜アンカーの要件が解明されていなかったことを示す。 Ffファージ系発現ベクターが記載されており、この場合、全cpIIIアミノ酸残 基配列が短いポリペプチド“エピトープ”[Parmelyら,Gene,73:305-318(19 88);及びCwirlaら,Proc.Natl.Acad.Sci.,USA,87:6378-6382(1990)] または一本鎖抗体ドメインを形成するアミノ酸残基McCaffertyら,Science,34 8:552-554(1990)の挿入により修飾された。これらのハイブリッドタンパク質 が合成され、そして正常なcpIIIが通常見られる密度である粒子当たり約5のコ ピーの量でファージ粒子に集合された。 cpVIII中のモデルポリペプチド[Il’ichevら,Molekulyarnaya Biologiya,2 4:530-535(1990)]、及び成熟cpVIIIに融合された機能性ウシ膵臓トリプシン インヒビター(BPTI)[Marklandら,Gene,109:13-19(1991)]を含む、多数 のその他の融合ポリペプチドが外殼タンパク質膜アンカーへの融合により繊維状 ファージ粒子の表面で発現された。その他に、酵素的機能性アルカリホスファタ ーゼが、cpIIIとの融合タンパク質として繊維状ファージ粒子の表面で発現され た(McC-affertyら,Protein Eng.,4:955-961 (1991))。また、二官能分子 を発現するための遺伝子が構築され、この場合、一本鎖抗原結合タンパク質がバ クテリアのアルカリホスファターゼタンパク質に融合され、このタンパク質は標 的抗原に付着された場合に結合された一本鎖結合タンパク質の検出を可能にする 。Welsら,Bio/Tec-hnology,10:1128-1132(1992)を参照のこと。 最近、表面組み込み技術が、抗体分子の如きヘテロダイマー組換え遺伝子産物 を組換え遺伝子を含む繊維状ファージの表面で発現することにつき記載されてい た。その技術は繊維状ファージ複製のアセンブリー段階中に遺伝子産物と遺伝子 を結合するための手段として繊維状ファージ外殻タンパク質膜アンカードメイン を使用し、そして結合性ライブラリーからの抗体のクローニング及び発現に使用 されていた(Kangら,Proc.Natl.Acad.Sci.,USA.,88:4363-4366(1991) )。 抗体の結合性ライブラリーは、cpVIII膜アンカー[Kangら,上記文献,(1991 )]及びcpIII膜アンカー[Barbasら,Proc.Natl.Acad.Sci.,USA.,88:7978 -7982(1991)]の両方を使用して産生された。B型肝炎ウイルス表面抗原と免 疫反応するヒト結合性抗体ライブラリーが、その技術を使用して産生された(Ze bedeeら,Proc.Natl.Acad.Sci.,USA.,89:3175-3179(1992))。繊維状フ ァージ系結合性 抗体ライブラリーの多様性が、H鎖遺伝子及びL鎖遺伝子のシャッフリング(sh -uffling)により[Kangら,Proc.Natl.Acad.Sci.,USA.,88:11120-11123 (1991)]、そのライブラリーのクローン化されたH鎖遺伝子のCDR3領域を変更 することにより[Barbasら,Proc.Natl.Acad.Sci.,USA.,89:4457-4461(1 992)]、またエラー−プローンポリメラーゼ連鎖反応(PCR)によりランダム突 然変異をそのライブラリーに導入することにより[Gramら,Proc.Natl.Acad. Sci.,USA.,89:3576-3580(1992)]増大された。その他に、一本鎖Fvフラグ メントが、Marksら,J.Mol.Biol.,222:581-597(1991)により記載されたよ うにしてファージの表面で露出された。 これらの技術は106〜109の異なる員を含む大きなライブラリーの操作を伴うの で、所望の結合特異性につきライブラリーをスクリーニングするための改良され た方法に対する要望が存続している。 典型的なスクリーニング操作は、ファージ粒子の表面露出抗体に対し誘導され た二次抗体の使用を伴う。二次抗体の使用は、スクリーニング操作において非特 異的人工産物を導入でき、それによりスクリーニング操作の感度を変えて所望の 免疫特異性の発現抗体を有するファージ粒子を同定し得る。発明の簡単な説明 異なる異種ポリペプチドがcpIIIまたはcpVIII外殻タンパク質膜アンカーのい ずれかを使用して単一の繊維状ファージ粒子の表面に操作し得ることが、今発見 された。こうして、ヘテロダイマーレセプターが、ファージ粒子の表面で、指示 薬ポリペプチドの如き第二の異種ポリペプチドと一緒に、ファージ粒子の表面で 発現し得る。 第二の異種ポリペプチドは、本発明の膜アンカーを含む融合ポリペプチドの形 態で存在する。好ましい実施態様は、2種の異種ポリペプチドサブユニットを有 するダイマーである。異種ポリペプチドの好ましいダイマーは、第一の繊維状フ ァージ外殻タンパク質膜アンカーに融合された異種ポリペプチドを含むダイマー の第一サブユニットと、可溶性のつなぎ止められていないポリペプチドである第 二サブユニットとを有するダイマーである。つなぎ止められた異種ポリペプチド は外殻タンパク質膜アンカーに直接融合される。更に好ましい実施態様は、異種 ポリペプチドを外殻タンパク質膜アンカーに融合するリンカーポリペプチドの存 在である。 第二指示薬融合ポリペプチドは、ポリペプチドが検出可能なシグナルを与える 場合のように、ファージ粒子に指示手段を与えるのに使用し得る。ファージ粒子 における指示手段の存在は、二次抗体の使用を必要としないで、ファージライブ ラリーをスクリーニングする系を与える。 こうして、本発明は、a)第一の繊維状ファージ外殻タンパク質膜アンカーに 融合された異種ポリペプチドと、b)第一レセプターポリペプチド及び第二レセ プターポリペプチドを含むヘテロダイマーレセプター(前記レセプターポリペプ チドの一つは第二の繊維状ファージ外殻タンパク質膜アンカーに融合されている )とを含む繊維状ファージを意図している。好ましい実施態様において、ファー ジは第一の繊維状ファージ外殻タンパク質膜アンカーに融合された異種ポリペプ チドを含むダイマーの第一サブユニットと、可溶性であるダイマーの第二サブユ ニットとを有するダイマーを更に含む。好ましい第一のファージ外殻タンパク質 はcpVIIIであり、また第二のファージ外殻タンパク質はcpIIIである。好ましい 異種ポリペプチドはリンカーポリペプチドにより外殻タンパク質膜アンカーに融 合される。好ましいリンカーペプチドは配列番号91のアミノ酸残基配列を有する 。好ましい実施態様において、ダイマーの第一サブユニット及び第二サブユニッ トは両方とも同じ指示薬ポリペプチド、好ましくはアルカリ性ホスファターゼで ある。 また、本発明の繊維状ファージ粒子のライブラリー、並びに本発明のファージ 粒子の生産方法及び使用方法が記載される。図面の簡単な説明 この開示の一部を形成する図面において、 図1はλHc2発現ベクターを生産するためにλZapに挿入された二本鎖合成 DNAの配列を示す。二本鎖合成DNAインサートの調製は実施例1a(ii)に記載され ている。VHコードDNA同族体を発現するためにこのベクターに必要とされる種々 の特徴は、シャイン−ダルガーノリボソーム結合部位、Mouvaら,J.Biol.Chem .,255:27,1980により記載されているような発現タンパク質を周辺質に誘導す るリーダー配列、及びVH同族体を発現ベクターに操作により結合するのに使用 された種々の制限酵素部位を含む。また、VH発現ベクター配列は、可変部H鎖 (VH主鎖)中に典型的に見られるアミノ酸をコードする短い核酸配列を含む。 このVH主鎖はXho Iクローニング部位及びSpe Iクローニング部位に操作により 結合されているVH DNA同族体としての適当な読みの上流及びその中にある。二 本鎖合成DNAインサートの上部ストランド及び下部ストランドの配列が夫々配列 番号1及び配列番号2にリストされる。合成DNAインサートは制限酵素Not1及び XhoIで消化されたλZap IIに方向性結合されてλHc2発現ベクターを形成する。 図2はバクテリアの発現ベクターλHc2 (VH発現ベクター)の主要な特徴を 示す。図3からの合成DNA配列が、λZapIIからのLac Zプロモーターと一緒に上 部に示される。λZapII中のインサートの配向が示される。VH DNA同族体がXho Iクローニング部位及びSpe I クローニング部位に挿入される。転写による読み が、クローニング部位の3’に丁度配置されるデカペプチドエピトープ(tag) を生じる。 図3は、λLc2発現ベクターを生産するためにλZapに挿入された二本鎖合成DN Aの配列を示す。VLコードDNA同族体を発現するためにこのベクターに必要とさ れる種々の特徴が、図1に記載される。VLコードDNA同族体がSac制限部位及びX ho I制限部位でLc2配列に操作により結合される。二本鎖合成DNAインサートの上 部ストランド及び下部ストランドの配列が夫々配列番号3及び配列番号4にリス トされる。合成DNAインサートは制限酵素Sac I及びNot Iで消化されたλZap II に方向性結合されてλLc2発現ベクターを形成する。 図4はバクテリアの発現ベクターλLc2(VL発現ベクター)の主要な特徴を示 す。図3からの合成DNA配列が、λZap IIからのLac Zプロモーターと一緒に上部 に示される。λZap II中のインサートの配向が示される。VLDNA同族体がSac I クローニング部位及びXho Iクローニング部位に挿入される。 図5はファージミド発現ベクターの形態のジシストロニック(dicistronic) 発現ベクター、pCombを示す。pCombを生産するために、ファージミドが最初に製 造業者の指示(カリフォルニア州、ラ・ジョラにあるストラタゲン)による生体 内切除プロトコルを使用して発現ベクター、λHc2及びλLc2から切除された。pC omb発現ベクターは、VHコードDNA同族体またはVLコードDNA同族体を含まない λHc2及びλLc2から調製される。生体内切除プロトコルはクローン化インサート をλHc2ベクター及びλLc2ベクターからファージミドベクターに移動した。得ら れるファージミドは、抗体フラグメントクローニング及び発現のために親ベクタ ーと同じヌクレオチド配列を含んでいた。Hc2ファージミド発現ベクター及びLc2 ファージミド発現ベクターが別々にSca I及びEcoR Iで制限消化された。直線状 にされたファージミドがSca I及びEcoR I付着末端を介して結合されてジシスト ロニック(結合性)ベクター、pCombを形成した。 図6は、pCBAK8-2bファージミドベクターの組成、Fabアセンブリーの経路及び ファージ外殻中のとり込みの略図を示す。ベクターは、Fd-cpVIII融合ポリぺプ チドをコードするヌクレオチド残基及びカッパー鎖の他にクロラムフェニコール アセチルトランスフェラーゼ(CAT)マーカー遺伝子を有する。複製のflファー ジ開始点は一本鎖ファージミドの発生を促進する。Fd-cpVIII融合(VH、CH1、 cpVIII)及びL鎖(VL、CL)をコードするジシストロニックメッセージの発現 はH鎖及びL鎖の形成をもたらす。夫々の鎖はpelB標的配列により細胞周辺腔に 送出され、続いてこれが開裂される。H鎖はcpVIII融合により膜中につなぎ止め られ、一方、L鎖は周辺質に分泌される。L鎖の存在下のH鎖は集合してFab分 子を形成する。FabはcpVIIIを介してファージ粒子にとり込まれる(黒い点)。 図7は実施例6及び7に記載されたような本発明のPhoPhabの略図である。ヘ テロダイマーレセプターFabはファージのテールで外殻タンパク質IIIにつなぎ止 められ、一方、アルカリ性ホスファターゼ指示薬タンパク質はファージの長さに 沿って外殻タンパク質VIIIにつなぎ止められる。 図8は、下記の操作により結合された要素:tacプロモーター;Eag制限クロー ニング部位;リボソーム結合部位(RBS);pelBリーダー配列、続いて5アミノ 酸残基リンカーをコードするヌクレオチド配列;Xho I制限クローニング部位; 成 熟アルカリ性ホスファターゼタンパク質(PhoA)をコードするヌクレオチド配列 (そのアミノ末端アミノ酸及びカルボキシ末端アミノ酸が示される);Spe I制 限クローニング部位;アンカーまたは外殻タンパク質VIII(gVIII)、続いて終 止コドン並びにEcoR I及びXba制限クローニング部位を有する実施例5aに記載さ れたようにして調製されたpPho8cat発現ベクターの略図である。 図9は、実施例5aに記載されたようにして調製された6346塩基対pPho8cat発現 ベクターの略図である。アルカリ性ホスファターゼ−cPVIII融合タンパク質の発 現がtacプロモーターにより誘導される。アルカリ性ホスファターゼをコードす るヌクレオチドの領域がPhoとして示される。外殻タンパク質VIIIをコードする ヌクレオチド配列はPho部位に対し3’に配置され、gVIIIとして示される。その 構築物は、クロラムフェニコール耐性を与えるためのcat遺伝子を含む。p15A開 始点及びfl oriの両方がそのベクター中に存在する。種々のエンドヌクレアーゼ クローニング部位が示される。 図10は、pPho8Bが実施例5aに記載されたようにして誘導された親pPho8catベク ター中で示されるような複製のfl開始点(fl ori)を欠いている5127塩基対pPho 8B発現ベクターの略図である。その構築物の残部は図9に記載されたようなその 他の要素を有する。 図11は、実施例5bに記載されたようにして調製された60ヌクレオチドリンカー 配列を含む6406塩基対pPhoL8発現ベクターの略図である。その構築物の残部は図 9に記載されたようなその他の要素を有する。 図12は、実施例7に記載されたようにして行われたELISAアッセイの結果を示 す棒ブラフである。検出可能なELISAシグナルが、ウェルを被覆するのに使用さ れたX軸の抗原に対してY軸にプロットされた405 nmにおける吸光度として示さ れる。下記の抗原の略号が定義される:BSA=ウシ血清アルブミン; FL-BSA=フル オレセイン-BSA接合体; PPC-BSA=ホスホンアミデートハプテン接合体; Prol-B SA=異なるホスホンアミデートハプテン接合体;かつTet-tox=破傷風トキソイド 。抗原と免疫反応するのに使用されたPhoPhabが差し込みボックス中に示される 。下記の略号が定義される:F1=フルオレセイン; Pro及びPPC=ホスホンアミデ ートハプテン; Tet=破傷風トキソイド; Tet P313mono=破傷風トキソイドライ ブラリ ーから単離されたクローン; Tet no pho=アルカリ性ホスファターゼ−cpVIII接 合体を含まないP313 Fab-cpVIIIを露出するファージ; mono=モノクローナルか つpoly=Fab産生pComb3クローンのポリクローナル混合物。 図13はファージ外殼タンパク質へのバクテリアのアルカリ性ホスファターゼ( BAP)ダイマーの付着を示す。図13Aは、ダイマーの夫々の半分が外殼タンパク質 8(g8p)に直接融合されることを示す。図13Bは、ダイマーの夫々の半分が可撓 性リンカーによりg8pに付着されることを示す。図13Cは、ダイマーの一方の半分 がg8pに融合され、一方、他方の半分が遊離していることを示す。また、図13dは 、ダイマーの一方の半分がリンカーによりg8pに付着され、一方、他方の半分が 遊離していることを示す。 図14は、ファージに関するBAPのとり込み試験に使用された発現ベクターを示 す。図14Aは、BAP-g8pを生産し、複製のp15A開始点、及びクロラムフェニコール 耐性マーカーを有するpPho8Bを示す。図14Bは、(EGGGS)4(配列番号91)リン カーをコードする配列の挿入以外はpPho8Bと同一であるpPhoL8Bを示す。また、 図14Cは、遊離BAPを生産し、かつ複製のcolEl開始点、及びb-ラクタマーゼマー カーを有するベクターpPhoCを示す。略号:tac、tacプロモーター;lac、lacプ ロモーター; PelB、PelBリーダー配列; rbs、リボソーム結合部位; bla、b- ラクタマーゼ遺伝子; PhoA、成熟E.coli BAPをコードする領域; gVIII、成熟 ファージ外殼タンパク質g8pをコードする領域。発明の詳細な説明 A.定義 アミノ酸残基:ポリペプチドのペプチド結合におけるポリペプチドの化学消化 (加水分解)後に形成されたアミノ酸。本明細書に記載されたアミノ酸残基は“ L”異性体であることが好ましい。しかしながら、“D”異性体の残基は、所望 の機能的性質がポリペプチドにより保持されることを条件として、L−アミノ酸 残基を置換し得る。NH2はポリペプチドのアミノ末端に存在する遊離アミノ基を 表す。COOHはポリペプチドのカルボキシ末端に存在する遊離カルボキシ基を表 す。標準のポリペプチド命名法(J.Biol.Chem.,243:3552-59(1969)により 記載され、かつ37 C.F.R.1.822(b)(2)で採用された)に従って、アミノ 酸残基の略号が下記の対応表に示される。 対応表 本明細書で式により表される全てのアミノ酸残基配列はアミノ末端からカルボ キシ末端への通常の方向の左から右への配向を有することが注目されるべきであ る。加えて、“アミノ酸残基”という用語は、対応表にリストされたアミノ酸並 びに本明細書中に参考として含まれる37 CFR 1.822(b)(4)にリストされたよ うな修飾アミノ酸及び格別のアミノ酸を含むものと広く定義される。更に、アミ ノ酸残基配列の最初または末端にあるダッシュは一つ以上のアミノ酸残基の更に 別の配列に結合されたペプチドまたはNH2もしくはアセチルの如きアミノ末端基 あるいはCOOHの如きカルボキシ末端基への共有結合を示すことが注目されるべき である。 組換えDNA(rDNA)分子: 二つのDNAセグメントを操作により結合することに より生産されたDNA分子。こうして、組換えDNA分子は、自然に通常一緒に見られ ない少なくとも二つのヌクレオチド配列を含むハイブリッドDNA分子である。共 通の生物起源を有しない、即ち、進化的に異なるrDNAは“異種”と言われる。 ベクター: 細胞中で自律複製できるrDNA分子であって、これに、DNAセグメ ント、例えば、遺伝子またはポリヌクレオチドが付着セグメントの複製をもたら すように操作により結合し得るrDNA分子。一種以上のポリペプチドをコードする 遺伝子の発現を誘導し得るベクターは、本明細書中で“発現ベクター”と称され る。特に重要なベクターは、逆転写酵素を使用して生産されたmRNAからのcDNA( 相補DNA)のクローニングを可能にする。 レセプター: レセプターは、他の分子に特異的(非ランダム)に結合し得る 分子、例えば、タンパク質、糖タンパク質、等である。 抗体: 抗体という用語は、その種々の文法上の形態で、本明細書中で免疫グ ロブリン分子及び免疫グロブリン分子の免疫活性部分、即ち、抗体結合部位また はパラトープを含む分子を表すのに使用される。例示の抗体分子は無傷免疫グロ ブリン分子、実質的に無傷の免疫グロブリン分子並びにFab、Fab’、F(ab’)2 及びF(v)のような当業界で知られている部分を含む免疫グロブリン分子の部分 である。 抗体結合部位: 抗体結合部位は、抗原を特異的に結合する(免疫反応する) H鎖及びL鎖の可変部及び超可変部を含む抗体分子の構造部分である。免疫反応 という用語は、その種々の形態で、抗原決定基を含む分子と、抗体結合部位、例 えば、全抗体分子またはその一部を含む分子の間の特異的結合を意味する。 融合ポリペプチド: 少なくとも二つのポリペプチドと、二つのポリペプチド を一つの連続ポリペプチドに操作により結合する結合配列とを含むポリペプチド 。融合ポリペプチド中に結合された二つのポリペプチドは典型的には二つの独立 の源に由来し、それ故、融合ポリペプチドは自然に通常結合されて存在しない二 つの結合されたポリペプチドを含む。 上流: DNA転写の方向と逆の方向にあり、それ故、非コードストランドでは 5’から3’へ進み、またmRNAでは3’から5’へ進む。 下流: 配列転写または読み取りの方向にDNA配列に更に沿って、即ち、DNAの 非コードストランドに沿って3’から5’への方向またはRNA転写に沿って5’ から3’の方向に移動する。 シストロン: アミノ酸残基配列をコードし、かつ上流及び下流のDNA発現調 節要素を含むDNA分子中のヌクレオチドの配列。 リーダーポリペプチド: ポリペプチドのアミノ末端にあるアミノ酸配列の短 い長さ部分(これはポリペプチドを内部の膜に運び、または誘導し、こうして細 胞周辺腔への、そしておそらくそれを越えてのその最終の分泌を確実にする)。 リーダー配列ペプチドは、普通、ポリペプチドが活性になる前に除去される。 読み取り枠: 翻訳に使用される連続のヌクレオチドトリプレット(コドン) の特別な配列。読み取り枠は翻訳開始コドンの位置に依存する。 ダイマー: 2分子のモノマーから形成されたポリマー。また、二つの同じサ ブユニットからなる分子であるが、時々、それは二つの異なるサブユニットから なる分子上の(supramolecular)構造からなる。 B.繊維状ファージ 本発明は、第一ポリペプチドまたは第二ポリペプチドの少なくとも一つに融合 されている繊維状ファージ膜アンカードメインを介してマトリックスに表面に組 み込まれた第一ポリペプチド及び第二ポリペプチドを含むヘテロダイマーレセプ ターを含むタンパク質のマトリックスを含む繊維状ファージを意図している。そ のマトリックスは、ヘテロダイマーレセプターを形成し得る第一ポリペプチド及 び第二ポリペプチドをコードするゲノムを封入していることが好ましい。ヘテロ ダイマーレセプターはリガンドを結合する能力を有し、それ故、リガンド結合ヘ テロダイマーレセプターと称される。 加えて、ファージは繊維状ファージ膜アンカードメイン(これは繊維状ファー ジと異種のポリペプチド、即ち、異種融合タンパク質である)を介してマトリッ クスに表面に組み込まれた第二融合タンパク質を更に含む。こうして、一実施態 様において、異種ポリペプチドはアンカードメイン外殻タンパク質によりファー ジ膜に付着される。好ましい実施態様において、異種融合タンパク質は第一ポリ ペプチドサブユニット及び第二ポリペプチドサブユニットを含むダイマーの構造 中に用意され、その結果、第一異種ポリペプチドサブユニットが第一繊維状ファ ージ外殻タンパク質膜アンカーに融合され、また第二異種ポリペプチドサブユニ ットが第一サブユニットに付着され、それにより、異種ポリペプチドのダイマー を形成する。その目的のために、第二異種ポリペプチドは、アンカータンパク質 との融合タンパク質ではないサブユニットモノマーの形態である。こうして、第 二異種ポリペプチドサブユニットは可溶性遊離モノマーである。 換言すれば、本発明の繊維状ファージは、(1)第一繊維状ファージ外殻タン パク質膜アンカーに融合された異種ポリペプチドと、(2)第一レセプターポリ ペプチド及び第二レセプターポリペプチドを含むヘテロダイマーレセプターとを 含み、この場合、レセプターポリペプチドの少なくとも一つは第二繊維状ファー ジ外殻タンパク質膜アンカーに融合されている。本発明の好ましい繊維状ファー ジは、(1)融合タンパク質を形成する第一繊維状ファージ外殻タンパク質膜ア ンカーに融合された第一異種ポリペプチドを有し、かつ第二異種ポリペプチドを 有するダイマー(この場合、その融合タンパク質の第一異種ポリペプチド部分は 、遊離の可溶性モノマーである第二異種ポリペプチドサブユニットと結合する) と、(2)第一レセプターポリペプチド及び第二レセプターポリペプチドを含む ヘテロダイマーレセプター(この場合、そのレセプターポリペプチドの少なくと も一つは第二繊維状ファージ外殻タンパク質膜アンカーに融合されている)とを 含む。 好ましい実施態様におけるヘテロダイマーレセプターは、エピトープ結合複合 体、即ち、エピトープを結合し得る第一ポリペプチドと第二ポリペプチドの複合 体である。第一レセプターポリペプチド及び第二レセプターポリペプチドは抗体 H鎖ポリペプチド及びL鎖ポリペプチドであることが好ましい。 第一レセプターポリペプチド及び第二レセプターポリペプチドは、機能性エピ トープ結合複合体(ヘテロダイマーレセプター)に自己集合でき、次いでこれは リガンドに接近できる様式でファージの外表面で発現され、即ち、それらはファ ージに表面で組み込まれる。こうして、エピトープ結合複合体は典型的には本発 明のファージの表面に存在する。 また、異種ポリペプチドはファージの表面で発現できる。一実施態様において 、異種ポリペプチドはファージ膜外殻タンパク質に付着された融合タンパク質の 形態である。好ましい実施態様において、融合タンパク質の第一異種ポリペプチ ドセグメントは第二異種ポリペプチドとダイマーを形成する。こうして、第一異 種ポリペプチド及び第二異種ポリペプチドは、機能性異種ポリペプチド複合体に 自己集合して、二つのモノマーからダイマーを形成でき、その複合体は、その後 、第一異種ポリペプチドサブユニットに付着されたファージアンカー膜タンパク 質により外表面で発現される。こうして、異種ポリペプチド及びそのダイマーは 、機能を可能にするために接近できる様式でファージの表面で発現され、即ち、 それらはファージに表面で組み込まれる。こうして、異種ポリペプチド及び異種 ポリペプチドダイマー複合体は、典型的には本発明のファージの表面に存在する 。 本発明のダイマーは2分子のモノマーから形成されたポリマーと定義される。 好ましい実施態様において、ダイマーは二つの同じサブユニットからなる分子で ある。別の実施態様は二つの異なるサブユニットを有する分子である。ダイマー は、ヘテロダイマーレセプターの形成をもたらす第一レセプターポリペプチド及 び第二レセプターポリペプチドの発現により生じる。本発明に使用される別々の 異なるダイマーは、異種ポリペプチドモノマーの結合から生じる。異種ポリペプ チドは、つなぎ止められていない可溶性モノマーの形態及び付着されたモノマー の形態の両方で発現され、後者はファージ膜アンカー外殻タンパク質により媒介 される。 可溶性異種ポリペプチドモノマーは、ファージ膜外殻タンパク質につなぎ止め られていないモノマーであり、こうしてつなぎ止められていないと称される。こ うして、可溶性が意味することは、つなぎ止められておらず、付着されておらず 、遊離の、非融合タンパク質、非融合ポリペプチドであり、これらは固定されて おらず、またサブユニット間の結合、例えば、二つのシステイン残基間のジスル フィド結合、等を有するダイマーの処理によりつなぎ止められた状態から放出可 能である。それ故、可溶性という用語は、別の可溶性モノマーまたはつなぎ止め られたモノマーに自由に結合する膜アンカーによらずに本発明のベクターから発 現される異種ポリペプチドを特定する。加えて、可溶性という用語はまたモノマ ーサブユニットの分離を生じる還元剤、例えば、β−メルカプトエタノールへの そのダイマーの露出によりダイマーから放出される異種ポリペプチドを特定する 。 ファージによりつなぎ止められたモノマー異種ポリペプチドはまた融合タンパ ク質と称される。異種ポリペプチドのダイマーは、理論上、二つの可溶性遊離モ ノマー形態、付着モノマー形態と共に可溶性遊離モノマー形態、または二つの付 着モノマー形態から形成し得る。本発明に使用するための例示ダイマーが以下に 記載され、また実施例8及び9に記載される。 異種融合タンパク質及びヘテロダイマーレセプターの表面組み込みは、それに 融合された第一繊維状ファージ外殻タンパク質膜アンカードメイン及び第二繊維 状ファージ外殻タンパク質膜アンカードメインの存在により与えられる。外殻タ ンパク質はcpIII及びcpVIIIからなる群から選ばれることが好ましい。本明細書 に記載された好ましい実施態様において、第一アンカー及び第二アンカーは同じ ではない。即ち、異種融合タンパク質はヘテロダイマーレセプターとは異なる外 殼タンパク質膜アンカーを含むことが好ましい。この特徴は、ファージ粒子の異 なる領域に二つの官能基を離れて配置し、これは幾つかの用途に有利である。特 に好ましいフォーマットにおいて、第一膜アンカー(異種融合タンパク質に関す る)はcpVIIIであり、また第二膜アンカー(ヘテロダイマーレセプターに関する )はcpIIIである。 二つの官能基を有する本発明の繊維状ファージは、本明細書に更に記載される ような種々の使用を提供する。 一つの特に好ましい実施態様において、ファージ粒子はヘテロダイマーレセプ ターと異種融合ポリペプチドの間の構造リンカーとして使用される。即ち、ファ ージマトリックスが、(1)異種融合ポリペプチド及び(2)ヘテロダイマーレセ プターにより提供される二つの機能の組織化された提示の支持として利用できる 。同じ膜アンカーが両方の機能に使用される場合、二つの機能がファージ粒子に つき混合される。cpVIIIが両方に使用される場合、ファージのマトリックスの大 半が両方の機能でランダムに覆われる。cpIIIが両方に使用される場合、機能が ファージ粒子の一つの末端に局在化される。 しかしながら、異なる膜アンカーが使用されることが更に好ましく、それによ り異種ポリペプチド及びヘテロダイマーの露出を分離する。特に、本発明は、ヘ テロダイマーレセプターを低コピー数でcpIIIへの融合によりファージ粒子の末 端に入れ、そして高コピー数で異種ポリペプチドをcpVIIIへの融合によりファー ジ粒子のマトリックス中に入れることを意図している。 好ましい実施態様において、異種ポリペプチドはリンカーポリペプチドにより 膜アンカーで露出される。特に、リンカーポリペプチドは、異種ポリペプチドと 膜アンカーの間のスペーサー領域を与えるアミノ酸残基の配列である。更に詳し くは、リンカーは異種ポリペプチドのカルボキシ末端と膜アンカーのアミノ末端 を結合する。リンカーは、異種ポリペプチドと膜アンカー外殻タンパク質の間の 連結を与えるとともに、異種ポリペプチドがファージの表面で発現された膜アン カー外殻タンパク質から更に離れて配置されることを可能にし、それにより物理 的かつ空間上の束縛をそれ程受けない更に接近可能なポリペプチドを与える。異 種融合タンパク質中のリンカータンパク質の存在が、本明細書に記載された本発 明のダイマーの形成に特に好ましい。リンカーは好ましくは長さが1〜100のア ミノ酸残基、更に好ましくは長さが5〜50の残基、最も好ましくは長さが20の残 基のアミノ酸残基配列である。 本発明に使用するための例示ポリペプチドリンカーは反復ポリペプチドGlu-Gl yGly-Gly-SerまたはEGGGS(配列番号91、アミノ酸残基位置1〜5から)である 。本発明の異種ポリペプチド融合タンパク質中の好ましいリンカーの使用が実施 例5〜9に記載される。また、リンカーポリペプチドの保存的アミノ酸置換が意 図 されている。好ましい機能を与えるオルタナティブアミノ酸残基配列を有するポ リペプチドリンカーが同様に本発明における使用に意図されている。 一実施態様において、ヘテロダイマーレセプターは、そのリガンド結合特異性 のために、異種ポリペプチドと関連する機能を前もって選択されたリガンドの付 近に輸送するターゲッティング機能を与える。特定の機能のターゲッティングは 、異種ポリペプチドが本明細書に更に記載されているような指示手段を与える場 合、例えば、異種ポリペプチドが指示ポリペプチドである場合の診断セッティン グに有益である。 また、機能的活性のターゲッティングは、標的とされるその機能的性質が治療 上有益である場合に治療実用性を有し得る。こうして、異種ポリペプチドは、例 えば、血液凝固の場合のようなタンパク質を分解するためのプロテアーゼ、スー パーオキサイドラジカルを除去するためのスーパーオキサイドジスムターゼ、等 を含む治療関連タンパク質であり得る。この実施態様において、ヘテロダイマー レセプターは、その前もって選択された特異性に基いて適当な組織へのターゲッ ティングを与えるように選択される。こうして、第二融合異種ポリペプチドは、 前もって選択された結合特異性を有するヘテロダイマーレセプターの存在により 与えられた結合能とは独立にファージの表面に機能的活性、即ち、二官能性ファ ージ粒子を与えるのに使用し得る。この実施態様において、二官能性ファージは 、その結合特異性に基いて関係するリガンドにターゲッティングされる能力を有 し、それにより第二機能性を前もって選択されたリガンドの付近に送出する。 特に示す実施態様において、本発明のファージ粒子は、本明細書に更に充分に 記載されるように、結合性抗体ライブラリーを操作するためのスクリーニング手 段として有益である。異種ポリペプチド中の検出可能な機能性、例えば、酵素ま たはその他の生物活性の存在は、ファージ粒子の存在、ひいては特別な結合され たヘテロダイマーの結合特異性の存在を検出するための手段を与える。 こうして、本発明のファージは、第一膜アンカーに融合された異種ポリペプチ ドとして指示ポリペプチドを有し得る。特に好ましい指示ポリペプチドは、酵素 、例えば、アルカリ性ホスファターゼ、ペルオキシダーゼ、グルコースオキシダ ーゼ、等の免疫学分野で公知であるような迅速かつ感度の良い検出を受け易い酵 素 である。 一緒に結合された異種ポリペプチドサブユニットを有するダイマーの実施態様 において、好ましいアルカリ性ホスファターゼ指示ポリペプチドは、アルカリ性 ホスファターゼの別個のモノマーサブユニットからのシステイン残基間のジスル フィド結合により媒介されたダイマーを形成する。こうして、つなぎ止められた コンホーメーションまたは可溶性コンホーメーションの二つのモノマーがジスル フィドブリッジによりダイマーを自然に形成するであろう。好ましいダイマーは 、つなぎ止められたアルカリ性ホスファターゼモノマーへの可溶性アルカリ性ホ スファターゼモノマーの結合により生じる。特に好ましいダイマーは、二つのア ルカリ性ホスファターゼモノマーの間で形成され、この場合、一つのつなぎ止め られたサブユニットがリンカーポリペプチドを介して外殼タンパク質に付着され る。アルカリ性ホスファターゼ指示薬ポリペプチドのモノマー形態の酵素活性は 、それらがダイマーで存在する場合に増強され、それにより本発明に使用するた めの増進された指示薬検出系を与える。アルカリ性ホスファターゼのダイマー形 態の増強された酵素活性が実施例8及び9に記載される。 ファージ表面に付着されているダイマーの可能な多重形態が図13A-Dに図示さ れる。ダイマーは理論的には二つの可溶性モノマーの結合から、また可溶性モノ マーとつなぎ止められたモノマーから、また二つのつなぎ止められたモノマーか ら生じ得る。可溶性異種ポリペプチドモノマー及びつなぎ止められた異種ポリペ プチドモノマーの両方の発現を与えるプラスミド系の存在下で生産されたファー ジは、それ故、それらの表面にヘテロダイマー及びホモダイマーの混合物を有し 得る。こうして、たとえ、可溶性モノマー形態の発現が不十分であるとしても、 ダイマーは想像できるように二つのつなぎ止められたモノマー間で形成し得る。 しかしながら、実施例8に記載されたように、20のアミノ酸リンカーポリペプチ ドにより外殻タンパク質8につなぎ止められた二つのアルカリ性ホスファターゼ モノマーはファージの表面でダイマーを形成できなかった。 ダイマーを形成し得ないことは、E.coli中のファージ排出プロセスに課せら れた立体障害または制限の結果であり得る。実施例8に説明されたように、ファ ージ膜外殻タンパク質への融合タンパク質アンカーにより発現されるタンパク質 が 大きい程、ファージで提示される融合タンパク質のコピー数は少ない。こうして 、融合タンパク質単独のサイズは立体上の制限を生じ得る。本発明に使用するの に好ましい指示薬ポリペプチドは、大きなタンパク質、即ち、約90キロダルトン であるアルカリ性ホスファターゼである。また、速度制限が、ファージへのとり 込みにつき野生型外殻タンパク質8と融合タンパク質の競合により生じる。Mark l-andら,Gene,109:13-19(1991)は、融合タンパク質の発現に関して野生型 外殼タンパク質8の発現を低下すると、ファージの表面で発現される融合タンパ ク質の合計数の増加をもたらすことを示した。こうして、立体または速度上の基 礎に関する排出プロセスは、適当な指示薬ポリペプチド機能を与える充分な数の ダイマーの形成を可能にする互いに充分に接近した融合タンパク質の発現を与え ないかもしれない。 異種指示薬ポリペプチドの好ましいダイマーの形成に関するその他の制限は、 異なるファージにつなぎ止められたサブユニットの間のダイマーの形成である。 このプロセスは、不溶性の無用のファージ凝集物の形成をもたらす。加えて、ダ イマーは二つのつなぎ止められていない可溶性指示薬ポリペプチドサブユニット 間で形成し得る。しかしながら、実施例8に説明されたように、ベクター発現系 の結果として生産されたこれらの好ましくないホモダイマー対の形成は、一つの つなぎ止められた融合タンパク質と一つのつなぎ止められていない可溶性ポリペ プチドから形成されたヘテロダイマー対の形成と比較してかなり減少される。結 果として、つなぎ止められていない可溶性ポリペプチドに結合されたつなぎ止め られた異種ポリペプチドを有する好ましいダイマーは、更に支配的かつ機能性の 二量化構造である。 ヘテロダイマーレセプターは表面に接近可能な様式でファージに結合されるの で、ファージはまた固相アフィニティー吸収剤として有利に使用し得る。好まし い実施態様において、ファージは固体(水不溶性)マトリックス、例えば、アガ ロース、セルロース、合成樹脂、多糖、等に結合、好ましくは除去可能に結合さ れる。ファージにより発現されたレセプターに結合するリガンドを含む水性組成 物は、その後、前もって決められた速度でレセプター結合条件下でカラムに通さ れて固相のレセプター−リガンド複合体を形成する。次いでそのカラムは洗浄さ れて未結合物質を除去し、固相ファージに結合されたリガンドを残す。次いでリ ガンドは、カラムをレセプター−リガンド複合体の解離を促進する緩衝液で洗浄 することにより除去され、回収し得る。 また、精製ファージは、アフィニティー精製されるリガンドを含む水溶液と混 合し得る。こうして形成されたレセプター/リガンド結合反応混合物は、ファー ジに結合されたレセプター−リガンド複合体が形成するのに充分な期間にわたっ て結合条件下に保たれる。次いでファージ結合されたリガンド(リガンドを有す るファージ)は未結合物質から、例えば、遠心分離、電気泳動、沈殿、等により 分離、回収される。 本発明のファージは、本発明の診断方法に使用される場合、標識し得る。好ま しい標識として、ファージゲノムにとり込まれた放射能標識核酸、またはファー ジ粒子のタンパク質成分にとり込まれた放射能標識アミノ酸が挙げられる。標識 ファージの調製は、本明細書に記載されているが、夫々、ファージの核酸または ポリペプチドへのとり込みのための培地中に放射能標識ヌクレオチドまたは放射 能標識アミノ酸を含むファージを成長させることによりルーチンで調製し得る。 例示標識は3H-チミジンまたは35S-メチオニンである。その他の同位元素標識及 びその他のヌクレオチド前駆体またはアミノ酸前駆体が当業者に容易に入手し得 る。標識ファージは、本発明のリガンド結合アッセイで検出できるように充分な 標識を含むことが好ましく、即ち、ファージは検出可能に標識される。 C.ファージライブラリー また、本発明は、本発明の異なる繊維状ファージ粒子の集団の形態の繊維状フ ァージ粒子のライブラリーを意図している。 こうして、ファージライブラリーは、繊維状ファージ、好ましくはfl、fdまた はM13繊維状ファージの集団であり、この場合、ファージは粒子内に本発明のrDN A発現ベクターをパッケージしており、そのrDNAはファージのマトリックスタン パク質によりファージ粒子中に封入されている。 換言すれば、ファージライブラリーは複数の繊維状ファージ粒子を含み、夫々 の異なるファージ粒子がその表面に少なくとも一つのエピトープ結合複合体を含 み、更に、本明細書に記載されるように、その表面に異種融合ポリペプチドを含 む。 好ましいライブラリーは、本発明の少なくとも106、好ましくは107、更に好ま しくは108-9の異なるヘテロダイマーレセプターをコードするDNA分子を含むファ ージ粒子を含む。異なるという用語は、異なる融合レセプターポリペプチドがア ミノ酸残基配列を異にしていることを意味する。更に高度のライブラリー多様性 は、ランダムの組み合わせまたは突然変異誘発の方法がKangら,Proc.Natl.Ac ad.Sci.,USA,88:11120-11123(1991); Barbasら,Proc.Natl.Acad.Sci .,USA,89:4457-4461(1992);及びGramら,Proc.Natl.Acad.Sci.,USA, 89:3576-3580(1992)により記載されているようにライブラリー多様性を増大 するのに使用される場合に利用可能である。 ファージのヘテロダイマーレセプターは自己集合レセプターの第一ポリペプチ ド及び第二ポリペプチド、例えば、Fabを形成するVHポリペプチド及びVLポリ ペプチドを含むので、そのライブラリーはまた多数のレセプター特異性を含み、 または発現するものとして特性決定し得る。こうして、ライブラリーは少なくと も105、好ましくは少なくとも106、更に好ましくは少なくとも107の異なるレセ プター、例えば、異なる抗体、T細胞レセプター、インテグリン等を発現する。 ライブラリーのサイズは、幾つかの因子、特に、ライブラリーが生産される方 法に応じて変化し得る。本明細書で使用されるサイズは、ライブラリーの複雑さ または多様性、即ち、ライブラリー中の粒子の絶対数ではなく、ライブラリーを 構成する異なる種の数を意味する。 こうして、ライブラリーが、最初にヘテロダイマーレセプターの第一ポリペプ チド及び第二ポリペプチドに相当する遺伝子の二つのレパートリーを別々にクロ ーン化することにより生産される場合、ジシストロニックベクターの形態の二つ のレパートリーをランダムに組み合わせた後に得られるライブラリーサイズは大 幅に増大される。例えば、夫々が106の異なる員を有するL鎖可変抗体遺伝子レ パートリー及びH鎖可変抗体遺伝子レパートリーが考えられる。二つのレパート リーを組み合わせると、1012の可能な異なるヘテロダイマーレセプター種を含む ファージライブラリーを生じる。 ヘテロダイマーレセプターの一つの員または両方の員をコードするDNA分子を 含むファージ粒子の単離(分離)は、典型的には、ライブラリーを構成するその 他のファージ粒子の集団からの関係する一つ以上の遺伝子を含む繊維状ファージ 粒子の分離により行われる。ファージ粒子の分離は、ライブラリー中のその他の 粒子からの個々のファージ粒子の物理的分離及び増殖を伴う。個々の粒子を生産 するための繊維状ファージ粒子の物理的分離、そして個々の分離粒子から誘導さ れた子孫ファージの集団を形成するための個々の粒子の増殖の方法は、繊維状フ ァージ技術において一般に公知である。 好ましい分離方法は、ファージ粒子と前もって選択されたリガンドの間のリガ ンド結合特異性によるファージ粒子の表面で発現されたヘテロダイマーの同定を 伴う。“パンニング”法の使用が例示され、また好ましく、これによれば、ファ ージ粒子の懸濁液が固相リガンド(抗原)と接触され、特異的に結合させられる (または、ヘテロダイマーが免疫グロブリン可変ドメインを含む場合には、免疫 反応させられる)。結合後、結合されていない粒子が固相から洗浄されて除かれ 、結合ファージ粒子はそれらの表面にリガンド特異的ヘテロダイマーレセプター (ヘテロダイマー)を含む粒子である。次いで、結合粒子は、典型的には、リガ ンドーレセプター相互作用に干渉する水性溶媒の使用により、固相からの結合粒 子の溶離により回収し得る。典型的な溶媒として、高イオン濃度、低pH、または レセプター−リガンド結合相互作用を中断するのに充分な量の可溶性競合リガン ドを有する緩衝液が挙げられる。 粒子の集団から表面で発現されたヘテロダイマーのリガンド特異性に基くファ ージ粒子を分離する別法は、リガンドとの架橋により液相からファージ粒子を沈 殿させることである。 上記の粒子分離方法の使用は、本発明のファージライブラリー中に存在する繊 維状ファージ粒子の集団をスクリーニングする手段を与える。ファージライブラ リーに適用されるように、スクリーニングは、前もって選択されたリガンド結合 特異性を有するヘテロダイマーを発現する一つ以上の粒子につきライブラリーを 濃縮するのに使用し得る。ライブラリーが、全てがリガンド結合活性の幾つかの 検出可能な手段を有するが、タンパク質構造、抗原性、リガンド結合アフィニテ ィーまたは結合活性、等を異にする多種のヘテロダイマーを含むように設計され る場合、そのスクリーニング方法は最初に前もって選択された結合特異性につき 濃縮されたライブラリーを生産し、次いで一つ以上の単離ファージ粒子を含む更 なるスクリーニングにより濃縮された第二ライブラリーを生産するのに連続的に 使用し得る。リガンド結合活性、抗原性、等のリガンドと冷却との間の相互作用 を測定する方法は一般に公知であり、更に説明されない。何となれば、それらは 本発明の必須の特徴ではないからである。 こうして、一実施態様において、ファージライブラリーは、前もって選択され たリガンド結合特異性につき濃縮された粒子の集団である。 本明細書に記載されるように、本発明における繊維状ファージの特別な利点は 、ファージ粒子中に存在し、ヘテロダイマーレセプターの員の一つまたは両方を コードするDNA分子がファージ粒子の表面における特別な発現されたヘテロダイ マーレセプターの存在に基いてライブラリー中に存在するその他のDNA分子から 分離し得ることである。更に、指示融合ポリペプチドの付加的な存在は、それが ファージ粒子の存在の直接のシグナルを与える点で、スクリーニング操作に利点 を与える。ライブラリースクリーニングにおいて二次指示試薬、例えば、二次標 識抗体を使用する必要はない。 例えば、特別な抗体反応性がライブラリーにおいて探究されている場合、ファ ージライブラリーは典型的には固相中で前もって選択された抗原に対し最初に吸 着される(免疫反応させられる)。その後、ライブラリーからの陽性反応ファー ジの存在が、ライブラリー中の抗体のクラスにつき特異的な標識抗体を使用して 固相中で検出し得る。この検出工程は第二インキュベーション工程を必要とし、 これが操作に加わる。加えて、抗体の使用は望まれない非特異的反応を与えるこ とがあり、それにより所望のファージを含む抗体分子を同定するスクリーニング 操作の感度を不明瞭にする。指示薬融合ポリペプチドの直接検出の使用は、(1 )二次抗体インキュベーション工程の必要、及び(2)二次抗体スクリーン中の 非特異的結合による分解能の損失を排除する。 ファージ粒子の表面に存在する融合ポリペプチドの実際の量は、融合ポリペプ チド中に存在する外殻タンパク質膜アンカーの選択に一部依存する。 アンカーがcpIIIから誘導される場合、典型的にはファージ粒子当たり約1〜 4の融合ポリペプチドが存在する。アンカーが更に好ましいcpVIIIから誘導され る場合、成長条件及び本明細書に説明されるその他の因子に応じて粒子表面に数 百の融合タンパク質が存在する可能性がある。ファージ粒子に存在する融合ポリ ペプチドの実際の量は、ファージ粒子が宿主細胞中で合成されている際にファー ジ粒子により“捕捉される”量を調節することにより調節し得る。 典型的には、本発明のライブラリー中のファージ粒子は夫々の粒子の表面で約 10〜約500のcpVIII誘導融合ポリペプチド、更に好ましくは粒子当たり約20〜50 の融合ポリペプチドを含む。 別の実施態様において、本発明は、単一粒子の子孫であるファージ粒子の集団 を意図しており、それ故、全てが粒子表面で同じヘテロダイマーを発現する。フ ァージのこのような集団は均一であり、かつクローン誘導され、それ故、多量の 特別な融合ポリペプチドまたはヘテロダイマーレセプターを発現するための源を 与える。 D.繊維状ファージの生産方法 本発明の繊維状ファージ粒子は二つの別個の表面接近性要素、即ち、ヘテロダ イマーレセプターと、ファージ中の別個のDNA発現ベクターから発現された異種 ポリペプチドとを含むので、ファージ粒子の調製は、同じ原核宿主細胞への二つ のベクターの導入により行われることが好ましい。しかしながら、更に別の実施 態様は、ヘテロダイマーレセプター及び異種ポリペプチドの表面発現のための遺 伝子の両方が存在する一つのベクターの導入を意図している。ベクターの導入は この技術の特別な適用に応じて種々の手段により行い得る。 一般に、粒子表面に(i)第一融合ポリペプチドと、(ii)第一レセプターポ リペプチド及び第二レセプターポリペプチドからなるヘテロダイマーレセプター とを有する繊維状ファージ粒子の生産方法は、 a)繊維状ファージ複製に許される原核宿主細胞に、第一融合ポリペプチドを 発現できるヌクレオチド配列を含む第一rDNAベクターを導入する工程(その第一 融合ポリペプチドは第一繊維状ファージ外殻タンパク質膜アンカーに操作により 融合された異種ポリペプチドを含む); b)同原核宿主細胞に、第一レセプターポリペプチド及び第二レセプターポリ ペ プチドを発現できるヌクレオチド配列を含むヘテロダイマーレセプターを発現す るための第二ベクターを導入する工程(そのレセプターポリペプチドの一つは第 二繊維状ファージ外殻タンパク質膜アンカーに融合されている);及び c)導入された第一ベクター及び第二ベクターを含む原核宿主細胞を、繊維状 ファージ生産に充分な条件下かつ第一融合ポリペプチドの発現及びヘテロダイマ ーレセプターの発現に充分な条件下に維持し、それによりファージ粒子を形成す る工程を含む。 導入工程は、rDNAベクターの混合物によるE.coliの同時形質転換の場合のよ うに同時に行うことができ、または連続的に行い得る。原核宿主細胞の形質転換 は公知であり、カルシウム介在性形質転換、エレクトロポレーション、等を含む 。その他の導入手段として、繊維状ファージ粒子による感染が挙げられる。 繊維状ファージ粒子の生産方法は、 (i)異種ポリペプチドをコードするヌクレオチド配列の下流に操作により結 合されたナンセンス鎖終止コドンを含む第一ヌクレオチド配列(この場合、終止 コドンは可溶性異種ポリペプチドの発現をもたらす)と、 (ii)tRNAサプレッサー遺伝子を含む第二ヌクレオチド配列(この場合、サプ レッサー遺伝子の発現は終止コドンによる充分な翻訳を可能にして第一繊維状フ ァージ外殻タンパク質膜アンカーに融合された異種ポリペプチドの発現をもたら すとを含む第一ベクターを有することを更に含む。 好ましい実施態様において、工程(ii)の異種ポリペプチドはリンカーポリペ プチドにより外殻タンパク質膜アンカーに融合される。 本発明の繊維状ファージを生産するのに有益な原核宿主細胞は、繊維状細菌感 染(filamentous infection)及び形態形成を許すものであり、繊維状ファージ 技術において良く特性決定されている。好ましい宿主はE.coli細胞であるが、そ の他の原核細胞が使用し得る。 繊維状ファージの生産の更に別の実施態様は、可溶性異種ポリペプチドを生産 できる原核宿主細胞を含む。好ましい原核宿主は、可溶性アルカリ性ホスファタ ーゼを内因的に生産できるPhoR変異体である。 好ましい実施態様において、繊維状ファージ粒子の生産方法は、ダイマーを含 む第一融合ポリペプチドの形成をもたらす。融合ポリペプチドは、本発明のつな ぎ止められた異種指示薬ポリペプチドモノマー、好ましくはファージ外殻タンパ ク質8につなぎ止められ、更に好ましくはポリペプチドリンカーにより外殻タン パク質につなぎ止められたアルカリ性ホスファターゼである。本発明のダイマー は二つの異種ポリペプチドモノマーの結合により形成される。好ましい実施態様 において、つなぎ止められたアルカリ性ホスファターゼモノマーは、モノマーの 夫々のシステイン残基の間のジスルフィド結合により第二アルカリ性ホスファタ ーゼモノマーとダイマーを形成する。ダイマーはつなぎ止められたモノマーとつ なぎ止められていない可溶性モノマーの間で生じることが更に好ましい。種々の 形態のダイマーのプレバレンス(prevalence)が、“繊維状ファージ”と題する 項目Bに示されている。 ダイマーの種々の調製方法が、本発明に使用するのに意図されている。異種指 示薬ポリペプチドのつなぎ止められていない可溶性モノマー形態及びつなぎ止め られたモノマー形態の両方が、本発明の発現ベクターから生産される。一旦生産 されると、モノマー形態はサブユニット間の結合によりダイマーを形成し得る。 異種指示薬ポリペプチドのつなぎ止められたモノマー形態及びつなぎ止められて いない可溶性モノマー形態が、二つの別個の発現ベクターから生産し得る。この 局面におけるモノマーポリペプチドを得るための例示の方法が、実施例8に記載 されている。 つなぎ止められた異種ポリペプチド及びつなぎ止められていない可溶性異種ポ リペプチドの両方の発現に好ましい実施態様は、単一ベクターの使用であり、そ の中に a)サプレッサーtRNA分子を発現できるサプレッサーtRNA遺伝子と、 b)第一異種ポリペプチドサブユニット及び第二異種ポリペプチドサブユニッ トを発現するための発現カセット をコードするためのヌクレオチド配列が存在する。 発現カセットは、異種ポリペプチドの第一サブユニット及び第二サブユニット の両方をコードするメッセンジャーRNA転写産物を生産するための転写単位を含 む。カセットは、ナンセンス鎖終止コドンとtRNAサプレッサー遺伝子の調節によ り、ファージ膜外殻タンパク質につなぎ止められた一方のサブユニット及びつな ぎ止められていない、即ち、可溶性の他方のサブユニットの両方のサブユニット を生産するように設計される。tRNAサプレッサー遺伝子とともに使用するための 例示の発現カセットが発現ベクター中に存在し、その後者は実施例8に記載され ているようなpPhoCの如きつなぎ止められていない可溶性形態、または実施例5 に記載されているようなpPho8、pPhoL8及びpPhoL8Bの如きつなぎ止められた形態 のバクテリアのアルカリ性の発現を与えるベクターである。 ナンセンス抑制は、リボソームが鎖終止コドンに出会う時に、転写単位中のメ ッセージの翻訳が常に停止するとは限らないが、成長ポリペプチド鎖の末端に挿 入された新しいアミノ酸では時々存続するプロセスである。ナンセンス抑制が起 こるE.coliの株は、ナンセンスサプレッサーを含むと言われる。ナンセンス抑 制の機構は下記のとおりである。バクテリア細胞は、アンチコドンループが突然 変異されたtRNAの変異体種を含み、その結果、それが、例えば、UAGアンバーコ ドンと塩基対を形成する。本発明において、アンバー終止(TAG)コドンの如き 転写終止コドンを、アンカーをコードするヌクレオチド配列に挿入することによ り、一つの発現ベクターが異種ポリペプチドのつなぎ止められた形態及び可溶性 形態の両方を生産するのに使用され、この場合、二つのプラスミドが先に使用さ れた。 アンバーサプレッサーtRNAの存在下における本発明の鎖終止コドンを有するプ ラスミドの誘導は、可溶性アルカリ性ホスファターゼと、アンバー終止コドンの 部分抑制により得られるつなぎ止められたアルカリ性ホスファターゼとを生じる であろう。tRNA抑制遺伝子はナンセンス突然変異の効果を反転し、これがナンセ ンスコドンによる或る翻訳を可能にする。例示のtRNAサプレッサー遺伝子は当業 界で公知である。変性タンパク質を生成するためのナンセンス抑制の使用がMil- lerら,Methods in Enzymology,208:543-563(1991)により記載されており、 その開示が参考として本明細書に含まれる。好ましいtRNAサプレッサー遺伝子は supD、supE、supF、supG、supP等である。その他に、新しいtRNAサプレッサー遺 伝子が設計され、そして合成オリゴヌクレオチドをアニールすることにより試験 管内で構築し得る。アンバー終止コドンに代えて種々のアミノ酸を種々の効率で 挿入するサプレッサーが知られている。 このようなサプレッサーをコードする配列が、実施例9に記載されたpPhoAL8 発現ベクターにとり込まれてベクター、pPhoAL8Sを生成でき、これが、Fabをコ ードするpComb3プラスミド及びヘルパーファージの存在下で改良されたファージ 結合抗体及び異種ポリペプチド系(PhoPhabと称される)をもたらし、これらは ファージ中のアルカリ性ホスファターゼの更に良好なとり込みのために増大され たシグナルを有する。例示のtRNAサプレッサー遺伝子が実施例9に記載されてい る。その系は異なるアミノ酸を種々のレベルで挿入する既知のサプレッサーを試 験することによりPhoPhab生産につき最適化でき、そして抑制がその状況に依存 することが知られているので、アンバー終止コドンの位置が移動し得る。 例示のナンセンス鎖終止コドンとして、アンバー(UAG)、オーカー(UAA)、 及びオパール(UGA)が挙げられる。括弧中のコドンはmRNAを示す。アンバーの ベクター中に存在する相当するヌクレオチド配列はTAGである。本発明の例示の 終止コドンを有するプラスミドはpPhoAL8Sであり、実施例9に記載される。 モノマーサブユニットを得るために発現ベクターを使用することに加えて、異 種指示薬ポリペプチドのモノマー形態を内因的に生産し得る原核宿主細胞の使用 がまた本発明における使用につき意図されている。E.coliの変異体が当業界で 公知であり、25年以上にわたって研究されてきた。これらの株は商業上入手でき 、またはそれがBAPを構成的に発現するようにPhoR表現型に公知の技術により突 然変異し得る。Miller,“分子遺伝学における実験”,Cold Spring Harbor Lab or-atory Press,(1972)を参照のこと。 例示の原核宿主細胞は、Kreuzerら,Genetics,81:459-468(1975)(その開 示が参考として本明細書に含まれる)により記載されたように、バクテリアのア ルカリ性ホスファターゼを発現できるPhoR変異体、株PhoR8であるE.coliである 。変異体phoRは、クローン変異表現型をベースとするバクテリアのアルカリ性ホ スファターゼのモノマー形態を構成的に発現する。アルカリ性ホスファターゼク ローン変異は、バクテリアのphoMオペロン及びグルコースの存在により調節され る正の表現型と負の表現型の間の変化を特徴とする。表現型の切り換えはバクテ リアのアルカリ性ホスファターゼ構造遺伝子、phoAの転写レベルで起こり、それ は recA依存性である。このような宿主細胞を使用する例示の方法が実施例9に記載 されている。 典型的には、本発明の繊維状ファージ粒子の生産方法が実施されてファージ粒 子のライブラリーを形成する。これに関して、導入されるrDNAは複数のrDNAベク ター分子の形態であり、宿主細胞は複数の宿主細胞として存在する。 こうして、関連実施態様は、rDNAベクター及び宿主細胞が集団で操作される以 外は、上記の本発明のファージ粒子のライブラリーの生産方法を意図している。 生産されるライブラリーの型に応じて、ライブラリーを異なって生産するため の上記の導入工程を実施し得る。 例えば、既存の結合性ヘテロダイマーレセプターファージライブラリーが提供 でき、この場合、夫々のファージ粒子はヘテロダイマーレセプター分子を発現す るためのrDNAベクターを含む。このようなライブラリーが既に記載されており、 本明細書に記載されたpComb3及びpComb8をベースとするライブラリーを含む。そ のライブラリーは、(1)ヘテロダイマーレセプターをコードするrDNA分子を含 む繊維状ファージ粒子、(2)rDNA分子を含むE.coli細胞、または(3)本発明 の繊維状ファージまたはファージライブラリーの調製前の精製rDNA分子の形態に 操作し得る。 その方法において、異種融合ポリペプチドを発現するrDNAベクターが、単一E .coli宿主細胞内の用意されたrDNAベクター(その種々の形態の一つ)と組み合 わされ、その結果、宿主細胞は異種融合ポリペプチドを発現するためのrDNAベク ターと、ヘテロダイマーレセプターを発現するためのrDNAベクターの両方を含む 。その組み合わせは、多種が存在する回分プロセスの場合のように、ライブラリ ーの多数の員を用いて多数回反復し得る。こうして、異種融合ポリペプチド発現 rDNAベクターが、ヘテロダイマーレセプターを発現し得るrDNAベクターの既存ラ イブラリーと組み合わされ、それにより本発明のファージライブラリーを形成す る。 本発明の繊維状ファージ粒子は通常の繊維状ファージ粒子調製方法により生産 され、そして(1)一本鎖繊維状ファージ複製型の生産及び(2)繊維状ファージ 粒子への複製型のパッケージングに必要なシグナルを与えると本明細書に記載さ れ ているような複製の繊維状ファージ開始点の本発明のDNA発現ベクター中の存在 に依存する。このようなDNA分子は遺伝子相補性の導入後にバクテリア細胞宿主 中に存在する場合にパッケージされて感染性ファージ粒子の生産に必要とされる 繊維状ファージタンパク質を与えることができる。 それ故、上記の工程(c)の維持工程が行われて導入ベクター中の遺伝子の発 現及びアセンブリーを促進してファージ粒子を形成する。典型的には、rDNAベク ターはrDNA分子の調製及び操作につき最小の遺伝情報を含み、そのようなものと して、繊維状ファージ粒子の生産に必要とされる遺伝子の完全な範囲を含まない 。遺伝子相補性に典型的な好ましい方法は、本発明のDNA発現ベクターを含むバ クテリア宿主細胞をヘルパー繊維状ファージで感染し、それによりファージ粒子 アセンブリーに必要とされる遺伝子要素を与えることである。例示のヘルパー救 済方法が本明細書中に実施例2で記載され、またShortら,Nuc.Acids Res.,16 :7583-7600(1988)により記載されている。 こうして、維持工程は、ヘルパーゲノムが相補遺伝子を発現し、かつファージ 粒子の発現及びアセンブリーを補助することを可能にする条件下のインキュベー ション期間と組み合わされたヘルパーファージによる重感染を含む。 二つのベクターを使用して本発明のファージを生産する方法を実施する場合、 本明細書に説明されるように、二つの異なるrDNAベクターにつき異なり、かつ適 合性の原核生物の複製の開始点を使用することが重要であり、その結果、二つの ベクターの両方が同じ宿主細胞中に同時に維持し得る。こうして、好ましい実施 態様において、第一ベクター及び第二ベクターは、異なり、かつ適合性の原核生 物の複製の開始点を含む。これらの異なり、かつ適合性の複製の開始点はColEl 及びp15Aであることが好ましいが、単一宿主細胞中で適合性がある限り、その他 のレプリコンが使用し得る。 加えて、両方のrDNAベクターを同じ宿主細胞中で維持するための選択の系を使 用することが重要である。これは、典型的には、別個の異なる選択可能なマーカ ーを二つのrDNAベクターに与えることにより行われる。第一rDNAベクターにつきcat 遺伝子そして第二rDNAベクターにつきamp遺伝子の使用が好ましい。 宿主細胞からのファージ粒子排出のプロセス中に繊維状ファージ粒子の表面に 捕捉されたヘテロダイマーレセプターのレベルは、種々の手段により調節し得る 。一実施態様において、融合ポリペプチドのレベルはポリペプチドを発現するた めの第一シストロン及び第二シストロン中の強力なプロモーターの使用により調 節され、その結果、融合ポリペプチドシストロンの転写が、ヘルパーファージに 関するcpVIIIの転写の速度以上の相対速度で起こる。別の実施態様において、ヘ ルパーファージはcpVIIIを発現するための遺伝子中にアンバー突然変異を有する ことができ、その結果、融合ポリペプチドよりも少ない野生型cpVIIIが宿主細胞 中で転写され、それにより排出プロセス中にcpVIIIと較べて増大された比の融合 ポリペプチドをもたらす。 別の実施態様において、ファージ粒子表面のヘテロダイマーレセプターの量は 融合ポリペプチドの発現とヘルパーファージによる重感染の間のタイミングを調 節することにより調節し得る。宿主細胞への発現ベクターの導入後に、ヘルパー ファージの添加前の更に長い遅延時間が宿主細胞中の融合ポリペプチドの増大さ れた蓄積を可能にし、それにより排出ファージ粒子により捕捉された融合ポリペ プチドの量を増加する。 更に好ましい実施態様において、ダイマーの形態の異種指示薬ポリペプチドは 、ダイマーを構成する両成分がダイマーを形成するのに充分なレベルで発現され ることを必要とする。その目的のために、ファージの表面につなぎ止められた異 種融合タンパク質の量は、融合タンパク質と野生型外殻タンパク質の相対比に依 存する。二つの指示薬ポリペプチドサブユニットの間のダイマーの形成は、つな ぎ止められた融合タンパク質とつなぎ止められていない可溶性モノマーの両方の 発現に依存する。結合して指示薬ポリペプチドダイマーを形成するモノマー異種 融合タンパク質と可溶性モノマーサブユニットの両方が二量化を可能にするのに 充分な量であることが好ましい。 ダイマーは、理論的には、二つの可溶性モノマーの結合から、可溶性モノマー とつなぎ止められたモノマーから、また二つのつなぎ止められたモノマーから生 じ得る。それ故、可溶性異種ポリペプチドモノマー及びつなぎ止められた異種ポ リペプチドモノマーの両方の発現を与えるプラスミド系の存在下で生産されたフ ァージはそれらの表面でヘテロダイマーとホモダイマーの混合物を有し得る。こ うして、たとえ、可溶性モノマー形態の発現が不十分であるとしても、ダイマー は二つのつなぎ止められたモノマーの間で想像上形成し得る。しかしながら、実 施例8に記載されるように、20のアミノ酸リンカーポリペプチドにより外殻タン パク質8につなぎ止められた二つのアルカリ性ホスファターゼモノマーは、ファ ージの表面でダイマーを形成し得なかった。ダイマーを形成し得ないことは、E .coli中のファージ排出プロセスに課せられた制限または立体障害の結果であり 得る。 実施例8に説明されるように、融合タンパク質アンカーによりファージ膜外殻 タンパク質に発現されるタンパク質が大きい程、ファージにつき与えられる融合 タンパク質のコピーの数は少ない。こうして、融合タンパク質単独のサイズは立 体制限を生じ得る。本発明に使用するのに好ましい指示薬ポリペプチドは、約90 キロダルトンであるアルカリ性ホスファターゼである。また、反応速度制限がフ ァージへのとり込みにつき野生型外殻タンパク質8と融合タンパク質の競合によ り生じる。Marklandら,Gene,109:13-19(1991)は、融合タンパク質の発現に 対し野生型外殻タンパク質8の発現を低下することがファージの表面で発現され る融合タンパク質の合計数の増加をもたらすことを示した。こうして、立体上ま たは速度上の基礎に関する排出プロセスは、適当な指示薬ポリペプチド機能を与 える充分な数のダイマーの形成を可能にする互いに充分に接近した融合タンパク 質の発現を与えないかもしれない。 異種指示薬ポリペプチドの好ましいダイマーの形成のその他の制限は、異なる ファージにおけるつなぎ止められたサブユニットの間のダイマーの形成である。 このプロセスは、不溶性の無用のファージ凝集物の形成をもたらす。加えて、ダ イマーは二つのつなぎ止められていない可溶性指示薬ポリペプチドサブユニット の間で形成し得る。しかしながら、実施例8に説明されるように、ベクター発現 系の結果として生産される好ましくないホモダイマー対の形成は、一つのつなぎ 止められた融合タンパク質と一つのつなぎ止められていない可溶性ポリペプチド から形成されたヘテロダイマー対の形成と較べて減少される。 関連実施態様において、本発明は、夫々がファージ表面ヘテロダイマーレセプ ターを発現するrDNAベクターを含むファージ粒子のライブラリーをスクリーニ ングすることにより前もって選択された結合特異性を有する本発明の繊維状ファ ージ粒子を生産する方法を意図している。その方法は、 a)夫々がその表面に指示薬融合ポリペプチドとヘテロダイマーレセプターと を含む本発明の繊維状ファージ粒子のライブラリーを得る工程; b)固相中に存在する複数の前もって選択されたリガンド分子に得られたライ ブラリーの員を結合して複数の固相結合されたファージ粒子を形成する工程; c)指示薬ポリペプチドの存在につき固相を分析し、それにより前もって選択 された結合特異性を有する表面露出ヘテロダイマーレセプターを含む固相結合フ ァージ粒子の存在につき分析する工程;及び d)ヘテロダイマーレセプターを含む固相吸着されたファージ粒子を回収する 工程を含む。 ライブラリーのスクリーニング方法において、更に別の実施態様は、 iii)繊維状ファージ外殻タンパク質膜アンカーに融合された指示薬ポリペプ チドである一つのサブユニットと、可溶性であり、即ち、ファージ外殻タンパク 質につなぎ止められていないダイマーの第二サブユニットとを有するダイマーを 含む。 好ましいダイマーは二つのアルカリ性ホスファターゼポリペプチドを含む。つ なぎ止められたアルカリ性ホスファターゼサブユニットは、リンカーポリペプチ ドにより外殻タンパク質膜アンカーに融合されることが好ましい。 得られたライブラリーは、前もって選択されたリガンドに対する結合特異性を 有する表面露出ヘテロダイマーレセプターを含むと考えられる本発明の繊維状フ ァージ粒子のライブラリーであり得る。ライブラリーは、あらゆる複雑さのもの であり得る。ヘテロダイマーライブラリーの調製は、本明細書のいずれかに更に 充分に記載されている。 レセプターを固相中のリガンドに特異的に結合する方法は一般にレセプター技 術及び免疫技術で公知であり、ここに適用し得る。特に、本明細書に記載された ファージ結合反応及び結合の条件を参照のこと。 指示薬ポリペプチドの存在に関する分析は、指示薬タンパク質の生物活性に依 存する。指示薬ポリペプチドは容易に検出できるように選択され、典型的には前 記の如き酵素である。好ましい指示薬酵素はアルカリ性ホスファターゼであり、 これは免疫技術で公知であるように局在化様式で容易に検出し得る。指示薬ポリ ペプチドに好ましい実施態様は二つのアルカリ性ホスファターゼサブユニットの ダイマーであり、この場合、ダイマーは遊離の可溶性アルカリ性ホスファターゼ モノマーと、リンカーポリペプチドにより外殼タンパク質につなぎ止められた付 着アルカリ性ホスファターゼモノマーとの間で形成される。 固相中に存在するライブラリー中のファージの指示薬活性種のために同定した ので、結合ファージを回収して特別なファージ粒子を得る。回収は、特異的結合 につき競合し、または結合相互作用を中断し、それにより固相結合ファージ粒子 を放出する緩衝液中で洗浄することにより行い得る。例示の緩衝液はグリシンを 含み、低pHである。溶離条件が実施例に記載されている。 上記のスクリーニング及び回収方法は、種々のフォーマットで実施し得る。例 えば、ファージのライブラリーは、特別な結合特異性に特異的なヘテロダイマー レセプターの存在につきスクリーニングし得る。その場合、固相リガンドが固相 中で用意され、ファージライブラリーの懸濁液と混合されて結合混合物を生成す る。 また、異なるリガンドが複数の容器の夫々中で用意でき、そして単一ライブラ リーのアリコートが夫々の容器に適用し得る。少ないファージ粒子のみが特異的 に結合することが予測されるので、特異的結合ヘテロダイマーレセプターが配置 されるウェルを決定するために、別個の容器中の指示薬タンパク質の活性の存在 につき分析する必要がある。 更に、“ドットブロット”フォーマットが使用でき、この場合、夫々の“ドッ ト”は異なる固相吸着された抗原に相当し、そして単一ファージライブラリーが 全ドットライブラリーに対し吸着される。検出できる指示薬タンパク質活性を生 じる“ドッド”が、所望のヘテロダイマーレセプターを有すると指摘される。 指示薬融合ポリペプチドを有するファージを使用するその他のスクリーニング フォーマットが意図されており、免疫技術の当業者に容易に明らかになるであろ う。 E.DNA発現ベクター 1.ファージミド表面異種タンパク質を生産するためのベクター 本発明のベクターは、アミノ末端からカルボキシ末端への方向に、(1)原核 分泌シグナルドメイン、(2)異種ポリペプチド、及び(3)繊維状ファージ膜ア ンカードメインを含む融合ポリペプチドをコードし、そしてそれを発現できるヌ クレオチド配列を含む組換えDNA(rDNA)分子である。そのベクターは、融合ポ リペプチドを発現するためのDNA発現調節配列、好ましくは原核生物調節配列を 含む。 繊維状ファージ膜アンカーは、繊維状ファージのマトリックスと会合でき、そ れにより融合ポリペプチドをファージ表面にとり込むことができるcpIII外殻タ ンパク質またはcpVIII外殻タンパク質のドメインであることが好ましい。特に好 ましい実施態様において、膜アンカーはcpVIIIである。 分泌シグナルは、タンパク質にグラム陰性バクテリアの周辺質膜を標的とさせ るタンパク質のリーダーペプチドドメインである。 好ましい分泌シグナルはpelB分泌シグナルである。エルビニア・カロトバ(Er -winia carotova)からの二つのpelB遺伝子産物変異体からの分泌シグナルドメ インの予測アミノ酸残基配列が、Leiら,Nature,331:543-546(1988)により 記載されるように表1に示される。また、特に好ましいpelB分泌シグナルが表1 に示される。 pelBタンパク質のリーダー配列が、融合タンパク質の分泌シグナルとして既に 使用されていた。Betterら,Science,240:1041-1043(1988); Sastryら,Pro c.Natl.Acad.Sci.,USA,86:5728-5732(1989);及びMullinaxら,Proc.N atl.Acad.Sci.,USA,87:8095-8099(1990)。 また、本発明に有益なE.col iからのその他の分泌シグナルポリペプチドドメインのアミノ酸残基配列が表1 にリストされる。Oliver,In Neidhard,F.C.(編集),エシェリキア・コリ (Escherichia coli)及びサルモネラ・チフィムリウム(Salm-onella Typhimur ium),米国微生物学協会,ワシントンD.C.,1:56-69(1987)。 配列番号5に示されたアミノ酸残基配列を有するPelB分泌シグナルは、本発明 のDNA発現ベクター中の封入に好ましいDNA配列である。 本発明に好ましい膜アンカーは、繊維状ファージMl3、fl、fd、及び同様の均 等の繊維状ファージから得られる。好ましい膜アンカードメインが遺伝子III及 び遺伝子VIIIによりコードされた外殻タンパク質中に見られる。 繊維状ファージ外殻タンパク質の膜アンカードメインは外殻タンパク質のカル ボキシ末端領域の一部であり、脂質二層膜をスパンするための疎水性アミノ酸残 基の領域と、通常その膜の周辺質面に見られ、その膜から離れて伸びる帯電され たアミノ酸残基の領域とを含む。 ファージfl中で、遺伝子VIII外殻タンパク質の膜をスパンする領域は残基Trp- 26〜Lys-40を含み、また周辺質領域は41から52までのカルボキシ末端11残基を含 む。Ohkawaら,J.Biol.Chem.,256:9951-9958(1981)。例示の膜アンカーは cpVIIIの残基26〜40からなるようである。 こうして、好ましい膜アンカードメインのアミノ酸残基配列がMl3繊維状ファ ージ遺伝子VIII外殻タンパク質(また、cpVIIIまたはcp8と称される)から誘導 される。好ましいcpVIII誘導膜アンカーは残基1〜残基50の配列番号17に示され た配列を有する。遺伝子VIII外殻タンパク質は、典型的には、外殻タンパク質の 約2500〜3000のコピーを含むファージ粒子の大半にわたって成熟繊維状ファージ に存在する。 加えて、その他の好ましい膜アンカードメインのアミノ酸残基配列がMl3繊維 状ファージ遺伝子III外殻タンパク質(また、cpIIIと称される)から誘導される 。好ましいcpIII誘導膜アンカーは残基1〜残基211の配列番号16に示された配列 を有する。遺伝子III外殻タンパク質は、典型的には、外殻タンパク質の約4〜 6のコピーを含むファージ粒子の一端で成熟繊維状ファージに存在する。 繊維状ファージ粒子の構造、それらの外殻タンパク質及び粒子アセンブリーの 詳細な説明につき、Rachedら,Microbiol.Rev.,50:401-427(1986);及びMo delら,“バクテリオファージ:2巻”,R.Calendar編集,Plenum Publishing C o.,375-456頁,(1988)による総説を参照のこと。 DNA発現調節配列は構造遺伝子産物を発現するためのDNA発現シグナルの組を含 み、また公知であるように、シストロンが構造遺伝子産物を発現できるようにシ ストロンに操作により結合された5’及び3’の両方の転写プロモーター及びタ ーミネーター要素を含む。DNA発現調節配列を形成するヌクレオチドの組及び構 造遺伝子産物はまた集約して発現カセットと称される。5’調節配列は転写を開 始するためのプロモーター(転写プロモーター)と、上流の翻訳可能なDNA配列 の5’末端に操作により結合されたリボソーム結合部位とを形成する。 E.coli中の高レベルの遺伝子発現を得るために、強力なプロモーターを使用 して多量のmRNAを生じるだけでなく、リボソーム結合部位を使用してmRNAが有効 に翻訳されることを確実にすることが必要である。E.coli中で、リボソーム結 合部位は開始コドン(AUG)、または翻訳イニシエーターと、開始コドンの上流 の配列3〜9のヌクレオチドの長い配置された3〜11のヌクレオチド[Shineら ,Nat-ure,254:34(1975)]とを含む。配列AGGAGGU(これはシャインーダル ガーノ(SD)配列と称される)はE.colil6S mRNAの3’末端に相補性である。m RNA及びmRNAの3’末端にある配列へのリボソームの結合は下記の幾つかの因子 により行い得る。 (i)SD配列と16S tRNAの3’末端との間の相補性の程度 (ii)SD配列とAUG [Robertsら,Proc.Natl.Acad.Sci.,USA,76:760(I 979a);Roberts ら,Proc.Natl.Acad.Sci.,USA,76:5596(1979b); Guar ente ら,Sci-ence,209:1428(1980);及びGuarenteら,Cell,20:543(198 0)]の間の間隔そしておそらくその間にあるDNA配列 最適化は、この間隔が系統的に変化されるプラスミド中の遺伝子の発現のレベル を測定することにより達成される。異なるmRNAの比較は、位置-20から+13まで( この場合、AUGのAが位置0である)[Goldら,Annu.Rev.Microbiol.,35:36 5(1981)]に統計上好ましい配列があることを示す。リーダー配列が翻訳に著 しく影響することが示された(Robertsら,1979 a,b上記文献]。 (iii)AUGに続くヌクレオチド配列(これはリボソーム結合に影響する)[Ta n-iguchiら,J.Mol.Biol.,118:533(1978)] 有益なリボソーム結合部位が、下記の表2に示される。 3’調節配列は、異種融合ポリペプチドとの枠中にあり、かつそのポリペプチ ドに操作により結合された少なくとも一つの終止コドンを形成する。 好ましい実施態様において、使用されるベクターは、複製の原核生物の開始点 またはレプリコン、即ち、それで形質転換された原核宿主細胞、例えば、バクテ リア宿主細胞の染色体外で組換えDNA分子の直接の自律複製及び維持につき能力 を有するDNA配列を含む。このような複製の開始点は当業界で公知である。 複製の好ましい開始点は、宿主生物中で有効であるものである。好ましい宿主 細胞はE.coliである。E.coli中のベクターの使用につき、複製の好ましい開始 点はpBR322及び種々のその他の普通のプラスミドに見られるColE1である。また 、pACYC及びその誘導体に見られる複製のp15A開始点が好ましい。ColElレプリコ ン及びp15Aレプリコンが分子生物学において広く使用されており、種々のプラス ミドにつき入手でき、またSambrookら,“分子クローニング:実験マニュアル” 第2編,Cold Spring Harbor Laboratory Press,1989により少なくとも記載さ れている。 ColElレプリコン及びp15Aレプリコンが本発明に使用するのに特に好ましい。 何となれば、それらは夫々E.coli中でプラスミドの複製を誘導する能力を有す るが、一方、その他のレプリコンは同じE.coli細胞中で第二プラスミド中に存 在するからである。即ち、ColEl及びp15Aは、同じ宿主中の二つのプラスミドの 維持を可能にする非干渉レプリコンである。例えば、Sambrookら,上記文献1.3 〜1.4頁を参照のこと。この特徴が本発明に特に重要である。何となれば、ファ ージ複製に許される単一宿主細胞は、二つの別個のベクター、即ち、異種融合ポ リペプチドを発現するためのベクターと、ヘテロダイマーレセプターを発現する ためのベクターの独立かつ同時の複製を支持する必要があるからである。 加えて、原核生物レプリコンを含む実施態様はまた発現がそれで形質転換され たバクテリア宿主に薬剤耐性の如き選択的な利点を与える遺伝子を含む。典型的 なバクテリアの薬剤耐性遺伝子は、アンピシリン、テトラサイクリン、ネオマイ シン/カナマイシンまたはクロラムフェニコールに対する耐性を与える遺伝子で ある。また、ベクターは典型的には翻訳可能なDNA配列の挿入に都合のよい制限 部位を含む。例示のベクターは、バイオラド・ラボラトリィズ(リッチモンド、 CA)から入手し得るプラスミドpUC8、pUC9、pBR322、及びpBR329並びにファーマ シア(ピスキャットアウェー、NJ)から入手し得るpPL及びpKK223である。 特に好ましいrDNAベクターは、本発明の繊維状ファージの表面で指示薬として 機能する異種融合ポリペプチドを含む。好ましい指示薬ポリペプチドは、本明細 書に更に記載されているアルカリ性ホスファターゼである。 好ましいベクターは、(1)転写プロモーター、(2)リボソーム結合部位、( 3)Pel B原核生物分泌シグナルドメインの最初にある翻訳開始コドン、(4)約 8のアミノ酸残基の短いポリペプチドリンカーをコードする配列、(5)約450の アミノ酸残基のアルカリ性ホスファターゼ(APase)ポリペプチドをコードする 配列、(6)cpVIII膜アンカーをコードする配列、(7)翻訳終止コドン、及び( 8)転写ターミネーターを含む本発明の指示薬融合ポリペプチドを形成する図8 に示された転写単位(発現カセット)を含む。転写単位を有する例示のベクター は、夫々図9、10、11、及び12に示され、また実施例5及び8に記載されたpPho 8cat、pPho8B、pPhoL8及びpPhoL8Bである。 関連実施態様において、本発明のベクターの好ましい転写単位は、第二リンカ ーポリペプチドがAPaseポリペプチドと膜アンカーの間に配置される以外は、上 記のアルカリ性ホスファターゼ指示薬ポリペプチドと同じである。第二リンカー は長さが3から50のアミノ酸残基であることが好ましい。一実施態様において、 リンカーはαらせんを優先的に形成するアミノ酸残基を含む。別の実施態様にお いて、第二リンカーは多量体の反復ポリペプチド単位(EGGGS)n(配列番号91、 アミノ酸残基1〜5)(式中、nは2〜10、好ましくは4である)を含む。第二 リンカーが反復単位(nが4である)であるベクターは、図11に示され、また実 施例5に記載されたベクターpPhoL8である。 加えて、好ましいベクターはApaseを含む上記の転写単位の一つを含み、更に 複製のp15A開始点と、クロラムフェニコールに対する耐性を与える選択可能なマ ーカー(cat )とを含む。また、ベクターは、ファージ感染により許される宿主 細胞への送出のためにファージ粒子へのそのベクターのパッケージングを可能に する複製の繊維状ファージ開始点、好ましくはfl開始点を含むことが好ましい。 別の実施態様において、本発明は、アルカリ性ホスファターゼコード配列と繊 維状ファージ外殻タンパク質膜アンカーコード配列の間に配置されたナンセンス 鎖終止コドンの抑制により二つのサブユニットを同時発現し得るサプレッサーtR NA分子の使用により、同じ転写単位から可溶性Apaseサブユニットと、Apase融合 タンパク質サブユニットの両方を生産する方法を記載する。 こうして、この実施態様において、本発明はその方法を実施するためのベクタ ーを意図している。そのベクターは、発現後に、本明細書に記載されたように繊 維状ファージ粒子の表面で集合できるアルカリ性ホスファターゼダイマーの第一 ポリペプチドサブユニット及び第二ポリペプチドサブユニットの両方を発現でき る。そのベクターは、 a)サプレッサーtRNA分子を発現できるサプレッサーtRNA遺伝子と、 b)第一ポリペプチドサブユニット及び第二ポリペプチドサブユニットを発現 するための発現カセットとをコードするヌクレオチド配列を含み、その発現カセ ットは i)第一ポリペプチドサブユニット及び第二ポリペプチドサブユニットをコー ドするメッセンジャーRNA転写産物を生産するための転写プロモーター及び転写 ターミネーター; ii)翻訳イニシエーターで開始し、アンバー、オーカー及びオパールからなる 群から選ばれたナンセンス鎖終止コドンで終了する可溶性アルカリ性ホスファタ ーゼをコードする第一読み取り枠;及び iii)第一読み取り枠の下流に操作により結合された第二読み取り枠 を含み、その第二読み取り枠は、繊維状ファージ外殻タンパク質膜アンカーをコ ードし、その結果、サプレッサーtRNA分子によるナンセンス鎖終止コドンの抑制 後に、第一読み取り枠及び第二読み取り枠が一のポリペプチドとして翻訳され、 その翻訳ポリペプチドは繊維状ファージ外殻タンパク質膜アンカーと枠中で操作 により結合されたアルカリ性ホスファターゼを有する融合タンパク質である。 翻訳終止コドンの“読み過ごし”を調節し、そして更に大きな融合タンパク質 を形成するためのサプレッサーtRNA遺伝子の使用が、本明細書に詳しく記載され ている。種々のサプレッサーtRNA遺伝子のいずれもが、公知であり、また本明細 書に記載されているるように使用し得る。ダイマーを生産するための発現カセッ トに対するベクター中のサプレッサーtRNA遺伝子の位置は、両方の転写単位がそ れらの夫々の構造遺伝子を独立に発現できる限り、重要ではない。 この目的に好ましいベクターは本発明の繊維状ファージ外殻タンパク質膜アン カーをコードし、特に好ましいベクターは本明細書に記載された融合タンパク質 中のポリペプチドリンカーをコードする。 2.ファージミド表面ヘテロダイマーレセプターを生産するためのベクター 繊維状ファージ粒子の表面におけるヘテロダイマーレセプターの発現のための ベクターは、第一レセプターポリペプチド及び第二レセプターポリペプチドの形 態で翻訳可能な第一DNA配列及び第二DNA配列を受取り、発現するのに適した組換 えDNA(rDNA)分子であり、この場合、レセプターポリペプチドの一つは繊維状 ファージ外殻タンパク質膜アンカーに融合される。即ち、繊維状ファージ膜アン カードメインと原核生物分泌シグナルドメインとを含む融合ポリペプチドはレセ プターポリペプチドのうちの一つである。 ヘテロダイマーレセプターを発現するためのDNA発現ベクターは、二つの翻訳 可能なDNA配列をベクター中に存在する二つの別個のカセットに独立にクローン 化(挿入)してヘテロダイマーレセプターの第一ポリペプチド及び第二ポリペプ チド、またはヘテロダイマーレセプターを含むポリペプチドのリガンド結合部分 を発現するための二つの別個のシストロンを形成するための系を与える。二つの シストロンを発現するためのDNA発現ベクターは、ジシストロニック発現ベクタ ーと称される。 そのベクターは、挿入DNAへの方向性結合に適したヌクレオチドの配列を介し て操作により結合された上流及び下流の翻訳可能なDNA配列を含む第一カセット を含む。上流の翻訳可能な配列は本明細書に特定された分泌シグナルをコードす る。下流の翻訳可能な配列は、本明細書に特定された繊維状ファージ膜アンカー をコードする。カセットは、インサート翻訳可能なDNA配列(インサートDNA)が 方向性結合に適したヌクレオチドの配列を介してカセットに方向性挿入される場 合に生産されるレセプターポリペプチドを発現するためのDNA発現調節配列を含 むことが好ましい。繊維状ファージ膜アンカーは、繊維状ファージ粒子のマトリ ックスを結合でき、それにより融合ポリペプチドをファージ表面にとり込むこ とができるcpIII外殻タンパク質またはcpVIII外殻タンパク質のドメインである ことが好ましい。 また、レセプター発現ベクターは、第二レセプターポリペプチドを発現するた めの第二カセットを含む。第二カセットは、方向性結合に適したヌクレオチドの 配列を介して典型的にはカセットの読み取り枠中に少なくとも一つの終止コドン を形成するベクターの下流DNA配列にその3’末端で操作により結合された本明 細書に特定された分泌シグナルをコードする第二の翻訳可能なDNA配列を含む。 第二の翻訳可能なDNA配列は、DNA発現調節配列にその5’末端で操作により結合 されて5’要素を形成する。第二カセットは、翻訳可能なDNA配列(インサートD NA)の挿入後に、そのインサートDNAによりコードされたポリペプチドと共に分 泌シグナルのレセプターを含む第二融合ポリペプチドを発現できる。 上流の翻訳可能なDNA配列は前記の原核生物分泌シグナルをコードする。配列 番号5に示されたアミノ酸残基配列を有するpelB分泌シグナルをコードする上流 の翻訳可能なDNA配列は、レセプター発現ベクター中の封入に好ましいDNA配列で ある。 下流の翻訳可能なDNA配列は前記の繊維状ファージ膜アンカーをコードする。 こうして、下流の翻訳可能なDNA配列は、繊維状ファージ遺伝子IIIまたは遺伝子 VIII外殻タンパク質の膜アンカードメインに相当し、好ましくはそのドメインと 同じであるアミノ酸残基配列をコードする。 本発明のDNA発現ベクター中のカセットは、翻訳可能なDNA配列(インサートDN A)の挿入後に、適当な宿主中でレセプターポリペプチドを発現できるヌクレオ チドの配列を形成するそのベクターの領域である。ヌクレオチドの発現コンピテ ント配列はシストロンと称される。こうして、そのカセットは、上流及び下流の 翻訳可能なDNA配列に操作により結合されたDNA発現調節要素を含む。シストロン は、翻訳可能なDNA配列がその目的に適したヌクレオチドの配列を介して上流配 列と下流配列の間に方向性挿入(方向性結合)される場合に形成される。得られ る三つの翻訳可能なDNA配列、即ち、上流配列、挿入配列及び下流配列は全て同 じ読み取り枠中で操作により結合される。 こうして、ヘテロダイマーレセプターを発現するためのDNA発現ベクターは、 翻訳可能なDNA配列をベクターのカセット部分にクローン化して、ヘテロダイマ ーレセプターの第一レセプターポリペプチド及び第二レセプターポリペプチドを 発現できるシストロンを生産するための系を与える。 発現ベクターは、それが異種融合ポリペプチドまたはヘテロダイマーレセプタ ーのいずれかを発現するのに使用されようとも、適合宿主中で、構造遺伝子産物 を発現できるものとして特性決定される。 本明細書で使用される“ベクター”という用語は、それが操作により結合され た別の核酸を異なる遺伝子環境間に輸送できる核酸分子を表す。好ましいベクタ ーは、それらが操作により結合されるDNAセグメント中に存在する構造遺伝子産 物の自律複製及び発現の可能なものである。 それ故、ベクターは前記のレプリコンと選択可能なマーカーとを含むことが好 ましい。 DNA配列またはセグメントに関して本明細書で使用される“操作により結合さ れた”という用語は、その配列またはセグメントが、好ましくは通常のホスホジ エステル結合により、一本鎖または二本鎖形態のDNAの一つのストランドに共有 結合されたことを意味する。 本発明の転写単位またはカセットが操作により結合されるベクターの選択は、 当業界で公知であるように、所望される機能的性質、例えば、ベクター複製及び タンパク質発現、並びに形質転換される宿主細胞に直接依存し、これらは組換え DNA分子を構築する技術に固有の制限である。 方向性結合に適したヌクレオチドの配列、即ち、ポリリンカーは、(1)複製 及び輸送のために上流の翻訳可能なDNA配列及び下流の翻訳可能なDNA配列を操作 により結合し、かつ(2)ベクターへのDNA配列の方向性結合のための部位また は手段を与えるDNA発現ベクターの領域である。典型的には、方向性ポリリンカ ーは、二つ以上の制限エンドヌクレアーゼ認識配列、または制限部位を形成する ヌクレオチドの配列である。制限開裂後に、二つの部位は、翻訳可能なDNA配列 がDNA発現ベクターに結合し得る付着末端を生じる。二つの制限部位は、制限開 裂後に、非相補性であり、それにより、カセット中への翻訳可能なDNA配列の方 向性挿入を可能にする付着末端を与えることが好ましい。一実施態様において、 方 向性結合手段は、上流の翻訳可能なDNA配列、下流の翻訳可能なDNA配列、または その両方中に存在するヌクレオチドにより与えられる。別の実施態様において、 方向性結合に適したヌクレオチドの配列は、多方向性クローニング手段を形成す るヌクレオチドの配列を含む。方向性結合に適したヌクレオチドの配列が多数の 制限部位を形成する場合、それは多クローニング部位と称される。 好ましい実施態様において、DNA発現ベクターは、本発明の教示に従ってゲノ ムを封入する繊維状ファージ粒子の形態で都合の良い操作のために設計される。 この実施態様において、DNA発現ベクターは複製の繊維状ファージ開始点を形成 するヌクレオチド配列を含み、その結果、そのベクターは、適当な遺伝子相補性 の表示後に、一本鎖複製型で繊維状ファージとして複製でき、そして繊維状ファ ージ粒子にパッケージングし得る。この特徴は、ファージ粒子の集団を含むその 他の粒子からの、粒子、及びその中に含まれたベクターのその後の分離のために ファージ粒子にパッケージングされるDNA発現ベクターの能力を与える。 複製の繊維状ファージ開始点は、公知であるように、複製の開始、複製の終止 及び複製により生産された複製型のパッケージングのための部位を形成するファ ージゲノムの領域である。例えば、Raschedら,Microbiol.Rev.,50:401-427 (1986);及びHoriuchi,J.Mol.Biol.,188:215-223(1986)を参照のこと 。 本発明で使用するのに好ましい複製の繊維状ファージ開始点は、複製のM13、f lまたはfdファージ開始点である。配列番号90に示された配列を有し、またNucl .Acids Res.,16:7583-7600(1988)に記載された複製の繊維状ファージ開始 点が特に好ましい。好ましいDNA発現ベクターは、実施例1に記載されたジシス トロニック発現ベクターpComb8、pCKAB8、pComb2-8、pComb3、pCKAB3、pComb2-3 及びpComb2-3’である。 F.ヘテロダイマーレセプターのライブラリーの生産方法 1.一般的な説明 一実施態様において、本発明は、記載されたベクターを使用する遺伝子レパー トリーからの前もって選択されたリガンド結合特異性の同時のクローニング及び スクリーニングのための系を提供する。この系はクローニング方法及びスクリー ニング方法のリンケージを与え、幾つかの要件を有する。第一に、E.coliの如 き 試験管内の発現宿主中のヘテロダイマーレセプターのポリペプチド鎖の発現は、 機能性ヘテロダイマーが集合してリガンドを結合するレセプターを生産し得るた めに二つのポリペプチド鎖の同時発現を必要とする。第二に、前もって選択され たリガンド結合能のためのライブラリーの単離された員のスクリーニングは、発 現されたレセプター分子の結合能をその員をライブラリーからコードする遺伝子 を単離するのに都合の良い手段と相関させる手段(リンケージ)を必要とする。 最後に、指示薬ポリペプチドに融合された繊維状ファージ外殻タンパク質膜アン カードメインを含む第二の異種融合タンパク質が、ファージの表面に存在して機 能性指示薬の存在につきそのライブラリーをスクリーニングする手段を与え、そ れによりスクリーニングプロトコルを簡素化する。 発現とスクリーニングのリンケージは、機能性レセプターのアセンブリーを可 能にするバクテリア細胞の周辺質への融合ポリペプチドのターゲティングと、関 係するライブラリー員の都合のよいスクリーニングを可能にするためのファージ アセンブリー中の繊維状ファージ粒子の外殻への集合レセプターのターゲティン グとの組み合わせにより達成される。周辺質ターゲティングは、本発明の融合ポ リペプチド中の分泌シグナルドメインの存在により与えられる。ファージ粒子へ のターゲティングは、本発明の融合ポリペプチド中の繊維状ファージ外殻タンパ ク質膜アンカードメイン(即ち、cpIIIまたはcpVIII誘導膜アンカードメイン) の存在により与えられる。 抗体のライブラリーの調製が他人により記載されており、本発明の一つの成分 、即ち、ヘテロダイマーレセプターを発現するライブラリー中で生産されたベク ター及びファージの例示である。例えば、Kangら,Proc.Natl.Acad.Sci.,US A,88:4363-4366(1991); Barbasら,Proc.Natl.Acad.Sci.,USA,88:79 78-7982(1991);Zebedee ら,Proc.Natl.Acad.Sci.,USA,89:3175-3179 (1992); Kangら,Proc.Natl.Acad.Sci.,USA,88:11120-11123(1991) ; Barbas ら,Proc.Natl.Acad.Sci.,USA,89:4457-4461 (1992);及びG ramら,Proc.Natl.Acad.Sci.,USA,89:3576-3580(1992)(これらの開示 は参考として本明細書に含まれる)により記載されたようなファージミドに関す る結合性抗体ライブラリーの調製を参照のこと。 本発明はDNA分子のライブラリーの生産方法を実施することを含み、夫々の DNA分子はヘテロダイマーレセプターの形態で繊維状ファージ粒子の表面で第一 レセプターポリペプチド及び第二レセプターポリペプチドを発現するための第一 シストロン及び第二シストロンを含む。その方法は、一般に、(a)結合緩衝液 中で(i)第一レセプターポリペプチドをコードする遺伝子のレパートリーと(i i)第一融合ポリペプチド発現シストロンを生成するのに適した直線形の複数のD NA発現ベクターを合わせることにより結合混合物を生成する工程、及び(b)遺 伝子のレパートリーがライブラリーを形成する複数のベクターに操作により結合 されるようになるのに充分な期間にわたってその混合物を結合条件に暴露する工 程を含む。その方法は、第二のレセプターポリペプチドをコードする遺伝子のレ パートリーを用いて繰り返され、これらの遺伝子をベクターの第二シストロンに 結合して第二レセプターポリペプチドを発現するのに適した複数のDNAベクター を生成し、それによりジシストロニックベクターからヘテロダイマーレセプター を発現し得るライブラリーを形成する。 こうして生産されたライブラリーは、本明細書に記載された発現方法及びスク リーニング方法によりライブラリー中に代表されたジシストロニックの得られる ライブラリーによりコードされた発現ヘテロダイマーレセプターの発現及びスク リーニングに使用し得る。 2.遺伝子レパートリーの生産 遺伝子レパートリーは異なる遺伝子、好ましくはポリペプチドをコードする遺 伝子(ポリペプチド遺伝子)の集合であり、天然源から単離されてもよく、また 人工的に生じ得る。好ましい遺伝子レパートリーは保存遺伝子を含む。特に好ま しい遺伝子レパートリーは、ヘテロダイマーレセプター分子の員をコードする遺 伝子のいずれかまたは両方を含む。 本発明を実施するのに有益な遺伝子レパートリーは、少なくとも103、好まし くは少なくとも104、更に好ましくは少なくとも105、最も好ましくは少なくとも 107の異なる遺伝子を含む。遺伝子のレパートリーの多様性を評価する方法は当 業者に公知である。 こうして、一実施態様において、本発明は、保存遺伝子のレパートリーから前 もって選択された活性を有するダイマーレセプターをコードする一対の遺伝子の 分離方法を意図している。更にまた、遺伝子のクローン化された対を発現し、得 られる発現ダイマーレセプタータンパク質を分離することが記載されている。レ セプターは、リガンド、例えば、抗体分子もしくはその免疫活性部分、細胞レセ プター、または保存遺伝子、即ち、長さが少なくとも約10のヌクレオチドの保存 ヌクレオチド配列を含む遺伝子のファミリーの員の一つによりコードされた細胞 付着タンパク質を結合できるヘテロダイマーポリペプチドであることが好ましい 。 ダイマーレセプターの異なるポリペプチド鎖をコードする例示の保存遺伝子フ ァミリーは、免疫グロブリン、クラスIまたはIIの主要組織適合性複合体抗原、 リンパ球レセプター、インテグリン、等をコードするものである。 種々の公知の方法が、有益な遺伝子レパートリーを生産するのに使用し得る。 例えば、VH遺伝子レパートリー及びVL遺伝子レパートリーが、抗体産生細胞、 即ち、Bリンパ球(B細胞)、好ましくは脊椎動物の循環系または牌臓中に見ら れるような転移B細胞の異種集団からVHコードmRNA及びVLコードmRNAを単離す ることにより生産し得る。転移B細胞は、免疫グロブリン遺伝子トランスロケー ション、即ち、転移がそれらに隣接して配置された免疫グロブリン遺伝子V、D 及びJ領域の転写産物を含むmRNAの細胞中の存在により実証されるように起こっ たB細胞である。典型的には、B細胞は、通常106のB細胞/mlを含む血液の試料 1〜100 ml中で集められる。 幾つかの場合に、例えば、年齢、健康及び免疫応答の種々の段階のいずれか一 つの脊椎動物からの核酸細胞の源(源細胞)として使用することにより、前もっ て選択された活性につきレパートリーをバイアスすることが望ましい。例えば、 転移B細胞を集める前の健康な動物の反復免疫感作は、高アフィニティーのレセ プターを生産する遺伝子物質につき濃縮されたレパートリーを得ることをもたら す。Mullinaxら,Proc.Natl.Acad.Sci.,USA,87:8095-8099(1990)。逆に 、免疫系が最近抗原投与されなかった健康な動物(即ち、ナイーブ免疫系)から 転移B細胞を集めることは、高アフィニティーのVHポリペプチド及び/または VLポリペプチドの生産に関してバイアスされていないレパートリーを生産する ことをもたらす。 核酸が得られる細胞の集団の遺伝的不均一性が大きい程、本発明の方法のスク リーニングに利用可能にされる免疫レパートリー(VHコード遺伝子及びVLコー ド遺伝子を含む)の多様性が大きいことが注目されるべきである。こうして、異 なる個体、特に、免疫学上かなりの年齢差を有する個体からの細胞、また異なる 株、レースまたは種の個体からの細胞が有利に合わされてレパートリーの不均一 性(多様性)を増大し得る。 こうして、一つの好ましい実施態様において、源細胞は、活性が探索されてい る抗原性リガンド(抗原)、即ち、前もって選択された抗原により免疫または部 分免疫された脊椎動物、好ましくは哺乳類から得られる。免疫感作は都合よく行 い得る。動物中の抗体力価が監視されて所望される免疫感作の段階を測定でき、 その段階は所望されるレパートリーの濃縮またはバイアス化(biasing)の量に 相当する。部分免疫された動物は、典型的には、1回のみの免疫感作を受け、応 答が検出された直後に細胞がこれらの動物から集められる。完全に免疫された動 物はピーク力価を示し、これは、通常、2〜3週の間隔で宿主哺乳類への抗原の 1回以上の反復注射により得られる。通常、最後の抗原投与の3〜5日後に、牌 臓が除去され、牌臓細胞(その約90%が転移B細胞である)の遺伝子レパートリ ーが通常の操作を使用して単離される。Current Protocols in Molecular Biolo gy,Ausubelら編集,John Wiley&Sons,NYを参照のこと。VHポリペプチド及び VLポリペプチドをコードする核酸が、IgA、IgD、IgE、IgGまたはIgMを生産する 細胞、最も好ましくはIgM生産細胞及びIgG生産細胞から誘導し得る。 免疫グロブリン可変部遺伝子が異なる集団としてクローン化し得るゲノムDNA のフラグメントの調製方法は、当業界で公知である。例えば、Herrmanら,Met-h ods In Enzymol.,152:180-183,(1987); Frischauf,Methods In Enzymol. ,152:183-190(1987); Frischauf,Methods In Enzymol.,152:190-199(19 87);及びDiLellaら,Methods In Enzymol.,152:199-212(1987)を参照のこ と(本明細書に引用された文献の教示が参考として本明細書に含まれる)。 所望の遺伝子レパートリーは、可変部を発現する遺伝子を含むゲノム物質また は可変部の転写産物に相当するメッセンジャーRNA(mRNA)から単離し得る。非 転移Bリンパ球以外からのゲノムDNAを使用することの難点は、可変部をコード する配列を並置することにあり、その可変部では配列がイントロンにより分離さ れ ている。適当なエクソンを含む一つ以上のDNAフラグメントが単離され、イント ロンが切除され、次いでエクソンが適当な順序かつ適当な配向でスプライシング される必要がある。殆どの部分につき、これは困難であり、その結果、転移B細 胞を使用する別の技術が選択される方法であろう。何となれば、V、D及びJ免 疫グロブリン遺伝子領域が隣接するように転座されており、その結果、その配列 が全可変部につき連続である(イントロンを含まない)からである。 mRNAが使用される場合、細胞がRNase抑制条件下で溶解されるであろう。一実 施態様において、第一工程は全細胞mRNAを単離することである。その後、ポリA +mRNAがオリゴ-dTセルロースカラムへのハイブリダイゼーションにより選択し 得る。その後、H鎖ポリペプチド及び/またはL鎖ポリペプチドをコードするmR NAの存在が、適当な遺伝子のDNA −本鎖によるハイブリダイゼーションにより 分析し得る。都合よくは、VH及びVLの一定の部分をコードする配列がポリヌク レオチドプローブとして使用でき、その配列は入手し得る源から得ることができ る。例えば、Early及びHood,Genetic Engineering,Setlow及びHollaender編集 ,3巻,Plenum Publishing Corporation,NY,(1981),157-188頁;及びKaba t ら,Sequences of Immunological Interest,National Institutes of H-ealt h,Bethesda,MD,(1987)を参照のこと。 好ましい実施態様において、全細胞mRNAを含む製剤は最初にVHコードmRNA及 び/またはVLコードmRNAの存在につき濃縮される。濃縮は、典型的には、全mRN A製剤またはその部分精製mRNA生産物を、本明細書に記載されたポリヌクレオチ ド合成プライマーを使用するプライマー伸長反応にかけることにより行われる。 ポリヌクレオチド合成プライマーを使用するVH遺伝子レパートリー及びVL遺伝 子レパートリーの生産方法の例示がPCT出願PCT/US 90/02836号(国際公開WO 90/ 14430)に記載されている。遺伝子レパートリーを生産するのに特に好ましい方 法は、本明細書に記載されたPCR反応生成物を生成するためのポリメラーゼ連鎖 反応(PCR)におけるプライマーとして前もって選択されたオリゴヌクレオチド の使用に頼る。 好ましい実施態様において、単離B細胞が前もって選択された抗原に対し試験 管内で免疫される。試験管内の免疫感作は、抗原剌激に応答する、培養中のエピ トープ特異性B細胞のクローン拡大として定義される。その最終の結果は、免疫 グロブリンレパートリー中の抗原特異性B細胞の頻度を増大し、そしてそれによ り所望の特異性の抗体を発現するクローンを同定するのにスクリーニングされる 必要がある発現ライブラリー中のクローンの数を減少することである。試験管内 の免疫感作の利点は、ヒトモノクローナル抗体が、毒性免疫原または弱い免疫原 を含む無数の治療上有益な抗原に対し産生し得ることである。例えば、腫瘍関連 抗原、リウマトイド因子、及び組織適合性抗原の多型性決定基に特異的な抗体が 産生でき、これらは免疫された動物中では誘発し得ない。加えて、生体内で通常 抑制される免疫応答を生じることが可能であり得る。 試験管内の免疫感作は、一次免疫応答または二次免疫応答を生じるのに使用し 得る。抗原へのB細胞の最初の露出により生じる一次免疫応答は、エピトープ特 異性細胞のクローン拡大及び低い乃至中間の見掛アフィニティー定数(106〜108-1)のIgM抗体の分泌をもたらす。培養中のヒトの牌臓リンパ球及び扁桃リン パ球の一次免疫感作は、細胞、ペプチド、巨大分子、ハプテン、及び腫瘍関連抗 原を含む種々の抗原に対しモノクローナル抗体を産生するのに使用し得る。免疫 されたドナーからの記憶B細胞がまた培養中に剌激されてクローン拡大そして特 に、血清反応陽性個体に由来する感作リンパ球をクローン拡大することによりウ イルス抗原に対するIgGイソタイプの高アフィニティー抗体(>109-1)の産生 を特徴とする二次免疫応答を生じ得る。 3.免疫グロブリン遺伝子レパートリーを生産するためのポリヌクレオチドプ ライマーの調製H遺伝子レパートリー及びVL遺伝子レパートリーは、本発明におけるそれら の使用の前に別々に調製し得る。レパートリー調製は、典型的には、プライマー 伸長、好ましくはポリメラーゼ連鎖反応(PCR)フォーマットにおける伸長によ り行われる。 プライマー伸長によりVHコードDNA同族体のレパートリーを生産するために、 プライマーのヌクレオチド配列はVHコード領域に実質的に隣接する部位で複数 の免疫グロブリンH鎖遺伝子でハイブリッドを形成するように選ばれ、その結果 、機能性(結合できる)ポリペプチドをコードするヌクレオチド配列が得られる 。 複数の異なるVHコード核酸ストランドにハイブリッドを形成するために、プラ イマーは異なるストランド間に保存されたヌクレオチド配列の実質的な補体であ る必要がある。このような部位は、一定の領域、可変部骨格領域、好ましくは第 三骨格領域、リーダー領域、プロモーター領域、J領域等のいずれか中にヌクレ オチド配列を含む。 VHコードDNA同族体及びVLコードDNA同族体のレパートリーが(PCR)増幅に より生産される場合、二つのプライマー、即ち、PCRプライマー対が、増幅され る核酸のストランドを夫々コードするのに使用される必要がある。 PCRにおいて、夫々のプライマーは第二プライマーと組み合わせて作用して標 的核酸配列を増幅する。PCRに使用するためのPCRプライマー対の選択は、遺伝子 レパートリーを生産するために本明細書に説明されているような考慮事項により 支配される。即ち、プライマーはレパートリー中に保存された配列と相補性であ るヌクレオチド配列を有する。有益なVHプライミング(priming)配列及びVL プライミング配列が下記の表5及び表6に示される。 4.遺伝子レートリーを生産するためのポリメラーゼ連鎖反応 レパートリー内に含まれたVH遺伝子及びVL遺伝子をクローン化するのに使用 される戦略は、公知であるように、レパートリーを構成する核酸の型、複雑さ、 及び純度に依存するであろう。その他の因子として、遺伝子が一つのレパートリ ーまたは複数のレパートリー中に含まれるか否か、またそれらが増幅され、かつ /または突然変異誘発されるか否かが挙げられる。 VHコード遺伝子レパートリー及びVLコード遺伝子レパートリーは、ポリヌク レオチドコードストランド、例えば、mRNA及び/またはゲノムDNAのセンススト ランドを含む。レパートリーが二本鎖ゲノムDNAの形態である場合、それは通常 最初に、典型的には溶融により、一本鎖に変性される。レパートリーは、レパー トリーをPCRプライマー対で処理する(接触させる)ことによりPCR反応にかけら れ、その対の夫々の員は前もって選択されたヌクレオチド配列を有する。PCRプ ライマー対は、レパートリー内に保存されたヌクレオチド配列、好ましくは長さ が少なくとも約10のヌクレオチド、更に好ましくは長さが少なくとも約20のヌク レオチドへのハイブリッド形成によりプライマー伸長反応を開始すること ができる。PCRプライマー対の第一プライマーは本明細書中で時々“センスプラ イマー”と称される。何となれば、それは核酸のコードストランドまたはセンス ストランドにハイブリッド形成するからである。加えて、PCRプライマー対の第 一プライマーは本明細書中で時々“アンチセンスプライマー”と称される。何と なれば、それは核酸の非コードストランドまたはアンチセンスストランド、即ち 、コードストランドに相補性のストランドにハイブリッド形成するからである。 PCR反応は、PCRプライマー対、好ましくはその前もって選択された量をPCR緩 衝液中でレパートリーの核酸、好ましくはその前もって選択された量と混合して PCR反応混合物を生成することにより行われる。その混合物は、PCR反応生成物の 生成に充分な期間(これは典型的には前もって決められる)にわたってポリヌク レオチド合成条件下で保たれ、それにより複数の異なるVHコードDNA同族体及び /またはVLコードDNA同族体を生産する。 複数の第一プライマー及び/または複数の第二プライマーが夫々の増幅に使用 でき、例えば、第一プライマーの一種が幾つかの異なる第二プライマーと対にさ れて幾つかの異なるプライマー対を形成し得る。また、第一プライマー及び第二 プライマーの個々の対が使用し得る。いずれにしても、第一プライマー及び第二 プライマーの同じ組み合わせまたは異なる組み合わせを使用する増幅の増幅生産 物が合わされて遺伝子ライブラリーの多様性を増大し得る。 PCR増幅方法が、米国特許第4,683,195号、同第4,683,202号、同第4,800 ,159号及び同第4,965,188号明細書、並びに少なくとも“PCR技術:DNA増幅の 原理及び応用”,H.Erlich編集,Stockton Press,ニューヨーク(1989);及 び“PCRプロトコル:方法及び応用に関する手引き”,Innisら編集,Academic P ress,サンジエゴ,カリフォルニア(1990)を含む幾つかの書籍に詳しく記載さ れている。 5.ジシストロニック遺伝子ライブラリーの調製 本発明を実施するに際して、ファージミドでヘテロダイマーレセプターを発現 できるジシストロニックDNA分子のライブラリーが調製される。ジシストロニッ クDNA分子は、二つの別個のシストロンから二つの別個のポリペプチドを発現す る能力を有する単一DNA分子である。夫々のジシストロニック分子は、適当な宿 主中で、繊維状ファージ粒子の表面でヘテロダイマーレセプターを形成し得る第 一シストロン及び第二シストロンの夫々から第一ポリペプチド及び第二ポリペプ チドを発現できる。 ジシストロニックDNA分子のライブラリーの生産方法は、 (a)結合緩衝液中で、 (i)夫々が方向性結合に適した付着末端を有するdsDNA形態の第一ポリペプ チド遺伝子のライブラリーと、 (ii)夫々が(a)共通読み取り枠中で第一ポリペプチド遺伝子を方向性受 容するのに適し、かつ(b)夫々の上流及び下流の翻訳可能なDNA配列に操作によ り結合されている上流及び下流の第一付着末端を有する、直線形の複数のDNA発 現ベクターとを合わせることにより第一結合混合物を生成する工程[上流の翻訳 可能なDNA配列はpelB分泌シグナルをコードし、下流の翻訳可能なDNA配列は繊維 状ファージ外殻タンパク質膜アンカーをコードし、そして翻訳可能なDNA配列は 夫々の上流及び下流のDNA発現調節配列に操作により結合されている] (b)その混合物を、第一ポリペプチド遺伝子をベクターに操作により結合し 、そして夫々が第一ポリペプチドを発現するための第一シストロンを有する複数 の環状DNA分子を生産するのに充分な期間にわたって結合条件に暴露する工程 (c)複数の環状DNA分子をDNA開裂条件下で処理して、夫々が(i)共通読み取 り枠中で第二ポリペプチド遺伝子のレパートリーを方向性受容するのに適し、か つ(ii)夫々の上流及び下流のDNA配列に操作により結合されている上流及び下 流の第二付着末端を有する、直線形の複数のDNA発現ベクターを生産する工程[ その上流のDNA配列は分泌シグナルをコードする翻訳可能な配列であり、下流のD NA配列は読み取り枠中に少なくとも一つの終止コドンを有し、そして翻訳可能な DNA配列はDNA発現調節配列に操作により結合されている] (d)結合緩衝液中で、 (i)工程(c)で生成された複数のDNA発現ベクターと、 (ii)夫々が複数のDNA発現ベクターへの方向性結合に適した付着末端を 有する、dsDNA形態の第二ポリペプチド遺伝子のライブラリー とを合わせることにより第二結合混合物を生成する工程、及び (e)第二ポリペプチド遺伝子を前記ベクターに操作により結合し、そして夫 々 が第二ポリペプチドを発現するための第二シストロンを有する複数の環状DNA分 子を生産するのに充分な期間にわたって第二混合物を結合条件に暴露し、それに よりライブラリーを形成する工程を含む。 好ましい実施態様において、分泌シグナルはpelB分泌シグナルである。また、 本明細書に記載されたcpIIIまたはcpVIIIから誘導される繊維状ファージ膜アン カーの使用が好ましい。 上記の方法を実施するのに有益なDNA発現ベクターは、先に詳しく説明された ジシストロニック発現ベクターである。 ジシストロニックDNA分子のライブラリーの生産方法を実施するのに際して、 上流及び下流の第一付着末端は、上流及び下流の第二付着末端と同じヌクレオチ ド配列を有しないことが好ましい。この実施態様において、環状DNA分子を直線 状にする処理工程(c)は、典型的には、前記第二末端を生じるのに特異的であ るが、第一末端を形成した部位で環状DNA分子を開裂しない制限エンドヌクレア ーゼの使用を伴う。例示の好ましい第一末端及び第二末端は、上流及び下流の第 一末端を形成するためのXho I及びSpe IによるpCBAK8の開裂により形成され、ま た上流及び下流の第二末端を形成するためのSac I及びXba IによるpCBAK8の開裂 により形成される末端である。この実施態様において、付着末端のその他の対は 、四つの対が夫々異なる非相補性末端である限り、第一末端及び第二末端の夫々 の対で使用し得る。これらの例は、本明細書に記載されたベクターpComb3、pCom b2-3、pComb2-3’、pComb8及びpComb2-8で見られる末端である。 複数の環状DNA分子をDNA開裂条件下で処理して直線状DNA分子を生成する方法 は、一般に公知であり、開裂されるヌクレオチド配列及び開裂の機構に依存する 。好ましい処理は、DNA分子を所望の開裂位置にあるエンドヌクレアーゼ認識部 位に特異的な充分な量の制限エンドヌクレアーゼと混合してDNA分子を開裂する ことを伴う。緩衝液、開裂条件、及び制限エンドヌクレアーゼ開裂のための基質 濃度は公知であり、使用される特別な酵素に依存する。例示の制限酵素開裂条件 が実施例2に記載されている。 G.診断系 また、本発明は、試料中の前もって選択されたリガンド、または抗原の存在に つき分析するための、好ましくはキット形態の、診断系を記載するものであり、 この場合、本明細書に記載された診断方法により試料中のリガンドまたは抗原の 存在、好ましくはその量を検出することが望ましい。 試料は、組織、組織抽出物、組織切片、液体試料または体液試料、例えば、血 液、血漿または血清であってもよい。また、試料は、クロマトグラフィーの媒体 、紙または布、例えば、ウェスタンブロットの製品、等に存在し得る。 診断系は、少なくとも1回のアッセイを行うのに充分な量の、別々にパッケー ジされた試薬としての本発明のリガンド結合ヘテロダイマーレセプターと指示薬 融合ポリペプチドとを表面に含む繊維状ファージを含む。 前もって選択されたリガンドを検出し、本発明の繊維状ファージを使用する例 示の診断系が実施例に記載されている。 一種以上のパッケージされた試薬の使用に関する指示がまた典型的に含まれる 。 本明細書で使用される“パッケージ”という用語は、固定した制限内で本発明 の繊維状ファージまたはファージのライブラリーを保持できる固体マトリックス またはガラス、プラスチック(例えば、ポリエチレン、ポリプロピレンまたはポ リカーボネート)、紙、箔、等の如き材料を表す。こうして、例えば、パッケー ジは、ミリグラム量の意図される標識ファージ製剤を入れるのに使用されるガラ スバイアルであってもよく、またはそれはマイクログラム量の一つ以上の意図さ れるファージ粒子が操作により定着された、即ち、リガンドを結合できるように 結合されたマイクロタイタプレートウェルであってもよい。 “使用に関する指示”として、典型的には、試薬濃度または少なくとも一つの アッセイ方法パラメーター、例えば、混合される試薬と試料の相対量、試薬/試 料混合物の維持期間、温度、緩衝条件、等を記載する明確な表示が挙げられる。 また、本発明の診断系は、前もって選択されたリガンドと複合体形成されたフ ァージを含む結合反応複合体の生成を通信できる指示手段を含む。 本明細書で使用される“複合体”という用語は、特異的結合反応、例えば、フ ァージーリガンド反応またはレセプター−リガンド反応の生成物を表す。例示の 複合体は免疫反応生成物である。 本明細書で使用される“指示手段”という用語は、レセプター−リガンド複合 体(免疫反応体)が生成された事実を視覚化するのに必要とされる付加的な試薬 を表す。アルカリ性ホスファターゼ(Apase)用のこのような付加的な試薬とし て、パラーニトローフェニルホスフェート(PNPP)等が挙げられ、ホースラディ ッシュペルオキシダーゼ(HRP)用の検出可能な基質、及び付加的な試薬として 、過酸化水素及び酸化色素前駆体、例えば、ジアミノベンジジンが挙げられる。 グルコースオキシダーゼに有益な付加的な試薬は、2,2’−アミノージー(3 −エチルーベンゾチアゾリン−G−スルホン酸)(ABTS)である。 本発明の診断キットは、“ELISA”フォーマットに使用されて試料中の前もっ て選択されたリガンドの量を検出し得る。“ELISA”は、固相に結合された抗体 または抗原及び酵素−抗原接合体または酵素−抗体接合体を使用して試料中に存 在する抗原の量を検出し、定量し、かつ本発明の方法に容易に適用し得る酵素結 合免疫吸着検定法を表す。ELISA技術の説明が、1982年にロスアルトス,CAのLan geMedical Publicationsにより発行されたD.P.Sitesら著、Basic and Clinica lImmunologyの第4編の22章並びに米国特許第3,654,090号、同第3,850,752 号、及び同第4,016,043号明細書に見られ、これらは全て参考として本明細書 に含まれる。 こうして、幾つかの実施態様において、ポリペプチド、リガンド、抗原、また は本発明のファージが固体マトリックスに固定されて主題診断系中にパッケージ を含む固相担体を形成し得る。 試薬は典型的には水性媒体からの吸着により固相マトリックスに固定されるが 、タンパク質及びポリペプチドに適用できる固定のその他のモードが使用でき、 これらは当業者に公知である。例示の吸着方法が本明細書に記載されている。 また、有益な固体マトリックスが当業界で公知である。このような材料は水不 溶性であり、ファーマシア・ファイン・ケミカルズ(ピスキャットアウェー、NJ )から商品名セファデックス(SEPHADEX)として市販されている架橋デキストラ ン;アガロース;ノースシカゴ、ILのアボット・ラボラトリィズから市販されて いる直径約1ミクロン〜約5ミリメートルのポリスチレンのビーズ;ポリ塩化ビ ニル、ポリスチレン、架橋ポリアクリルアミド、ニトロセルロースもしくはナイ ロンを ベースとするウェブ、例えば、シート、ストリップまたはパドル;またはチュー ブ、プレートもしくはマイクロタイタプレートのウェル、例えば、ポリスチレン もしくはポリ塩化ビニルからつくられたものを含む。 本明細書に記載された診断系の試薬種、または指示手段は、分散液として溶液 で用意でき、または実質的に乾燥粉末として、凍結乾燥形態で用意し得る。指示 手段が酵素基質である場合、その基質はまた系の別個のパッケージ中に用意し得 る。また、固相担体、例えば、前記マイクロタイタプレート及び一種以上の緩衝 液が、この診断アッセイ系中に別々にパッケージされた要素として含まれていて もよい。 診断系に関して本明細書に説明されたパッケージング材料は、診断系に慣用さ れているものである。 H.アッセイ方法 本発明は、リガンド−結合試薬として本発明のファージまたは複数のファージ を使用してその量が試料中の前もって選択されたリガンドの量に直接または間接 に関係する結合反応生成物を生成して、生物液体試料の如き水性組成物中に典型 的に存在する前もって選択されたリガンドの存在、好ましくはその量を測定する ための種々のアッセイ方法を意図している。 当業者は、本発明の結合試薬が結合反応生成物(その量は試料中のリガンドの 量に関係する)を生成するのに使用し得る多数の公知の臨床診断化学操作がある ことを理解するであろう。こうして、例示のアッセイ方法が本明細書に記載され るが、本発明はこのように限定されない。 競合または非競合の種々の不均一プロトコル及び均一プロトコルが、本発明の アッセイ方法を行うのに使用し得る。 一実施態様において、本発明は、結合試薬として本発明のリガンド結合ヘテロ ダイマーレセプターを含むファージを使用してレセプターが結合する前もって選 択されたリガンドの存在を検出する直接結合アッセイを意図している。その方法 は、a)前もって選択された抗原を含むと疑われている試料を、ファージ表面接 近可能なヘテロダイマーがそのリガンドを結合して、リガンドーファージ複合体 を生成するのに充分な結合条件下で前もって選択されたリガンドに結合する本発 明 の繊維状ファージ粒子と混合する(接触させる)工程;b)ファージ粒子のヘテ ロダイマーレセプターがリガンドに結合してリガンドーファージ複合体を生成す るのに充分な結合反応条件下でその混合物を維持する工程;及びc)リガンドー ファージ複合体の存在を検出する工程を含む。典型的には、複合体の検出は、複 合体中に存在する指示ポリペプチドを検出し、それにより前もって選択されたリ ガンドを検出することにより行われる。 結合条件は、レセプターのリガンド結合活性を維持する条件である。これらの 条件として、約4〜50℃の温度範囲、約5〜9のpH値範囲及び蒸留水のイオン濃 度から約1モルの塩化ナトリウムのイオン濃度まで変化するイオン濃度が挙げら れる。 検出工程は、免疫学技術で公知であるように、複合体または結合試薬(複合体 のレセプター成分)に関するものであり得るが、指示薬活性を測定することによ る指示ポリペプチドの直接検出が好ましい検出方法である。しかしながら、レセ プターに特異的な抗体の如き二次結合試薬が使用し得る。 指示薬ポリペプチドの存在、好ましくはその量の検出方法は一般に免疫技術に おいて良く知られておらず、そこに詳しく説明されていないであろう。 更に別の診断方法は多価の繊維状ファージ粒子を使用してリガンドを架橋し、 それにより多数のリガンド及びファージ粒子の凝集を形成し、沈殿可能な凝集物 を生成する。この実施態様は免疫沈殿の公知の方法に匹敵する。この実施態様は 試料を本発明の複数のファージ粒子と混合して結合条件下で結合混合物を生成す る工程、続いて生成された結合複合体を単離する分離工程を含む。典型的には、 分離は遠心分離または濾過により行われて凝集物を混合物から除去する。結合複 合体の存在は、検出される前もって選択されたリガンドの存在を示す。凝集物ま たは複合体の存在は、指示薬ポリペプチドの活性を検出することにより検出し得 る。実施例 下記の実施例は本発明を説明することを目的とするが、本発明の範囲を限定し ない。 1.ファージ粒子にヘテロダイマーレセプターを生産するためのジシストロニ ック発現ベクターの構築 直接スクリーニングし得る多数のFab抗体フラグメントを産生するためのベク ター系を得るために、バクテリオファージλ中の発現ライブラリーをHuseら,Sc ience,246:1275-1281(1989)に記載されたようにして予め構築した。これら の系は繊維状ファージ粒子の表面に標的される発現Fabを与える設計特徴を含ん でいなかった。 ベクター系を選択するのに使用される主な基準は、直接スクリーニングし得る 最大数のFabフラグメントを産生することの必要性であった。バクテリオファー ジλを三つの理由で開始点として選択して発現ベクターを開発した。第一に、フ ァージDNAの試験管内のパッケージングがDNAを宿主細胞に再導入する最も有効な 方法であった。第二に、単一ファージプラークのレベルでタンパク質発現を検出 することが可能であった。最後に、ファージライブラリーのスクリーニングは、 典型的には、非特異的結合による難点を殆ど伴っていなかった。別のプラスミド クローニングベクターは、それらが同定された後にクローンの分析のみに有利で ある。この利点はpCombVIIIの如きジシストロニック発現ベクターの使用のため に本発明の系で失われず、それにより、H鎖、L鎖、またはFab発現インサート を含むプラスミドが切除されることを可能にした。 a.ジシストロニック発現ベクターpCOMBの構築 (i)λZap(商標)IIの調製 λZap(商標)IIは、6の特異なクローニング部位、融合タンパク質発現、及 びファージミド(ブルースクリプトSK-)の形態のインサートを迅速に切除する 能力を含む最初のλZapの特徴の全てを維持するが、SAM 100突然変異を欠いてお り、XLl-ブルーを含む多くのNon-Sup F株に関する増殖を可能にする最初のλZap の誘導体(ATCC受理番号40,298)である。λZap(商標)IIは、Shortら,Nuc. AcidsRes.,16:7583-7600(1988)に記載されたようにして、λZapを制限酵素N co Iで消化することにより生産された4254の塩基対(bp)のDNAフラグメント中 に含まれるラムダS遺伝子を置換することにより構築された。この4254 bpフラ グメントを、そのベクターを制限酵素Nco Iで消化した後にλgt10(ATCC受理番 号 40,179)から単離されたラムダS遺伝子を含む4254 bp DNAフラグメントで置換 した。λgt10から単離された4254 bp DNAフラグメントを、T4 DNAリガーゼ及び 通常のプロトコル、例えば、Current Protocols in Molecular Biology,Ausub- elら編集,John Wiley and Sons,NY,1987に記載されたプロトコルを使用して 最初のλZapベクターにつないでλZap(商標)IIを生成した。 (ii)λHc2の調製 E.coli宿主細胞中で複数のVHコードDNA同族体を発現するために、λHc2と称 されるベクターを構築した。そのベクターは下記のものを与えた。VHコードDNA 同族体を適当な読み取り枠に入れる能力;Shineら,Nature,254:34,1975によ り記載されたようなリボソーム結合部位;pelB分泌シグナルと称される発現タン パク質を細胞周辺腔に誘導するリーダー配列;既知エピトープ(エピトープtag )をコードするポリヌクレオチド配列;そしてまたVHコードDNA同族体とエピト ープtagをコードするポリヌクレオチドの間のスペーサータンパク質をコードし たポリヌクレオチド。λHc2はHuseら,Science,246:1275-1281 (1989)によ り既に記載されていた。 λHc2を調製するために、上記の特徴の全てを含む合成DNA配列を、互いにハイ ブリッドを形成し、図1に示された二本鎖合成DNA配列を形成する20〜40の塩基 の一本鎖ポリヌクレオチドセグメントを設計することにより構築した。個々の一 本鎖ポリヌクレオチドセグメントを表3に示す。 ポリヌクレオチドN2、N3、N9-4、N11、N10-5、N6、N7及びN8(表3)を、夫々 のポリヌクレオチド0.1マイクログラム/マイクロリットル(μg/μl)lマイク ロリットル(μl)及びT4ポリヌクレオチドキナーゼ20単位を70mMのトリス-HCI 、pH7.6、10mMのMgCl2、5mMのジチオスレイトール(DTT)、10mMのβ−メルカプ トエタノール及び500マイクログラム/ミリリットル(μg/ml)のウシ血清アル ブミン(BSA)を含む溶液に添加することによりキナーゼ処理した。その溶液を3 7℃で30分間保ち、その溶液を65℃で10分間保つことによりその反応を停止した 。二つの最終ポリヌクレオチド、20ngのポリヌクレオチドN1及びポリヌクレオチ ドN12を、20mMのトリス-HCl、pH7.4、2mMのMgCl2及び50mMのNaClを含む溶液1/ 10容積と一緒に上記のキナーゼ処理反応溶液に添加した。この溶液を70℃に5分 間加熱し、水500 mlのビーカー中で1.5時間にわたって室温、約25℃に冷却した 。この期間中に、全ての10のポリヌクレオチドはアニールして図3に示された二 本鎖合成DNAインサートを形成した。個々のポリヌクレオチドを、上記の反応溶 液40μ1を50mMのトリス-HCl、pH7.5、7mMのMgC12、1mMのDTT、1mMのアデノシ ントリホスフェート(ATP)及びT4DNAリガーゼ10単位を含む溶液に添加すること により互いに共有結合させて合成DNAインサートを安定化した。この溶液を37℃ で30分間保ち、次いでその溶液を65℃で10分間保つことによりT4DNAリガーゼを 不活化した。上記の反応液52μl、10mMのATP及びT4ポリヌクレオチドキナーゼ5 単位を含む溶液4μlを混合することにより最終ポリヌクレオチドをキナーゼ処 理した。この溶液を37℃で30分間保ち、次いでその溶液を65℃で10分間保つこと によりT4ポリヌクレオチドキナーゼを不活化した。 完全な合成DNAインサートを、制限酵素、Not I及びXho Iで先に消化された実 施例la(i)に記載されたλZap(商標)IIベクターに直接つないだ。その結合混 合物を製造業者の指示に従ってカリフォルニア、ラ・ジョラにあるストラタゲン から市販されているギガパック(Gigapack)IIゴールドパッキングエキスを使用 してパッケージした。パッケージした結合混合物をXLI-ブルーセル(ストラタゲ ン)に塗布した。個々のλプラークをコアーにし、インサートを製造業者(スト ラタ ゲン)により提供されたλZap(商標)IIの生体内切除プロトコルに従って切除 した。この生体内切除プロトコルは、クローン化されたインサートをλHc2ベク ターからファージミドベクターに移動させて操作及び配列決定を容易にした。上 記のクローニングエ程の正確さを、Sangerら,Proc.Natl.Acad.Sci.,USA,7 4:5463-5467(1977)に記載されたサンガー・デオキシ方法を使用し、そしてAM V逆転写酵素35S-ATP配列決定キット(ストラタゲン)中で製造業者の指示を使用 してインサートを配列決定することにより確かめた。VH発現ベクター(λHc2) 中で得られる二本鎖合成DNAインサートの配列を図1に示す。λHc2の夫々のスト ランドの配列(上部及び下部)を、夫々配列番号1及び配列番号2として配列表 中にリストする。得られるλHc2発現ベクターを図2に示す。 (iii)λLc2の調製 E.coli宿主細胞中で複数のVLコードDNA同族体を発現するために、適当な読 み取り枠中にVLコードDNA同族体を入れる能力を有するλLc2と称されるベクタ ーを構築し、Shineら,Nature,254:34,1975により記載されたようなリボソー ム結合部位を得、Leiら,J.Bac.,169:4379(1987)及びBetterら,Science, 240:1041 (1988)によりE.coli中でFabフラグメントを成功して分泌するのに 既に使用されたpelB遺伝子リーダー配列分泌シグナルを得、そしてまたクローニ ングのための制限エンドヌクレアーゼ部位を含むポリヌクレオチドを得た。λLc 2はHuseら,Science,246:1275-1281 (1989)により既に記載されていた。 上記の特徴の全てを含む合成DNA配列を、互いにハイブリッドを形成し、図3 に示された二本鎖合成DNA配列を形成する20〜60の塩基の一本鎖ポリヌクレオチ ドセグメントを設計することにより構築した。二本鎖合成DNA配列内の夫々個々 の一本鎖ポリヌクレオチドセグメント(01-08)の配列を表4に示す。 ポリヌクレオチド02、03、04、05、06及び07(表4)を、夫々のポリヌクレオ チド1μl(0.1μg/μl)及びT。ポリヌクレオチドキナーゼ20単位を70mMのト リス-HCl、pH7.6、10mMのMgCl、5mMのDTT、10mMのβ−メルカプトエタノール及 び500 mg/mlのBSAを含む溶液に添加することによりキナーゼ処理した。その溶液 を37℃で30分間保ち、その溶液を65℃で10分間保つことによりその反応を停止し た。夫々20ngの二つの最終ポリヌクレオチド、01及び08を、20mMのトリス-HCl、 pH7.4、2mMのMgCl及び15mMの塩化ナトリウム(NaCl)を含む溶液1/10容積と一 緒に上記のキナーゼ処理反応溶液に添加した。この溶液を70℃に5分間加熱し、 水500 mlのビーカー中で1.5時間にわたって室温、約25℃に冷却した。この期間 中に、全ての8のポリヌクレオチドはアニールして図3に示された二本鎖合成DN Aインサートを形成した。 個々のポリヌクレオチドを、上記の反応溶液40μlを50mlのトリス-HCl、pH7.5 、7mlのMgCl、1mmのDTT、1mmのATP及びT4DNAリガーゼ10単位を含む溶液に添 加することにより互いに共有結合させて合成DNAインサートを安定化した。この 溶液を37℃で30分間保ち、次いでその溶液を65℃で10分間保つことによりT4DNA リガーゼを不活化した。上記の反応液52μl、10mMのATP及びT4ポリヌクレオチド キナーゼ5単位を含む溶液4μ1を混合することにより最終ポリヌクレオチドを キナーゼ処理した。この溶液を37℃で30分間保ち、次いでその溶液を65℃で10分 間保つことによりT4ポリヌクレオチドキナーゼを不活化した。 完全な合成DNAインサートを、制限酵素Sac I及びXho Iで先に消化された実施 例la(i)に記載されたλZap(商標)IIベクターに直接つないだ。その結合混合 物を製造業者の指示に従ってギガパックIIゴールドパッキングエキス(ストラタ ゲン)を使用してパッケージした。パッケージした結合混合物をXLI-ブルーセル (ストラタゲン)に塗布した。個々のλプラークをコアーにし、インサートを製 造業者(ストラタゲン)により提供されたλZap(商標)IIの生体内切除プロト コルに従って切除した。この生体内切除プロトコルは、クローン化されたインサ ートをλLc2ベクターからファージミドベクターに移動させて操作及び配列決定 を容易にした。上記のクローニング工程の正確さを、AMV逆転写酵素35S-dATP配 列決定キット(ストラタゲン)中で製造業者の指示を使用してインサートを配列 決定することにより確かめた。得られるLc2発現ベクター(λLc2)の配列を図3 に示す。夫々のストランドを、配列番号3及び配列番号4として配列表中に別々 にリストする。得られるλLc2発現ベクターを図4に図示する。 λLc3と称される本発明に使用するのに好ましいベクターは、先に調製された λLc2の誘導体である。λLc2は、図3及び配列番号3の配列に示されるようにEc oR I制限部位に対し3’、またシャインーダルガーノリボソーム結合部位に対し 5’に配置されたSpe I制限部位(ACTAGT)を含む。また、Spe I制限部位は、図 1及び2並びに配列番号1に示されるようにλHc2中に存在する。pCombと称され る結合性ベクターを、下記の実施例1a(iv)に記載されるように、λHc2及びλL c2の部分を一緒に合わせることにより構築した。得られる結合性pCombベクター は二つのSpe I制限部位(即ち、一つはλHc2により与えられ、一つは間にEcoR I 部位を含んで、λLc2により与えられた)を含んでいた。二つのSpe I制限部位の 存在にもかかわらず、Spe I及びEcoR I付着末端を有するDNA同族体を、下記の実 施例1bに記載されたようにしてSpe I及びEcoR Iで先に消化されたpComb発現ベク ターに成功して方向性結合した。Lc2ベクターにより与えられた3’Spe I部位へ のEcoR I制限部位の近接は、3’Spe I部位の完全消化を抑制した。こうして、 pCombをSpe I及びEcoR Iで消化することは、二つのSpe I部位間のEcoR I部位の 除去をもたらさなかった。 第二Spe I制限部位の存在は、Spe Iのみで消化されたpCombベクターへの結合 に望ましくないかもしれない。何となれば、二つの部位間の領域が除去されるか らである。それ故、λLc3と称される、第二Spe I部位または3’Spe I部位を欠 いているλLc2の誘導体は、まずλLc2をSpe Iで消化して直線状にされたベクタ ーを生成することにより生産される。これらの末端はフィル・インされて(fill ed in)ブラントエンドを形成し、これらが一緒につながれてSpe I部位を 欠いているλLc3を生じる。λLc3は、下記の結合性ベクターを構築するのに使用 するのに好ましいベクターである。 (iv)pCombの調製 ファージミドを、上記の生体内切除プロトコルを使用して発現ベクターλHc2 またはλLc2から切除した。二本鎖DNAを、Holmesら,Anal.Biochem.,114:193 (1981)により記載された方法に従ってファージミドを含む細胞から調製した。 生体内切除から生じるファージミドは、親ベクターと同じ抗体フラグメントクロ ーニング及び発現のためのヌクレオチド配列を含んでおり、夫々、λHc2及びLc2 に対応して、ファージミドHc2及びLc2と称される。 ファージミドHc2及びファージミドLc2の部分を合わせることにより生産される 結合性ファージミドベクターpCombの構築のために、ファージミドHc2を最初にSa c Iで消化してLacZプロモーターに対し5’に配置された制限部位を除去した。 直線状にされたファージミドをT4ポリメラーゼで平滑断端し、つないでSac I部 位を欠いているHc2ファージミドを得た。次いで修飾Hc2ファージミド及びLc2フ ァージミドを別々にSca I及びEcoR Iで制限消化して5’から3’にSca I制限部 位、Not I Xho I制限部位、Spe I制限部位及びEcoR I制限部位を有するHc2フラ グメントと、5’から3’にEcoR I制限部位、Sca I制限部位、Xba I制限部位及 びSac I制限部位を有するLc2フラグメントを得た。次いで、直線状にされたファ ージミドをそれらの夫々の付着末端で一緒につないでpComb、即ち、Not I、Xho I、Spe I、EcoR I、Sac I、Xba I、Not I、Apa I及びSca Iの制限部位の直線配 置を有する環状にされたファージミドを生成した。次いでつながれたファージミ ドベクターを適当なバクテリア宿主に挿入し、形質転換体を抗生物質アンピシリ ンにつき選択した。 選択されたアンピシリン耐性形質転換体を二つのNot I部位の存在につきスク リーニングした。得られるアンピシリン耐性結合性ファージミドベクターをpCom bと称し、その構成図を図5に示す。得られる結合性ベクター、pCombは、二つの 融合タンパク質を発現するための二つのカセットを有し、また5’から3’方向 にリストされた下記の操作により結合された要素のためのヌクレオチド残基配列 を有するDNA分子からなっていた。LacZ遺伝子から上流の誘導LacZプロモーター から なる第一カセット;Not I制限部位:リボソーム結合部位;pelBリーダー:スぺ ーサー;5’Xho及び3’Spe I制限部位により境界形成されたクローニング領域 ;デカペプチドtag、続いて発現調節終止配列;発現調節リボソーム形成部位か らなる第二カセットに5’に配置されたEcoR I制限部位;pelBリーダー;スペー サー領域:5’Sac I及び3’Xba I制限部位により境界形成されたクローニング 領域、続いて発現調節終止配列及び第二Not I制限部位。 pComb2と称される本発明に使用するのに好ましい結合性ベクターを、pCombに つき上記されたようにして、ファージミドHc2及びファージミドLc3の部分を合わ せることにより構築する。得られる結合性ベクター、pComb2は、第二カセット中 の第二Spe I制限部位が排除されている以外は、pCombと同様に二つの融合タンパ ク質を発現するためのpCombと同一の二つのカセットを有するDNA分子からなる。 b.バクテリオファージ外殼タンパク質膜アンカーを有する融合タンパク質を 発現するためのベクターpCombVIII及びpCombIIIの構築 多数のエンドヌクレアーゼ制限クローニング部位のために、先に調製したpCom bファージミド発現ベクターは、本発明の発現ベクターの調製のための修飾に有 益なクローニングビヒクルである。その目的のために、pCombをEcoR I及びSpe I で消化し、続いてホスファターゼ処理して直線状にされたpCombを生産する。 (i)pCombVIIIの調製 実施例2gで生産され、かつ繊維状バクテリオファージ外殻タンパク質VIII(cp VIII)膜アンカードメインを形成するヌクレオチド配列並びに付着末端Spe I及 びEcoR Iを有するPCR生産物を、直線状にされたpCombと混合して結合混合物を生 成した。cpVIII膜アンカーをコードするPCRフラグメントを相当する付着末端でp Combファージミド発現ベクターに方向性結合し、これはpCombVIII(また、pComb 8と称される)の形成をもたらした。pCombVIIIは、ヌクレオチド塩基1からヌク レオチド塩基208までの配列番号89に示されたヌクレオチド配列により形成され たカセットを含み、またcpVIII膜アンカーに操作により結合されたpelB分泌シ グナルを含む。 pComb2-VIIIまたはpComb2-8と称される、本発明に使用するのに好ましいファ ージミド発現ベクターを、上記のようにして、cpVIII膜アンカーをコードするPC RフラグメントをSpe I及びEcoR I付着末端を介してpComb2ファージミド発現ベク ターに方向性結合することにより調製した。pComb2-8は唯一のSpe I制限部位を 有していた。 (ii)pCombIIIの調製 別のファージミド発現ベクターを、バクテリオファージcpIII膜アンカードメ インをコードする配列を使用して構築した。L鎖の発現のための膜アンカーに対 し3’のLacZプロモーター領域配列並びにSpe I及びEcoR I付着末端を含むcpIII 膜アンカーを形成するPCR生産物を、cpVIIIにつき記載されたようにして調製し 、その詳細が実施例2gに記載される。次いでcpIII誘導PCR生産物を、唯一のSpe I部位を有する直線状にされたpComb2ベクターにつないでベクターpComb2-3(ま た、pComb2-IIIと称される)を生成した。 pComb-III’またはpComb2-3’と称される、付加的な制限酵素クローニング部 位を有する本発明に使用するのに更に好ましいファージミド発現ベクターを、pC omb2-3につき上記されたようにして、Shortら,Nuc.Acids Res.,16:7583-760 0(1988)に記載され、またストラタゲンから市販されているpブルースクリプ トからの51の塩基対フラグメントの添加により調製した。pComb2-3’を調製する ために、pComb2-3を最初にXho I制限酵素及びSpe I制限酵素で消化して直線状に されたpComb2-3を生成した。ベクターpブルースクリプトを、制限酵素部位、Sa l I、Acc I、Hinc II、Cla I、Hind III、EcoR V、Pst I、Sma I及びBamH Iを含 む51の塩基対フラグメントを放出する同酵素で消化した。その51の塩基対フラグ メントを付着末端Xho I及びSpe Iを介して直線状にされたpComb2-3ベクターにつ ないでpComb2-3’を生成した。 c.クロラムフェニコール耐性マーカーを有するpCBAKベクターの構築 本発明のベクターで形質転換されたバクテリアの選択につき、クロラムフェニ コールアセチルトランスフェラーゼ(CAT)の如き異なる選択可能なマーカー遺 伝子を使用するために、CATをコードする遺伝子を有するpCombをベースとする発 現ベクターを開発し、pCBAKベクターと称する。pCB及びpCombの部分を合わせる ことによりpCBAKベクターを調製する。 (i)pCBの調製 pブルースクリプトファージミドベクター、pBC SK(-)及びpBS SK(-)(ス トラタゲン)を修飾し、合わせて下記のpCBと称される第三ベクターを生成した 。 pBC SK(-)(これはクロラムフェニコール耐性の選択可能なマーカー遺伝子 を含む)をBst BIで消化し、T4ポリメラーゼで平滑断端した。Pvu Iによる第二 の消化は、CAT選択可能な耐性マーカー遺伝子、LacZ遺伝子から上流の誘導LacZ プロモーター及びColEl開始点領域を保持する2.4 kbの直線状にされたベクター を残す1キロベース(kb)フラグメントの除去を可能にした。2.4 kbのフラグメ ントを回収した。pBC SK(-)ベクターをAat IIで消化し、T4ポリメラーゼで平 滑断端した。Pvu Iによる第二の消化は、fl複製開始点を含む800の塩基対(bp) フラグメントの単離を可能にした。pBS誘導800bp flフラグメントと2.4 kbのpBC フラグメントの結合は、Sac I部位、fl複製開始点、CAT選択可能な耐性マーカー 遺伝子、ColEl開始点、T3プロモーター及びT7プロモーターにより隣接された多 重クローニング部位(MCS)、及びLacZ遺伝子から上流の誘導LacZプロモーター を含むpCB前駆体ベクターを生じた。 次いでpCB前駆体ベクターをSac Iで消化し、T4ポリメラーゼで平滑断端した。 次いで、T4ポリメラーゼで処理したpCBベクターを再度つないで、pCBベクターを 生成し、これはSac I部位を欠いている。 (ii)pCBAKOの調製 CAT選択可能な耐性マーカー遺伝子を含むpCBベクターをSac II及びApa Iで消 化し、ホスファターゼで処理して再結合を防止し、直線状にされたpCBベクター を生成した。実施例1(a)(iv)で調製されたpCombベクターをSac II及びApa Iで制限消化して、LacZプロモーターに対し5’で開始し、第二Not I部位の3’ 末端を過ぎて延びるヌクレオチド残基配列を含むフラグメントを放出した。次い で、Sac II及びApa I pComb DNAフラグメントを、同様に消化されたpCBベクター に方向性結合してファージミド発現ベクターpCBAKOを生成した。好ましいpCBAK 発現ベクターをpComb2で構築する。得られるpCBAK発現ベクターは唯一のSpe I制 限部位を含んでいた。 (iii)pCBAK8の調製 発現された融合タンパク質中にバクテリオファージ外殻タンパク質膜アンカー ドメインをコードするpCBAKをベースとするファージミド発現ベクターを調製す るために、実施例1c(ii)で調製されたpCBファージミドクローニングベクター をSac II及びApa Iによる消化により直線状にした。実施例1b(i)で調製された pCombVIIIファージミド発現ベクターをSac II及びApa Iで制限消化して、LacZプ ロモーターに対し5’で開始し、第二Not l部位の3’末端を過ぎて延びるヌク レオチド残基配列を含むフラグメントを生成した。そのフラグメントを、直線状 にされたpCBクローニングベクターに方向性結合してファージミド発現ベクターp CBAK8を生成した。 (iv)pCBAK3の調製 cpIII膜アンカードメインを有する融合タンパク質の発現のためのファージミ ド発現ベクター、pCBAK3を、pCombIIIからのSac II及びApa Iで制限消化された フラグメントをSac II及びApa Iで直線状にされたpCBクローニングベクターに方 向性結合することにより同様に構築した。 2.ファージ表面で抗NPNヘテロダイマーを発現するためのジシストロニック発 現ベクターの構築 本発明を実施するに際して、抗体のH鎖(VH及びCH1からなるFd)及びL( カッパー)鎖(VL、CL)を最初にヘテロダイマーFab分子のアセンブリーの ためにE.coliの周辺質に標的した。ファージ表面で抗体Fabライブラリーの発現 を得るために、FdまたはL鎖をコードするヌクレオチド残基配列を、繊維状バク テリオファージ外殼タンパク質膜アンカーをコードするヌクレオチド残基配列に 操作により結合する必要がある。膜アンカーを得るのに本発明で使用するための 二つの好ましい外殻タンパク質はVIII及びIII(夫々、cpVIII即ちcp8及びcpIII 即ちcp3)である。本明細書に記載された実施例において、Fd鎖をコードするヌ クレオチド残基配列を本発明の融合タンパク質中でcpVIII膜アンカーまたはcpII I膜アンカーに操作により結合する方法が記載される。 ファージミドベクター中で、翻訳可能なDNA配列からなる第一シストロン及び 第二シストロンを操作により結合してジシストロニックDNA分子を生成する。ジ シストロニックDNA分子中の夫々のシストロンを、融合タンパク質、Fd-cpVIII またはFd-cpIII及びカッパーL鎖の協調発現のためにDNA発現調節配列に結合す る。 第一シストロンは、融合タンパク質、Fd-cpVIIIまたはFd-cpIIIに操作により 結合された周辺質分泌シグナル(pelBリーダー)をコードする。第二シストロン はカッパーL鎖に操作により結合された第二pelBリーダーをコードする。pelBリ ーダーの存在は、バクテリア周辺質から細胞周辺腔への融合タンパク質及びL鎖 の両方の協調されているが、別々の分泌を促進する。 上記の方法を図6に図示する。簡単には、ファージミド発現ベクターは、Fd-c pVIII融合及びカッパー鎖に加えてクロラムフェニコールアセチルトランスフェ ラーゼ(CAT)選択可能な耐性マーカー遺伝子を有する。複製のflファージ開始 点は、一本鎖ファージミドの生成を促進する。Fd-cpVIII融合(VH、CH1、cpV III)及びL鎖(VL、CL)をコードするジシストロニックメッセージのイソプ ロピルチオガラクトピラノシド(IPTG)誘導発現は、H鎖及びL鎖の形成をもた らす。夫々の鎖をpelBリーダー配列により細胞周辺腔に送出し、続いてこれを開 裂する。H鎖はcpVIII膜アンカードメインにより膜中につなぎ止められ、一方、 L鎖は周辺質に分泌される。L鎖の存在下のH鎖は集合してFab分子を生成する 。この同じ結果は、別法で、L鎖が膜アンカーを有するL鎖融合タンパク質を介 して膜中につなぎ止められ、そしてH鎖がpelBリーダーにより周辺質に分泌され る場合に得られる。 へルパーファージによるE.coliのその後の感染により、繊維状バクテリオファ ージの集合が進行するにつれて、外殻タンパク質VIIIは図6に示されるように繊 維状ファージ粒子の全長に沿ってとり込まれる。管状アレイで集合された約2700 のcpVIIIモノマーからなる多数の結合部位が粒子表面に沿って存在し、その構築 物はファージ感染性を妨害しない。cpIIIを使用する場合、蓄積がバクテリオフ ァージの尾部で起こる。 a.ポリヌクレオチド選択 免疫グロブリンタンパク質CDRをコードするヌクレオチド配列は高度に可変で ある。しかしながら、例えば、L鎖またはH鎖のV領域ドメインに隣接し、また 実質的に保存されたヌクレオチド配列、即ち、同じプライマー配列にハイブリッ ドを形成する配列を含む保存配列の幾つかの領域がある。 保存配列にハイブリッドを形成し、生産されたDNA同族体に制限部位をとり込 み、それ故、合成DNAフラグメントをベクターに操作により結合するのに適する ポリヌクレオチド合成(増幅)プライマーを構築した。更に詳しくは、プライマ ーは、生産された得られるDNA同族体が方向性結合手段を含むベクターの領域で 上流の翻訳可能なDNA配列と共に読み取り枠中で本発明の発現ベクターに挿入し 得るように設計される。本明細書に記載されたプライマーによる増幅は、下記の 実施例2b及び2cに記載されるように、NPN-KLH-免疫マウスから単離されたmRNAか ら生産されたcDNA鋳型で行われる。 (i)HプライマーHドメインの増幅のために、プライマーは、ファージミドHc2発現ベクターの 特有のXho I部位及びSpe I部位への方向性結合と適合性の付着末端を導入するよ うに設計される。全ての場合、配列番号40-49にリストされた5'プライマーは保 存N末端領域中の第一ストランドcDNA(アンチセンスストランド)に相補性であ るように選択される。初期に、増幅を5つの位置で変性した32のプライマー(配 列番号40)の混合物で行う。ハイブリドーマmRNAを混合プライマーで増幅できた が、牌臓からのmRNAを増幅しようとする初期の試みは種々の結果を生じる。それ 故、混合5’プライマーを使用する増幅の幾つかの別法を比較する。 第一の別法は、混合プライマープールの個々の員に相当する多数の特異なプラ イマー(そのうちの8つが表5に示される)を構築することである。配列番号41 〜48にリストされた個々のプライマーを、二つの可能なヌクレオチドのいずれか を5つの変性位置のうちの3つでとり込むことにより構築する。 第二の別法は、Takahashiら,Proc.Natl.Acad.Sci.,USA,82:1931-1935, (1985)及びOhtsukaら,J.Biol.Chem.,260:2605-2608,(1985)の公表さ れた研究に基いて可変位置の4つでイノシンを含むプライマー(配列番号49)を 構築することである。このプライマーは、それが変性されず、同時にMartinら, Nuc.Acids Res.,13:8927(1985)により説明されているような保存されてい ない位置で不適正の負の効果を最小にするという利点を有する。しかしながら、 イノシンヌクレオチドの存在がクローン化VH領域中の望ましくない配列のとり 込みをも たらすことは知られていない。それ故、イノシンは、制限部位の開裂後に増幅フ ラグメント中に残る一つの位置で含まれない。結果として、イノシンはクローン 化インサート中にはない。 特異な3’プライマーを含む付加的なVH増幅プライマーは、γIH鎖mRNA( 配列番号54及び55)の第一の一定の領域ドメインの部分に相補性であるように設 計される。これらのプライマーは、VH及びH鎖の第一の一定の領域ドメインか らのアミノ酸をコードするポリヌクレオチドを含むDNA同族体を生産するであろ う。それ故、これらのDNA同族体はFvではなくFabフラグメントを生産するのに 使用し得る。 免疫グロブリンH鎖の別のクラスの同様の領域、例えば、IgM、IgE及びIgAに ハイブリッドを形成するように設計された付加的な特異な3’プライマーが意図 されている。また、CH1一定領域の特定のクラスの特定の領域にハイブリッド を形成し、かつこのプライマーを使用して増幅されたVHドメインをH鎖または L鎖の一定領域の異なるクラスを含むVHドメインを発現できる発現ベクターに 転移するのに適するその他の3’プライマーが意図されている。 牌臓またはハイブリドーマmRNAからの増幅の調節として、一定領域IgG、H鎖 遺伝子内に高度に保存された領域にハイブリッドを形成する一組のプライマーを 構築する。5’プライマー(配列番号50)はCH2領域中のcDNAに相補性であり 、一方、3’プライマー(配列番号52)はCH3領域中のmRNAに相補性である。 不適正がこれらのプライマーとそれらの鋳型の間に存在しないと考えられる。 増幅が8種の別々の反応で行われ、夫々が配列番号41〜48に示された5’プラ イマー及び配列番号54に示された3’プライマーの一つを含む。単一反応におい て増幅に使用される残りの5’プライマーは変性プライマー(配列番号40)また は配列番号49、69及び70に示された四つの変性位置でイノシンをとり込むプライ マーである。残りの3’プライマー(配列番号68)はFvフラグメントを構築す るのに使用される。5’プライマーの多くはXho I部位をとり込み、また3’プ ライマーはファージミドHc2発現ベクター(図2)へのVHDNA同族体の挿入のた めのSpe I制限部位をとり込む。 ヒトH鎖可変部を増幅するように設計されたVH増幅プライマーが意図されて いる。5’H鎖プライマーの一つは、変性ヌクレオチド位置でイノシン残基を含 み、単一プライマーが多数の可変部配列にハイブリッドを形成することを可能に する。種々のIgG mRNAの一定領域配列にハイブリッドを形成するように設計され たプライマーがまた意図されている。 (ii)LプライマーL CDRをコードするヌクレオチド配列は高度に可変性である。しかしながら 、JL、VL骨格領域及びVLリーダー/プロモーターを含むVL CDRドメインに隣 接する保存配列の幾つかの領域がある。それ故、保存配列にハイブリッドを形成 し、そして増幅フラグメントをSac I及びXba Iで切断されたファージミドLc2ベ クターにクローン化することを可能にする制限部位をとり込む増幅プライマーを 構築する。 VL CDRドメインの増幅につき、5’プライマー(配列番号56〜63)が保存N 末端領域中の第一ストランドcDNAに相補性であるように設計される。また、これ らのプライマーはSac L制限エンドヌクレアーゼ部位を導入して、VL DNA同族体 がファージミドLc2発現ベクターにクローン化されることを可能にする。3’VL 増幅プライマー(配列番号64)は、JL領域中のmRNAに相補性であり、かつVLDN A同族体をファージミドLc2発現ベクター(図4)に挿入するのに必要とされるXb a I制限エンドヌクレアーゼ部位を導入するように設計される。 付加的な3’VL増幅プライマーが、カッパーまたはλmRNA(配列番号65及び6 6)の一定領域にハイブリッドを形成するように設計される。これらのプライマ ーは、カッパー鎖またはλ鎖の一定領域アミノ酸をコードするポリヌクレオチド 配列を含むDNA同族体が生産されることを可能にする。これらのプライマーは、 FvではなくFabフラグメントを生産することを可能にする。 Fabの構築のためのカッパーL鎖配列の増幅に使用されるプライマーを配列表 にリストする。これらのプライマーによる増幅は5つの別々の反応において行わ れ、夫々が5’プライマー(配列番号58〜61)の一つまた3’プライマー(配列 番号67)の一つを含む。残りの3’プライマー(配列番号64)はFvフラグメン トを構築するのに使用された。5’プライマーはSac I制限部位を含み、また3 ’プライマーはXba I制限部位を含む。 λイソタイプ及びカッパーイソタイプの両方のヒトL鎖可変部を増幅するよう に設計されたVL増幅プライマーがまた意図されている。 本明細書に記載された全てのプライマー及び合成ポリヌクレオチドを、アラバ マ、フンツビルにあるリサーチ・ゲネチックスから購入し、または製造業者の指 示を使用してアプライド・バイオシステムズDNA合成装置、型式381Aで合成した 。 b.免疫グロブリン可変ドメインをコードする遺伝子のレパートリーの調製 ニトロフェニルホスホンアミデート(NPN)が、本発明の方法によりヘテロダ イマーレセプターを調製する際のレセプター結合のためのリガンドの一つとして 選ばれる。本発明の実施に使用されるその他のリガンドが実施例6に記載される 。 キーホールリンペットヘモシアニン(KLH)をNPNに接合して、マウスを免疫し て抗NPN免疫応答を生じ、それによりリガンド特異性ヘテロダイマーレセプター 遺伝子の源を与えるのに使用されるNPN-KLH接合体を生成する。 ジメチルホルムアミド中NPN2.5mgを含む溶液250μlを0.01モル(M)のリン酸 ナトリウム緩衝液(pH7.2)中KLH2mgを含む溶液750μlと混合することによりNPN -KLH接合体を調製する。KLH溶液を回転攪拌棒により攪拌しながらNPN溶液をKLH 溶液に徐々に添加することにより二つの溶液を混合する。その後、その混合物を 同様に攪拌しながら4℃で1間保って接合を進行させる。接合されたNPN-KLHを セファデックスG-25によるゲル濾過により接合されていないNPN及びKLHから分離 する。分離されたNPN-KLH接合体を、下記のようにしてマウスに注射する。 NPN-KLH接合体を、その接合体100μgを食塩加リン酸緩衝液(PBS)250μlに添 加することによりマウスへの注射のために調製する。等容積の完全フロイントア ジュバントを添加し、全溶液を5分間乳化する。1291x+マウスに乳化液300μlを 注射する。21ゲージの針を使用して、注射を幾つかの部位で皮下投与する。NPN- KLHによる第二免疫感作を2週間後に与える。この注射液は、下記のようにして 調製する。NPN-KLH50マイクログラム(μg)をPBS250μl希釈し、等容積のミョ ウバンをNPN-KLH溶液に混合する。次いでその溶液500μlを、23ゲージの針を使 用して、マウスに腹腔内注射する。1ケ月後に、マウスにPBS中で200μlに希釈 したNPN-KLH接合体50μgの最終注射を施す。30ゲージの針を 使用して、この注射を側尾部静脈に静脈内投与する。この最後の注射の5日後に マウスを犠牲にし、全細胞RNAをそれらの牌臓から単離する。 全細胞RNAを、Chomczynskiら,Anal Biochem.,162:156-159(1987)により 記載されたRNA調製方法を使用し、また製造業者の指示に従ってRNA単離キット( ストラタゲン)を使用して、上記のKLH-NPNで免疫した単一マウスの牌臓から調 製する。簡単には、免疫されたマウスから牌臓を除去した直後に、その組織を、 ガラスホモジナイザーを使用して、4.0Mのグアニンイソチアシアネート、0.25M のクエン酸ナトリウム、pH7.0、及び0.1Mのβ−メルカプトエタノールを含む変 性溶液10ml中で均一にする。pH4.0の2Mの濃度の酢酸ナトリウム1mlを均一にさ れた牌臓と混合する。また、前もってH2Oで飽和したフェノール1mlを、均一に された牌臓を含む変性溶液に混合する。クロロホルム:イソアミルアルコール( 24:1 v/v)混合物2mlを、このホモジネートに添加する。ホモジネートを10秒 間激しく混合し、氷の上に15分間保つ。次いでそのホモジネートを肉厚の50mlの ポリプロピレン遠心分離管(フィッシャー・サイエンティフィック社、ピッツバ ーグ、PA)に移す。その溶液を10,000 x gで4℃で20分間遠心分離する。上部の RNAを含む水層を新しい50mlのポリプロピレン遠心分離管に移し、等容積のイソ プロピルアルコールと混合する。この溶液を-20℃で少なくとも1時間保ってRNA を沈殿させる。沈殿したRNAを含む溶液を10,000 x gで4℃で20分間遠心分離す る。ペレット化した全細胞RNAを集め、上記の変性溶液3mlに溶解する。イソプ ロピルアルコール3mlを、再度懸濁した全細胞RNAに添加し、激しく混合する。 この溶液を-20℃で少なくとも1時間保ってRNAを沈殿させる。沈殿したRNAを含 む溶液を10,000 x gで4℃で10分間遠心分離する。ペレット化したRNAを、75% のエタノールを含む溶液で1回洗浄した。ペレット化したRNAを真空下で15分間 乾燥させ、次いでジメチルピロカーボネート(DEPC)で処理したH2O(DEPC-H2O )に再度懸濁させる。 長いポリAトラクトを含む配列につき濃縮されたメッセンジャーRNA(mRNA) をMolecular Cloning: A Laboratory Manual,Maniatisら編集,Cold Spring Ha r-bor,NY,(1982)に記載された方法を使用して全細胞RNAから調製する。簡単 には、上記のようにして調製された単一の免疫されたマウス牌臓から単離された 全 RNAの半分をDEPC-H2O 1mlに再度懸濁させ、65℃で5分間保つ。100 mMのトリス- HCl、1MのNaCl、2.0 mMのEDTA、pH7.5、及び0.2%のドデシル硫酸ナトリウム( SDS)からなる2X高食塩負荷緩衝液1mlを再度懸濁されたRNAに添加し、その混合 物を室温に冷却する。次いでその混合物を、オリゴ-dTを0.1Mの水酸化ナトリウ ム及び5mMのEDTAを含む溶液で洗浄し、次いでカラムをDEPC-H2Oで平衡にするこ とにより前もって調製されたオリゴ-dT(コラボラティブ・リサーチ型2または 型3)カラムに適用する。溶離液を無菌ポリプロピレン管中で集め、溶離液を65 ℃で5分間加熱した後に同カラムに再度適用する。次いでオリゴ-dTカラムを、5 0mMのトリス-HCl、pH7.5、500mMのNaCl、1mMのEDTA及び0.1%のSDSからなる高 食塩負荷緩衝液2mlで洗浄する。次いでオリゴ-dTカラムを、50mMのトリス-HCl 、pH7.5、100mM、1mMのEDTA及び0.1%のSDSからなる1X中間食塩緩衝液2mlで洗 浄する。メッセンジャーRNAを、10mMのトリス-HCI,pH7.5、1mMのEDTA及び0.05 %のSDSからなる緩衝液1mlでオリゴ-dTカラムから溶離する。この溶液をフェノ ール/クロロホルムで抽出し、続いて100%のクロロホルムで1回抽出すること によりメッセンジャーRNAを精製する。メッセンジャーRNAをエタノール沈殿によ り濃縮し、DEPC H2O中に再度懸濁させる。 上記の方法により単離されたメッセンジャーRNA(mRNA)は、複数の異なるVH コードポリヌクレオチド、即ち、約104より大きい異なるVHコード遺伝子を含み 、また同様の数のVLコード遺伝子を含む。こうして、mRNA集団は可変部コード 遺伝子のレパートリーに相当する。また、異なる抗原、例えば、破傷風トキソイ ド、γグロブリン、種々のハプテン−抗原接合体、等による免疫感作により得ら れる可変部コード遺伝子のレパートリーが、本発明における使用に意図されてい る。使用に好ましい抗原特異性ライブラリーが実施例6に記載されている。 c.DNA同族体の調製 RCR増幅のための調製において、先に調製されたmRNAがプライマー伸長反応に よるcDNA合成の鋳型として使用される。典型的な50μlの転写反応において、水 中の牌臓mRNA5〜10μgを最初に65℃で5分間にわたって配列番号51にリストさ れた3’VHプライマー500ng(50.0 pモル)とハイブリッドを形成(アニール) する。続いてその混合物を1.5 mMのdATP、dCTP、dGTP及びdTTP、40mMのトリス-H CI、 pH8.0、8mMのMgCl2、50mMのNaCl、及び2mMのスペルミジンに調節する。モロニ ーマウス白血病ウイルス逆転写酵素(ストラタゲン)、26単位を添加し、その溶 液を37℃で1時間保つ。 RCR増幅を、逆転写反応の生成物(cDNA/RNAハイブリッド約5μg)、3’VH プライマー(配列番号51)300ng、5’VHプライマー(配列番号41〜49)の夫々 300ng200 mMのdNTPの混合物、50mMのKCl、10mMのトリス-HCl、pH8.3、15mMのMgC l2、0.1%のゼラチン及び2単位のテルムス・アクアチクス(Thermus aquatics )(Taq)DNAポリメラーゼ(パーキン−エルマー−セタス、エメリービル、カリ フォルニア)を含む反応液100μl中で行う。その反応混合物を鉱油で覆い、40サ イクルの増幅にかける。夫々の増幅サイクルは、92℃で1分間の変性、52℃で2 分間のアニーリング、及び72℃で1.5分間のプライマー伸長によるポリヌクレオ チド合成を含む。次いで、増幅されたVHコードDNA同族体を含む試料をフェノー ル/クロロホルムで2回、クロロホルムで1回抽出し、エタノールで沈殿させ、 1mMのEDTAを含む10mMのトリス-HCl、pH7.5中で-70℃で貯蔵する。 特異な5’プライマー(配列番号41〜48)を使用して、有効なVHコードDNA同 族体合成及び牌臓mRNAからの増幅を、アガロースゲル電気泳動により示されるよ うに得る。増幅cDNA(VHコードDNA同族体)は、予想されたサイズ(360bp)の 主要バンドとして見られる。夫々の反応において増幅されたVHコードポリヌク レオチドフラグメントの量は同様であり、これはこれらのプライマーの全てが増 幅を開始するのにほぼ同等に有効であったことを示す。これらのプライマーによ る増幅の歩留り及び品質は再現性がある。 また、イノシンを含むプライマーは、増幅されたVHコードDNA同族体を牌臓mR NAから再現可能に合成し、その他の増幅cDNAの強さと同様の強さの予想されたサ イズのフラグメントの生産をもたらす。また、イノシンの存在は、有効なDNA同 族体合成及び増幅を可能にし、これはこのようなプライマーが複数のVHコードD NA同族体を生成するのに有益であることを明らかに示す。一定領域プライマー( 配列番号50及び52)から得られた増幅産物は更に強く、これは増幅がおそらく鋳 型とプライマーの間の高度の相同性のために更に有効であったことを示す。上記 の操作後に、VHコード遺伝子ライブラリーを、夫々異なる5’プライマーで 行った8種の増幅の生産物から構築する。夫々のプライマー伸長反応からの生産 物の等しい部分を混合し、次いで混合生産物を使用してVHコードDNA同族体を含 むベクターのライブラリーを生成する。 また、VLのDNA同族体を、上記のようにして調製された精製mRNAから調製する 。PCR増幅のための調製において、上記の実施例に従って調製されたmRNAをcDNA 合成の鋳型として使用する。典型的な50μlの転写反応において、水中の牌臓mRN A5〜10μgを最初に65℃で5分間にわたって3’VLプライマー(配列番号53)3 00ng(50.0 pモル)でアニールする。続いて、その混合物を1.5mMのdATP、dCTP 、dGTP及びdTTP、40mMのトリス-HCl、pH8.0、8mMのMgCl2、50mMのNaCl、及び2 mMのスペルミジンに調節する。モロニーマウス白血病ウイルス逆転写酵素(スト ラタゲン)、26単位を添加し、その溶液を37℃で1時間保つ。RCR増幅を、上記 のようにして生成されたcDNA/RNAハイブリッド約5μg、3’VLプライマー(配 列番号53)300ng、5’VLプライマー(配列番号54)300ng、200 mMのdNTPの混 合物、50mMのKCl、10mMのトリス-HCl、pH8.3、15mMのMgCl2、0.1%のゼラチン及 び2単位のTaq DNAポリメラーゼを含む反応液100μl中で行う。その反応混合物 を鉱油で覆い、40サイクルの増幅にかける。夫々の増幅サイクルは、92℃で1分 間の変性、52℃で2分間のアニーリング、及び72℃で1.5分間の伸長を含む。次 いで、増幅試料をフェノール/クロロホルムで2回、クロロホルムで1回抽出し 、エタノールで沈殿させ、10mMのトリス-HCl、pH7.5及び1mMのEDTA中で-70℃で 貯蔵する。 d.DNA発現ベクターへのDNA同族体の挿入H配列の濃縮された発現ライブラリーを調製するために、VH配列の濃縮され たDNA同族体を実施例2cに従って同じ組の5’プライマーを使用するが、3'プラ イマーとして配列番号53のプライマーを用いて調製する。得られるPCR増幅産物 (2.5μg/30μlの150mMのNaCl、8mMのトリス-HCl、pH7.5、6mMのMgCl2、1mM のDTT、200 μg/mlのBSA)を37℃で制限酵素Xho I(125単位)及びSpe I(125単 位)で消化する。増幅反応の生産物の混合物を必要としたクローニング実験にお いて、等容積(50μl、1〜10μgの濃度)の夫々の反応混合物を、増幅の後で、 制限消化の前に合わせる。VH同族体を、Molecular Cloning A Laboratory Manual,Maniatisら編集,Cold Spring Harbor,NY,(1982)に記載された通常 の電気溶離技術を使用して1%のアガロースゲルで精製する。消化されたPCR増 幅牌臓mRNAのゲル電気泳動後に、約350 bpのDNAフラグメントを含むゲルの領域 を切除し、透析膜に対し電気溶離し、エタノールで沈殿させ、10mMのトリス-HCl 、pH7.5及び1mMのEDTAを含むTE溶液中で50ng/μlの最終濃度まで再度懸濁させる 。得られるVH DNA同族体は、ベクターλHc2への方向性結合に適した付着末端を 有するポリペプチド遺伝子のレパートリーに相当する。次いでこれらの調製され たVH DNA同族体を、上記のようにして調製された直線状にされたλHc2発現ベク ターに方向性結合する。 λHc2発現DNAベクターを、このDNA 100 μgを制限エンドヌクレアーゼXhoI及 びSpe I(両方とも、ベーリンガー・マンハイム、インジアナポリス、INから入 手)の夫々250単位及び製造業者により推奨された緩衝液を含む溶液に混合する ことによりDNA同族体を挿入するために調製する。この溶液を37℃で1.5時間保つ 。その溶液を65℃で15分間加熱して制限エンドヌクレアーゼを不活化する。その 溶液を30℃に冷却し、熱死滅可能な(HK)ホスファターゼ(エピセンター、マジ ソン、WI)及びCaCl2を製造業者の仕様に従ってそれに混合する。この溶液を30 ℃で1時間保つ。その溶液をフェノールとクロロホルムの混合物で抽出し、続い てエタノールで沈殿させることによりそのDNAを精製する。 今、λHc2発現ベクターが、先の実施例で調製されたVH DNA同族体への結合の ために用意される。次いでこれらの調製されたVH DNA同族体を、VH DNA同族体 インサート3モルを5℃で一夜にわたってHc2発現ベクターの各1モルと結合す ることにより先に調製したXho I及びSpe Iで制限消化されたλHc2発現ベクター に直接挿入する。そのDNAをギガパックIIボールド(ストラタゲン)でパッケー ジした後に約3.0 x 105のプラーク形成単位を得、その内の50%が組換え体であ る。VH DNA同族体を含む結合混合物を、ギガパックゴールドIIパッキングエキ ストラクト(ストラタゲン)を使用して、製造業者の仕様に従ってパッケージす る。次いで、得られるλHc2発現ライブラリーをXLl-ブルー細胞に形質転換する 。 VL配列の濃縮されたライブラリーを調製するために、VL配列の濃縮された PCR増幅産物を実施例2cに従って調製する。これらのVL DNA同族体を制限酵素Sa c I及びXba Iで消化し、消化されたVL DNA同族体をVH DNA同族体につき上記さ れたようにして1%のアガロースゲルで精製して方向性結合に適したVLポリペ プチド遺伝子のレパートリーを形成する。次いで、調製されたVL DNA同族体を 、λHc2につき記載されたようにして制限酵素Sac I及びXba Iで先に消化された λLc2発現ベクターに方向性結合する。VL DNA同族体を含む結合混合物を、上記 されたようにしてパッケージしてλLc2発現ライブラリーを形成し、XLl-ブルー 細胞への塗布に供する。 e.同じ発現ベクターでVH DNA同族体及びVL DNA同族体をランダムに合わせ ること H鎖及びL鎖を発現する二つのシストロンを発現するためのベクターを含むラ イブラリーの構築を二工程で行う。第一工程において、別個のH鎖ライブラリー 及びL鎖ライブラリーを、記載されたようにして、上記のNPN-KLHで免疫された マウスから得られた遺伝子レパートリーを使用して、夫々、発現ベクターλHc2 及びλLc2中で構築する。第二工程において、これらの二つのライブラリーを夫 々のベクター中に存在する非対称の(antisymmetric)EcoRI部位で合わせる。こ れはクローン(その夫々がH鎖及びL鎖を潜在的に同時発現する)のライブラリ ーを生じた。実際の組み合わせはランダムであり、親動物中のB細胞集団中に存 在する組み合わせを必ずしも反映しない。 上記の免疫感作(実施例2b)から生じる牌臓mRNAを単離し、λHc2発現ベクタ ーを使用してVH遺伝子配列の一次ライブラリーをつくるのに使用する。一次ラ イブラリーは1.3 x 106のプラーク形成単位(pfu)を含み、デカペプチドtagの 発現につきスクリーニングしてVH配列及びCH 1(Fd)配列を発現するクロー ンの比率(%)を測定し得る。このペプチドの配列は、発現、続いてベクターへ のFd(またはVH)フラグメントのクローニングのための枠中のみにある。ライ ブラリー中のクローンの少なくとも80%が、デカペプチドtagの免疫検出に基い てFdフラグメントを発現する。 L鎖ライブラリーをH鎖ライブラリーと同じ方法で構築し、これは2.5 x 106 の員を含む。抗カッパー鎖抗体を使用するプラークスクリーニングは、含まれる ライブラリーの60%がL鎖インサートを発現することを示す。小比率のインサー トが、Sac I及びXba Iによる開裂後にベクターの不完全脱ホスホリル化により生 じる。 一旦得られると、二つのライブラリーを使用して、それらをEcoR I部位で交差 することにより結合性ライブラリーを構築する。交差を行うために、DNAを最初 に夫々のライブラリーから精製する。 実施例2dで調製したλLc2ライブラリーを増幅し、λLc2発現ライブラリーファ ージDNA 500μgを、Molecular Cloning: A Laboratory Manual,Maniatisら編 集,Cold Spring Harbor,NY(1982)に記載された操作を使用して増幅ファージ 系統から調製する。この増幅発現ライブラリーファージDNA 50μgを、エンドヌ クレアーゼ製造業者により供給された緩衝液200 μl中のMLu I制限エンドヌクレ アーゼ100単位を含む溶液(ベーリンガー・マンハイム、インジアナポリス、IN )中で37℃で1.5時間保つ。次いでその溶液をフェノールとクロロホルムの混合 物で抽出する。次いでDNAをエタノールで沈殿させ、水100 μl中に再度懸濁させ る。この溶液を製造業者により特定された成分を含む最終容積200 μlの緩衝液 中の制限エンドヌクレアーゼEcoR I(ベーリンガー)100単位と混合する。この 溶液を37℃で1.5時間保ち、次いでその溶液をフェノールとクロロホルムの混合 物で抽出する。DNAをエタノールで沈殿させ、次いでTE中に再度懸濁させる。 実施例2dで調製したλHc2発現ライブラリーを増幅し、λHc2発現ライブラリー ファージDNA 500μgを、先に詳しく説明した方法を使用して調製する。この増幅 ライブラリーファージDNA 50μgを、エンドヌクレアーゼ製造業者により供給さ れた緩衝液200 μl中のHind III制限エンドヌクレアーゼ100単位を含む溶液(ベ ーリンガー)中で37℃で1.5時間保つ。次いでその溶液を0.1Mのトリス一HCl、pH 7.5で飽和したフェノールとクロロホルムの混合物で抽出する。次いでDNAをエタ ノールで沈殿させ、水100μl中に再度懸濁させる。この溶液を製造業者により特 定された成分を含む最終容積200 μlの緩衝液中の制限エンドヌクレアーゼEcoR I(ベーリンガー)100単位と混合する。この溶液を37℃で1.5時間保ち、次いで その溶液をフェノールとクロロホルムの混合物で抽出する。DNAをエタノールで 沈殿させ、次いでTE中に再度懸濁させる。 制限消化したHc2発現ライブラリー及びLc2発現ライブラリーを一緒につなぐ。 その目的のために、Hc2 lμg及びLc2ファージライブラリーDNA 1μgからなるDNA 混合物を、結合キット(ストラタゲン)中に供給された試薬を使用して10μlの 反応液中で調製する。そのDNA混合物を5分間で45℃に温め、再アニールし得る 付着末端を融解する。次いでその混合物を0℃に冷却して再結合を防止する。バ クテリオファージT4 DNAリガーゼ(エキソヌクレアーゼ耐性アッセイで測定して 0.02単位に相当する0.1ワイス単位)を5mMのATP 1μl及び10Xバクテリオファー ジT4 DNAリガーゼ緩衝液(10X緩衝液は200 mMのトリス-HCl、pH7.6、50mMのMgCl2 、50mMのDTT、及び500 μg/mlのBSAを混合することにより調製される)1μlと 共に冷却DNA溶液に混合して結合混合物を生成する。4℃で16時間結合した後、 その結合ファージDNA 1μlをギガパックゴールドIIパッケージングエキストラ クトでパッケージし、製造業者の指示に従って調製したXLl-ブルーセルに塗布し て、NPN免疫マウスに由来するH鎖及びL鎖を発現できるジシストロニック発現 ベクターのλファージライブラリーを形成する。得られたクローンの一部を使用 してその組み合わせの有効性を測定する。 f.抗NPN反応性ヘテロダイマーを生産するジシストロニックベクターの選択 実施例2aで先に調製した結合性Fab発現ライブラリーをスクリーニングしてNPN に対するアフィニティーを有するクローンを同定する。L鎖フラグメント及びH 鎖フラグメントを同時発現したファージクローンの頻度を測定するために、L鎖 、H鎖及び結合性ライブラリーの二重リフトを、上記のようにしてL鎖及びH鎖 発現につきスクリーニングする。約500の組換えファージのこの研究において、 約60%がL鎖タンパク質及びH鎖タンパク質を同時発現した。 全ての三つのライブラリー、即ち、L鎖、H鎖及び結合性ライブラリーをスク リーニングして、それらがNPNを結合した抗体フラグメントを発現した組換えフ ァージを含んでいたかどうかを測定する。典型的な操作において、30,000のフ ァージをXLl-ブルーセルに塗布し、ニトロセルロースによる二重リフトを125I 標識BSAにカップリングしたNPNへの結合につきスクリーニングする。BSAは、Bol -tonら,Biochem.,133:529-534(1973)により記載されたクロラミン−T方法 に従ってヨウ素化される。 多数のクローンをスクリーニングし、結合性ライブラリー中の抗原結合クロー ンの頻度の更に定量的な推測を得る能力を評価するために、100万のファージプ ラークをスクリーニングし、抗原に結合した約100のクローンを同定する。NPNを 結合すると考えられる6のクローンにつき、6の陽性のバクテリオファージプラ ーク及び約20の周囲のバクテリオファージプラークを含むプレートの領域を選択 し、夫々のプラークをコアーにし、再度塗布し、二重リフトでスクリーニングす る。 NPNと反応するプラークの一つであるクローン2bを生体内切除プロトコルに従 って切除し、この場合、ファージ系統200 μl及びXLI-ブルーのF+誘導体(A600 =1.00)(ストラタゲン)200 μlをMl3mp8ヘルパーファージ(1 X1010pfu/ml) 1μlと混合し、37℃で15分間保つ。ルリアーベルタニ(LB)培地中で4時間保 ち、70℃で20分間加熱してXLl-ブルーセルを加熱死滅した後、ファージミドをXL l-ブルーセルに再度感染し、アンピシリンを含むLBプレートに塗布する。この操 作は、λZap IIベクターからプラスミドベクターへクローン化インサートを変換 して容易な操作及び配列決定(ストラタゲン)を可能にする。次いで、VH及び VLの一部をコードするファージミドDNAを、Sangerら,Proc.Natl.Acad.Sci. ,74:5463-5467(1977)に記載されたサンガー・ジデオキシ方法を使用して、 製造業者の指示(USバイオケミカル社、クレーブランド、オハイオ)に従ってシ ーケナーゼ(Sequenase)キットを使用してDNA配列決定により測定する。クロー ン2b Fd鎖のヌクレオチド残基配列を配列番号71として配列表にリストする。カ ッパーL鎖可変部及び一定領域のヌクレオチド残基配列を、夫々配列番号72及び 配列番号73として配列表にリストする。 g.繊維状ファージ外殻タンパク質膜アンカーをコードするDNA配列の調製 cpVIII膜アンカー: 市販のバクテリオファージベクター(ファーマシア、ピ スキャットアウェー、ニュージャージー)であるM13mp18を、cpVIIIをコードす る遺伝子を単離するための源として使用した。配列番号74として配列表にリスト されたcpVIIIの膜アンカードメインをコードする遺伝子の配列をPCR増幅により 修飾して制限エンドヌクレアーゼ部位、Spe I及びEcoR I、並びにEcoR I部位の 前の二つの終止コドンをとり込んだ。cpVIIIの膜アンカードメインの相当するア ミノ酸残基配列を配列番号17としてリストする。 修飾cpVIIIを調製するために、M13mp18からの複製型DNAを最初に単離した。簡 単には、LB(ルリアーベルタニ培地)2mlに、F’エピソーム(JM107、JM109また はTG1)を有するバクテリア株の培養液50μlを単一プラークから誘導されたバク テリオファージ粒子の1/10の懸濁液と共に混合した。その混合物を絶えず攪拌し ながら37℃で4〜5時間インキュベートした。次いでその混合物を12,000 x g で5分間遠心分離して感染バクテリアをペレット化した。上澄みを除去した後、 ペレットを激しく攪拌しながら100μlの氷冷溶液I中に再度懸濁させた。溶液I は、50mMのグルコース、10mMのEDTA及び25mMのトリス-HCl、pH8.0を混合し、15 分間オートクレーブ処理することにより調製した。 バクテリア懸濁液に、新たに調製した溶液II 200μlを混合し、その管を5回 迅速に倒立させた。溶液IIは、0.2NのNaOH及び1%のSDSを混合することにより 調製した。バクテリア懸濁液に、150 μlの氷冷溶液IIIを混合し、管を倒立位置 で10秒間軽く攪拌して溶液IIIを粘稠なバクテリア溶解産物に分散させた。溶液I IIは、5Mの酢酸カリウム60ml、氷酢酸11.5ml及び水28.5mlを混合することによ り調製した。次いで、得られたバクテリア溶解産物を氷の上で5分間貯蔵し、続 いて小型遠心分離機中で12,000 x gで4℃で5分間遠心分離した。得られた上 澄みを回収し、新しい管に移した。上澄みに、等容積のフェノール/クロロホル ムを添加し、その混合物を攪拌した。次いでその混合物を小型遠心分離機中で12 ,000 x gで2分間遠心分離した。得られた上澄みを新しい管に移し、二本鎖バ クテリオファージDNAを室温で2倍の容積のエタノールで沈殿させた。その混合 物を室温で2分間放置した後、その混合物を遠心分離してDNAをペレット化した 。上澄みを除去し、ペレット化された複製型DNAを25μlのトリス-HCl、pH7.6、 及び10mMのEDTA(TE)中に再度懸濁させた。 次いで二本鎖M13mp18複製型DNAをPCRの鋳型として使用した。プライマー、AK5 (配列番号75)及びAK6(配列番号76)(これらの配列が下記の表5にリストさ れる)をPCR反応に使用してcpVIII膜アンカードメインの成熟遺伝子を増幅し、 二つのクローニング部位、Spe I及びEcoR Iをとり込んだ。PCR反応につき、M13m p18複製型DNA 1ngを含む2μlを0.5 mlの小型遠心分離管中で市販の10X PCR 緩衝液(プロメガ・バイオテク、マジソン、ウィスコンシン)10μlと混合した 。そのDNA混合物に、dNTP(dATP、dCTP、dGTP、dTTP)の2.5mMの溶液8μlを混 合して200μMの最終濃度を生じた。5'前方AK5プライマー3μl(60ピコモル(pM )に相当する)及び3’後方AK6プライマー3μl(60pM)をDNA溶液に混合した 。その混合物に、滅菌水73μl及びポリメラーゼ(プロメガ・バイオテク)1μl 5単位を添加した。鉱油2滴を混合物の上部に入れ、サーモサイクラー中の40ラ ウンドのPCR増幅を行った。増幅サイクルは、52℃で2分間、72℃げ1.5分間そし て91℃で2分間からなっていた。次いで、M13mp18を含む試料から得られたPCR修 飾cpVIII膜アンカードメインDNAフラグメントをジーン・クリーン(Gene Clean )(BIOlOl、ラ・ジョラ、カリフォルニア)で精製し、フェノール/クロロホル ムで2回抽出し、クロロホルムで1回抽出し、続いてエタノールで沈殿させ、そ して10mMのトリス-HCl、pH7.5、及び1mMのEDTA中で-70℃で貯蔵した。 修飾cpVIII膜アンカードメインの増幅を確かめるために、PCR精製DNA生産物を 1%のアガロースゲル中で電気泳動にかけた。cpVIIIの予想サイズは約150の塩 基対であった。修飾cpVIII DNAフラグメントを含むアガロース中の領域を、上記 のようにしてアガロースから単離した。単離した修飾cpVIII DNAフラグメントの 配列を配列番号84としてリストする。次いで、融合タンパク質Fd-cpVIIIをコー ドするDNAセグメントを形成するために、単離したcpVIII DNAフラグメントを実 施例2iに下記される修飾Fdの同様に調製されたフラグメントと混合した。 cpVIII膜アンカー: また、M13mp18を、cpIIIで膜アンカーをコードする遺伝 子を単離するための源として使用し、その配列が配列表中に配列番号85としてリ ストされる。膜アンカードメインcpIIIのアミノ酸残基配列を配列番号16にリ ストする。M13mp18複製型DNAを上記のようにして調製し、Lac Zプロモーターを コードする配列に対し5’に配置されたcpIII膜アンカードメインの成熟遺伝子 、オペレーター及びL鎖発現を調節するためのcap結合部位からなるDNAフラグメ ントの構築のために二つのPCR増幅の鋳型として使用した。制限部位、Spe I及び EcoR Iを増幅反応中につくり、夫々フラグメントの5'末端及び3'末端に配置され ていた。二つの別個のPCR増幅の生産物を組み合わせることによりこのフラグメ ントをつくる操作を、以下に記載する。 プライマー対、即ち、表5にリストされたG-3(F)(配列番号79)及びG-3(B )(配列番号80)を、先に行ったような第一PCR反応に使用してcpIII膜アンカー 遺伝子を増幅し、Spe I制限部位及びNhe I制限部位をフラグメントにとり込んだ 。また、増幅PCRフラグメントは、H鎖とcpIIIをコードするドメインの間に並置 された四つのグリセリン残基及び一つのセリンを含む5アミノ酸テサー(te-the r)をコードするヌクレオチド配列を含んでいた。一旦発現されると、規則的な 二次構造を欠いている5アミノ酸配列は、FabドメインとcpIIIドメインの間の相 互作用を最小にするのに利用できた。フラグメントの夫々5’末端及び3’末端 にSpe I部位及びNhe I部位を有する得られたPCR修飾cpIII DNAフラグメント を上記のようにして確認し、精製した。PCR修飾cpIII膜アンカードメインDNAフ ラグメントの配列を配列表中に配列番号86としてリストする。表7にリストされ たプライマー対、Lac-F(配列番号81)及びLac-B(配列番号82)を使用する第二 PCR増幅を、M13mp18複製型鋳型DNAの別個のアリコートにつき行って、LacZプロ モーター、オペレーター及び5’Nhe I部位と3’EcoR I部位とを有するCap結合 部位を増幅した。この増幅に使用したプライマーは、増幅フラグメントの5’末 端にNhe I部位をとり込んでcpIII遺伝子フラグメントの3’末端及び増幅cpIII フラグメントに対し3’のNhe I部位の一部とオーバーラップするように設計し た。PCR生産物の反応及び精製を上記のようにして行った。5’Nhe I制限部位と 3'EcoR I制限部位とを有する得られたPCR修飾cpIII DNAフラグメントの配列を配 列表中に配列番号87としてリストする。 cpIII膜アンカー及びLacZプロモーター領域を構築するのに使用するための別 のLac-Bプライマーは、表5に示されたLac-B’であった。第二PCR増幅において 、 Lac-Bに代えてLac-B’をLac-Fと共に使用した以外は、増幅反応を上記のように して行った。増幅反応からの生産物を配列表中にヌクレオチド位置1からヌクレ オチド位置172までの配列番号87としてリストする。Lac-B’の使用は、3’末端 で29のヌクレオチドを欠いているLacZ領域を生じたが、Lac-Fプライマー及びLac -Bプライマーで生産された更に長いフラグメントと機能上均等であった。 次いで、プライマー対6-3(F)と6-3(B)及びLac-FとLac-Bを使用する第一PC R増幅及び第二PCR増幅の生産物を、cpIII膜アンカーオーバーラップ及びNhe I制 限部位に相当するヌクレオチドで組換えて、G3-F(配列番号79)とLac-B(配列 番号82)のプライマー対を使用するPCRの第二ラウンドにかけて、下記のものか らなる組換えPCR DNAフラグメント生産物を生成した。5’Spe I制限部位;全成 熟cpIIIタンパク質のアミノ酸残基198に相当するヌクレオチド残基配列で開始す るcpIII DNA膜アンカードメイン;アミノ酸残基番号112にある膜アンカーにより 与えられる内在性終止部位;Nhe I制限部位、LacZプロモーター、オペレーター 及びCap結合部位配列;並びに3’EcoR I制限部位。次いで、組換えPCR修飾cpII I膜アンカードメインDNAフラグメントをSpe I及びEcoR Iで制限消化して、実施 例1a(iv)で調製された唯一のSpe I部位を有するpComb2ファージミド発現ベク ターへの方向性結合のためのDNAフラグメントを生産して、実施例1b(ii)に記 載されたようにしてpComb2-III(また、pComb2-IIIと称される)ファージミド発 現ベクターを生成した。 h.抗NPNコードVH DNAセグメントの単離 PCR修飾cpVIII膜アンカードメインフラグメントによる組換えのための修飾Fd フラグメントを調製して、Fd-cpVIII DNA融合生産物を生成するために、上記のP CR増幅を、実施例2fで調製したクローン2bを鋳型として使用して行った。プライ マー、Hc3(配列番号77)及びAK7(配列番号78)(これらの配列が表5にリスト されている)をPCRに使用してクローン2bのFd部分を増幅し、cpVIIIオーバーラ ップ配列と共にXho Iクローニング部位及びSpe Iクローニング部位をとり込んだ 。増幅PCR修飾Fd生産物を精製し、電気泳動にかけ、上記のようにして1%のア ガロースゲルから単離した。Fdフラグメントのサイズは680の塩基対であった。 i.融合タンパク質Fd-cpVIIIの一部をコードするDNAセグメントの調製 先に調製したcpVIIIオーバーラップヌクレオチド配列を含む精製PCR修飾FdDNA フラグメントをPCR修飾cpVIII膜アンカードメインフラグメントと混合して混合 物を生成した。混合物中のフラグメントをそれらの相補領域で組換えた。次いで 、組換えPCRフラグメントを含む混合物を、末端プライマー対、AK6(配列番号76 )とHc3(配列番号77)(表5)を使用して上記のようにPCRの第二ラウンドにか けた。PCR増幅の相当する生産物を、上記のように精製し、アガロースゲルによ る電気泳動にかけた。PCR生産物を測定したところ、約830の塩基対(Fd=680+150 )であり、FdとcpVIIIの融合を確認した。Fd配列を5’から3’の方向に枠中の cpVIII配列と結合するPCR生産物の配列を、配列番号88としてリストする。次い でFd-cpVIII融合生産物を、pCBAK8-2bジシストロニックファージミド発現ベクタ ーの構築につき実施例2jに記載された方向性結合に使用した。 j.pCBAK8-2bジシストロニック発現ベクターの構築 カッパーL鎖とのFd-cpVIII融合タンパク質の協調発現のためのファージミド ベクターを構築するために、実施例2iで先に調製したPCR増幅Fd-cpVIII融合生産 物を最初に実施例2fで調製したNPN結合性ライブラリーから単離されたクローン2 bファージミド発現ベクターにつないだ。その結合につき、Fd-cpVIII PCR融合生 産物を最初にXho I及びEcoR Iで制限消化した。クローン2bファージミドベクタ ーを同様に消化して、クローニング領域及びデカペプチド領域を除去した。消化 したFd-cpVIIIフラグメントを、消化クローン2bと混合し、Xho I及びEcoR I制限 消化により生じた付着末端でそれにつなぐ。その結合は、Fd-cpVIIIポリペプチ ド融合タンパク質をコードするヌクレオチド残基配列を、クローン2b中に既に存 在するリボソーム結合部位、pelBリーダー配列及びカッパーL鎖をコードするヌ クレオチド残基配列を有する第二カセットに操作により結合して最初のクローン 2bファージミド発現ベクター中にジシストロニックDNA分子を生成することをも たらす。 次いで、E.coli、株TGlを、ジシストロニックDNA分子を含むファージミドで 形質転換し、形質転換体をアンピシリンで選択する。何となれば、最初のクロー ン2bは、アンピシリン選択可能な耐性マーカー遺伝子を含んでいたからである。 E.coliの高効率の電気形質転換につき、TGl細胞の一夜培養物1:100容積をL− ブロース(1%のバクトトリプトファン、0.5%のバクト酵母エキス、0.5%のNa Cl)1リットルに接種する。細胞懸濁液を激しく振とうしながら37℃で0.5〜1.0 の600nmにおける吸光度に保つ。次いで対数期増殖の細胞懸濁液を、最初にフラ スコを氷の上で15〜30分間冷却し、続いて低温ローター中で4000 x gで15分間遠 心分離してバクテリアをペレット化することにより回収する。得られた上澄みを 除去し、バクテリア細胞ペレットを合計1リットルの冷水中で再度懸濁させて細 胞懸濁液を生成する。遠心分離及び再懸濁操作をもう2回繰り返し、最後の遠心 分離後に、細胞ペレットを冷却した10%のグリセロール20ml中で再度懸濁させる 。次いで、再度懸濁された細胞懸濁液を遠心分離して細胞ペレットを形成した。 得られた細胞ペレットを冷却した10%のグリセロール中で2〜3mlの最終容積ま で再度懸濁させて(1〜3)X 1010細胞/mlの細胞濃度を生じる。電気形質転換 操作につき、調製した細胞懸濁液40μlをファージミドDNA 1〜2μlと混合して 細胞−ファージミドDNA混合物を生成する。得られた混合物を混合し、氷の上に 1分間載せる。エレクトロポレーション装置、例えば、ジーン・パルサーを25μ F及び2.5kVにセットする。パルスコントローラーを200オームにセットする。細 胞−DNA混合物を低温の0.2cmのエレクトロポレーションキュベットに移す。次い でキュベットを冷却した安全チャンバーに入れ、上記のセッティングで1回パル スにかける。次いで、パルス化混合物に、SOC培地1mlを混合し、細胞をパスツ ールピペットで再度懸濁させる(SOC培地は、2%のバクトトリプトファン、0.5 %のバクト酵母エキス、10mMのNaCl、2.5mMのKCl、10mMのMgCl2、10mMのMgSO4、 及び20mMのグルコースを混合することにより調製する)。次いで細胞懸濁液を17 X 100mmのポリプロピレン管に移し、37℃で1時間保つ。その維持期間後に、形 質転換TGl細胞を、選択可能なマーカー遺伝子を与えるファージミドを含むアン ピシリン耐性コロニーの選択のためにアンピシリンLBプレートに塗布する。 アンピシリン耐性コロニーを選択し、Fabの正確なインサートサイズ及び発現 につき分析する。簡単には、選択コロニーのDNAミニプレプ(miniprep)をファ ージミドDNAの単離のために調製する。夫々のミニプレプからの単離ファージミ ドDNAをXho I及びEcoR Iで制限消化し、消化産物を1%のアガロースゲルによる 電気泳動にかけた。クローンAK16は830bpのフラグメントとして選択され、その ゲルで視覚化されて、消化クローン2bへのFd-cpVIII PCR融合生産物の挿入を確 認する。 次いでクローンAK16ファージミドをXho I及びXba Iで制限消化し、Fd-cpVIII 融合タンパク質、リボソーム結合部位及びL鎖の発現のためのpelBリーダー配列 、スペーサー領域並びに2bカッパーL鎖をコードするジシストロニックDNA分子 のヌクレオチド残基配列をアガロースゲル電気泳動により単離する。次いで単離 されたジシストロニックDNAフラグメントを、実施例1c(ii)で調製したXho I及 びXba Iで制限消化したpCBAKO発現ベクターにつないでpCBAK8-2bと称されるジシ ストロニックファージミド発現ベクターを生成する。 得られたpCBAK8-2b発現ベクターは、下記の要素をコードするヌクレオチド残 基配列からなる。複製のfl繊維状ファージ開始点;クロラムフェニコールアセチ ルトランスフェラーゼ選択可能な耐性マーカー遺伝子;LacZ遺伝子から上流の誘 導LacZプロモーター;T3ポリメラーゼプロモーター及びT7ポリメラーゼプロモー ターにより隣接された多重クローニング部位;及びジシストロニックDNA分子( リボソーム結合部位、pelBリーダーと、第二結合部位、第二pelBリーダー、及び カッパーL鎖からなる第二カセットに操作により結合されたFd-cpVIII DNA融合 生産物とからなる第一カセット) k.pCBAK3-2bジシストロニック発現ベクターの構築 カッパーL鎖とのFd-cpVIII融合タンパク質の協調発現のためのファージミド ベクターを構築するために、5’Spe I制限部位及び3’EcoR I制限部位を有す る実施例2gで調製したPCR増幅され、組換えたcpIII膜アンカー及びLacZプロモー ター領域フラグメントを最初に実施例1a(iv)で調製したSpe I及びEcoR Iで既 に消化されたpComb2ファージミド発現ベクターに方向性結合してpComb2-3(また 、pComb2-IIIと称される)ファージミドベクターを生成する。ベクター構築の詳 細につき実施例1b(ii)を参照のこと。アンピシリン耐性ベクターが好ましい場 合に、このベクターが本発明に使用される。こうして、唯一のSpe I制限部位を 有する得られたpComb2-3ベクターは、H鎖(Fd)-cpIII融合生産物及びL鎖タン パク質の別々の発現を誘導するための別個のLacZプロモーター配列/オペレータ ー配列を 含む。発現タンパク質を、膜における機能性アセンブリーのためのpelBリーダー 配列により細胞周辺腔に誘導する。ベクター中のファージF1遺伝子間領域の封入 は、ヘルパーファージの助けにより一本鎖ファージミドのパッケージングを可能 にする。ヘルパーファージ重感染の使用はcpIIIの二つの形態の発現をもたらす 。こうして、正常なファージ形態形成は、Fab-cpVIII融合につき図6に図示され るように、Fab-cpIII融合とウイルス粒子へのとり込みのためのヘルパーファー ジの天然cpIIIとの間の競合により乱される。 本発明に使用するためのクロラムフェニコール耐性ベクターを生産するために 、得られたpComb2-3ファージミドベクターをSac II及びApa Iで制限消化して単 離フラグメントを生成する。次いで、発現調節配列及びcpIII配列を含む得られ た単離フラグメントを、実施例1c(ii)で調製した同様に消化されたpCBAKOファ ージミドベクターに方向性結合してpCBAK3ファージミド発現ベクターを生成する 。このベクターはFd及びカッパーL鎖配列を欠いている。 次いで、融合タンパク質及びカッパーL鎖の発現のためのクロラムフェニコー ル耐性ファージミド発現ベクター、pCBAK3-2bを構築する。簡単には、先に調製 したpCBAK3ファージミド発現ベクターを最初にXho I及びSpe Iで消化して直線状 にされたpCBAK3ファージミド発現ベクターを生成する。続いて、Xho I部位及びS pe I部位を含む実施例2hで調製したPCR増幅、修飾FdフラグメントをXho I及びSp e Iで制限消化する。次いで、得られたFdフラグメントを付着末端を介してXho I 及びSpe Iで制限消化されたpCBAK3ファージミド発現ベクターに方向性結合して 、PCR修飾FdフラグメントがcpIIIをコードするヌクレオチド残基配列に枠中で操 作により結合されている第二ファージミド発現ベクターを生成する。次いでE.c oli株XLl-ブルー(ストラタゲン)を、Fd-cpIIIを含む上記のファージミドベク ターで形質転換する。ファージミドをコードするFd-cpIIIを含む形質転換体をク ロラムフェニコールで選択する。ファージミドDNAをクロラムフェニコール耐性 クローンから単離し、Sac I及びXba Iで制限消化して、以下に調製されたSac I 及びXba I L鎖フラグメントが方向性結合されている直線状にされたファージミ ド発現ベクターを生成する。 実施例2aに記載されたようにして最初の結合性ライブラリーから単離されたフ ァージミドクローン2bをSac I及びXba Iで制限消化してカッパーL鎖をコードす るヌクレオチド残基配列を単離する。次いで、単離カッパーL鎖配列を、Fd-cpI IIを含む先に調製したSac I及びXba Iで制限消化されたファージミド発現ベクタ ーに方向性結合してファージミド発現ベクター、pCBAK3-2bを生成する。得られ たベクターは、カッパーL鎖とのFd-cpIII融合タンパク質の協調発現のためのジ シストロニックDNA分子のヌクレオチド残基配列を含む。得られたファージミド 発現ベクターは、下記の要素をコードするヌクレオチド残基配列からなる。複製 のfl繊維状ファージ開始点;クロラムフェニコールアセチルトランスフェラーゼ 選択可能な耐性マーカー遺伝子;LacZ遺伝子から上流の誘導LacZプロモーター; T3ポリメラーゼプロモーター及びT7ポリメラーゼプロモーターにより隣接された 多重クローニング部位;及びジシストロニック分子(第一リボソーム結合部位と 、第二LacZ、第二リボソーム結合部位、及びカッパーL鎖に操作により結合され た第二pelBリーダーからなる第二カセットに操作により結合されたFd-cpIIIに操 作により結合されたpelBリーダーとからなる第一カセット) 次いで、XL1-ブルー細胞をファージミド発現ベクターpCBAK3-2bで形質転換す る。クロラムフェニコール耐性ファージミドを含む形質転換コロニーを上記のよ うにして選択し、実施例2jに記載されたようにしてFabの正確なサイズインサー ト及び発現につき分析する。pCBAK3-2bファージミドベクターにおけるFabのイン サート及び発現の確認後に、XLl-ブルー細胞を、実施例3及び4に記載されたよ うなFab抗体の発現のために形質転換し、誘導する。 Fab-cpIII融合の発現、選択及びスクリ−ニングの結果は、Fab-cpVIII融合に より与えられた多価ディスプレイに対しFab-cpIII融合により与えられた一価デ ィスプレイの利点を明らかにする。何となれば、それは、免疫系と同様に、アフ ィニティーだけでなく特異性に基くクローンの選別を可能にしたからである。弱 い結合クローン7Eに対し緊密結合クローン10Cの253倍の濃縮を、Barbasら,Proc .Natl.Acad.Sci.,USA,88:7978-7982(1991)に記載されたpComb3系を使用 して得た。ファージ表面でペプチドの4〜5のコピーをディスプレイしたファー ジに関するペプチドライブラリーによる研究は、高アフィニティーペプチド(10-9 M)をディスプレイするファージから中間アフィニティーペプチド(10-6M)を ディ スプレイするファージの分離を多価結合により阻止することを示した。Cwirlaら ,Proc.Natl.Acad.Sci.,USA,87:6378-6382(1990)。多価結合は、高アフ ィニティーFabを有するファージと低アフィニティーFabを有するファージを区別 する能力を低下するキレート化効果をもたらす。 その系の使用を、Perssonら,Proc.Natl.Acad.Sci.,USA,88:2432-2436 (1991)に記載された既に特性決定された(5000のクローン当たり一つのバイン ダー)ヒト結合性抗破傷風トキソイドFabライブラリーを選別することにより更 に実証した。最初にλファージベクター系中のライブラリーを、H鎖及びL鎖の 最初の対合を保持するpCBAK3-2b中で再構築した。ライブラリーサイズ、107のク ローンは最初のλファージライブラリーの10倍大きかった。パンニングの単一ラ ウンド後に、採取した13または57のクローンを測定したところ、破傷風トキソイ ドバインダーであり、これは103倍の濃縮に相当した。3回目のパンニング後に 、ファージ収率は200倍に増大し、これは特異性ファージの濃縮を示した。こう して、全てのクローンは抗原特異性バインダーであった。こうして、108の員の 大きな結合性ライブラリーが、この系を使用して利用可能である。更に大きなラ イブラリーを、突然変異誘発により得ることができる。 3.ファージ表面における抗NPNヘテロダイマーの発現 ファージ表面でNPNに対し誘導された抗体Fabの発現につき、XLl-ブルー細胞を ファージミドベクター、夫々、実施例2i及び2kで調製したpCBAK8-2b及びpCBAK3- 2bで別々に形質転換する。形質転換体を、30μg/mlのクロラムフェニコールを含 むLBプレートで選択する。抗生物質耐性コロニーを夫々のファージミド形質転換 につき選択し、ファージミド及びF’エピソームの夫々の抗生物質選択のために3 0μg/mlのクロラムフェニコール及び12.5μg/mlのテトラサイクリンを含むスー パーブロース(スーパーブロースは下記の成分を混合することにより調製する: 3[N−モルホリノ]プロパン−スルホン酸(MOPS)20g;トリプトン60g;酵母 エキス40g;及び水2リットル;pHを10MのNaOHで7.0に調節)中の37℃の培養液 中で増殖させる。抗生物質耐性の形質転換したXLl-ブルー細胞をスーパーブロー ス中で0.4の光学密度(OD600nm)まで希釈する。インデューサー、イソプロピル チオガラクトピラノシド(IPTG)を1mMの最終濃度にバクテリア懸濁液に混合し 、 その混合物を37℃で1時間保ってLacZプロモーターからの融合タンパク質及びカ ッパーL鎖の発現を誘導する。次いでへルパーファージ、R408またはVCS M13( ストラタゲン)を誘導バクテリア懸濁液に10〜20のヘルパーファージ対1の形質 転換バクテリア細胞の比で混合してファージミドDNAのセンスストランドのコピ ーの発生を開始する。次いで、ヘルパーファージを含む混合物を37℃で更に2時 間保って繊維状バクテリオファージアセンブリーを可能にし、この場合、cpVIII またはcpIIIのバクテリオファージ膜アンカードメインに融合された発現された 抗NPN Fab抗体がバクテリオファージ粒子の表面にとり込まれた。次いでバクテ リア懸濁液を遠心分離してバクテリア細胞ペレットと、ファージを含む上澄みと を得る。上澄みを除去し、回収し、以下に記載されるように、cpVIIIまたはcpII Iによりファージ粒子につなぎ止められた機能性抗NPN Fab分子の存在につき分析 する。 4.繊維状ファージの表面における抗NPNヘテロダイマーの存在及び機能を確認 するためのファージElisaアッセイ 微量定量プレートをNPN-BSA接合体(0.1ml、0.1Mのトリス-HCl、pH9.2中1μg /ml)で被覆し、PBS中1%のBSAでブロックする。実施例3で調製したpCBAK8-2b 誘導ファージ(0.1ml)の連続2倍希釈液を、前もって被覆された微量定量プレ ートに混合し、室温で3時間または4℃で16時間保つ。これらのプレートをPBS で洗浄し、ヤギ抗カッパーアルカリ性ホスファターゼ接合体(フィッシャーバイ オテク、ピッツバーグ、ペンシルバニア)を添加し(0.1%のBSAを含むPBS中で1 /1000に希釈したもの、0.1ml)、室温で2時間インキュベートする。プレートを PBSで洗浄し、基質を添加する(50mMのMgCl2を含む0.1MのトリスーHCl、pH9.5中 1mg/mlのパラ−ニトロフェニルホスフェート、0.1ml)。シグナル発生のために 37℃でインキュベートした後、400nmにおける光学密度を測定する。競合アッセ イを、0から5mg/ウェルまでの範囲の次第に増加する量の遊離NPNハプテンを添 加して行う。 シグナルがこのアッセイで発生されるためには、ファージ粒子は(i)Fd鎖及 びカッパーL鎖と機能上関連し、かつ(ii)多価である必要がある。次第に増加 する濃度の遊離ハプテンの存在下でプレートへの結合を抑制することにより、粒 子の 特異性を評価した。発生したファージ粒子はELISAの固相への結合を示し、そし てハプテンの添加により抑制し得る。そのアッセイを使用して、ファージ粒子の 表面に存在し、かつエピトープを含む前もって選択されたリガンドチャプター( chapter)を結合できるエピトープ結合複合体を形成する抗体H鎖ポリペプチド 及びL鎖ポリペプチドの機能性アセンブリーを実証する。 5.PhoPhab系に使用するためのファージミド発現ベクターを含むアルカリ性ホ スファターゼの調製 今、本発明の系を、アルカリ性ホスファターゼ及び結合性ライブラリーからの 抗体Fab’を繊維状ファージ骨格にとり込むことによりつくった。更に結合性抗 体ライブラリーを生産し、またイムノアッセイ操作を促進するために、PhoPhab (ホスファターゼ−繊維状ファージ−抗体Fabフラグメント)系を開発した。本 発明の方法により生産されたPhoPhabは抗原特異性であり、また抗体を置換し得 る。更に多い時間を消費する従来の方法とは違って、PhoPhab系及び方法は高価 な細胞培養を必要とせず、しかも可溶性抗体を単離しないでELISAの如き免疫化 学技術を行うことが可能である。最も重要なことに、PhoPhabが半合成繊維状フ ァージライブラリー[Barbasら,Proc.Natl.Acad.Sci.,USA,89:4457-4461 (1992)、その開示が参考として本明細書に含まれる]から生産される場合には 、免疫感作が抗原特異性試薬を生成するのに必要とされない。 ファージディスプレイ系は、抗原を結合する能力のためにランダムに組み合わ されたH鎖フラグメント及びL鎖フラグメントの大きなライブラリー(107〜108 の員)のスクリーニングを促進するのに使用されていた。Barbasら,Proc.Natl .Acad.Sci.,USA,88:7978-7982(1991)及びClacksonら,Nature,352:624 -628(1991)を参照のこと。これらのライブラリー及び実施例1〜3に記載され たライブラリーの如きライブラリーを、免疫された被検者の組織またはランダム 化配列を含む先に構築されたライブラリーからの別個の可変H鎖及びL鎖のPCR クローニングにより構築した。これらの鎖を、本明細書に記載されたファージミ ド発現ベクターpComb3またはpComb8中でランダムに対合し、繊維状ファージ外殻 タンパク質3または8のフラグメントへのH鎖の夫々の融合を得た。続いてE.c oliをファージミド発現ベクターで形質転換し、こうして、Fabを含むディスプレ イ されたH鎖及びL鎖のヌクレオチド配列をコードするベクターDNAの一本鎖を含 んでいた。形質転換E.coliから排出されたファージは、ファージ粒子の領域に 融合されたFabフラグメントを有し、その位置はアンカータンパク質に依存する 。こうして、このファージミド発現系は、単一ファージ粒子中の認識及び複製の 両方のプロセスをリンクする。 Parmleyら,Gene,74:305-318(1988)により記載されたパンニングと称され る方法において、H鎖及びL鎖の抗原結合対を発現するファージが濃縮され、単 離される。Burtonら,Proc.Natl.Acad.Sci.,USA,88:10134-10137(1991) により記載されたHIVのヒトFab’だけでなく、種々の抗原のマウスFab’が、こ れらの方法により単離されていた。後者につき、Kangら,Proc.Natl.Acad.Sc i.,USA,88:4363-4366(1991)を参照のこと。抗体の他に、バクテリアのアル カリ性ホスファターゼ(また、BAPと称される)(E.C.3.1.3.1、PhoA 遺伝子産物)が遺伝子IIIタンパク質に結合されており、McCaffertyら,Protein Eng.,4:955-961(1991)により記載されているように活性であることが示さ れ、その開示が参考として本明細書に含まれる。得られた酵素ファージがホスフ ァターゼ活性を示し、アフィニティーカラムで精製できた。これらの結果は重要 である。何となれば、BAPは、通常、活性を示すためにはダイマーであることが 必要とされるからである(McCrackenら,J.Biol.Chem.,255:2396-2404(198 0))。ファージに関する活性を説明するために、McCaffertyら(上記文献、(1 991))は、二つのBAP-遺伝子III融合がファージで会合して酵素活性ダイマーを 生じることを示唆した。 繊維状ファージ粒子の先端に位置された遺伝子IIIタンパク質の5つのコピー の他に、粒子のシャフトを含み、かつcpVIIIタンパク質の約2700のコピーを有す る遺伝子VIIIタンパク質(cp8即ちcpVIII)が、本明細書に示され、またKangら ,上記文献(1991)及びGramら,Proc.Natl.Acad.Sci.,USA,89:3576-3580 (1992)により記載されているように、タンパク質を繊維状ファージの表面につ なぎ止めるのに使用し得る。今、ファージは、図7に示されるように、Fab-cpVI II融合をアルカリ性ホスファターゼ-cpVIII融合の多重コピーにリンクするため の骨格として使用し得ることが発見された。PhoPhabと称される本発明のFab-フ ァージ-アルカリ性ホスファターゼ接合体はELISA用の特異的な一工程試薬である 。 本発明の二重接合ファージを生産するために、pComb3系からの抗原結合クロー ンがPhoPhabに直接変換し得るように、pPho8catと称される第二発現ベクターを 構築した。本発明に使用するためのpPho8cat発現ベクターの構築を下記の実施例 5aに示す。また実施例5aに記載される好ましいベクターは、複製の外来のfl開始 点を含むBsp Hl及びHind III 122lbpフラグメントを欠いている修飾pPho8catで ある。この修飾ベクターは、図14Aに示されるようにpPho8Bと称される。加えて 、pPhoL8と称される発現ベクターがまた二重接合ファージの生産における使用に 意図されている。このベクターは、アルカリ性ホスファターゼ指示薬タンパク質 をコードする配列とファージ外殼タンパク質8アンカーをコードする配列の間に 位置された60のヌクレオチドのリンカー領域を有する点でpPho8catの修飾体であ る。そのリンカーは、反復アミノ酸残基配列(Glu-Gly-Gly-Gly-Ser)4(配列番 号91)をコードする。リンカーの存在は、ファージの表面における発現アルカリ 性ホスファターゼタンパク質の好ましい二量化を与え、これが検出可能なシグナ ルの増幅を可能にする。本発明に使用するためのpPhoL8発現ベクターの構築を下 記の実施例5bに示す。pPhoL8Bと称される更に別の修飾ベクターは、上記のリ ンカー配列を含むpPho8Bベクターである。このベクターを実施例5dに記載し、図 14Bに示す。 本発明に使用するための別の好ましいベクターは、可溶性アルカリ性ホスファ ターゼ指示薬タンパク質の発現を与えるアルカリ性ホスファターゼ遺伝子の末端 に対し3’に位置されたアンバー終止を含むpPhoCである。pPhoC発現ベクターを 実施例8に記載し、図14Cに示す。 a.pPho8CATの構築 本発明に使用するためのpPho8CAT発現ベクターを生産するために、アルカリ性 ホスファターゼ遺伝子pPhoAを最初にオリゴヌクレオチド5’プライマー、PHO5 5’-CAGCTG CTCGAGCGGACACCAGAAATGCCTGTT-3’ (配列番号92) 及び3’プライマー、PHO3 5’-AGGCTT ACTAGTTTTCAGCCCCAGAGCGGCTTT-3’ (配列番号93) を用いて、実施例2cに記載されたようなPCRによりE.coli株XLl-ブルー(ストラ タゲン)からクローン化した。オペロン・テクノロジーズ、アラメダ、CAにより 合成されたプライマーは、Changら,Gene,44:121-125(1986)(その開示が参 考として本明細書に含まれる)に記載されたように、以下pPhoAと称されるアル カリ性ホスファターゼ遺伝子の公表された配列に基いていた。加えて、これらの プライマーを、制限エンドヌクレアーゼクローニング部位、Xho I及びSpe I(こ れらは夫々5’プライマー及び3’プライマー中で下線を施されている)をpPho Aヌクレオチド配列の末端にとり込むように設計した。Xho I及びSpe Iによる消 化後に、インサートを実施例1b(i)で調製したpComb2-8発現ベクターに方向性 結合して、5’pelBシグナルペプチドとC末端に融合されたcpVIIIをコードする 3’ヌクレオチド配列の間にpPhoA PCR増幅インサートのポジショニングを得た 。次いで得られた発現ベクターDNAをXLl-ブルー細胞に形質転換した。XLl-ブル ー細胞中の形質転換体を、アンピシリン耐性のための100mg/mlのカルベニシリン 、0.1mMのホスフェート、及び40μg/mlの濃度のアルカリ性ホスファターゼの基 質である5−ブロモ−4−クロロインドリルホスフェート(X-P)を含むLB寒天 に塗布することにより選択した。 挿入ベクターを有する青色のコロニーを選択し、プラスミドDNAを単離した。 次いで得られたプラスミドDNAをEag Iで消化し、5’から3’の方向にリストし た下記の要素を有するpComb2-8の転写単位を含む2458bpのフラグメントを単離し た。 リボソーム結合部位;pelBリーダー配列;5のアミノ酸をコードするスペーサー 配列;Xho I制限部位、続いてPhoAヌクレオチド配列:Spe I制限部位、続いてcp VIIIヌクレオチド配列;及びヌクレオチド終止シグナル、続いて制限部位EcoRI 及びXba I。 次いでこの操作フラグメントを発現ベクターpFL261中のEag I部位につないだ 。pFL261に挿入されたフラグメントの略図を図8に示す。PhoAアミノ酸残基配列 のアミノ末端及びカルボキシ末端が、RTP(Arg-Thr-Pro)で開始し、LK(Leu-Ly s)で終了するXho I部位とSpe I部位の間に示される。本発明に使用されるpFL26 1発現ベクターは、Larimerら,Protein Eng.,3:227-231(1990)(その開示が 参考として本明細書に含まれる)により記載されていた。pFL261の完全ヌクレオ チド配列は、受理番号M29363としてEMBL、GenBank及びDDBJヌクレオチド配列デ ータベース中にある。正確な配向を有するクローンを、Xba Iによる制限消化物 及び McCaffertyら,Protein Eng.,4:955-961(1991)により記載されたようなX-P を加水分解する能力により同定した。正確な配向でアンカータンパク質cpVIIIを コードするヌクレオチド配列に操作により結合されたPhoA遺伝子を有する6346bp の得られたプラスミドをpPho8catと称した。このプラスミドは、複製のp15A開始 点及びクロラムフェニコール耐性を与えるクロラムフェニコールアセチルトラン スフェラーゼ(CAT)遺伝子だけでなく、tacプロモーターの制御下のPhoA-cpVII I融合を含んでいた。pPho8cat構築物の略図を図9に示す。p15A開始点は、pComb 3だけでなくpComb2-3のcolE1開始点と適合性であり、安定な二重形質転換体、Ph oPhabが生じることを可能にする。pFL261と同様のその他の宿主ベクターが、Pho Phabをつくるための本発明における使用に意図されている。 b.pPho8Bの構築 本発明に使用するのに好ましいベクターは、複製の外来のfl開始点を含むBasp Hl及びHind III 122lbpフラグメントを欠いている修飾pPho8catである。5127bp のこの修飾ベクターをpPho8Bと称する。pPho8B構築物の略図を図10そしてまた図 14Aに示す。pPho8Bベクターは複製のfl開始点を欠いているので、ヘルパーファ ージによる救済後に生産された一本鎖DNAは得られたファージにとり込まれず、 それにより、本発明で調製され、下記の実施例7に記載されるpComb2-3ヘテロダ イマーポリペプチド発現ベクターからの一本鎖DNAを有するファージのスクリー ニングを改良する。pPho8Bベクターの選択及びスクリーニングを、pPho8catにつ き先に記載されたようにして行った。 c.pPhoL8の構築 pPhoL8と称される発現ベクターがまた二重接合ファージの生産において本発明 に使用するのに意図されている。このベクターは、それがアルカリ性ホスファタ ーゼ指示薬タンパク質をコードする配列とPhoA、ファージ外殻タンパク質8アン カーをコードする配列の間に配置された60のヌクレオチドのリンカー領域を有す る点でpPho8catの修飾である。そのリンカーは反復アミノ酸残基配列(Glu-Gly- Gly-Gly-Ser)4(配列番号91)をコードする。リンカーの存在は、ファージの表 面における発現アルカリ性ホスファターゼタンパク質の好ましい二量化を与える 。 pPhoL8を構築するために、pComb2-8を最初にSpe Iで消化し、一本鎖ヌクレオ チド懸垂をムング・ビーン(Mung Bean)ヌクレアーゼで消化して直線状にされ た平滑断端されたpComb2-8発現ベクターを生産した。ヌクレオチド配列5’-CTA GTGAGGGTGGTGGCT [CTGAGGGTGGCGGTT]3-3’(配列番号94)を有する合成の63b pのヌクレオチドインサート及びその相当する相補鎖を調製し、アニールして二 本鎖63bpヌクレオチド二本鎖DNAフラグメントを生成した。続いて、得られたフ ラグメントを直線状にされたpComb2-8発現ベクターにつないでpComb2-8Lと称さ れる環状ベクターを生成した。PhoAをコードする配列をpComb2-8の操作フラグメ ントと合わせるために、pPho8catをSac I及びSpe Iで消化して、cpVIIIをコード する配列を含むフラグメントを放出し、そして直線状にされたpPho8catベクター を生成した。次いで、先に調製したリンカー配列、pComb2-8Lを含むpComb2-8発 現ベクターをSac I及びSpe Iで消化して、cpVIIIをコードする配列に操作により 結合されたリンカーを含むフラグメントを単離した。次いで、pComb2-8から単離 されたフラグメントを直線状にされたpPho8catベクターに挿入して発現ベクター pPhoL8を生産した。 次いで、得られたpPhoL8発現ベクターを、実施例5aに記載されたようにしてXL l-ブルー細胞に形質転換した。XLl-ブルー細胞中の形質転換体を、先に記載され たようにして選択した。 6406bpのこのプラスミドは、複製のp15A開始点及びクロラムフェニコール耐性 を与えるクロラムフェニコールアセチルトランスフェラーゼ(CAT)遺伝子だけ でなく、tacプロモーターの制御下のPhoA-リンカー-cpVIII融合を含んでいた。p PhoL8構築物の略図を図11に示す。p15A開始点は、pComb3だけでなくpComb2-3のc olEl開始点と適合性であり、安定な二重形質転換体、PhoPhabが生じることを可 能にする。 d.pPhoL8Bの構築 pPhoL8Bと称される別の発現ベクターをpPhoL8から誘導し、それにより実施例5 cに記載されたリンカー配列を有していた。そのベクターの略図を図14Bに示す。 加えて、pPhoL8Bベクターは、pPho8cat及びpPhoL8中に存在するが、pPho8B中で は不在であるfl開始点を欠いているように構築した。fl開始点を、BspH I及びHi nd IIIによるpPhoL8ベクターの消化、続いてクレノーフラグメントによる詰め 込み(filling in)そして平滑断端したベクターの結合により除去した。tacプ ロモーターの制御下のPhoA-リンカー-cpVIII融合を含むpPhoL8Bは、クロラムフ ェニコール耐性マーカー及び実施例5aに記載されたような親発現ベクターpFL261 に由来するp15Aレプリコンを有していた。p15A開始点は、pComb3だけでなくpCom b2-3のcolE1開始点と適合性であり、安定な二重形質転換体、PhoPhabが生じるこ とを可能にする。 次いで、得られたpPhoL8Bを実施例5aに記載されたようにしてXLl-ブルー細胞 に形質転換した。XLl-ブルー細胞中の形質転換体を、先に記載されたようにして 選択した。 6.安定な二重形質転換体、PhoPhabの調製 分析試薬としてのPhoPhabの利用可能性を試験するために、幾つかの異なる抗 原に特異的なPhoPhabを単一クローンまたはパンニングにより抗原につき濃縮さ れたライブラリーからつくった。Parmleyら,Gene,74:305-318(1988)及びBu rtonら,Proc.Natl.Acad.Sci.,USA,88:10134-10137(1991)を参照のこと 。使用した抗原は、BSAに接合されたフルオレセインイソチオシアネート(Barba sら,Proc.Natl.Acad.Sci.,USA,89:4457-4461(1992))、ホスホンアミ デートハプテンPPC(Brinkworthら,Bioorg.Med.Chem.Lett.,1:653-658(1 991))及びProl(Brinkworthら,上記文献)並びに破傷風トキソイドであった 。Prolライブラリー及びPPCライブラリーを、NPN特異性ライブラリーにつき実施 例1〜4に記載されたようにして免疫マウスから構築し、またKangら,Methods : A Companion toMethods in Enzymology,2:111-118(1991)及びBarbasら, Methods: A Compan-ion to Methods in Enzymology,2:119-124(1991)によ り記載された公表された操作により構築し、また破傷風トキソイドクローンP313 を、免疫されたヒトから構築されたPerssonら,Proc.Natl.Acad.Sci.,USA, 88:2432-2436(1991)により記載されたライブラリーから単離した。これらの ライブラリーの構築の開示が、本発明における使用につき参考として本明細書に 含まれる。フルオレセインライブラリーをハプテンによる免疫感作を用いないで 半合成方法により構築し、この場合、破傷風バインダー7EのCDR3領域をランダム 化した。フルオレセイン-BSAに対するランダム化ライブラリーのパンニングは、 Barbasら,Proc.Natl.Acad.Sci., USA,89:4457-4461(1992)(その開示が参考として本明細書に含まれる)によ り記載されたようにフルオレセイン特異性バインダーを与えた。これらの半合成 ライブラリーは、免疫感作しないで抗原特異性Fab’を得ることを可能にする。 それ故、この抗フルオレセインライブラリーから構築されたPhoPhabは合成試薬 である。 PhoPhabを、pPho8catを夫々のpComb2-3ライブラリーで同時形質転換し、二重 形質転換体を30μg/mlのクロラムフェニコールと50μg/mlのカルベニシリンとを 含むLBプレートで選択することにより生産した。次いで、抗生物質培地中に維持 された株XLl-ブルー中の二重形質転換体の新しい一夜培養液1mlを、実施例3に 記載されたようにして、5mMのMgCl2、0.25μMのZnCl2並びに12.5μg/mlの濃度 の抗生物質カルベニシリン、3.8μg/mlの濃度のクロラムフェニコール及び2.5μ g/mlの濃度のテトラサイクリンを含む37℃のスーパーブロース10ml中の液体培養 液中で増殖させた。 1時間後に、一つの二重形質転換体(モノクローナル)または約20(ポリクロ ーナル)の培養液を1.2 X 1010pfuのヘルパーファージR408(ストラタゲン)で 感染し、1mMのIPTGで誘導して、一本鎖DNAを含み、かつファージ表面でcpIIIに つなぎ止められたヘテロダイマーレセプターとcpVIIIにつなぎ止められたPhoA指 示薬ポリペプチドの両方を発現するファージ粒子を生産した。次いでその混合物 を37℃で20分間振とうした。次いで、感染混合物を、10mMのMgCl2、1μMのZnCl2 及び25μg/mlの濃度の抗生物質カルベニシリン及び5μg/mlのクロラムフェニ コールを含むSB1mlに混合した。次いでその混合物を8.5時間にわたって良好な通 気のもとに2リットルのじゃま板付きのフラスコ中で300rpmで振とうした。その 維持期間後に、懸濁液を14,000 X g(JA-10遠心分離機中で9krpm、15分間)で遠 心分離した。 夫々の培養からの得られたファージを含む(PhoPhab)上澄みを1時間にわた って4℃で4%の最終濃度のPEG-8000及び500mMのNaClで上澄みから沈殿させた 。次いでファージを上記のようにして15,000rpmでペレット化し、TBS400μl中で 再度懸濁させ、実施例7に記載されるELISAに直接使用した。 加えて、同時形質転換は、本明細書に記載された一工程操作に限定されない。 意図された形質転換は、誘導ヘルパーファージ(その中で、カナマイシン耐性を 与えるための配列がPhoL8ベクターをコードする配列と共に存在する)のとり込 みを含む二工程の単一形質転換を含む。 また、同時形質転換を、夫々、実施例5a及び5bで調製したPhoA発現ベクター、 pPho8B及びpPhoLBを使用して行った。同時形質転換工程及び選択工程を、pPho8c atにつき上記された操作と同じ方法で行った。 7.安定な二重形質転換体、PhoPhabのスクリーニング 実施例6で生産したPhoPhabを、その後、ELISAに使用して抗原特異性を確認し 、またPhoPhabの表面で発現されたFab’の特異的結合特性を測定した。 ELISAを、抗原フルオレセイン-BSA接合体(FL-BSA)、Prol-BSA、PPC-BSA、破 傷風トキソイドタンパク質(Tet-tox)、P313 Fab-gIIIをディスプレイするが、 Ap-gVIII接合体をディスプレイしないファージ(Tet no pho)及びBSAに対しPho Phabを用いて行った。抗原を25mlの0.1MのNaHCO3、pH8.6またはPBS、pH7.4中で0 .2μgの濃度で4℃で一夜にわたってコスターブランドのEIAプレート#3690に別 々に被覆した。次いでウェルをPBS中1%のBSAで37℃で1時間にわたってブロッ クし、水洗し、次いで1%のBSA10mlで洗浄し、実施例6で調製した濃縮ファー ジ25μlを37℃で30分間にわたって別々に混合した。プレート洗浄機で10サイク ルにわたって洗浄した後、発色液(1mg/mlのp-ニトロフェニルホスフェート、1 0%v/vのジエタノールアミン、1mMのMgCl2、3mMのNaN3、pH9.8)を混合し、プ レートを一夜にわたって37℃に保った。 pPho8catベクターで調製した本発明のPhoPhabを用いるELISAの結果を図12に示 す。図中に差し込みボックスで示されたPhoPhabは、ライブラリーがパンニング された抗原と同じ抗原(図のX軸に示される)に対し特異性であった。PPCmono とラベルされた、PPC-BSAに対し誘導されたもの以外の、ELISAに使用したPhoPha bの全てが明らかなシグナルを生じた。 破傷風トキソイドに対し先にパンニングされたpComb2-3破傷風トキソイドクロ ーンP313によるpPho8cat、pPho8B及びpPhoL8の別々の同時形質転換により生産さ れたファージを用いる付加的なELISAアッセイにおいて、本発明の三つのアルカ リ性ホスファターゼ発現ファージの全てが破傷風トキソイド抗原に対し特異性免 疫反応性を示した。ELISAを、0.1MのNaHCO3、pH8.6中でウェル当たり0.2μgの破 傷風トキソイドを結合した以外は上記のようにして行った。非特異性部位を37℃ で1時間にわたって3%のBSAでブロックした。ファージ製剤5μlを、3%のBS Aと共に夫々のウェルに別々に混合した。これらのプレートを37℃で1時間保ち 、洗浄し、上記のようにして発色させた。 結果は、pPho8Bが2.0の405nm吸光度を有し、一方、pPho8cat及びpPhoL8が夫々 1.0及び0.5の吸光度を有することを示した。こうして、本発明の三つのPhoPhab の全てが検出可能なシグナルを生じたが、アルカリ性ホスファターゼベクターで 生産されたPhoPhab、即ち、pPho8cat中に存在する外来のfl開始点を欠いたpPho8 Bが最高の検出可能なシグナルを生じ、破傷風トキソイドへの特異性結合を示し た。 8.繊維状ファージの表面における増強された酵素活性を有する二量化アルカ リ性ホスファターゼの調製 先に調製したバクテリアのアルカリ性ホスファターゼ発現ベクター系は抗体発 現ベクター系、PhoPhabと連係して検出可能なシグナルを生じたが、PhoPhabの活 性のレベルは、ファージがg8p外殻タンパク質の2700を越えるコピーを有するこ とを考えると、ファージにおけるBAPのとり込みが予想されたよりも極めて低い ことを示唆した。 低下した活性の一つの説明は、BAPダイマーがg8p融合のようにファージで集合 できなかったことである。別の説明は、ファージの外殻タンパク質8と約90kDで あるBAPの如き大きなタンパク質との融合のとり込みの分子機構が単に存在しな いことであった。更にありそうな可能性は、対合されていないBAP-外殻タンパク 質8モノマーがまたその他のファージのモノマーと会合して不溶性の無用の凝集 物を生じ得ることであった。これらの可能性を調べるために、BAPダイマーをフ ァージに付着する種々の方法を設計した。 二量化アルカリ性ホスファターゼの改良されたシグナル検出系が今得られた。 以下に記載されるように、最大のシグナルは、アルカリ性ホスファターゼの可溶 性モノマーが、可撓性リンカーによりバクテリオファージ外殻タンパク質8(ま た、g8pと称される)につなぎ止められたアルカリ性ホスファターゼとダイマー を形成することの結果であった。 BAP-g8pが二量化により束縛し得るが、一方、BAP-リンカー-g8p融合がファー ジ表面における二量化に充分な空間及び融通性を与え得るという概念で、可撓性 リンカー/アンカー戦略を探究した。ファージ表面におけるBAP-g8p融合ホモダ イマーまたはBAP-リンカー-g8p融合ホモダイマーのアセンブリーが可能ではなか ったというイベントにおいて、第二の戦略を探究した。第二の戦略は、BAP-g8p 融合モノマーと対合して、ファージ表面でBAP:BAP-g8pまたはBAP:BAP-リンカー -g8pのヘテロダイマーを得ることができる遊離BAPモノマーを提供することであ った。これらの二つのディスプレイ戦略は、図13A-Dに示されるような四つの可 能な組み合わせを与える。 異なるモノマーを発現するために、三つの異なるモノマーの夫々につき一つの ベクターとして、三つのベクターを構築した。遊離BAPモノマーを、以下に記載 され、また図14Cに示されたようにしてpPhoCにより発現し、またBAP-g8p融合の 不在下で、遊離モノマーが対合して遊離BAPダイマーを生成する。加えて、pPhoC はb-ラクタマーゼ耐性マーカー及びcolEl不適合性群のレプリコンを有していた 。BAP-g8p融合をpPho8Bから発現し、これはクロラムフェニコール耐性マーカー 及びp15Aレプリコンを使用する。異なる耐性マーカー及びレプリコンは、pPhoC 及びpPho8Bの安定な二重形質転換体を生じることを可能にする。こうして遊離モ ノマ−BAP及びBAP-g8pを二つのプラスミドから同じ細胞中で発現した。 BAPドメインとg8pドメインの間に可撓性を加えるように選択したリンカーを実 施例5のようにして調製した。アミノ酸残基配列リピート(EGGGS)4(配列番号 91)をコードする合成オリゴヌクレオチドをpPho8BのBAPコード領域とg8pコード 領域の間に挿入して、BAP-リンカー-g8p発現ベクターpPhoL8Bを得た。再度、pPh oC及びpPhoL8Bの安定な二重形質転換体をつくり、BAP及びBAP-リンカー-g8pがフ ァージ生産中に同じ細胞中で発現されることを可能にした。 これらのプラスミドを使用して、図13A-Dに示されるような、ファージにおけ るBAPダイマーのとり込みに関する仮説的可能性を調べた。例えば、BAP-g8pを生 産するpPho8Bのみを含む細胞から生産されたファージは、ファージ表面でBAP-g8 pホモダイマーをとり込み、そのダイマーの夫々の半分が、図13Aにより示さ れるようにファージ外殻g8pにつなぎ止められた。同様に、誘導pPhoLBの存在下 で生産されたファージは、図13Bに示されるように、BAP-リンカー-g8pホモダイ マーをとり込んだ。その酵素がg8pへのそのダイマーの半分のうちの一つの融合 によりファージに付着されたにすぎなかった場合の可能性につき、二重プラスミ ド系を使用した。例えば、pPhoC及びpPho8Bを含む細胞から生産されたファージ は、図13Cに示されるように、BAP:BAP-g8pへテロダイマーを有していた。 所望のヘテロダイマーに加えて、二重プラスミド系はまた望ましくないホモダ イマーを生産した。例えば、pPhoC +pPho8B系は三つの異なる酵素ダイマー:BAP :BAP、BAP:BAP-g8p、及びBAP-g8p:BAP-g8pを潜在的に生産する。理論上、二 重プラスミド系の存在下で生産されたファージは、それらの表面にヘテロダイマ ーとホモダイマーのこのような混合物を有し得る。しかしながら、二重プラスミ ド系の副生物として生産された望ましくないホモダイマー対のとり込みは、ヘテ ロダイマー程には良好にとり込まれなかった。 a.モノマーのバクテリアアルカリ性ホスファターゼを発現するためのpPhoC発 現ベクターの調製 発現ベクターpPhoCを、pComb2-8誘導発現ベクター、pC8PhoAmから誘導した。 ベクターpC8PhoAmは、実施例1bで調製したXho I及びSpe I消化pComb2-8発現ベク ターへのアンバー突然変異を含む配列の結合により生じた。増幅されたXho I及 びSpe I制限部位を含むアンバー突然変異を含む配列は、プライマー 5’-GCCGCGTCTAGACCTAGGGGTGGCGGAGGTACACCAGAAATGCCTGTTCTG-3’(配列番号9 5)及び 5’-AGGCTTACTAGTTTTCAGCCCCAGAGCGGCTTT-3’(配列番号96) と共にE.coli XLl-ブルー細胞を煮沸することにより得られた鋳型ゲノムDNAに よるPCRにより生じた。製造業者の緩衝液中に5単位のTaqポリメラーゼを含むPC R反応液を94℃で30秒間変性にかけ、続いてパーキン・エルマーのジーンアンプ9 600装置を使用して、94℃で15秒、52℃で15秒、72℃で2分間の25のサイクルに かけた。次いで得られたPCRフラグメントをSpe Iで消化し、BspH Iで部分消化し 、そしてクレノーフラグメントでフィル・インした。アガロースゲル電気泳動後 に、大きな3.6キロベースのベクターフラグメントを単離し、T4リガーゼと 自己結合し、Spe I及びXho Iで消化し、直線状にされたpComb2-8ベクターに挿入 した。 触媒活性クローンを、Lightら,Bioorg.Med.Chem.Lett.,3:1073-1078(1 992)により記載されたようにして、青色のコロニーをLB X-Pプレートに塗布さ れた結合形質転換から採取することにより得た。pPhoCベクターは、b-ラクタマ ーゼ耐性マーカーと、p15Aと適合性であるcolEl不適合性群の高コピー数のレプ リコンとを含む。 b.外殻タンパク質8にバクテリアのアルカリ性ホスファターゼを有するファ ージの調製 ファージをプラスミドpPhoC、pPho8B、もしくはpPhoL8B、またはプラスミドpP hoCとpPho8B、またはpPhoCとpPhoL8Bを含むE.coli XLl-lブルー細胞中で増殖さ せた。プラスミドを、実施例5及び8に記載されたようにして調製した。適当な 抗生物質(10mg/mlのテトラサイクリン、100mg/mlのカルベニシリン及び/また は30mg/mlのクロラムフェニコール)で37℃で一夜培養した培養液10mlをR408ヘ ルパーファージの6 x 1010プラーク形成単位で感染し、10mMのMgCl2、1mMのZnCl2 、半分の濃度の抗生物質(テトラサイクリンを含まない)、及び1mMのイソ−プ ロピルチオガラクトシドを含む新しいスーパーブロースで30倍に希釈し、一夜増 殖させた。細胞及びデブリを8600 X gで20分間にわたって遠心分離により除去し た。 ベクター組み合わせの一部はまたファージにつなぎ止められていない遊離BAP ダイマーを生産したので、得られたファージを付着されなかった酵素及びその他 の汚染物質から沈殿、CsCl浮遊密度遠心分離、そして更に2ラウンドの遠心分離 により精製した。夫々の工程において、不溶性凝集物及びデブリを廃棄した。次 いで精製ファージを電気泳動により分析し、酵素の量を比色アッセイにより定量 化した。 ファージ精製につき、ファージを含む上澄みに、20%w/vのPEG-8000及び2.5M のNaClを含む溶液1/5容積を添加した。その混合物を4℃で30分間インキュベー トし、沈殿したファージを14,000 X gで15分間の遠心分離によりペレットにした 。上澄みを廃棄し、ファージを、30mlの10mMのトリス-HCl、pH7.5、10mMのMgCl2 、 1mMのZnCl2中で37℃で300rpmで20〜60分間振とうすることにより再度懸濁させ た。デブリ及び凝集ファージを14,000 X gで15分間の遠心分離により除去した 。沈殿を20%w/vのPEG-8000、2.5MのNaClの1/6容積で繰り返し、ファージペレッ トを11mlの10mMのトリス-HCl、pH7.5、10mMのMgCl2、1mMのZnCl2中で再度懸濁 させ、デブリを上記のようにして除去した。CsCl(4.94g)を添加し、密度勾配 を5℃で48時間にわたって143,000 X gの遠心分離により確立した。ファージバ ンドを2mlの容積中で除去し、150mMのNaCl、10mMのトリス-HCl、pH7.5、10mMの MgCl2、1mMのZnCl2(TBSMZ)で13mlに希釈し、ファージを5℃で24時間にわた って143,000 X gでペレットにした。ファージを上記のようにして2mlのTBSMZ中 で再度懸濁させ、4℃で2時間にわたって259,000 X gで再度ペレットにした。 最終ファージ製剤をTBSMZ 0.5 ml中で再度懸濁させ、4℃で貯蔵した。 c.酵素活性に関するアッセイ ファージにとり込まれた活性アルカリ性ホスファターゼ酵素の量を比較するた めに、精製ファージ10mlを、1mg/mlのパラ−ニトロフェニルホスフェートを含 む1mlの1Mのトリス-HCI、pH8.0に23℃で添加した。黄色の外観を404nmで追跡し 、傾斜を有するラインにフィットする吸光度の変化を加水分解の速度として報告 した。これらの条件下で、計算された加水分解の速度は活性酵素の量に直接比例 した。 速度をファージの量につき基準化し、バックグラウンドと比較した場合、二つ の傾向が明らかであった。第一に、遊離BAPとBAP-g8p融合の同時発現は、その活 性を6倍に増大した(相対比6.4対39)。第二に、可撓性リンカーの添加は、そ のとり込みを更に3.5倍(39対140)に増大した。BAP-リンカー-g8pのみ(pPhoL8 B)の存在下で増殖されたファージとの比較は、リンカー単独がファージの表面 で増加されたBAPの原因ではないことを実証した。 反応速度から、ファージの表面にあるBAPの数を推測した。酵素の合計数は、0 .098 AU/分の測定速度から1.6x104 AU/cmMの生産物の吸光率[Halford,Bi-oche m.J.,125:319-327(1971)]を割り、約30s-1のWT BAPのKcat[Matlinら, Biochem.,31:8196-8200(1992)]を割ることにより3nMであると推測された 。ファージ粒子の合計数は、269nmにおける吸光度から6 x 1016の粒子/mlを掛け 、 ゲノム中のヌクレオチドの数、6391で割って3nMのファージ粒子の濃度を与える と推測された。酵素濃度をファージ濃度で割って、ファージ当たり1のBAPの平 均数を得た。この推測は、遊離BAP及びファージにあるBAPが同様の触媒速度定数 を有すると仮定する。 d.ゲル電気泳動 プレキャストしたアクリルアミドトリス−グリシンゲルをノベックス(サンジ エゴ、CA)から購入した。試料を、以下のようにして調製した。培養液を音波処 理し、デブリをペレット化し、上澄みを1:5に希釈し、または最終ファージ製剤 を直接使用した。試料を5分間にわたって最終濃度1mMのb−メルカプトエタノ ール、10%の蔗糖、及び11%のSDSと共に沸騰させた。次いで試料30μlを25mMの トリス-HCl、pH8.3、192mMのグリシン、0.1%のSDS中で10%のゲルによる電気泳 動にかけた。次いでタンパク質をイモビロン(Immobilon)-P(商標)(ミリポ ア社、ベッドフォード、MA)に移し、ブロックし、ウサギ抗BAP IgGでインキュ ベートし、ケミルミネッセンス検出(アメーシャム社、アーリントン・ハイツ、 IL)により視覚化した。バクテリアのアルカリ性ホスファターゼに対し誘導され た精製ウサギIgGを通常の方法(Harlowら,Antibodies: A Laboratory Manual ,Cold Spring Harbor Laboratory Press,Cold Spring Harbor(1988)により 産生し、または5プライム3プライム社(ボウルダー、CO)から購入した。 抗BAPウサギIgGで探査したウェスタンブロットの結果は、培養物が予想サイズ の融合タンパク質:BAPモノマー(予想45kD)、BAP-g8p融合(50.2kD)、及びBA P-リンカー-g8p(51.7kD)と、二重プラスミド形質転換体を生産することを示し た。また、夫々の培養液からのほぼ等しい量の精製ファージを電気泳動にかけた 。定量的ではないが、ブロットは、ダイマーの半分だけg8pにつなぎ止められて いるBAPヘテロダイマーが可溶性ファージに最良にとり込まれることを示した。 ウエスタンブロットの分析から、ファージへのBAPタンパク質のとり込みに最 良の系は、pPhoC発現ベクター+pPhoL8B発現ベクターの両方を含む安定な形質転 換体から得られるBAP:BAP-リンカー-g8p戦略であった。 e.電子顕微鏡 電子顕微鏡分析につき、ファージを炭素−パーロジオン(parlodion)グリッ ド に吸収させ、グリッドを洗浄し、次いでウサギ抗BAP IgGでインキュベートし、 洗浄し、次いで10nmのゴールド・ヤギ抗ウサギ接合体で標識した。試料を30,00 0の相対倍率で調べた。 得られた電子顕微鏡写真は、0から3程度の多さまでのBAPが単一長さのファ ージ当たりに存在することを明らかにした。4程度に多くのBAPを有する2倍及 び3倍の長さのファージがまた見られた。電子顕微鏡により測定されたファージ 当たりのBAPの数は、上記の活性測定により測定された数と同様である。 f.二量体化されたバクテリアのアルカリ性ホスファターゼによる増進された 検出の分析 繊維状ファージの主要外殻タンパク質g8pにおけるBAPダイマーのディスプレイ の改良は、外殻タンパク質3ディスプレイ(g3p)と違って、BAPダイマーの半分 が外殻タンパク質8(g8p)に付着される場合にのみ、最大のとり込みが起こる ことを示した。両方のディスプレイ部位間の重要な類似性は、g8p融合タンパク 質につき数千の潜在的な付着部位があるとしても、BAP-g3pとBAP:BAP-リンカー -g8pディスプレイの両方がファージ当たりほぼ一つの活性BAPを与えることであ つた。 ペプチドエピトープ[Greenwoodら,J.Mol.Biol.,220:821-827(1991)] 、Fab[Kangら,Proc.Natl.Acad.Sci.,USA,87:6378-6382(1991)]、及 びウシ膵臓トリプシンインヒビターBPTI[Marklandら,Gene,109:13-19(1991 )]g8p融合ディスプレイの先の研究では、ファージにとり込まれる融合の数に 対する融合のサイズの明らかな傾向が見られる。9残基エピトープでは、融合フ ァージは、g8p外殻の各コピーが融合を含むように構築し得る。12残基エピトー プでは、10〜30%のエピトープ-g8p融合(100〜300のコピー/ファージ)と残部 の野生型g8pの混合物からなる外殻を有するハイブリッドファージを得ることが できた[Greenwoodら,上記文献,(1991)]。BPTI、g8pに融合された58残基タ ンパク質(7kD)の場合、典型的には、ファージ当たりBPTIの30〜60のコピーが とり込まれた[M-arklandら,上記文献,(1991)]。約440の残基の更に大きな ヘテロダイマーFab(これは約45kDである)が使用された場合、電子顕微鏡研究 はファージ当たり1〜24のFab’を示した[Kangら,上記文献,(1991)]。そ の他に、1〜 3の928残基BAPダイマー(リンカーを含み、92kD)をファージ当たりにとり込む ことができた。これらの研究におけるファージの長さは異なるが、タンパク質が 大きい程、少ないコピーがファージにとり込まれるという明らかな傾向が見られ る。上限サイズ(それが存在する場合)は知られていない。 ウェスタンブロットの更に精密な試験は、BAP-g8p融合の分解が起こることを 示した。こうして、おそらく、融合のみのファージの観察された活性はg8pテー ルが除去されて、或る種の遊離BAPを残し、ファージ表面でBAP-g8pと対合するた めであったと考えられる。第二に、精製スキームが可溶性ファージのみを生じた 。異なるファージにおけるBAP-g8pの対合が不溶性凝集物を生じ、これらは廃棄 されたであろう。いずれにしても、遊離BAPモノマーが最大の活性及びファージ へのとり込みのためにBAP-リンカー-g8p融合をキャップするのに必要とされる。 遊離BAPモノマーの必要性は、外殻タンパク質8ファージディスプレイの重要 な局面を説明する。明らかに、BAP-リンカー-g8pモノマーはファージ上でダイマ ーに集合できない。この不安定性がファージに関する立体上の制限のためである のか、または更にありそうなことに、E.coliからのファージ排出プロセスによ り課せられる制限のためであるのかは、依然として解決されていない。BAP-リン カー-g8pは最初に周辺質中で細胞膜と会合したg8pテールによりダイマーに集合 するであろうと想像し得る。次いで、二重につなぎ止められたダイマーが、細胞 膜につなぎ止められたまま残ることを有利にする立体上の効果またはキレート型 効果により、ファージへのとり込みから阻止され得る。 また、融合のとり込みがファージアセンブリーの速度論または細胞壁中のファ ージの排出に関する立体上の効果のいずれにより制限されるのかは、まだわから ない。速度上の制限は、ファージへのとり込みにつき野生型g8pと融合g8pの競合 により生じる。このような競合効果がg8pにおけるBPTIのディスプレイにおいて 観察され、この場合、BPTI-g8p融合に対し野生型g8pの発現を低下すると、ファ ージにおけるBPTIの合計数を増大した[Marklandら,上記文献,(1991)]。一 方、立体上の制限は、g8p融合タンパク質の形態のフックをファージニードルに 付着することとして最も良く説明され、これは外細胞壁を通過して遊離ファージ になることが依然として必要である。 9.ディスプレイされた二量化アルカリ性ホスファターゼポリペプチド及びヘ テロダィマーポリペプチドの調製 実施例8に示された外殼タンパク質におけるBAPディスプレイの改良は、実施 例1〜4で調製したPhoPhab系に改良を与える。本明細書に記載された二つの方 法は、二量化異種ポリペプチド指示薬系、特に、二量化アルカリ性ホスファター ゼと同時に、バクテリオファージの表面におけるヘテロダイマーレセプターの発 現を与える。 実施例1〜8に記載されたバクテリオファージの表面へのBAPのとり込みの結 果から、ファージのp8pでディスプレイされる活性バクテリオファージアルカリ 性ホスファターゼ(BAP)のとり込みを増大する二つの特徴を同定した。本質的 に、改良は、酵素のその他の点では同一のサブユニットのうちの唯一のサブユニ ットへの20アミノ酸リンカーにより酵素を遺伝子VIII外殻タンパク質(g8p)に 付着することにより生じた。これは、二つのプラスミドを使用して二つの異なる サブユニットを発現することにより達成された。プラスミドpPhoL8BはBAP-リン カー-g8サブユニットを与え、またプラスミドpPhoCは遊離の可溶性BAPモノマー を与えた。これらの二つの半分がダイマーを形成し、これは、先のpPho8catプラ スミドによるよりも極めて良好にファージにとり込まれた。 これらの結果は、PhoPhab系を改良するための新しい設計を示し、これは一見 して二量化指示薬検出系によりPhoPhabを生産するために発現ベクター、pPhoC、 pPhoL8B及びヘテロダイマーFab生産pComb3を添加することであろう。しかしなが ら、この戦略は、うまくいかないであろう。何となれば、pPhoCとpComb3は同じ 不適合性群の複製開始点を有し、それによりこのような形質転換を不安定にする からである。それ故、遊離BAPモノマーを生成してBAp-リンカー-g8pモノマーと 対合するアンカ一方法が、先に記載された発現ベクタ一系に基いて設計された。 二つのこのような方法が本明細書に記載される。 a.二重アルカリ性ホスファターゼ発現ベクターの構築 バクテリオファージの表面における発現のために二量化異種指示薬ポリペプチ ドを調製する一つの方法は、バクテリオファージ外殻タンパク質膜アンカーにつ なぎ止められたモノマーの不溶性アルカリ性ホスファターゼと同時に、BAPのモ ノマーの可溶性形態の発現を可能にするように特別に設計された発現ベクターの 使用である。好ましい外殻タンパク質膜アンカーは、外殻タンパク質8及び外殻 タンパク質3、夫々cp8及びcp3(また、g8p及びg3pと称される)である。 アルカリ性ホスファターゼの可溶性形態だけでなく、つなぎ止められた形態の 両方の二重発現を与えるための単一ベクターにつき、部分抑制されたアンバーコ ドンの使用が、Miller,Methods Enz.,255:2396-2404(1991)(その開示が参 考として本明細書に含まれる)により記載されたように必要とされる。適当なサ プレッサーtRNAの存在下で、一つの遺伝子は遊離モノマーBAPと外殼タンパク質 につなぎ止められたBAPの融合タンパク質の両方を与えるであろう。二重発現に 関するサプレッサーtRNA遺伝子の使用は当業者に公知である。PhoPhab検出系に 使用するのに好ましいつなぎ止められたアルカリ性ホスファターゼタンパク質は 、発現ベクタ-pPhoL8Bから生じる、実施例5に記載されたようなリンカーポリぺ プチドによる外殻タンパク質8へのBAPのつなぎ止め(anchorage)である。pPho 8B及びpPhoL8を含む、つなぎ止められたBAPを発現するためのその他のベクター がまた本発明における使用に意図されている。 アンバー終止(TAG)コドンをPhoAコード領域とg8pコード領域の間のリンカー コード配列に挿入することにより、一つのプラスミドを使用してBAP及びBAP-リ ンカー-g8p(この場合、二つのプラスミドが先に使用された)を生産する。アン バーサプレッサーtRNAの存在下の、以下のようにして調製されるプラスミドpPho AL8を有するアンバーコドンの誘導は、遊離モノマーBAPとBAP-リンカー-g8pの発 現を生じ、BAP-リンカー-g8pはアンバー終止コドンの部分抑制により生じる。サ プレッサーtRNA及び変性タンパク質を生じるための合成サプレッサーtRNAの使用 は当業界で公知である。Miller,“変性タンパク質を生じるためのナンセンス抑 制の使用”,Methods in Enzymology,208:543-563(1991)を参照のこと。ア ンバー終止コドンに代えて種々のアミノ酸を種々の効率で挿入するサプレッサー が知られている。このようなサプレッサーをコードする配列をpPhoAL8にとり込 んで最終発現ベクター、pPhoAL8Sを生成し、これは、FabをコードするpCombプラ スミド及びヘルパーファージの存在下で、上記のBAPの更に良好なとり込みのた めに増大されたシグナルを有する改良されたPhoPhabを与える。次いで、異なる アミノ酸を挿入する既知のサプレッサーを種々のレベルで試験することにより、 その系をPhoPhab生産につき最適化し、次いでアンバー終止コドンの位置を移動 する。何となれば、抑制がその状況に依存することが知られているからである。 1)pPhoAL8S発現ベクターの構築 クンケル(Kunkel)部位誘導突然変異誘発を、バイオーラド(リッチモンド、 CA)から市販されている試験管内突然変異誘発キットにより与えられる通常のプ ロトコルに従って行う。突然変異誘発につき、ヌクレオチド配列5’-TCCACTAGT TAGGGTGGTG-3’(配列番号97)を有するAMLNKと称されるオリゴヌクレオチドプ ライマーをファージミドpComb2-8(これに、63bpリンカーをコードする配列が挿 入されてpPhoL8の調製における使用につき実施例5cに記載されたpComb2-8Lを生 成する)の一本鎖DNA鋳型でPCRに使用した。pJ6L112s5と称される得られたプラ スミドは、Spe I部位の直後のリンカーの第一コドンがアンバー終止コドン、TAG である以外は、pComb2-8Lと同じであった。 pPhoAL8を生成するために、pJ6L112s5のSpe I/Sac Iフラグメントを、実施例5 dで調製したpPhoL8BのSpe I/Sac Iフラグメントと交換する。 アンバーサプレッサーを導入するために、既存のプラスミド源、例えば、pGFI B-l-glylがKleinaら,J.Mol.Biol.,213:705-717(1990)により記載されて いる。次いで、Sac Iで消化し、T4 DNAポリメラーゼで平滑断端し、続いてウシ 腸アルカリ性ホスファターゼで脱ホスホリル化することによりpPhoAL8をアンバ ーサプレッサーtRNA配列の挿入のために調製する。次いでサプレッサーtRNA遺伝 子をPvu IIでpGFIB-1-glylから消化し、T4 DNAポリメラーゼで平滑断端する。次 いで得られた小フラグメントをゲル電気泳動により単離する。次いでこのフラグ メントを消化され、詰め込まれた(filled)pPhoAL8につないでpPhoAL8Sを生成 する(インサートの両配向が機能性である)。次いで得られたpPhoAL8S発現ベク ターをダイマーの形態のアルカリ性ホスファターゼ指示薬系と共にヘテロダイマ ーリガンド結合Fabの二重発現のために実施例5で記載したようなPhoPhab系と共 に使用する。 2)BAPを構成的に発現するE.coli株の使用 BAPのモノマーの可溶性形態を構成的に発現するE.coliの変異体が知られてい る。例えば、Kreuzerら,Genetics,81:459-468(1975)により記載されたE.c oli株phoR8を参照のこと。このような株を、またプラスミドPhoL8B及び実施例6 に記載されたようなFabを有するpComb3ベクターを含んだヘルパーファージで感 染すると、ダイマーBAPの改良されたとり込みによりPhoPhabを生成し、それによ り増強された指示薬ポリペプチド検出シグナルを与えるであろう。この場合、ダ イマーはPhoL8BによりコードされたBAPサブユニットによりファージに付着され るにすぎず、一方、ダイマーの“遊離”の半分がPhoR-バクテリアにより与えら れる。 加えて、ほぼあらゆる所望のバクテリア株が当業者に公知の技術によりPhoR- 表現型に突然変異可能であり、その結果、それはその後BAPを構成的に発現する 。Miller著,“分子遺伝子学における実験”,Cold Spring Harbor Laboratory Pr-ess,(1972)は、バクテリア株を突然変異してモノマーの可溶性BAPの構成 的発現を行う方法を記載していた。 二量化指示薬ポリペプチド検出系を有する上記のPhoPhab系の他に、変異体− 野生型の対の単離のためのファージディスプレイの別の使用がまた意図されてい る。通常、ホモダイマーであるBAPを、遊離BAPとBAP-リンカー-g8p融合によりヘ テロダイマーに変換する。このヘテロダイマーを付着ファージの遠心分離により 精製する。その正味の効果は、夫々の半分の二重発現により生じた遊離−遊離タ ンパク質、遊離−融合タンパク質、及び融合−融合タンパク質の三つの可能な対 合からの遊離−融合対の精製である。次いで特定のプロテアーゼ部位をリンカー に加えてファージからの酵素の放出を可能にする。こうして、ファージディスプ レイを使用することにより、通常ホモダイマーのタンパク質の変異体−野生型の 対を遠心分離で分離することが可能であるべきである。 要するに、抗原特異性Fabをアルカリ性ホスファターゼの多重コピーに結合す る本発明のPhoPhab系は、通常の技術に対し簡素化と時間の利点を有する。ELI-S A及びウェスタンブロットの如き免疫化学技術の従来の方法は、関係する抗原の 抗体及び検出用の二次抗体−酵素接合体を必要とし、これは二つの免疫感作を必 要とするだけでなく、モノクローナル特異性が所望される場合にハイブリドーマ の生産を必要とする。これに代えて、この新規な技術はファージディスプレイを 使用して所望の結合特異性を分離し、二次試薬の必要性を排除するとともに、依 然として抗原シグナルの増幅を得る。 試薬の特異性をパンニング選択方法により測定し、モノクローナル混合物また はポリクローナル混合物のいずれかが使用し得る。少量のヘテロダイマーライブ ラリーをパンニングし、次いで所望の試薬をバクテリア培養技術により単に増殖 させることにより所望の特異性を選択し得る。その可能性は、望ましくない交差 反応性をサブトラクチブ(subtractive)パンニングにより除去することにある 。前もってつくられた合成ライブラリーと対にされる場合、抗原特異性試薬は、 モノクローナル抗体の産生につき数ケ月に較べて、わずかに二三日で免疫感作し ないで生産し得る。また、ファージ試薬は生産するのにそれ程高価ではないと予 想される。 繊維状ファージ構造は、ここに説明されたPhoPhab実施例を越えて拡張し得る 。本発明のPhoPhab系は、前もって選択されたリガンドに対し特異性を示す試薬 を選択するために特性決定されていないヘテロダイマーライブラリーをスクリー ニングすることに拡張し得る。その他の酵素及びタンパク質が、異なる外殻タン パク質を使用して付着の数を変えて、繊維状ファージに結合し得る。例えば、バ インダー−cpIII−ファージー(cpVIII−酵素)n系が、酵素の多重コピーを試験 管内で、そしておそらく生体内で特定の部位に送出して抗原性応答を可能にする のに使用し得る。繊維状ファージの使用は単一ファージに制限されることを要し ないが、ファージ構造のネットワークがリンクし得る。一つの方法は、Fab#2-フ ァージ-抗原#1に対しFab♯1-ファージ-酵素を誘導し、それにより抗原#2に結合 された酵素分子の数の大きな増幅を生じることであろう。 更に、表面ファージディスプレイに関する二量化アルカリ性ホスファターゼが 、PhoPhab系中の使用のための増進された検出系をもたらす。こうして、バクテ リアのアルカリ性ホスファターゼが、主要ファージ外殻タンパク質に一つのモノ マーにより付着されるダイマーとして繊維状ファージにとり込まれた。g3pディ スプレイと違って、ファージg8pに集合された活性酵素ダイマーを得るために、 遊離モノマーは融合モノマーを補足するのに必要とされる。BAP-g8pまたはBAP- リンカー-g8p融合単独は、ファージでは同様にに集合されない。更に、20残基リ ン カーはファージにつきBAPダイマーの数を増大した。最良の場合、ファージ当た り平均一つのBAPダイマーがとり込まれ、三つが単一長さのファージで観察され た最大数である。 以上の記載は本発明の例示として意図されるが、本発明を限定するものではな い。多数の変化及び変更が、本発明の真の精神及び範囲を逸脱しないで、行い得 る。 配列表 (1)一般情報 (i)出願人: (A)名称:ザ・スクリップス・リサーチ・インスティチュート (B)通り:10666ノース・トレイ・パインズ・ロード、スート220、メ イル・ドロップTPC8 (C)都市:ラ・ジョラ (D)州:カリフォルニア (E)国:米国 (F)郵便番号:92037 (G)電話番号:619-554-2937 (H)ファックス番号:619-554-6312 (ii)発明の名称:表面レセプター及び表面異種タンパク質を同時発現する ファージミド (iii)配列の数:97 (iv)コンピュータ読み取り可能形態: (A)媒体型:フロッピーディスク (B)コンピュータ:IBM PC互換機 (C)操作システム:PC-DOS/MS-DOS (D)ソフトウェア:パテントイン・リリース#1.0、バージョン#1.2 5(EPO) (v)本件出願データ: (A)出願番号:PCT/US/ (B)出願日:1993年9月3日 (vi)先行出願データ: (A)出願番号:US 07/941,369 (B)出願日:1992年9月4日 (2)配列番号1の情報 (i)配列の特徴: (A)配列の長さ:173塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号1: (2)配列番号2の情報 (i)配列の特徴: (A)配列の長さ:173塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号2: (2)配列番号3の情報 (i)配列の特徴 (A)配列の長さ:131塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号3: (2)配列番号4の情報 (i)配列の特徴: (A)配列の長さ:139塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号4: (2)配列番号5の情報 (i)配列の特徴: (A)配列の長さ:21アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:直線状 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号5: (2)配列番号6の情報 (i)配列の特徴: (A)配列の長さ:25アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (iv)アンチセンス:NO (vi)起源: (A)生物名:エルビニア・カロトボラ (xi)配列の記載:配列番号6: (2)配列番号7の情報 (i)配列の特徴: (A)配列の長さ:22アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (iv)アンチセンス:NO (vi)起源: (A)生物名:エルビニア・カロトボラ (xi)配列の記載:配列番号7: (2)配列番号8の情報 (i)配列の特徴: (A)配列の長さ:28アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号8: (2)配列番号9の情報 (i)配列の特徴: (A)配列の長さ:24アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号9: (2)配列番号10の情報 (i)配列の特徴: (A)配列の長さ:23アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号10: (2)配列番号11の情報 (i)配列の特徴: (A)配列の長さ:25アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号11: (2)配列番号12の情報 (i)配列の特徴: (A)配列の長さ:27アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号12: (2)配列番号13の情報 (i)配列の特徴: (A)配列の長さ:22アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号13: (2)配列番号14の情報 (i)配列の特徴: (A)配列の長さ:23アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号14: (2)配列番号15の情報 (i)配列の特徴: (A)配列の長さ:18アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:ペプチド (iii)ハイポセティカル:NO (xi)配列の記載:配列番号15: (2)配列番号16の情報 (i)配列の特徴: (A)配列の長さ:211アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:タンパク質 (iii)ハイポセティカル:NO (v)フラグメント型:中間部フラグメント (xi)配列の記載:配列番号16: (2)配列番号17の情報 (i)配列の特徴: (A)配列の長さ:50アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:不明 (ii)配列の種類:タンパク質 (iii)ハイポセティカル:NO (xi)配列の記載:配列番号17: (2)配列番号18の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:RNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号18: (2)配列番号19の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:RNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号19: (2)配列番号20の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:RNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号20: (2)配列番号21の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:RNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号21: (2)配列番号22の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号22: (2)配列番号23の情報 (i)配列の特徴: (A)配列の長さ:36塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号23: (2)配列番号24の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号24: (2)配列番号25の情報 (i)配列の特徴: (A)配列の長さ:29塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号25: (2)配列番号26の情報 (i)配列の特徴: (A)配列の長さ:40塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号26: (2)配列番号27の情報 (i)配列の特徴: (A)配列の長さ:38塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号27: (2)配列番号28の情報 (i)配列の特徴: (A)配列の長さ:40塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号28: (2)配列番号29の情報 (i)配列の特徴: (A)配列の長さ:38塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号29: (2)配列番号30の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号30: (2)配列番号31の情報 (i)配列の特徴: (A)配列の長さ:28塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号31: (2)配列番号32の情報 (i)配列の特徴: (A)配列の長さ:34塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号32: (2)配列番号33の情報 (i)配列の特徴: (A)配列の長さ:36塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号33: (2)配列番号34の情報 (i)配列の特徴: (A)配列の長さ:31塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号34: (2)配列番号35の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム〕 (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号35: (2)配列番号36の情報 (i)配列の特徴: (A)配列の長さ:48塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号36: (2)配列番号37の情報 (i)配列の特徴: (A)配列の長さ:40塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号37: (2)配列番号38の情報 (i)配列の特徴: (A)配列の長さ:27塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号38: (2)配列番号39の情報 (i)配列の特徴: (A)配列の長さ:24塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号39: (2)配列番号40の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号40: (2)配列番号41の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号41: (2)配列番号42の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号42: (2)配列番号43の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号43: (2)配列番号44の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号44: (2)配列番号45の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号45: (2)配列番号46の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号46: (2)配列番号47の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号47: (2)配列番号48の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号48: (2)配列番号49の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号49: (2)配列番号50の情報 (i)配列の特徴: (A)配列の長さ:19塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号50: (2)配列番号51の情報 (i)配列の特徴: (A)配列の長さ:38塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号51: (2)配列番号52の情報 (i)配列の特徴: (A)配列の長さ:19塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号52: (2)配列番号53の情報 (i)配列の特徴: (A)配列の長さ:26塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号53: (2)配列番号54の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号54: (2)配列番号55の情報 (i)配列の特徴: (A)配列の長さ:39塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号55: (2)配列番号56の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号56: (2)配列番号57の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号57: (2)配列番号58の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号58: (2)配列番号59の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号59: (2)配列番号60の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号60: (2)配列番号61の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号61: (2)配列番号62の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号62: (2)配列番号63の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号63: (2)配列番号64の情報 (i)配列の特徴: (A)配列の長さ:32塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号64: (2)配列番号65の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号65: (2)配列番号66の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号66: (2)配列番号67の情報 (i)配列の特徴: (A)配列の長さ:34塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号67: (2)配列番号68の情報 (i)配列の特徴: (A)配列の長さ:38塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号68: (2)配列番号69の情報 (i)配列の特徴: (A)配列の長さ:30塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号69: (2)配列番号70の情報 (i)配列の特徴: (A)配列の長さ:29塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号70: (2)配列番号71の情報 (i)配列の特徴: (A)配列の長さ:798塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号71: (2)配列番号72の情報 (i)配列の特徴: (A)配列の長さ:194塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号72: (2)配列番号73の情報 (i)配列の特徴: (A)配列の長さ:333塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号73: (2)配列番号74の情報 (i)配列の特徴: (A)配列の長さ:150塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号74: (2)配列番号75の情報 (i)配列の特徴: (A)配列の長さ:36塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号75: (2)配列番号76の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号76: (2)配列番号77の情報 (i)配列の特徴: (A)配列の長さ:22塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号77: (2)配列番号78の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号78: (2)配列番号79の情報 (i)配列の特徴: (A)配列の長さ:48塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号79: (2)配列番号80の情報 (i)配列の特徴: (A)配列の長さ:40塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号80: (2)配列番号81の情報 (i)配列の特徴: (A)配列の長さ:36塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号81: (2)配列番号82の情報 (i)配列の特徴: (A)配列の長さ:27塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号82: (2)配列番号83の情報 (i)配列の特徴: (A)配列の長さ:31塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号83: (2)配列番号84の情報 (i)配列の特徴: (A)配列の長さ:186塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号84: (2)配列番号85の情報 (i)配列の特徴: (A)配列の長さ:666塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号85: (2)配列番号86の情報 (i)配列の特徴: (A)配列の長さ:708塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号86: (2)配列番号87の情報 (i)配列の特徴: (A)配列の長さ:201塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号87: (2)配列番号88の情報 (i)配列の特徴: (A)配列の長さ:830塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号88: (2)配列番号89の情報 (i)配列の特徴: (A)配列の長さ:260塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号89: (2)配列番号90の情報 (i)配列の特徴: (A)配列の長さ:461塩基対 (B)配列の型:核酸 (C)鎖の数:二本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号90: (2)配列番号91の情報 (i)配列の特徴: (A)配列の長さ:20アミノ酸 (B)配列の型:アミノ酸 (D)トポロジー:直線状 (ii)配列の種類:ペプチド (v)フラグメント型:中間部フラグメント (xi)配列の記載:配列番号91: (2)配列番号92の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号92: (2)配列番号93の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号93: (2)配列番号94の情報 (i)配列の特徴: (A)配列の長さ:63塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号94: (2)配列番号95の情報 (i)配列の特徴: (A)配列の長さ:51塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号95: (2)配列番号96の情報 (i)配列の特徴: (A)配列の長さ:33塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号96: (2)配列番号97の情報 (i)配列の特徴: (A)配列の長さ:19塩基対 (B)配列の型:核酸 (C)鎖の数:一本鎖 (D)トポロジー:直線状 (ii)配列の種類:DNA(ゲノム) (iii)ハイポセティカル:NO (iv)アンチセンス:NO (xi)配列の記載:配列番号97:
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI G01N 33/569 L 8310−2J //(C12P 21/02 C12R 1:92) (C12Q 1/70 C12R 1:92) (72)発明者 ラーナー リチャード エイ アメリカ合衆国 カリフォルニア州 92037 ラ ジョラ イースト ローズラ ンド 7750

Claims (1)

  1. 【特許請求の範囲】 1.a)第一繊維状ファージ外殻タンパク質膜アンカーに融合された異種ポリペ プチドと、 b)第一レセプターポリペプチド及び第二レセプターポリペプチドを含むヘ テロダイマーレセプター(前記レセプターポリペプチドの一つは第二繊維状ファ ージ外殻タンパク質膜アンカーに融合されている)とを含むことを特徴とする繊 維状ファージ。 2.前記の第一外殼タンパク質膜アンカー及び第二外殻タンパク質膜アンカーが cpIII及びcpVIIIからなる群から選ばれる請求の範囲第1項に記載の繊維状ファ ージ。 3.前記の第一膜アンカー及び第二膜アンカーが同じではない請求の範囲第2項 に記載の繊維状ファージ。 4.前記の第一膜アンカー及び第二膜アンカーが、夫々cpVIII及びcpIIIである 請求の範囲第3項に記載の繊維状ファージ。 5.前記異種ポリペプチドが指示薬ポリペプチドである請求の範囲第1項に記載 の繊維状ファージ。 6.前記指示薬ポリペプチドがアルカリ性ホスファターゼである請求の範囲第5 項に記載の繊維状ファージ。 7.c)第一繊維状ファージ外殼タンパク質膜アンカーに融合された異種ポリペ プチドを含む前記ダイマーの第一サブユニットと、可溶性である前記ダイマーの 第二サブユニットとを有するダイマーを更に含む請求の範囲第1項に記載の繊維 状ファージ。 8.前記の第一サブユニット及び第二サブユニットがアルカリ性ホスファターゼ である請求の範囲第7項に記載の繊維状ファージ。 9.前記第一サブユニットの前記異種ポリペプチドがリンカーポリペプチドによ り前記外殻タンパク質膜アンカーに融合されている請求の範囲第7項に記載の繊 維状ファージ。 10.前記リンカーペプチドが配列番号91のアミノ酸残基配列を有する請求の範囲 第9項に記載の繊維状ファージ。 11.夫々の繊維状ファージ粒子が、 a)第一繊維状ファージ外殻タンパク質膜アンカーに融合された異種ポリペプ チドと、 b)第一レセプターポリペプチド及び第二レセプターポリペプチドを含むヘテ ロダイマーレセプター(前記レセプターポリペプチドの一つは第二繊維状ファー ジ外殻タンパク質膜アンカーに融合されている)とを含むことを特徴とする繊維 状ファージ粒子のライブラリー。 12.前記ライブラリーが前記ヘテロダイマーレセプターの少なくとも107の異な る種を含む請求の範囲第11項に記載のライブラリー。 13.c)前記繊維状ファージ外殼タンパク質膜アンカーに融合された異種ポリペ プチドを含む前記ダイマーの第一サブユニットと、可溶性である前記ダイマーの 第二サブユニットとを有するダイマーを更に含む請求の範囲第11項に記載のライ ブラリー。 14.前記の第一サブユニット及び第二サブユニットがアルカリ性ホスファターゼ である請求の範囲第13項に記載の繊維状ファージ。 15.前記第一サブユニットの前記異種ポリペプチドがリンカーポリペプチドによ り前記外殻タンパク質膜アンカーに融合されている請求の範囲第13項に記載の繊 維状ファージ。 16.前記リンカーペプチドが配列番号91のアミノ酸残基配列を有する請求の範囲 第15項に記載の繊維状ファージ。 17.粒子表面に(i)第一融合ポリペプチドと、(ii)第一レセプターポリペプ チド及び第二レセプターポリペプチドからなるヘテロダイマーレセプターとを有 する繊維状ファージ粒子の生産方法であって、 その方法が、 a)繊維状ファージ複製に許される原核宿主細胞に、前記第一融合ポリペプチ ドを発現できるヌクレオチド配列を含む第一ベクターを導入する工程(前記第一 融合ポリペプチドは第一繊維状ファージ外殻タンパク質膜アンカーに融合された 異種ポリペプチドを含む); b)前記原核宿主細胞に、前記の第一レセプターポリペプチド及び第二レセプ ターポリペプチドを発現できるヌクレオチド配列を含む前記ヘテロダイマーレセ プターを発現するための第二ベクターを導入する工程(前記レセプターポリペプ チドの一つは第二繊維状ファージ外殻タンパク質膜アンカーに融合されている) ;及び c)前記の導入された第一ベクター及び第二ベクターを含む前記原核宿主細胞 を、繊維状ファージ生産に充分な条件下かつ前記第一融合ポリペプチドの発現及 び前記ヘテロダイマーレセプターの発現に充分な条件下に維持し、それにより前 記ファージ粒子を形成する工程 を含むことを特徴とする繊維状ファージ粒子の生産方法。 18.前記外殻タンパク質がcpIII及びcpVIIIからなる群から選ばれる請求の範囲 第17項に記載の方法。 19.前記の第一膜アンカー及び第二膜アンカーが同じではない請求の範囲第18項 に記載の方法。 20.前記の第一膜アンカーび第二膜アンカーが、夫々cpVIII及びcpIIIである請 求の範囲第19項に記載の方法。 21.前記異種ポリペプチドが指示薬ポリペプチドである請求の範囲第17項に記載 の方法。 22.前記指示薬ポリペプチドがアルカリ性ホスファターゼである請求の範囲第21 項に記載の方法。 23.前記原核宿主細胞が可溶性異種ポリペプチドを生産できる請求の範囲第17項 に記載の方法。 24.前記原核宿主が可溶性アルカリ性ホスファターゼを生産できるPhoR変異体で ある請求の範囲第23項に記載の方法。 25.前記第一ベクターが、 (i)前記異種ポリペプチドをコードする前記ヌクレオチド配列の下流に操作 により結合されたナンセンス鎖終止コドンを含む第一ヌクレオチド配列(この場 合、前記終止コドンは可溶性異種ポリペプチドの発現をもたらす)と、 (ii)tRNAサプレッサー遺伝子を含む第二ヌクレオチド配列(この場合、前記 サ プレッサー遺伝子の発現は前記終止コドンによる充分な翻訳を可能にして第一繊 維状ファージ外殻タンパク質膜アンカーに融合された異種ポリペプチドの発現を もたらす)とを更に含む請求の範囲第17項に記載の方法。 26.前記異種ポリペプチドがリンカーポリペプチドにより前記外殻タンパク質膜 アンカーに融合されている請求の範囲第25項に記載の方法。 27.前記リンカーペプチドが配列番号91のアミノ酸残基配列を有する請求の範囲 第26項に記載の方法。 28.前もって選択された結合特異性を有する表面露出ヘテロダイマーレセプター を含む繊維状ファージ粒子の生産方法であって、 その方法が、 a)夫々の繊維状ファージ粒子が、 i)第一繊維状ファージ外殻タンパク質膜アンカーに融合された指示薬ポリペ プチドと、 ii)第一レセプターポリペプチド及び第二レセプターポリペプチドを含むヘテ ロダイマーレセプター(前記レセプターポリペプチドの一つは第二繊維状ファー ジ外殻タンパク質膜アンカーに融合されており、前記ヘテロダイマーレセプター は前もって選択されたリガンドに結合できる)とを含む繊維状ファージ粒子のラ イブラリーを用意する工程; b)固相中の複数の前もって選択されたリガンド分子に前記の用意されたライ ブラリーの員を吸着させて複数の固相吸着されたファージ粒子を形成する工程; c)前記指示薬ポリペプチドの存在につき前記固相を分析し、それにより前も って選択された結合特異性を有する前記の表面露出ヘテロダイマーレセプターを 含む固相吸着ファージ粒子の存在につき分析する工程;及び d)前記ヘテロダイマーレセプターを含む前記の固相吸着されたファージ粒子 を回収する工程 を含むことを特徴とする繊維状ファージ粒子の生産方法。 29.前記外殻タンパク質がcpIII及びcpVIIIからなる群から選ばれる請求の範囲 第28項に記載の方法。 30.前記の第一膜アンカー及び第二膜アンカーが同じではない請求の範囲第29項 に記載の方法。 31.前記の第一膜アンカー及び第二膜アンカーが、夫々cpVIII及びcpIIIである 請求の範囲第30項に記載の方法。 32.前記異種ポリペプチドが指示薬ポリペプチドである請求の範囲第28項に記載 の方法。 33.前記指示薬ポリペプチドがアルカリ性ホスファターゼである請求の範囲第32 項に記載の方法。 34.iii)第一繊維状ファージ外殻タンパク質膜アンカーに融合された指示薬ポ リペプチドを含む前記ダイマーの第一サブユニットと、可溶性である前記ダイマ ーの第二サブユニットとを有するダイマーを更に含む請求の範囲第28項に記載の 方法。 35.前記の第一サブユニット及び第二サブユニットがアルカリ性ホスファターゼ である請求の範囲第34項に記載の方法。 36.前記第一サブユニットがリンカーポリペプチドにより前記外殻タンパク質膜 アンカーに融合されている請求の範囲第34項に記載の方法。 37.前記リンカーペプチドが配列番号91のアミノ酸残基配列を有する請求の範囲 第36項に記載の方法。 38.a)試料を、 i)第一繊維状ファージ外殻タンパク質膜アンカーに融合された指示薬ポリペ プチドと、 ii)第一レセプターポリペプチド及び第二レセプターポリペプチドを含むヘテ ロダイマーレセプター(前記レセプターポリペプチドの一つは第二繊維状ファー ジ外殻タンパク質膜アンカーに融合されており、前記ヘテロダイマーレセプター は前記の前もって選択されたリガンドに結合できる)とを含む繊維状ファージ粒 子と接触させる工程; b)前記混合物を、前記ヘテロダイマーレセプターが前記リガンドに結合し、 そしてリガンド−繊維状ファージ粒子複合体を形成するのに充分な条件下に保つ 工程;及び c)前記複合体につき前記指示ポリペプチドの存在を検出し、それにより前記 の前もって選択されたリガンドを検出する工程を含むことを特徴とする試料中の 前もって選択されたリガンドの存在の検出方法。 39.前記外殼タンパク質がcpIII及びcpVIIIからなる群から選ばれる請求の範囲 第38項に記載の方法。 40.前記の第一膜アンカー及び第二膜アンカーが同じではない請求の範囲第39項 に記載の方法。 41.前記の第一膜アンカー及び第二膜アンカーが、夫々cpVIII及びcpIIIである 請求の範囲第40項に記載の方法。 42.前記指示薬ポリペプチドがアルカリ性ホスファターゼである請求の範囲第38 項に記載の方法。 43.iii)第一繊維状ファージ外殻タンパク質膜アンカーに融合された指示薬ポ リペプチドを含む前記ダイマーの第一サブユニットと、可溶性である前記ダイマ ーの第二サブユニットとを有するダイマーを更に含む請求の範囲第38項に記載の 方法。 44.前記の第一サブユニット及び第二サブユニットがアルカリ性ホスファターゼ である請求の範囲第43項に記載の方法。 45.前記第一サブユニットがリンカーポリペプチドにより前記外殻タンパク質膜 アンカーに融合されている請求の範囲第43項に記載の方法。 46.前記リンカーペプチドが配列番号91のアミノ酸残基配列を有する請求の範囲 第45項に記載の方法。 47.アルカリ性ホスファターゼダイマー(そのダイマーは、発現後に、繊維状フ ァージ粒子の表面で集合できる)の第一ポリペプチドサブユニット及び第二ポリ ペプチドサブユニットを発現するためのベクターであって、 前記ベクターが、 a)サプレッサーtRNA分子を発現できるサプレッサーtRNA遺伝子と、 b)前記の第一ポリペプチドサブユニット及び第二ポリペプチドサブユニット を発現するための発現カセット とをコードするヌクレオチド配列を含み、前記発現カセットが i)前記の第一ポリペプチドサブユニット及び第二ポリペプチドサブユニット をコードするメッセンジャーRNA転写産物を生産するための転写プロモーター及 び転写ターミネーター; ii)翻訳イニシエーターで開始し、アンバー、オーカー及びオパールからなる 群から選ばれたナンセンス鎖終止コドンで終了する可溶性アルカリ性ホスファタ ーゼをコードする第一読み取り枠;及び iii)前記第一読み取り枠の下流に操作により結合された第二読み取り枠 を含み、前記第二読み取り枠が、繊維状ファージ外殻タンパク質膜アンカーをコ ードし、その結果、前記サプレッサーtRNA分子によるナンセンス鎖終止コドンの 抑制後に、前記の第一読み取り枠及び第二読み取り枠が一つのポリペプチドとし て翻訳され、その翻訳ポリペプチドが繊維状ファージ外殻タンパク質膜アンカー と枠中で操作により結合されたアルカリ性ホスファターゼを有する融合タンパク 質であることを特徴とするベクター。 48.前記繊維状ファージ外殻タンパク質膜アンカーがcpIII及びcpVIIIからなる 群から選ばれる請求の範囲第47項に記載のベクター。 49.前記の第一読み取り枠及び第二読み取り枠が、アルカリ性ホスファターゼを 前記繊維状ファージ外殻タンパク質膜アンカーに操作により結合するリンカーポ リペプチドをコードするヌクレオチド配列により操作により結合されている請求 の範囲第47項に記載のベクター。 50.前記リンカーポリペプチドが配列番号91のアミノ酸残基配列を有する請求の 範囲第49項に記載のベクター。
JP6507492A 1992-09-04 1993-09-03 表面レセプター及び表面異種タンパク質を同時発現するファージミド Expired - Lifetime JPH08502645A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US94136992A 1992-09-04 1992-09-04
US07/941,369 1992-09-04
PCT/US1993/008364 WO1994005781A1 (en) 1992-09-04 1993-09-03 Phagemids coexpressing a surface receptor and a surface heterologous protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003180194A Division JP2004000238A (ja) 1992-09-04 2003-06-24 表面レセプター及び表面異種タンパク質を同時発現するファージミド

Publications (1)

Publication Number Publication Date
JPH08502645A true JPH08502645A (ja) 1996-03-26

Family

ID=25476353

Family Applications (2)

Application Number Title Priority Date Filing Date
JP6507492A Expired - Lifetime JPH08502645A (ja) 1992-09-04 1993-09-03 表面レセプター及び表面異種タンパク質を同時発現するファージミド
JP2003180194A Pending JP2004000238A (ja) 1992-09-04 2003-06-24 表面レセプター及び表面異種タンパク質を同時発現するファージミド

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2003180194A Pending JP2004000238A (ja) 1992-09-04 2003-06-24 表面レセプター及び表面異種タンパク質を同時発現するファージミド

Country Status (11)

Country Link
US (1) US5770356A (ja)
EP (2) EP0663953B1 (ja)
JP (2) JPH08502645A (ja)
AT (1) ATE210189T1 (ja)
AU (1) AU685753B2 (ja)
CA (1) CA2143104C (ja)
DE (1) DE69331278T2 (ja)
DK (1) DK0663953T3 (ja)
ES (1) ES2168277T3 (ja)
PT (1) PT663953E (ja)
WO (1) WO1994005781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050444A (ja) * 2002-08-07 2012-03-15 Discoverx Corp Dnaインサート増殖およびファージディスプレイ法のためのタンパク質発現の切り離し

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750373A (en) * 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US6916605B1 (en) * 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
WO1992018619A1 (en) * 1991-04-10 1992-10-29 The Scripps Research Institute Heterodimeric receptor libraries using phagemids
ATE463573T1 (de) * 1991-12-02 2010-04-15 Medimmune Ltd Herstellung von autoantikörpern auf phagenoberflächen ausgehend von antikörpersegmentbibliotheken
DK0744958T3 (da) 1994-01-31 2003-10-20 Univ Boston Polyklonale antistofbiblioteker
US20060078561A1 (en) * 1994-01-31 2006-04-13 The Trustees Of Boston University Polyclonal antibody libraries
US6475806B1 (en) * 1995-06-07 2002-11-05 Praecis Pharmaceuticals, Inc. Anchor libraries and identification of peptide binding sequences
US7883872B2 (en) * 1996-10-10 2011-02-08 Dyadic International (Usa), Inc. Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
US5811381A (en) * 1996-10-10 1998-09-22 Mark A. Emalfarb Cellulase compositions and methods of use
DE69841273D1 (de) * 1997-11-17 2009-12-17 Micromet Ag Verfahren zur identifikation von bindestellendomänen, die ihre epitopbindefähigkeit beibehalten
US7244826B1 (en) 1998-04-24 2007-07-17 The Regents Of The University Of California Internalizing ERB2 antibodies
WO2000006717A2 (en) 1998-07-27 2000-02-10 Genentech, Inc. Improved transformation efficiency in phage display through modification of a coat protein
DE69922978T2 (de) * 1998-10-06 2005-12-08 Emalfarb, Mark Aaron, Jupiter Transformationsystem in filamentösen fungiziden chrysosporium-wirtszellen
ES2321568T3 (es) * 1999-05-18 2009-06-08 Dyax Corp. Bibliotecas de fragmentos fab y procedimientos para su uso.
US20020102613A1 (en) 1999-05-18 2002-08-01 Hoogenboom Hendricus Renerus Jacobus Mattheus Novel Fab fragment libraries and methods for their use
AU784983B2 (en) * 1999-12-15 2006-08-17 Genentech Inc. Shotgun scanning, a combinatorial method for mapping functional protein epitopes
WO2002010417A2 (en) * 2000-08-02 2002-02-07 Xencor Methods and compositions for the construction and use of viral envelops as display particles
EP1493028A4 (en) * 2001-07-06 2006-06-14 Genentech Inc PHAGEN DISPLAY PRESENTED LIGANDS OF THE PDZ DOMAIN
US7833741B2 (en) * 2002-08-07 2010-11-16 Ambit Biosciences Corporation Uncoupling of DNA insert propagation and expression of protein for phage display
US7897381B2 (en) * 2002-08-07 2011-03-01 Ambit Biosciences Corporation Uncoupling of DNA insert propagation and expression of protein for phage display
US20040235121A1 (en) * 2002-08-29 2004-11-25 Integrigen, Inc. High copy number plasmids and their derivatives
EP1554401B1 (en) * 2002-09-18 2008-02-13 The Trustees Of The University Of Pennsylvania Compositions, methods and kits for detection of an antigen on a cell and in a biological mixture
US7927840B2 (en) 2006-09-11 2011-04-19 Gen Probe Incorporated Method for detecting West Nile Virus nucleic acids in the 3′ non-coding region
WO2004036190A2 (en) * 2002-10-16 2004-04-29 Gen-Probe Incorporated Compositions and methods for detecting west nile virus
US7329725B1 (en) * 2003-10-29 2008-02-12 Nastech Pharmaceutical Company Inc. Phage displayed Trp cage ligands
DE602005016218D1 (de) * 2004-01-30 2009-10-08 Maxygen Aps Gesteuertes überlesen von stopcodons
EP1789453A2 (en) * 2004-05-18 2007-05-30 Genentech, Inc. M13 virus major coat protein variants for c-terminal and bi-terminal display of a heterologous protein
US9862956B2 (en) 2006-12-10 2018-01-09 Danisco Us Inc. Expression and high-throughput screening of complex expressed DNA libraries in filamentous fungi
WO2008073914A2 (en) 2006-12-10 2008-06-19 Dyadic International Inc. Expression and high-throughput screening of complex expressed dna libraries in filamentous fungi
CA2736661A1 (en) * 2007-09-07 2009-03-12 Dyadic International, Inc. Novel fungal enzymes
CA3018365A1 (en) 2016-03-23 2017-09-28 The General Hospital Corporation Assays and methods for detecting udp-glucose
WO2020180971A1 (en) * 2019-03-04 2020-09-10 The Texas A&M University System Methods of making and utilizing amber-obligated phage display libraries
WO2022011082A1 (en) * 2020-07-08 2022-01-13 Stellate Biotherapeutics, Inc. Compositions and methods for producing single stranded dna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281248A (ja) * 1988-09-06 1990-03-22 Digital Equip Corp <Dec> 遠隔ブート
JPH0318948A (ja) * 1989-04-26 1991-01-28 Sun Microsyst Inc 回路網を介してオペレーテイングシステムをロードする方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349578B2 (en) * 1987-03-02 1998-10-28 Enzon Labs Inc. Organism carrying a Single Chain Antibody Domain at its surface.
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
CA2016841C (en) * 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
CA2025398A1 (en) * 1989-09-20 1992-03-15 Timothy Gerard Dinan Diagnosis and treatment of a disorder of the gastrointestinal tract
US5427908A (en) * 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
CA2084307A1 (en) * 1990-06-01 1991-12-02 Cetus Oncology Corporation Compositions and methods for identifying biologically active molecules
US5723286A (en) * 1990-06-20 1998-03-03 Affymax Technologies N.V. Peptide library and screening systems
GB9015198D0 (en) * 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
IL99552A0 (en) * 1990-09-28 1992-08-18 Ixsys Inc Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof
GB9022190D0 (en) * 1990-10-12 1990-11-28 Perham Richard N Immunogenic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281248A (ja) * 1988-09-06 1990-03-22 Digital Equip Corp <Dec> 遠隔ブート
JPH0318948A (ja) * 1989-04-26 1991-01-28 Sun Microsyst Inc 回路網を介してオペレーテイングシステムをロードする方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050444A (ja) * 2002-08-07 2012-03-15 Discoverx Corp Dnaインサート増殖およびファージディスプレイ法のためのタンパク質発現の切り離し

Also Published As

Publication number Publication date
US5770356A (en) 1998-06-23
ES2168277T3 (es) 2002-06-16
AU685753B2 (en) 1998-01-29
JP2004000238A (ja) 2004-01-08
DE69331278T2 (de) 2002-07-18
EP0663953B1 (en) 2001-12-05
CA2143104C (en) 2008-04-08
EP0663953A1 (en) 1995-07-26
WO1994005781A1 (en) 1994-03-17
CA2143104A1 (en) 1994-03-17
DE69331278D1 (de) 2002-01-17
EP1162270A3 (en) 2003-04-09
AU4848593A (en) 1994-03-29
DK0663953T3 (da) 2002-04-02
PT663953E (pt) 2002-05-31
ATE210189T1 (de) 2001-12-15
EP0663953A4 (en) 1997-05-02
EP1162270A2 (en) 2001-12-12

Similar Documents

Publication Publication Date Title
JPH08502645A (ja) 表面レセプター及び表面異種タンパク質を同時発現するファージミド
JP4108430B2 (ja) オリゴヌクレオチド
US6986986B1 (en) Polyvalent display libraries
US6420113B1 (en) Chimeric polyclonal antibodies
JP3321159B2 (ja) あらかじめ選択された特異性を有するレセプターを単離する方法
Yau et al. Emerging trends in the synthesis and improvement of hapten-specific recombinant antibodies
JPH09506262A (ja) 特異的抗体の製造方法
IE84214B1 (en) Heterodimeric receptor libraries using phagemids
JPH08502260A (ja) ヒト免疫不全ウイルスに対するヒト中和モノクローナル抗体
US6555310B1 (en) Polyclonal libraries
JPH11507516A (ja) 潰瘍性大腸炎関連の抗好中球細胞質抗体物質および関係する方法およびキット

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

EXPY Cancellation because of completion of term