JPH0849094A - Local anodization method and device therefor - Google Patents

Local anodization method and device therefor

Info

Publication number
JPH0849094A
JPH0849094A JP6183298A JP18329894A JPH0849094A JP H0849094 A JPH0849094 A JP H0849094A JP 6183298 A JP6183298 A JP 6183298A JP 18329894 A JP18329894 A JP 18329894A JP H0849094 A JPH0849094 A JP H0849094A
Authority
JP
Japan
Prior art keywords
temperature
cooling liquid
treated
electrolytic solution
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6183298A
Other languages
Japanese (ja)
Inventor
Masaaki Jinno
昌明 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6183298A priority Critical patent/JPH0849094A/en
Publication of JPH0849094A publication Critical patent/JPH0849094A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To always keep the inner surface of the parts to be treated close to the temp. of an electrolyte. CONSTITUTION:Temp. sensors 7, 8, 9 and 10 set respectively at the feed and discharge parts of an electrolyte 19 and the feed and discharge parts of a liq. coolant 18, a flow rate sensor 11 and a control computer 3 for inputting the detected temp. and flow rate from the temp. sensors 7, 8, 9 and 10 and flow rate sensor 11 and the voltage value and current value from an electrolyzing power source 4 to calculate the target temp. of the coolant feed part after the time tx are provided to the device. Since the coolant temp. after the time tx is controlled to the target temp. by a coolant refrigerator 6, the temp. of the surface of a hollow part 15 is rapidly approached to the electrolyte temp., and the surface is controlled to an appropriate temp. as the heat released due to the thickening of an anodic oxide film is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム及びアル
ミニウム合金製品の表面処理に適用される局部陽極酸化
処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a local anodic oxidation method and apparatus applied to the surface treatment of aluminum and aluminum alloy products.

【0002】[0002]

【従来の技術】部品の一部の表面にのみ陽極酸化膜を形
成させたい場合、被処理面以外の部分にマスキング剤を
塗布する方法が通常用いられるが、被処理面が中空部品
の内面にあたる場合には、マスキングの手間を省くた
め、及び部品の内部空間での液温上昇や空気溜りの形成
による不具合を防ぐため、電解液をポンプで循環させて
部品内部の被処理面にのみ供給しながら電解する方法が
用いられることもあった。
When it is desired to form an anodic oxide film only on a part of the surface of a part, a method of applying a masking agent to the part other than the surface to be processed is usually used, but the surface to be processed corresponds to the inner surface of the hollow part. In this case, in order to save the trouble of masking and to prevent problems due to the rise of the liquid temperature and the formation of air pockets in the internal space of the parts, the electrolytic solution is circulated by the pump and supplied only to the surface to be processed inside the parts. However, a method of electrolyzing was sometimes used.

【0003】上記電解液をポンプで循環させながら電解
する方法において、特に高い電流密度で電解を行う硬質
陽極酸化処理の場合、電気抵抗の大きい陽極酸化膜で発
生するジュール熱が十分に除去されず、被処理面の温度
が電解液の温度よりもかなり高くなってしまう可能性が
あり、この場合は良好な膜が形成されない。
In the method of electrolyzing while circulating the electrolytic solution with a pump, especially in the case of hard anodizing treatment in which electrolysis is performed at a high current density, Joule heat generated in the anodic oxide film having high electric resistance is not sufficiently removed. However, the temperature of the surface to be treated may be considerably higher than the temperature of the electrolytic solution, and in this case, a good film cannot be formed.

【0004】そのため、処理を施さない部品外面を冷却
液に接触させて、ジュール熱を被処理面の裏側からも除
去する方法が提案されている(本出願人の出願に係る発
明「局部アノダイズ方法」(特願平03−18097
1))。この方法においては、冷却液の温度設定につい
て特に基準がなく、電解液とほぼ同じ温度に設定される
ことが多かった。
Therefore, a method has been proposed in which the outer surface of the untreated part is brought into contact with a cooling liquid to remove the Joule heat from the back side of the surface to be processed (the invention of the applicant's application "local anodizing method"). (Japanese Patent Application No. 03-18097
1)). In this method, there is no particular standard for setting the temperature of the cooling liquid, and the temperature is often set to almost the same as that of the electrolytic solution.

【0005】しかしながらこの場合、被処理面温度が電
解液温度よりも大幅に高くなる可能性があることから、
伝熱係数h〔W/m2K〕をあらかじめ求めた上で、冷却
液温度がTA −IV/Ah〔K〕(こゝで、T
A 〔K〕:電解液温度、A〔m2 〕:被処理面積、I
〔A〕:電流、V〔V〕:電圧)となるように制御する
方法も提案されている(本出願人の出願に係る発明「局
部陽極酸化処理方法及び装置」(特願平05−9927
7))。
However, in this case, the temperature of the surface to be treated may be significantly higher than the temperature of the electrolytic solution.
After the heat transfer coefficient h [W / m 2 K] is obtained in advance, the coolant temperature is T A −IV / Ah [K] (where T
A [K]: Electrolyte temperature, A [m 2 ]: Area to be treated, I
[A]: current, V [V]: voltage) has been proposed as a control method (the invention of the applicant of the present invention "local anodizing method and apparatus" (Japanese Patent Application No. 05-9927).
7)).

【0006】上記発明「局部陽極酸化処理装置」の構成
は、図3に示す通りであり、中空部品15に陰極兼液供
給口16、液排出口17をセットして内部に電解液19
を循環させ、外部は冷却液18により冷却し、この冷却
液18の温度が温度センサ8からの入力TA 、電流及び
電圧12の入力I,Vに基いて求めた設定値TA −IV
/Ah〔K〕となるように冷凍機6で制御していた。
The structure of the above-mentioned "local anodizing apparatus" of the invention is as shown in FIG. 3, in which the cathode / liquid supply port 16 and the liquid discharge port 17 are set in the hollow part 15 and the electrolytic solution 19 is placed inside.
And the outside is cooled by the cooling liquid 18, and the temperature of the cooling liquid 18 is a set value T A -IV obtained based on the input T A from the temperature sensor 8 and the inputs I and V of the current and voltage 12.
The refrigerator 6 was controlled so as to be / Ah [K].

【0007】[0007]

【発明が解決しようとする課題】電解液(陽極処理液)
の温度は、良質な陽極酸化膜が得られるように定められ
た適正値に設定されるものであり、本来、被処理面温度
も液温とほぼ同じ温度に保たれていることが望ましい。
Electrolyte solution (anodizing solution)
The temperature is set to an appropriate value determined so that a high quality anodic oxide film can be obtained, and it is desirable that the surface temperature to be treated is originally maintained at substantially the same temperature as the liquid temperature.

【0008】被処理面の裏側(中空部品内面を処理する
場合は部品の外側)に冷却液を接触させるのは、被処理
面温度の上昇を抑える有効な方法であるが、この場合、
例えば冷却液温度が電解液温度に等しくなるように制御
したのでは、被処理面温度を電解液温度に一致させるこ
とはできない。特に、硬質陽極処理の場合のように発熱
量が大きければ、被処理面温度がかなり上昇することも
考えられる。
The contact of the cooling liquid with the back side of the surface to be treated (outside of the component when the inner surface of the hollow component is treated) is an effective method for suppressing the temperature rise of the surface to be treated.
For example, if the temperature of the cooling liquid is controlled to be equal to the temperature of the electrolytic solution, the temperature of the surface to be treated cannot be made equal to the temperature of the electrolytic solution. In particular, if the amount of heat generated is large, as in the case of hard anodization, the temperature of the surface to be treated may rise considerably.

【0009】従来の冷却液温度がTA −IV/Ah
〔K〕となるように制御する方法については、被処理面
温度を電解液温度に近付けるのには有効であるが、冷凍
機の能力が十分でない場合には、冷却液が制御温度に達
するのに時間がかかるという課題があった。
The conventional coolant temperature is T A -IV / Ah.
The method of controlling the temperature to be [K] is effective in bringing the temperature of the surface to be treated close to the temperature of the electrolytic solution, but when the capacity of the refrigerator is not sufficient, the cooling liquid reaches the control temperature. There was a problem that it took time.

【0010】また、定電流電解の場合、絶縁体である陽
極酸化膜の膜厚増大に伴って電圧が増大し、時間ととも
に発熱量が増大するために、本来目的とした被処理面温
度制御が十分にできないという課題があった。本発明は
上記の課題を解決しようとするものである。
In the case of constant current electrolysis, the voltage increases as the thickness of the anodic oxide film, which is an insulator, increases, and the amount of heat generated increases with time. There was a problem that I could not do it enough. The present invention is intended to solve the above problems.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明の局部陽極酸化処理方法は、その内面に被
処理面を有する中空部品を被処理部品とし、その被処理
面に電解液を循環供給し、その外側に冷却ジャケットを
設けて冷却液を循環供給し、その内部に挿入された陰極
との間に電解用電源より電圧を印加して被処理部品の内
面に陽極酸化処理を施す局部陽極酸化処理方法におい
て、陽極酸化処理に先立って被処理面に電解液を循環供
給するとともに冷却ジャケットに冷却液を循環供給し、
被処理面に供給される電解液の温度TAin 〔K〕、被処
理面から排出される電解液の温度TAout〔K〕、冷却ジ
ャケットに供給される冷却液の温度TCin 〔K〕、冷却
ジャケットから排出される冷却液の温度TCout〔K〕及
び冷却液の循環流量F〔m3/s〕を測定し、上記冷却液の
比熱CP 〔J/kgK〕と密度ρ〔kg/m3 〕と被処理面積
A〔m2〕と上記測定された温度TAout,TCin ,TCout
と流量Fを用いて上記被処理面から冷却液への伝熱係数
h(W/m2K〕を次式により求めた後、 h=(ρCP F/A)・(TCout−TCin )/(TAout
−TCout) 被処理面へ供給する電解液の温度TAin 〔K〕を一定に
保つとともにその電圧値V〔V〕と電流値I〔A〕を計
測しながら電解用電源より上記被処理部と陰極の間に電
圧を印加して電解を開始し、上記電圧値Vと電流値Iと
Δt時間前の電圧値Vt - Δt 〔V〕と電流値It - Δ
t 〔A〕を用いて次式によりtX 〔s〕時間経過後の予
測発熱量QX 〔W〕を求め、 QX =I・V+〔(I・V−It - Δt ・Vt - Δt )
/Δt〕・tXX 〔s〕時間経過後に供給される冷却液の目標温度を
次式により求め、 TAin −QX /Ah−QX /ρCP F〔K〕 冷却液の温度TCin が上記目標温度以下となるように冷
却液用の冷凍機を制御することを特徴としている。
(1) In the local anodizing treatment method of the present invention, a hollow component having a surface to be treated on its inner surface is used as a component to be treated, an electrolytic solution is circulated and supplied to the surface to be treated, and a cooling jacket is provided on the outside to cool the component. In the local anodizing treatment method in which a liquid is circulated and supplied, and a voltage is applied from the power source for electrolysis between the cathode and the cathode inserted thereinto to anodize the inner surface of the component to be treated, prior to the anodizing treatment. Circulate and supply the electrolytic solution to the surface to be treated, and circulate and supply the cooling solution to the cooling jacket.
Temperature TAin [K] of electrolyte supplied to the surface to be treated, temperature TAout [K] of electrolyte discharged from the surface to be treated, temperature TCin [K] of coolant supplied to the cooling jacket, from cooling jacket The temperature TCout [K] of the discharged cooling liquid and the circulating flow rate F [m 3 / s] of the cooling liquid were measured, and the specific heat C P [J / kgK] and the density ρ [kg / m 3 ] of the cooling liquid were measured. Processed area A [m 2 ] and the measured temperatures TAout, TCin, TCout
And the flow rate F are used to obtain the heat transfer coefficient h (W / m 2 K) from the surface to be treated to the cooling liquid by the following equation: h = (ρC P F / A) · (TCout−TCin) / (TAout
-TCout) The temperature TAin [K] of the electrolytic solution supplied to the surface to be treated is kept constant, and while measuring the voltage value V [V] and the current value I [A], the electrolysis power source supplies the treated portion and the cathode. Voltage is applied to start electrolysis, and the voltage value V, the current value I, and the voltage value Vt - Δt [V] and the current value It - Δ before Δt time.
Using t [A], the predicted heat generation amount Q x [W] after the time t x [s] has elapsed is calculated by the following equation, and Q x = I · V + [(I · V−It Δt · Vt Δt)
/ Delta] t] · t X t X [s] target temperature of the cooling liquid supplied after a time lapse of determined by the following equation, the temperature TCin of TAin -Q X / Ah-Q X / ρC P F [K] coolant It is characterized in that the refrigerator for cooling liquid is controlled so as to be equal to or lower than the target temperature.

【0012】(2)本発明の局部陽極酸化処理装置は、
その内面に被処理面を有する中空部品を被処理部品と
し、その被処理面に電解液を循環供給し、その外側に冷
却ジャケットを設けて冷却液を循環供給し、その内部に
挿入された陰極との間に電解用電源より電圧を印加して
被処理部品の内面に陽極酸化処理を施す局部陽極酸化処
理装置において、被処理面の電解液の流入部に設けられ
た温度センサ、被処理面の電解液の排出部に設けられた
温度センサ、冷却ジャケットの冷却液の流入部に設けら
れた温度センサ、冷却ジャケットの冷却液の排出部に設
けられた温度センサ、冷却液循環配管に設けられた流量
センサ、上記それぞれの温度センサより検出温度を入力
し上記流量センサより検出流量を入力し上記電解用電源
より電圧値と電流値を入力して上記発明(1)に記載の
演算を行いtX 時間経過後の流入部の冷却液の目標温度
を出力する制御用コンピュータ、および同コンピュータ
より上記目標温度を入力して流入部の冷却液が目標温度
以下となるように冷却液用の冷凍機を制御する冷凍機制
御装置を備えたことを特徴としている。
(2) The local anodizing apparatus of the present invention comprises:
A hollow part having a surface to be processed on its inner surface is used as a part to be processed, an electrolytic solution is circulated and supplied to the surface to be processed, and a cooling jacket is provided on the outer side to circulate and supply the cooling liquid, and a cathode inserted inside the part. In the local anodizing device for applying an electric voltage from the power source for electrolysis to the inner surface of the part to be processed, the temperature sensor provided at the inflow part of the electrolytic solution on the surface to be processed, the surface to be processed Temperature sensor provided in the discharge part of the electrolyte solution, a temperature sensor provided in the cooling solution inflow part of the cooling jacket, a temperature sensor provided in the cooling solution discharge part of the cooling jacket, provided in the cooling liquid circulation pipe Flow rate sensor, the detected temperature is input from each of the temperature sensors, the detected flow rate is input from the flow rate sensor, the voltage value and the current value are input from the electrolysis power source, and the calculation described in the above invention (1) is performed. X time A control computer that outputs the target temperature of the cooling liquid in the inflow portion after the excess, and the above target temperature is input from the computer to control the refrigerator for the cooling liquid so that the cooling liquid in the inflow portion becomes the target temperature or less. It is characterized by having a refrigerator controller.

【0013】[0013]

【作用】上記発明(1)において、被処理面に電解液を
循環供給させ、また冷却ジャケットに冷却液を循環供給
させると、電解液の熱は冷却液に伝達されるが、冷却液
が電解液から受けとる熱量は次式により表わされる。
In the above invention (1), when the electrolytic solution is circulated and supplied to the surface to be treated and the cooling liquid is circulated and supplied to the cooling jacket, the heat of the electrolytic solution is transferred to the cooling solution, but the cooling solution is electrolyzed. The amount of heat received from the liquid is expressed by the following equation.

【0014】ρCP F(TCout−TCin )〔W〕 こゝで、TCout〔K〕:冷却ジャケットから排出される
冷却液温度、TCin 〔K〕:冷却ジャケットへ供給され
る冷却液温度、ρ〔kg/m3 〕:冷却液の密度、CP 〔J
/kgK〕:冷却液の比熱、F〔m3/s〕:冷却液の流量。
ΡC P F (TCout−TCin) [W] where TCout [K] is the temperature of the cooling liquid discharged from the cooling jacket, TCin [K] is the temperature of the cooling liquid supplied to the cooling jacket, and ρ [ kg / m 3 ]: Density of cooling liquid, C P [J
/ KgK]: specific heat of the cooling fluid, F [m 3 / s]: flow rate of the cooling fluid.

【0015】一方、冷却液への伝熱量は次式により表わ
される。
On the other hand, the amount of heat transferred to the cooling liquid is expressed by the following equation.

【0016】Ah(TAout−TCout)〔W〕 こゝで、TAout〔K〕:被処理面に供給された後、排出
される電解液の温度、A〔m2 〕:被処理面の面積、h
〔W/m2K〕:被処理面から冷却液への見かけの伝熱係
数。
Ah (TAout-TCout) [W] where TAout [K] is the temperature of the electrolytic solution discharged after being supplied to the surface to be treated, A [m 2 ]: Area of the surface to be treated, h
[W / m 2 K]: Apparent heat transfer coefficient from the surface to be treated to the cooling liquid.

【0017】両者は等しいことから、見かけの伝熱係数
hは次式(1)により算出される。
Since both are the same, the apparent heat transfer coefficient h is calculated by the following equation (1).

【0018】 h=(ρCP F/A)・(TCout−TCin )/(TAout−TCout)…(1) 上記被処理部品の陽極処理時には、形成された陽極酸化
膜が抵抗となって被処理面でジュール熱が発生し、その
発熱量は電解電圧をV〔V〕、電流をI〔A〕とする
と、次式により表わされる。
[0018] h = (ρC P F / A ) · (TCout-TCin) / (TAout-TCout) ... (1) above during anodization of the treated parts, anodized film formed is a resistor to be treated Joule heat is generated on the surface, and the amount of heat generated is expressed by the following equation, where the electrolytic voltage is V [V] and the current is I [A].

【0019】I・V〔W〕 冷却液が新たな設定温度に達するまでのおよその時間を
X 〔s〕とし、tX時間後の発熱量QX 〔W〕を予測
すると、発熱量QX は次式により示される。
I · V [W] Approximate time until the coolant reaches a new set temperature is defined as t X [s], and the calorific value Q X [W] after t X hours is predicted. X is shown by the following equation.

【0020】QX =I・V+〔(I・V−It - Δt ・
Vt - Δt )/Δt〕・tX ここで、Δt〔s〕は適当に設定した微小時間、It -
Δt ,Vt - Δt は時間Δt〔s〕前の電流値及び電圧
値である。
Q X = I · V + [(I · V−It Δt ·
Vt - Δt) / Δt] · t X here, Δt [s] minute time is set appropriately, It -
Δt and Vt Δt are current value and voltage value before time Δt [s].

【0021】被処理面温度TW 〔K〕が電解液温度とほ
ぼ等しくなる条件下では、次式の関係がある。
Under the condition that the surface temperature T W [K] to be treated is almost equal to the temperature of the electrolytic solution, the following relationship is established.

【0022】TW ≒TAout≒TAin こゝで、TAin :被処理面に供給される電解液の温度。T W ≈TAout ≈TAin Here, TAin is the temperature of the electrolytic solution supplied to the surface to be treated.

【0023】上記熱量QX がほとんど冷却液の側に伝わ
るものとすると、発熱量QX は次式により表わされる。
Assuming that the heat quantity Q X is almost transmitted to the cooling liquid side, the heat quantity Q X is represented by the following equation.

【0024】 QX ≒Ah(TAin −TCout)…………………………………………(2) 一方、(1)式より次式が導かれる。Q X ≈Ah (TAin−TCout) ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… collapse.

【0025】TCout=〔Ah/(ρCP F+Ah)〕・
TAout+〔ρCP F/(ρCP F+Ah)〕・TCin これを(2)式に代入し、TAout=TAin とすると、t
X 時間経過後に供給される冷却液の目標温度を求めるた
めの次式が得られる。
[0025] TCout = [Ah / (ρC P F + Ah ) ] -
TAout + [ρC P F / (ρC P F + Ah)] · TCin Substituting this into Eq. (2) and setting TAout = TAin, t
The following equation for obtaining the target temperature of the cooling liquid supplied after the lapse of X hours is obtained.

【0026】 TCin =TAin −QX /Ah−QX /ρCP F〔K〕………………(3) 従って、時間tX を適切に設定した上で、冷却ジャケッ
トに供給する冷却液の温度について(3)式により得ら
れる温度を目標温度以下に制御することにより、被処理
面温度を電解液温度に近い値にすることができる。
[0026] TCin = TAin -Q X / Ah- Q X / ρC P F [K] .................. (3) Therefore, in order to properly set the time t X, coolant supplied to the cooling jacket By controlling the temperature obtained by the equation (3) to be equal to or lower than the target temperature, the surface temperature to be treated can be made close to the electrolytic solution temperature.

【0027】上記発明(2)においては、制御用コンピ
ュータが、電解液の流入部、その排出部、冷却液の流入
部、その排出部に設けられた温度センサより検出温度を
入力し、冷却液循環配管に設けられた流量センサより検
出流量を入力し、電解用電源より電圧値と電流値を入力
して上記発明(1)に記載の演算を行い、tX 時間経過
後に供給される冷却液の目標温度を演算して出力するた
め、上記発明(1)と同様に被処理面の温度を電解液温
度に近い値とすることが可能となる。
In the above invention (2), the control computer inputs the detected temperature from the temperature sensors provided at the inflow part of the electrolytic solution, the exhaust part thereof, the inflow part of the cooling liquid, and the exhaust part, and the cooling liquid is supplied. Coolant supplied after t X time has elapsed by inputting the detected flow rate from the flow rate sensor provided in the circulation pipe, inputting the voltage value and current value from the electrolysis power source, and performing the calculation described in the above invention (1). Since the target temperature is calculated and output, the temperature of the surface to be treated can be set to a value close to the temperature of the electrolytic solution, as in the above-mentioned invention (1).

【0028】[0028]

【実施例】本発明の一実施例に係る装置を図1により説
明する。図1に示す本実施例に係る装置は、上部に液排
出口17が設けられた中空部品15内に上部より挿入さ
れた陰極兼液流入口16、上記中空部品15の外側に設
けられ冷却液供給ライン25と冷却液排出ライン26が
接続された冷却ジャケット24、上記中空部品15に設
けられた陰極兼流入口16と液排出口17が配管を介し
て接続された電解液槽27、同電解液槽27に接続され
冷凍機制御装置20が設けられた冷凍機21、上記冷却
液供給ライン25と排出ライン26を介して冷却ジャケ
ット24に接続され冷凍機制御装置5が設けられた冷凍
機6、上記冷凍機制御装置5に接続された制御用コンピ
ュータ3、および同コンピュータ3に接続され上記中空
部品15と陰極兼液流入口16が接続された電解用電源
4を備えた局部陽極酸化処理装置についてのものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to an embodiment of the present invention will be described with reference to FIG. The apparatus according to this embodiment shown in FIG. 1 includes a cathode / liquid inlet 16 inserted from above into a hollow component 15 having a liquid discharge port 17 at the top, and a cooling liquid provided outside the hollow component 15. A cooling jacket 24 in which a supply line 25 and a cooling liquid discharge line 26 are connected, an electrolytic solution tank 27 in which a cathode / inflow port 16 and a liquid discharge port 17 provided in the hollow component 15 are connected through a pipe, and the same electrolysis. The refrigerator 21 connected to the liquid tank 27 and provided with the refrigerator controller 20, and the refrigerator 6 provided with the refrigerator controller 5 connected to the cooling jacket 24 through the cooling liquid supply line 25 and the discharge line 26. A local anodizing process comprising a control computer 3 connected to the refrigerator control device 5, and an electrolysis power source 4 connected to the computer 3 to which the hollow component 15 and the cathode / liquid inlet 16 are connected. It is for the apparatus.

【0029】なお、上記陰極兼液流入口16、電解液槽
27、冷凍機制御装置20、冷凍機21、および冷却ジ
ャケット24は電解装置2を形成し、制御用コンピュー
タ3、電解用電源4、冷凍機制御装置5、および冷凍機
6は制御装置1を形成している。
The cathode / liquid inlet 16, the electrolytic solution tank 27, the refrigerator control device 20, the refrigerator 21, and the cooling jacket 24 form the electrolysis device 2, and the control computer 3, the electrolysis power source 4, The refrigerator controller 5 and the refrigerator 6 form a controller 1.

【0030】本実施例においては、上記装置に加えて上
記陰極兼液流入口16、液流出口17、冷却液供給ライ
ン25、及び冷却液排出ライン26にそれぞれ設けられ
た温度センサ7,8,9,10、上記冷却液排出ライン
26に設けられた流量センサ11を備え、上記温度セン
サ7,8及び流量センサ11は上記制御用コンピュータ
3に接続され、温度センサ9,10は冷凍機制御装置5
に接続されている。
In the present embodiment, in addition to the above-mentioned device, the temperature sensors 7, 8 provided on the cathode / liquid inlet 16, the liquid outlet 17, the cooling liquid supply line 25, and the cooling liquid discharge line 26, respectively. 9, 10 and a flow rate sensor 11 provided in the cooling liquid discharge line 26, the temperature sensors 7, 8 and the flow rate sensor 11 are connected to the control computer 3, and the temperature sensors 9, 10 are a refrigerator controller. 5
It is connected to the.

【0031】次に、上記本実施例に係る装置を用いて行
う中空部品15の内面の陽極酸化処理の要領について、
図2に示す操作フロー図にもとづいてその内容を以下に
説明する。
Next, the procedure of anodizing the inner surface of the hollow component 15 using the apparatus according to this embodiment will be described.
The contents will be described below based on the operation flow chart shown in FIG.

【0032】先ず、冷却ジャケット24内に中空部品1
5をセットし、中空部品15内に陰極兼液流入口16を
挿入し、諸配管等を接続した後、、中空部品15の内部
に電解液19を循環供給させ、冷却ジャケット24内に
冷却液18を循環供給させる。
First, the hollow part 1 is placed in the cooling jacket 24.
5 is set, the cathode / liquid inlet 16 is inserted into the hollow component 15, and after connecting various pipes, etc., the electrolytic solution 19 is circulated and supplied into the hollow component 15, and the cooling liquid is fed into the cooling jacket 24. 18 is circulated.

【0033】上記電解液19と冷却液18の循環供給の
際には、制御用コンピュータ3が、温度センサ8,9,
10よりそれぞれ電解液19の排出側温度TAout
〔K〕、冷却液18の供給側温度TCin 〔K〕及び排出
側温度TCout〔K〕を入力し、流量センサ11より冷却
液循環流量F〔m3/s〕を入力し、更に、冷却液18の比
熱C P 〔J/kgK〕及び密度ρ〔kg/m3〕と被処理面積
A〔m2〕を用い、次式により被処理面から冷却液18へ
の伝熱係数h〔W/m2K〕を求める。
The circulating supply of the electrolytic solution 19 and the cooling solution 18 is performed.
At this time, the control computer 3 causes the temperature sensors 8, 9,
The temperature TAout of the discharge side of the electrolytic solution 19 from 10
[K], temperature TCin [K] of supply side of coolant 18 and discharge
Input the side temperature TCout [K] and cool from the flow sensor 11.
Liquid circulation flow rate F [m3/ s] and enter the ratio of the coolant 18
Heat C P[J / kgK] and density ρ [kg / m3] And treated area
A [m2] To the cooling liquid 18 from the surface to be treated by the following equation
Heat transfer coefficient h [W / m2K].

【0034】h=(ρCP F/A)・(TCout−TCin
)/(TAout−TCout) 次に、冷却液18の供給側温度TCin を電解液19の供
給側温度TAin を同じ温度に再設定し、電解用電源4よ
り中空部品15と陰極兼液流入口16の間に電圧を印加
して、電解を開始する。
[0034] h = (ρC P F / A ) · (TCout-TCin
) / (TAout−TCout) Next, the supply side temperature TCin of the cooling liquid 18 is reset to the same supply side temperature TAin of the electrolytic solution 19, and the hollow component 15 and the cathode / liquid inlet 16 are supplied from the electrolysis power source 4. A voltage is applied between them to start electrolysis.

【0035】このとき、制御用コンピュータ3は、電解
用電源4の電流値Iと電圧値Vを常時モニタし、かつΔ
t時間前の電流値Iと電圧値Vを記憶しながら、tX
間経過後の冷却液の供給側温度TCin の目標値14を次
式により求める。
At this time, the control computer 3 constantly monitors the current value I and voltage value V of the electrolysis power source 4, and Δ
While memorizing the current value I and the voltage value V before t time, the target value 14 of the cooling fluid supply side temperature TCin after the time t X has elapsed is calculated by the following equation.

【0036】t<Δt TCin =TAin −IV/Ah−IV/ρCP F t>Δt TCin =TAin −QX /Ah−QX /ρCP F こゝで、QX =I・V+〔(I・V−It - Δt ・Vt
- Δt )/Δt〕・tX
T <Δt TCin = TAin −IV / Ah-IV / ρC P F t> Δt TCin = TAin −Q X / Ah-Q X / ρC P F Here, Q X = I · V + [(I・ V-It - Δt ・ Vt
- Δt) / Δt] · t X.

【0037】上記により得られた冷却液18の供給側温
度TCin の目標値14は冷凍機制御装置5に入力され、
同制御装置5は冷却液18の供給側温度TCin が上記目
標値14となるように冷凍機6を制御する。
The target value 14 of the supply side temperature TCin of the cooling liquid 18 obtained as described above is input to the refrigerator controller 5.
The control device 5 controls the refrigerator 6 so that the supply side temperature TCin of the cooling liquid 18 becomes the target value 14 described above.

【0038】上記により、従来の装置による場合には困
難であった被処理面温度を迅速に電解液温度に近づける
こと、及び陽極酸化膜の膜厚増大に伴う発熱量の増大に
伴う発熱量の増大に対応した被処理面の適切な温度制御
が可能となる。
As described above, the temperature of the surface to be treated, which was difficult in the case of the conventional device, is quickly brought close to the temperature of the electrolytic solution, and the amount of heat generated by the increase in the amount of heat generated by the increase in the thickness of the anodic oxide film is increased. It is possible to appropriately control the temperature of the surface to be processed corresponding to the increase.

【0039】本実施例においては、7075アルミニウ
ム合金製の中空部品15について、その内面を被処理面
として実際に陽極酸化処理を行っており、以下にその内
容と結果について説明する。
In this embodiment, the hollow component 15 made of 7075 aluminum alloy is actually subjected to anodizing treatment with the inner surface thereof being the surface to be treated. The contents and results thereof will be described below.

【0040】上記中空部品15は陰極兼液流入口16及
び液排出口17が装着された状態で密閉し、中空部品1
5の外側には冷却ジャケット24を設けた。冷却液18
としては水を用いており、その密度ρ=1.0×103
〔kg/m3〕、比熱CP =4.2×103 〔J/kgK〕と
した。
The hollow part 15 is hermetically sealed with the cathode / liquid inlet 16 and the liquid outlet 17 attached, and the hollow part 1
A cooling jacket 24 was provided on the outer side of 5. Coolant 18
Is used, and its density ρ = 1.0 × 10 3
[Kg / m 3 ] and specific heat C P = 4.2 × 10 3 [J / kgK].

【0041】制御用コンピュータ3に被処理面積A=
0.020〔m2〕を入力し、さらにΔt=60〔s〕、
X =180〔s〕を入力した。これにより、Δt時間
前の電流I〔A〕及び電圧V〔V〕を記憶し、tX 時間
後のI,Vを予測する。
In the control computer 3, the processed area A =
Input 0.020 [m 2 ] and then Δt = 60 [s],
t x = 180 [s] was input. As a result, the current I [A] and the voltage V [V] before Δt time are stored, and the I and V after t X time are predicted.

【0042】電解液19は温度センサ7の検出温度TAi
n が7.5℃に保たれた状態で循環させ、冷却液18は
当初温度センサ10の検出温度TCin が4.0℃に保た
れた状態で循環させた。
The electrolytic solution 19 is the temperature TAi detected by the temperature sensor 7.
The cooling liquid 18 was circulated with n maintained at 7.5 ° C., and the coolant 18 was initially circulated with the detected temperature TCin of the temperature sensor 10 maintained at 4.0 ° C.

【0043】このとき、温度センサ8の検出温度TAout
は7.2℃、温度センサ9の検出温度TCoutは4.4
℃、また流量センサ11の検出流量Fは0.0002
〔m3/s〕となり、伝熱係数hはh≒6000〔W/m
2K〕と算出された。
At this time, the temperature TAout detected by the temperature sensor 8
Is 7.2 ° C, and the temperature TCout detected by the temperature sensor 9 is 4.4.
C, and the flow rate F detected by the flow rate sensor 11 is 0.0002.
[M 3 / s], and the heat transfer coefficient h is h≈6000 [W / m
2 K] was calculated.

【0044】この後、TCin =TAin (7.5℃)とな
るように冷却水温度を再設定し、電解を開始した。電解
液19は、硫酸(135kg/m3 )としゅう酸(15kg/m
3 )からなる硬質陽極処理液で、電解条件は、電解開始
後20分間かけて電流密度を0から280〔A/m2〕ま
で上昇させ、以後50分間280〔A/m2〕で定電流電
解して硬質陽極酸化膜を形成させるものとした。
Thereafter, the cooling water temperature was reset so that TCin = TAin (7.5 ° C.), and electrolysis was started. The electrolyte solution 19 is sulfuric acid (135 kg / m 3 ) and oxalic acid (15 kg / m 3 ).
The electrolysis conditions are as follows. The electrolysis condition is to increase the current density from 0 to 280 [A / m 2 ] over 20 minutes after the start of electrolysis, and then at 280 [A / m 2 ] for a constant current for 50 minutes. Electrolysis was performed to form a hard anodic oxide film.

【0045】t<Δt(t:電解開始後の時間)の間
は、冷却液温度はTAin −IV/Ah−IV/ρCP
〔K〕(I〔A〕:電流,V〔V〕:電圧)を目標に制
御し、t≧Δtでは、tX 時間後の発熱量QX をQX
I・V+〔(I・V−It - Δt ・Vt - Δt )/Δ
t)〕・tX (但し、It - Δt ,Vt - Δt は、Δt
前の電流、電圧)により予測した上で、冷却液温度とし
てTAin −QX /Ah−Q X /ρCP F〔K〕を目標に
制御した。
Between t <Δt (t: time after the start of electrolysis)
Is the coolant temperature is TAin-IV / Ah-IV / ρCPF
[K] (I [A]: current, V [V]: voltage)
However, if t ≧ Δt, tXHeat value Q after hoursXQX=
I ・ V + [(I ・ V-It-Δt ・ Vt-Δt) / Δ
t)] ・ tX(However, It-Δt, Vt-Δt is Δt
Predicted by the previous current and voltage) and set the coolant temperature as
TAin-QX/ Ah-Q X/ ΡCPAim for F [K]
Controlled.

【0046】このように合計70分間電解した後、通電
及び電解液循環を止め、水洗水を配管22から導入し、
中空部品15を通って配管23へ排出させることによ
り、水洗を行った。
After electrolysis for a total of 70 minutes in this way, the energization and circulation of the electrolytic solution are stopped, and washing water is introduced through the pipe 22,
It was washed with water by being discharged into the pipe 23 through the hollow component 15.

【0047】水洗後、中空部品15を取り外し、切断し
て内面を調べた結果、外観は黒灰色で均一かつ平滑、膜
厚は51〜53μmであり、平板を電解液に浸漬して行
う普通の硬質陽極処理によるものと同等の膜が得られ
た。
After washing with water, the hollow part 15 was removed, cut and the inner surface was examined. As a result, the appearance was black gray and was uniform and smooth, and the film thickness was 51 to 53 μm. A film equivalent to that with hard anodization was obtained.

【0048】上記中空部品15については、電解液温度
TAin 及び冷却液循環流量Fを変えて、陽極酸化処理を
行っており、以下にその内容と結果を説明する。装置、
電解液及び電解条件は同じであり、電解液温度TAin は
10.6〔℃〕、冷却液循環流量Fは0.0001
〔〔m3/s〕とした。また、Δt=60〔s〕,tX =3
00〔s〕とした。
The hollow component 15 is anodized by changing the temperature TAin of the electrolytic solution and the circulating flow rate F of the cooling liquid. The contents and results will be described below. apparatus,
The electrolytic solution and the electrolytic conditions are the same, the electrolytic solution temperature TAin is 10.6 [° C.], and the coolant circulating flow rate F is 0.0001.
[[M 3 / s]]. Further, Δt = 60 [s], t X = 3
00 [s].

【0049】冷却液温度TCin を7.0(℃)に保って
循環させたときのTAin は10.4〔℃〕、TCoutは
7.3〔℃〕となり、伝熱係数hはh≒2030〔W/
m2K〕と算出された。
When the cooling liquid temperature TCin was circulated while keeping it at 7.0 (° C.), TAin was 10.4 [° C.], TCout was 7.3 [° C.], and the heat transfer coefficient h was h≈2030 [. W /
m 2 K] was calculated.

【0050】電解中の冷却液温度は第1実施例と同様に
制御した。電解及び水洗終了後、部品を取り出し、切断
して内面を調べた結果、外観は黒灰色で均一かつ平滑、
膜厚は52〜54μmであり、平板を電解液に浸漬して
行う普通の硬質陽極処理によるものと同等の膜が得られ
た。
The cooling liquid temperature during electrolysis was controlled in the same manner as in the first embodiment. After electrolysis and washing with water, the parts were taken out, cut and the inner surface was examined.As a result, the appearance was black gray, uniform and smooth,
The film thickness was 52 to 54 μm, and a film equivalent to that obtained by the ordinary hard anodization performed by immersing the flat plate in the electrolytic solution was obtained.

【0051】[0051]

【発明の効果】本発明の局部陽極酸化処理方法及び装置
は、電解液の流入部、その排出部、冷却液の流入部、そ
の排出部にそれぞれ設けられた温度センサ、冷却液循環
配管に設けられた流量センサ、および上記それぞれの温
度センサと流量センサより検出温度と検出流量を入力し
また電解用電源より電圧値と電流値を入力してtX 時間
経過後の冷却液流入部の目標温度を演算する制御用コン
ピュータを備え、冷却液用の冷凍機がtX 時間経過後の
冷却液の温度を上記目標温度に制御することによって、
中空部品の被処理面温度を迅速に電解液温度に近づける
ことが可能になるとともに、陽極酸化膜の膜厚増大に伴
う発熱量の増大に対応した被処理面の適切な温度制御が
可能となる。
The method and apparatus for local anodizing treatment of the present invention are provided in the temperature sensor and the cooling liquid circulation pipe respectively provided in the inflow portion of the electrolytic solution, the exhaust portion thereof, the inflow portion of the cooling liquid and the exhaust portion thereof. Target temperature of the coolant inflow section after t X time has elapsed by inputting the detected temperature and detected flow rate from the respective flow rate sensors and the temperature sensors and flow rate sensors above, and the voltage value and current value from the electrolysis power source. By including a control computer for calculating, the refrigerator for cooling liquid controls the temperature of the cooling liquid after the lapse of t X time to the target temperature,
The temperature of the surface to be processed of the hollow part can be quickly brought close to the temperature of the electrolytic solution, and the temperature of the surface to be processed can be controlled appropriately in response to the increase in the amount of heat generated as the thickness of the anodic oxide film increases. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る装置の説明図である。FIG. 1 is an explanatory diagram of an apparatus according to an embodiment of the present invention.

【図2】上記一実施例に係る操作手順を示すフロー図で
ある。
FIG. 2 is a flowchart showing an operation procedure according to the above-mentioned embodiment.

【図3】従来の装置の説明図である。FIG. 3 is an explanatory diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1 制御装置 2 電解装置 3 制御用コンピュータ 4 電解用電源 5 冷凍機制御装置 6 冷凍機 7,8,9,10 温度センサ 11 流量センサ 12 電解電圧及び電流 13 冷却液温度 14 冷却液流入側目標温度 15 中空部品 16 陰極兼液流入口 17 液排出口 18 冷却液 19 電解液 20 冷凍機制御装置 21 冷凍機 22 水洗水導入配管 23 水洗水排出配管 24 冷却ジャケット 25 冷却液供給ライン 26 冷却液排出ライン 27 電解液槽 1 Control Device 2 Electrolysis Device 3 Control Computer 4 Power Supply for Electrolysis 5 Refrigerator Control Device 6 Refrigerator 7, 8, 9, 10 Temperature Sensor 11 Flow Sensor 12 Electrolysis Voltage and Current 13 Cooling Liquid Temperature 14 Cooling Liquid Inlet Side Target Temperature 15 Hollow Parts 16 Cathode and Liquid Inlet 17 Liquid Discharge Port 18 Coolant 19 Electrolyte 20 Refrigerator Controller 21 Refrigerator 22 Rinsing Water Introducing Pipe 23 Rinsing Water Discharging Pipe 24 Cooling Jacket 25 Cooling Liquid Supply Line 26 Coolant Discharging Line 27 Electrolyte tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 その内面に被処理面を有する中空部品を
被処理部品とし、その被処理面に電解液を循環供給し、
その外側に冷却ジャケットを設けて冷却液を循環供給
し、その内部に挿入された陰極との間に電解用電源より
電圧を印加して被処理部品の内面に陽極酸化処理を施す
局部陽極酸化処理方法において、陽極酸化処理に先立っ
て被処理面に電解液を循環供給するとともに冷却ジャケ
ットに冷却液を循環供給し、被処理面に供給される電解
液の温度TAin 〔K〕、被処理面から排出される電解液
の温度TAout〔K〕、冷却ジャケットに供給される冷却
液の温度TCin 〔K〕、冷却ジャケットから排出される
冷却液の温度TCout〔K〕及び冷却液の循環流量F〔m3
/s〕を測定し、上記冷却液の比熱CP 〔J/kgK〕と密
度ρ〔kg/m3 〕と被処理面積A〔m2〕と上記測定された
温度TAout,TCin,TCoutと流量Fを用いて上記被処
理面から冷却液への伝熱係数h(W/m2K〕を次式によ
り求めた後、 h=(ρCP F/A)・(TCout−TCin )/(TAout
−TCout) 被処理面へ供給する電解液の温度TAin 〔K〕を一定に
保つとともにその電圧値V〔V〕と電流値I〔A〕を計
測しながら電解用電源より上記被処理部品と陰極の間に
電圧を印加して電解を開始し、上記電圧値Vと電流値I
とΔt時間前の電圧値Vt - Δt 〔V〕と電流値It -
Δt 〔A〕を用いて次式によりtX 〔s〕時間経過後の
予測発熱量QX 〔W〕を求め、 QX =I・V+〔(I・V−It - Δt ・Vt - Δt )
/Δt〕・tXX 〔s〕時間経過後に供給される冷却液の目標温度を
次式により求め、 TAin −QX /Ah−QX /ρCP F〔K〕 冷却液の温度TCin が上記目標温度以下となるように冷
却液用の冷凍機を制御することを特徴とする局部陽極酸
化処理方法。
1. A hollow part having a surface to be processed on its inner surface is used as a part to be processed, and an electrolytic solution is circulated and supplied to the surface to be processed,
A cooling jacket is provided on the outside to circulate and supply the cooling liquid, and a voltage is applied between the cathode and the cathode inserted from the electrolysis power supply to anodize the inner surface of the part to be treated. In the method, the electrolytic solution is circulated and supplied to the surface to be treated and the cooling liquid is circulated and supplied to the surface to be treated prior to the anodizing treatment so that the temperature TAin [K] of the electrolytic solution supplied to the surface to be treated, The temperature TAout [K] of the discharged electrolyte, the temperature TCin [K] of the cooling liquid supplied to the cooling jacket, the temperature TCout [K] of the cooling liquid discharged from the cooling jacket, and the circulation flow rate F [m of the cooling liquid. 3
/ s], the specific heat of the cooling liquid C P [J / kgK], the density ρ [kg / m 3 ], the treated area A [m 2 ] and the measured temperatures TAout, TCin, TCout and the flow rate. after using the F obtained by the following equation heat transfer coefficients h (W / m 2 K] of the cooling liquid from the treated surface, h = (ρC P F / a) · (TCout-TCin) / (TAout
-TCout) The temperature TAin [K] of the electrolytic solution supplied to the surface to be processed is kept constant, and while measuring the voltage value V [V] and the current value I [A], the electrolysis power source supplies the above-mentioned processed parts and cathode. A voltage is applied between the two to start electrolysis, and the above voltage value V and current value I
A Delta] t time before the voltage value Vt - Delta] t [V] and current value It -
Using Δt [A], the predicted heat generation amount Q X [W] after elapse of t X [s] time is obtained by the following equation, and Q X = I · V + [(I · V−It Δt · Vt Δt)
/ Delta] t] · t X t X [s] target temperature of the cooling liquid supplied after a time lapse of determined by the following equation, the temperature TCin of TAin -Q X / Ah-Q X / ρC P F [K] coolant A method for local anodization treatment, characterized in that a refrigerator for a cooling liquid is controlled to be equal to or lower than the target temperature.
【請求項2】 その内面に被処理面を有する中空部品を
被処理部品とし、その被処理面に電解液を循環供給し、
その外側に冷却ジャケットを設けて冷却液を循環供給
し、その内部に挿入された陰極との間に電解用電源より
電圧を印加して被処理部品の内面に陽極酸化処理を施す
局部陽極酸化処理装置において、被処理面の電解液の流
入部に設けられた温度センサ、被処理面の電解液の排出
部に設けられた温度センサ、冷却ジャケットの冷却液の
流入部に設けられた温度センサ、冷却ジャケットの冷却
液の排出部に設けられた温度センサ、冷却液循環配管に
設けられた流量センサ、上記それぞれの温度センサより
検出温度を入力し上記流量センサより検出流量を入力し
上記電解用電源より電圧値と電流値を入力して請求項1
に記載の演算を行いtX 時間経過後の流入部の冷却液の
目標温度を出力する制御用コンピュータ、および同コン
ピュータより上記目標温度を入力して流入部の冷却液が
目標温度以下となるように冷却液用の冷凍機を制御する
冷凍機制御装置を備えたことを特徴とする局部陽極酸化
処理装置。
2. A hollow component having a surface to be treated on its inner surface is a component to be treated, and an electrolytic solution is circulated and supplied to the surface to be treated,
A cooling jacket is provided on the outside to circulate and supply the cooling liquid, and a voltage is applied between the cathode and the cathode inserted from the electrolysis power supply to anodize the inner surface of the part to be treated. In the apparatus, a temperature sensor provided at the inflow portion of the electrolytic solution on the surface to be processed, a temperature sensor provided at the exhaust portion of the electrolytic solution on the surface to be processed, a temperature sensor provided at the inflow portion of the cooling liquid of the cooling jacket, The temperature sensor provided in the cooling liquid discharge part of the cooling jacket, the flow rate sensor provided in the coolant circulation pipe, the detected temperature from each of the above temperature sensors, the detected flow rate from the above flow rate sensor, and the electrolysis power supply described above. Inputting a voltage value and a current value more than Claim 1.
The control computer that outputs the target temperature of the inflow cooling liquid after the time t X has elapsed by performing the calculation described in (4), and the above target temperature is input from the computer so that the inflow cooling liquid becomes equal to or lower than the target temperature. A local anodizing apparatus comprising a refrigerator controller for controlling a refrigerator for cooling liquid.
JP6183298A 1994-08-04 1994-08-04 Local anodization method and device therefor Withdrawn JPH0849094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6183298A JPH0849094A (en) 1994-08-04 1994-08-04 Local anodization method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183298A JPH0849094A (en) 1994-08-04 1994-08-04 Local anodization method and device therefor

Publications (1)

Publication Number Publication Date
JPH0849094A true JPH0849094A (en) 1996-02-20

Family

ID=16133227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183298A Withdrawn JPH0849094A (en) 1994-08-04 1994-08-04 Local anodization method and device therefor

Country Status (1)

Country Link
JP (1) JPH0849094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040679A1 (en) * 2009-10-01 2011-04-07 한국전기연구원 High field anodizing apparatus
KR101352356B1 (en) * 2012-04-05 2014-02-05 한전원자력연료 주식회사 Apparatus and method of anodizing inner surface of tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040679A1 (en) * 2009-10-01 2011-04-07 한국전기연구원 High field anodizing apparatus
KR101352356B1 (en) * 2012-04-05 2014-02-05 한전원자력연료 주식회사 Apparatus and method of anodizing inner surface of tube

Similar Documents

Publication Publication Date Title
JP2001023952A (en) Etching method and device
US20060213763A1 (en) Temperature control method and apparatus, and plasma processing apparatus
JP2001044176A (en) Treatment apparatus and temperature control therefor
JP2009235539A (en) Method for anodizing aluminum member
JP2837397B2 (en) Anodizing equipment for aluminum or aluminum alloy
JP4579025B2 (en) Temperature adjusting method, temperature adjusting device, plasma processing device
CN110724993A (en) Aluminum alloy hard anodic oxidation device and method
JPH0849094A (en) Local anodization method and device therefor
JP4216476B2 (en) ESRF coolant degassing
JP2007224369A (en) Anodizing treatment method, treatment device therefor and anodizing treatment system
JPH06306679A (en) Local anodic oxidation treatment and equipment therefor
JPH11114974A (en) Mold cleaning apparatus with temperature control mechanism
JP2004043873A (en) Method for surface treatment of aluminum alloy
JPS5839796A (en) Hard anodizing method for inside surface of pipe
JP3004622B2 (en) High speed anodizing method of aluminum
JP3306263B2 (en) Substrate processing equipment
JP2004059936A (en) Surface treatment apparatus for aluminum alloy
RU2803717C1 (en) Installation for forming protective decorative coatings on titanium
JP2000045068A (en) Backing plate for sputtering target and target/backing plate assembled body
JPH0211680B2 (en)
JPH0536670A (en) Wet etching device
JPS61291991A (en) Plating method for inside wall of heat transfer pipe
JP3041102U (en) Heat exchange system
JPH09196871A (en) Specimen temperature controlling method
JPS6320499A (en) Plating device for pipe inside

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106