JPH0211680B2 - - Google Patents

Info

Publication number
JPH0211680B2
JPH0211680B2 JP16842783A JP16842783A JPH0211680B2 JP H0211680 B2 JPH0211680 B2 JP H0211680B2 JP 16842783 A JP16842783 A JP 16842783A JP 16842783 A JP16842783 A JP 16842783A JP H0211680 B2 JPH0211680 B2 JP H0211680B2
Authority
JP
Japan
Prior art keywords
liquid
electrolytic
mixing tank
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16842783A
Other languages
Japanese (ja)
Other versions
JPS6063399A (en
Inventor
Kisaku Fujio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Giken Kogyo KK
Original Assignee
Toyo Giken Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Giken Kogyo KK filed Critical Toyo Giken Kogyo KK
Priority to JP16842783A priority Critical patent/JPS6063399A/en
Publication of JPS6063399A publication Critical patent/JPS6063399A/en
Publication of JPH0211680B2 publication Critical patent/JPH0211680B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は複数の陽極酸化電解槽よりなるアルミ
ニウム表面処理装置に於ける上記電解槽内の液冷
却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a liquid in an electrolytic cell in an aluminum surface treatment apparatus comprising a plurality of anodizing electrolytic cells.

建材用アルミニウム材料などの被処理物を陽極
酸化電解槽(以下電解槽という)に浸漬し、電源
装置の陽極を被処理物の方に接続し、陰極を陰極
板の方に接続して、給電して電解処理を行う陽極
酸化処理装置に於ては、電解処理をする際に発生
するジユール熱や酸化熱により電解槽内の処理液
は温度上昇とする。そして温度上昇を防ぐため、
電解液は冷凍機から得られた冷水と熱交換が行わ
れ、例えば常に20℃±1℃程度に温度調節が行わ
れている。
The object to be treated, such as aluminum material for building materials, is immersed in an anodizing electrolytic bath (hereinafter referred to as the electrolytic bath), and the anode of the power supply device is connected to the object to be treated, and the cathode is connected to the cathode plate to supply power. In anodizing equipment that performs electrolytic treatment, the temperature of the treatment liquid in the electrolytic cell increases due to Joule heat and oxidation heat generated during electrolytic treatment. And to prevent temperature rise,
The electrolyte undergoes heat exchange with cold water obtained from a refrigerator, and the temperature is always adjusted to, for example, 20°C ± 1°C.

ところで従来法を第1図により説明すると、図
例では電解槽1は1A,1B,…1Eと5槽の場合
で各電解槽よりオーバーフローして排出する例え
ば液温21℃の電解液は配管5を介してオーバーフ
ロー槽9に集合された後、前記電解槽毎に配設さ
れたる各液循環ポンプ7A〜E及び各熱交換機4A〜E
により冷却されて液温19℃にて各電解槽1A〜E
返送する工程であつた。図中配管5の括弧内の数
字は液温を例示したものである。
By the way, to explain the conventional method with reference to Fig. 1, in the example shown, there are five electrolytic cells 1 A , 1 B , ... 1 E , and the electrolytic solution with a liquid temperature of 21°C overflows and is discharged from each electrolytic cell. are collected in an overflow tank 9 via piping 5, and then each liquid circulation pump 7 A to E and each heat exchanger 4 A to E are arranged for each electrolytic cell.
The liquid was cooled by water and returned to each electrolytic cell 1A to E at a liquid temperature of 19°C. The numbers in parentheses for piping 5 in the figure illustrate the liquid temperature.

ところで近年のごとく大容量生産装置では、例
えば電解槽1槽当り600000Kca/Hrの熱負荷
がある場合温度差2℃として略300000/Hrの
液循環ポンプが必要になり、熱交換器を通して電
解槽に吹出させるポンプ揚程は約20M(2Kg/cm2
となりそのモーター容量も30Kwとなり5槽の電
解槽であれば合計150Kwのモーター容量となる。
However, in recent years, in large-capacity production equipment, if there is a heat load of 600,000 Kca/Hr per electrolytic cell, a liquid circulation pump of about 300,000 Kca/Hr is required for a temperature difference of 2°C, and the liquid circulation pump is required to circulate the liquid through a heat exchanger to the electrolytic cell. The pump height for blowing out is approximately 20M (2Kg/cm 2 )
Therefore, the motor capacity is 30Kw, and if there are 5 electrolyzers, the total motor capacity is 150Kw.

本発明は以上の如き電力費増を解消するほか、
設備費の低減と処理物の被膜性能の安定を計るこ
とを目的とするもので、以下図面を参照しながら
其の詳細を説明する。
The present invention eliminates the increase in power costs as described above, and also
The purpose is to reduce equipment costs and stabilize the coating performance of the treated material, and the details will be explained below with reference to the drawings.

第2図は第1図の電解槽と同一容量の槽を5槽
配設したもので、図で1A〜Eは5槽の電解槽1を
示す。そして各電解槽1A〜Eより排出する例えば
液温21℃の電解液は配管5を介して1ケ所の冷却
混合槽2に集められる。後述する如く定常状態に
ての操業時には冷却混合槽2内の液温は19℃に降
下しているので、冷却混合槽内の電解液の一部を
ポンプ3により、1ケ所の熱交換器4に圧送して
14℃にまで液温を低下(過冷却)して前記冷却混
合槽2内に送り込む。此の操作により冷却混合槽
内の液温は、操業中常時21℃の電解液が冷却混合
槽内2に流入するにもかかわらず、ほぼ一定温度
19℃を保持することが出来る。なお前記冷却混合
槽2は実験の結果撹拌装置を特に設けることなく
自然撹拌にて均一温を得ることが出来た。
FIG. 2 shows an arrangement of five electrolytic cells having the same capacity as the electrolytic cell shown in FIG. 1. In the figure, 1 A to E indicate the electrolytic cell 1 having five cells. The electrolytic solution discharged from each of the electrolytic cells 1A to 1E , for example, at a liquid temperature of 21.degree. C., is collected in one cooling mixing tank 2 via a pipe 5. As will be described later, during steady state operation, the temperature of the liquid in the cooling mixing tank 2 has dropped to 19°C, so a portion of the electrolyte in the cooling mixing tank 2 is pumped to one heat exchanger 4 by the pump 3. pump it to
The liquid temperature is lowered to 14° C. (supercooled) and the liquid is sent into the cooling mixing tank 2. Through this operation, the liquid temperature in the cooling mixing tank remains almost constant even though the electrolyte at 21°C always flows into cooling mixing tank 2 during operation.
It can maintain a temperature of 19℃. As a result of experiments, it was possible to obtain a uniform temperature in the cooling mixing tank 2 by natural stirring without particularly providing a stirring device.

なお第3図にて詳細に説明すると、冷却混合槽
2内には、温調計8に接続している温度センサー
10が挿入されており、温調計8からの指示を受
けた熱交換器4の冷水側の流量は自動バルブ11
にて調節される。例えば図示を略した7℃に冷却
された冷水にて電解液は熱交換器4にて14℃に過
冷却されて混合槽2に戻るので、混合槽2内に21
℃の電解液が流入するにもかかわらず、混合槽2
内の液温を19℃に常時保持するものである。
To explain in detail with reference to FIG. 3, a temperature sensor 10 connected to a temperature controller 8 is inserted into the cooling mixing tank 2, and the heat exchanger receives instructions from the temperature controller 8. The flow rate on the cold water side of 4 is automatic valve 11.
Adjusted by. For example, the electrolytic solution is supercooled to 14°C in the heat exchanger 4 using cold water cooled to 7°C (not shown) and returned to the mixing tank 2, so that 21
Despite the inflow of electrolyte at ℃, mixing tank 2
The temperature of the liquid inside the tank is constantly maintained at 19°C.

なお7℃の冷水は電解液との熱交換によつて12
℃に上昇し再び冷却されて循環するものである。
In addition, 7℃ cold water is heated to 12℃ by heat exchange with the electrolyte.
℃, cooled again, and circulated.

以上説明した如く、1定温度19℃に調節された
冷却混合槽2内の電解液は、各槽別個の5台の液
循環ポンプ7A〜Eにて直接各電解槽1A〜Eに返送さ
れる。其の結果電解槽は常に20℃±1℃の液温を
保持することが出来る。なお配管5の括弧内に示
した数字は液温を示したものである。
As explained above, the electrolytic solution in the cooling mixing tank 2 whose temperature is adjusted to a constant temperature of 19°C is directly returned to each electrolytic tank 1 A to E by the five liquid circulation pumps 7 A to E for each tank. be done. As a result, the electrolytic cell can always maintain a liquid temperature of 20℃±1℃. Note that the numbers shown in parentheses for the pipe 5 indicate the liquid temperature.

上述の如く電解槽を箇々別々に制御するのでな
く複数の電解槽の液が集まる冷却混合槽2の液を
一括冷却することで、槽内の液温を19℃として各
電解槽1に液循環ポンプ7にて吹き出せば、
300000/Hrの液循環ポンプのモータ9容量は
各熱交換器4を通過しない分だけ小さくなりポン
プ揚程が約1M(1Kg/cm2)となり、約18MKwと
なり従つて電解槽が5槽では90Kwとなり、前記
一個の熱交換器へ圧送するポンプ3の22Kwを加
算しても112Kwしかなく従来法との差は38Kwと
なり、年間の電気料金で400万円の節減が可能と
なつた。又温調計8及び熱交換器4も1ケ所にて
済み設備費の低下を来し、更に電解液の集中管理
により各電解槽1A〜Eの温度のバラツキは全く無
いので、処理物の被膜性能が均一となる等の効果
を発揮することが出来た。
As mentioned above, instead of controlling each electrolytic cell individually, by collectively cooling the liquid in the cooling mixing tank 2 where liquid from multiple electrolytic cells gathers, the liquid is circulated to each electrolytic cell 1 with the liquid temperature in the tank at 19 ° C. If you blow it out with pump 7,
The capacity of the motor 9 of the 300,000/Hr liquid circulation pump is reduced by the amount that does not pass through each heat exchanger 4, and the pump head becomes approximately 1M (1Kg/cm 2 ), which is approximately 18MKw. Therefore, if there are 5 electrolytic cells, it becomes 90KW. Even if we add the 22Kw of pump 3 that pumps to the one heat exchanger, it is only 112Kw, which is a difference of 38Kw compared to the conventional method, making it possible to save 4 million yen in annual electricity costs. In addition, the temperature controller 8 and heat exchanger 4 can be placed in one place, resulting in a reduction in equipment costs.Furthermore, there is no variation in the temperature of each electrolytic cell 1A to E due to centralized control of the electrolyte, so the processing material can be It was possible to achieve effects such as uniform coating performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による電解液の冷却フローチヤ
ート図である。第2図は本発明による電解液の冷
却フローチヤート図である。第3図は温調計と熱
交換器のフローチヤートの説明図である。 1A〜E……各電解槽、6……平均液温、2……
冷却混合槽、7A〜E……各液循環ポンプ、3……
ポンプ、8……温調計、4……熱交換器、9……
オーバーフロー槽、4A〜E……各熱交換器、10
……温度センサー、5……電解液配管。
FIG. 1 is a flowchart for cooling an electrolyte according to a conventional method. FIG. 2 is a flow chart for cooling an electrolytic solution according to the present invention. FIG. 3 is an explanatory diagram of a flowchart of a temperature controller and a heat exchanger. 1 A~E ...Each electrolytic cell, 6...Average liquid temperature, 2...
Cooling mixing tank, 7 A~E ...Each liquid circulation pump, 3...
Pump, 8... Temperature controller, 4... Heat exchanger, 9...
Overflow tank, 4 A to E ...Each heat exchanger, 10
...Temperature sensor, 5...Electrolyte piping.

Claims (1)

【特許請求の範囲】 1 複数の陽極酸化電解槽よりなるアルミニウム
表面処理装置に於て、 各電解槽より排出する電解液を冷却混合槽に集
め、前記冷却混合槽内の電解液の一部をポンプを
介して熱交換器に圧送して過冷却して前記冷却混
合槽に返送して、平均液温を低下せしめると共
に、他方液循環ポンプを介して、前記冷却混合槽
より直接各電解槽に電解液を返送することを特徴
とする電解槽の液冷却方法。
[Claims] 1. In an aluminum surface treatment apparatus consisting of a plurality of anodizing electrolytic cells, the electrolytic solution discharged from each electrolytic cell is collected in a cooling mixing tank, and a part of the electrolytic solution in the cooling mixing tank is The liquid is sent under pressure to a heat exchanger via a pump, supercooled, and returned to the cooling mixing tank to lower the average liquid temperature, and on the other hand, via a liquid circulation pump, directly from the cooling mixing tank to each electrolytic tank. A liquid cooling method for an electrolytic cell characterized by returning the electrolyte.
JP16842783A 1983-09-14 1983-09-14 Method for cooling liquid of electrolytic cell for anodic oxidation Granted JPS6063399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16842783A JPS6063399A (en) 1983-09-14 1983-09-14 Method for cooling liquid of electrolytic cell for anodic oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16842783A JPS6063399A (en) 1983-09-14 1983-09-14 Method for cooling liquid of electrolytic cell for anodic oxidation

Publications (2)

Publication Number Publication Date
JPS6063399A JPS6063399A (en) 1985-04-11
JPH0211680B2 true JPH0211680B2 (en) 1990-03-15

Family

ID=15867916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16842783A Granted JPS6063399A (en) 1983-09-14 1983-09-14 Method for cooling liquid of electrolytic cell for anodic oxidation

Country Status (1)

Country Link
JP (1) JPS6063399A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668384A (en) * 2013-12-02 2014-03-26 山东鼎铭铝业有限公司 Automatic temperature control system for primarily cooling oxidation bath solution
CN109338431A (en) * 2018-12-11 2019-02-15 深圳市华加日西林实业有限公司 Direct-cooling type micro-arc oxidation electrolyte cooling system

Also Published As

Publication number Publication date
JPS6063399A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
CN112899706A (en) Water electrolysis hydrogen production system and control method thereof
JPH0211680B2 (en)
CN105336509A (en) Electrode foil formation device
EP3226341B1 (en) Improved plant for the formation of lead-acid batteries and process for the formation of lead-acid batteries by means of said plant
CN211781713U (en) Wet film humidifying system
CN113038807A (en) Control method of liquid-cooled electric energy system, liquid-cooled electric energy system and storage medium
US1260830A (en) Electrolytic deposition of copper from acid solutions.
CN216432605U (en) Aluminum foil formation heat energy recovery device
CN113913892A (en) Micro-arc oxidation device with variable cathode area and surface treatment method
CN113637994A (en) Water electrolysis hydrogen production system with electrolyte heating function
JPS5839796A (en) Hard anodizing method for inside surface of pipe
CN203429271U (en) Ceramic treatment device for surface of aluminum-silicon alloy
CN103397364A (en) Aluminum-silicon alloy surface ceramic treatment method and apparatus
CN206580910U (en) A kind of electroplanting device of mobile muffler suspension hook
CN218147005U (en) Aluminum alloy plate surface compact ceramic film layer preparation device
US1461276A (en) Apparatus for the electrolytic production of metallic alloys in the form of paste orsludge
CN215481333U (en) Magnesium electrolytic cell anode cooling system
RU2224345C2 (en) Method for unifying external operating conditions for storage battery cycling and charging process during battery flow-line production
CN214004852U (en) Electrolytic cell system with cooling device
CN211199425U (en) Continuous liquid phase electrolytic device for preparing naphthoquinone
CN220703821U (en) Improved generation dissolves copper spraying system
CN220240247U (en) ECM electrolysis equipment
CN215697827U (en) Electrolytic aluminum casting and desulfurization collaborative water replenishing system
CN206033905U (en) Saline electrolysis groove based on heat exchange
JPS6142914Y2 (en)