JP4579025B2 - Temperature adjusting method, temperature adjusting device, plasma processing device - Google Patents

Temperature adjusting method, temperature adjusting device, plasma processing device Download PDF

Info

Publication number
JP4579025B2
JP4579025B2 JP2005088984A JP2005088984A JP4579025B2 JP 4579025 B2 JP4579025 B2 JP 4579025B2 JP 2005088984 A JP2005088984 A JP 2005088984A JP 2005088984 A JP2005088984 A JP 2005088984A JP 4579025 B2 JP4579025 B2 JP 4579025B2
Authority
JP
Japan
Prior art keywords
temperature
electrode
circulation
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005088984A
Other languages
Japanese (ja)
Other versions
JP2006269944A (en
Inventor
正男 古屋
功治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005088984A priority Critical patent/JP4579025B2/en
Priority to US11/389,046 priority patent/US20060213763A1/en
Publication of JP2006269944A publication Critical patent/JP2006269944A/en
Application granted granted Critical
Publication of JP4579025B2 publication Critical patent/JP4579025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,温度調整方法,温度調整装置及びプラズマ処理装置に関する。   The present invention relates to a temperature adjustment method, a temperature adjustment apparatus, and a plasma processing apparatus.

例えば半導体装置や液晶表示装置等の製造プロセスでは,例えばプラズマを用いたエッチング処理が行われている。   For example, in a manufacturing process of a semiconductor device or a liquid crystal display device, for example, an etching process using plasma is performed.

上述のエッチング処理は,通常プラズマ処理装置において行われる。プラズマ処理装置には,上下に電極を配置した平行平板型のものが多用されており,当該平行平板型のプラズマ処理装置は,例えば処理容器内において,基板を載置した下部電極にプラズマ生成用の高周波電力を印加し,下部電極と上部電極との間にプラズマを生成し,当該プラズマによって基板上の膜をエッチングしている。   The above etching process is usually performed in a plasma processing apparatus. A parallel plate type in which electrodes are arranged on the upper and lower sides is often used as the plasma processing apparatus. The parallel plate type plasma processing apparatus is used for generating plasma on a lower electrode on which a substrate is placed, for example, in a processing vessel. A high frequency power is applied, plasma is generated between the lower electrode and the upper electrode, and the film on the substrate is etched by the plasma.

上述のプラズマ処理装置では,基板の処理を安定させるために,下部電極の温度制御を行っている。例えばプラズマ処理装置には,下部電極の内部を通過しチラー装置に連通する冷媒の循環回路が形成され,基板の処理時には,下部電極の内部に冷媒を供給し循環させて,下部電極の温度を厳密に管理している(例えば特許文献1参照。)。   In the above plasma processing apparatus, the temperature of the lower electrode is controlled in order to stabilize the processing of the substrate. For example, in the plasma processing apparatus, a refrigerant circulation circuit that passes through the inside of the lower electrode and communicates with the chiller apparatus is formed. When the substrate is processed, the refrigerant is supplied to the inside of the lower electrode and circulated to reduce the temperature of the lower electrode. It is strictly controlled (see, for example, Patent Document 1).

特開2002−168551号公報JP 2002-168551 A

ところで,上部電極はプラズマ発生空間に露出しており,上部電極の温度もエッチング状態に影響を与えるので,上部電極も温度制御を行う必要がある。そこで,下部電極と同様のチラー装置を用いて上部電極の温度制御を行うことが考えられる。しかしながら,上部電極は,プラズマ発生用の高出力の高周波電力が印加されるため発熱量が多く,また下部電極に比べて大きな熱容量を有している。このため,上部電極は,処理時の発熱量が多く,温調冷媒に対する応答性が悪い。したがって,下部電極に用いた上記チラー装置を上部電極に単純に採用した場合,基板の処理が開始され上部電極に高周波電力が印加され始めてから,その上部電極の温度が安定するまでに長時間を要する結果となる。この場合,上部電極の温度が不安定の状態で基板の処理を行うと,エッチングの処理結果が不安定になるので,製品になる基板の処理の開始を遅らせる必要があり,スループットの観点から問題があった。   By the way, the upper electrode is exposed to the plasma generation space, and the temperature of the upper electrode also affects the etching state, so the upper electrode also needs to be temperature controlled. Therefore, it is conceivable to control the temperature of the upper electrode using a chiller device similar to the lower electrode. However, the upper electrode generates a large amount of heat because a high-output high-frequency power for generating plasma is applied, and has a larger heat capacity than the lower electrode. For this reason, the upper electrode generates a large amount of heat during processing and has poor responsiveness to the temperature control refrigerant. Therefore, when the above-described chiller device used for the lower electrode is simply adopted for the upper electrode, it takes a long time until the temperature of the upper electrode is stabilized after the processing of the substrate is started and high frequency power is applied to the upper electrode. This is a result. In this case, if the substrate is processed while the temperature of the upper electrode is unstable, the etching processing result becomes unstable, so it is necessary to delay the start of the processing of the substrate to be a product, which is a problem from the viewpoint of throughput. was there.

本発明は,かかる点に鑑みてなされたものであり,基板の処理開始当初からプラズマ生成用の電極の温度を安定させることをその目的とする。   The present invention has been made in view of such a point, and an object thereof is to stabilize the temperature of an electrode for plasma generation from the beginning of substrate processing.

上記目的を達成するために,本発明は,基板のプラズマ処理装置においてプラズマ生成用の高周波電力が印加される電極の温度調整方法であって,電極の内部を通過し,前記電極に対して熱媒体を循環させる循環路と,前記循環路において,前記電極を通過した前記熱媒体に対して液体冷媒の顕熱により熱交換を行う第1の熱交換器と,前記循環路において,前記第1の熱交換器を通過した前記熱媒体に対して冷媒の潜熱により熱交換を行う第2の熱交換器と,前記循環路において,前記電極の内部に供給される熱媒体を加熱する加熱器と,を備え,前記循環路に,前記プラズマ生成用の電極を迂回して,前記加熱器を通過した熱媒体を循環させるためのバイパス路が形成され且つ前記加熱器を通過した熱媒体の循環を前記電極を通る第1の循環と前記電極を通らずに前記バイパス路を通る第2の循環とに切り替える弁体が設けられた温度調整装置を用いて,基板の処理が行われないアイドル状態時に,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器により前記循環路内の熱媒体の温度を調整して,前記第1の循環により前記電極の温度を所定の設定温度に調整する工程と,前記電極に高周波電力が印加される基板の処理開始時に,前記加熱器を停止させた状態で前記第1の熱交換器と第2の熱交換器を用いて前記熱媒体の温度を前記電極の設定温度よりも下げて,前記第1の循環により前記電極の温度を前記設定温度に維持する工程と,
基板の処理が終了した時に,前記第2の循環より前記バイパス路を通じて前記熱媒体を循環させて,前記第1の熱交換器及び前記第2の熱交換器を停止した状態で前記加熱器を用いて前記熱媒体の温度を上昇させる工程と,前記弁体により前記第1の循環に切り替え,前記電極の内部を通過するように前記熱媒体を前記第1の循環により循環させて,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器を用いて前記電極を前記設定温度に安定させる工程と,を有することを特徴とする。なお,ここでいうアイドル状態とは,基板のロットの切り替え時などで基板の処理が行われていない状態をいう。また,基板の処理開始時とは,アイドル状態から基板の処理が開始される時期をいう。
In order to achieve the above object, the present invention provides a method for adjusting the temperature of an electrode to which high-frequency power for plasma generation is applied in a plasma processing apparatus for a substrate. A circulation path for circulating the medium; a first heat exchanger for exchanging heat with the sensible heat of the liquid refrigerant with respect to the heat medium that has passed through the electrodes in the circulation path; A second heat exchanger that exchanges heat with the latent heat of the refrigerant with respect to the heat medium that has passed through the heat exchanger, and a heater that heats the heat medium supplied to the inside of the electrode in the circulation path; And a bypass path is formed in the circulation path to circulate the heat medium that has passed through the heater, bypassing the plasma generating electrode, and circulation of the heat medium that has passed through the heater. A first through the electrode The first heat exchange is performed in an idle state in which a substrate is not processed by using a temperature adjusting device provided with a valve body that switches to a second circulation that passes through the bypass path without passing through the ring and the electrode. The temperature of the heat medium in the circulation path is adjusted by the second heat exchanger and the heater while the heater is stopped, and the temperature of the electrode is adjusted to a predetermined set temperature by the first circulation. At the start of the process and the processing of the substrate to which high frequency power is applied to the electrodes, the temperature of the heat medium is set using the first heat exchanger and the second heat exchanger while the heater is stopped. Lowering the set temperature of the electrode and maintaining the temperature of the electrode at the set temperature by the first circulation;
When the processing of the substrate is finished, the by circulating the heating medium through more the bypass passage to the second circulation, the heater in a state of stopping the first heat exchanger and the second heat exchanger The temperature of the heat medium is increased by using the valve body, the valve body is switched to the first circulation, and the heat medium is circulated by the first circulation so as to pass through the inside of the electrode. And a step of stabilizing the electrode at the set temperature by using the second heat exchanger and the heater while the first heat exchanger is stopped. The idle state here refers to a state in which substrate processing is not performed, for example, when a substrate lot is switched. The substrate processing start time is a time when the substrate processing is started from the idle state.

本発明によれば,基板の処理が行われないアイドル状態時に,冷媒の潜熱により熱交換を行う第2の熱交換器と加熱器により,予め電極の温度を所定の設定温度に調整しておく。そして,基板の処理が開始された時に,液体冷媒の顕熱により熱交換を行う第1の熱交換器と前記第2の熱交換器の両方により,循環路内の熱媒体の温度を急速冷却する。こうすることにより,プラズマ生成用の高周波電力による発熱分の熱量が熱媒体により排熱され,プラズマ生成用の電極の温度が引き続き設定温度に維持される。この結果,基板の処理開始当初から,プラズマ生成用の電極の温度が安定し,早期に製品用の基板の処理を開始することができる。   According to the present invention, in the idle state where the substrate is not processed, the temperature of the electrode is adjusted to a predetermined set temperature in advance by the second heat exchanger and the heater that perform heat exchange by the latent heat of the refrigerant. . When the processing of the substrate is started, the temperature of the heat medium in the circulation path is rapidly cooled by both the first heat exchanger that exchanges heat by sensible heat of the liquid refrigerant and the second heat exchanger. To do. By so doing, the amount of heat generated by the high-frequency power for plasma generation is exhausted by the heat medium, and the temperature of the plasma generation electrode is continuously maintained at the set temperature. As a result, the temperature of the plasma generating electrode is stabilized from the beginning of the substrate processing, and the processing of the product substrate can be started at an early stage.

前記プラズマ生成用の電極は,上部電極であり,前記プラズマ処理装置は,基板を載置する下部電極を備え,前記下部電極には,高周波電力を印加可能であり,前記アイドル状態時の上部電極の所定温度と,前記基板の処理開始時の前記熱媒体の調整温度との温度差ΔTは,ΔT=k(aA+bB)×D/C(k:電力から温度への換算係数,A:上部電極の高周波電力,B:下部電極の高周波電力,a:上部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,b:下部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,C:基板一枚の処理時間,D:処理時間C中の高周波電力の印加時間)の式により設定されるようにしてもよい。   The plasma generating electrode is an upper electrode, and the plasma processing apparatus includes a lower electrode on which a substrate is placed. The lower electrode is capable of applying high-frequency power, and the upper electrode in the idle state. The temperature difference ΔT between the predetermined temperature and the adjusted temperature of the heat medium at the start of the substrate processing is ΔT = k (aA + bB) × D / C (k: conversion factor from power to temperature, A: The high frequency power of the upper electrode, B: the high frequency power of the lower electrode, a: the coefficient indicating the ratio of the influence of the high frequency power of the upper electrode on the temperature of the upper electrode with respect to the influence of the entire high frequency power, b: the high frequency power of the lower electrode The coefficient indicating the ratio of the influence on the temperature of the upper electrode to the influence of the entire high-frequency power, C: processing time of one substrate, D: application time of high-frequency power during processing time C) Even .

前記循環路には,前記プラズマ生成用の電極を迂回して前記熱媒体を循環させるためのバイパス路が形成されており,基板の処理が終了した時に,前記バイパス路を通じて前記熱媒体を循環させて,前記加熱器を用いて前記熱媒体の温度を上昇させる工程と,前記電極の内部を通過するように前記熱媒体を循環させて前記熱媒体を前記設定温度に安定させる工程を有するようにしてもよい。   In the circulation path, a bypass path for circulating the heat medium bypassing the plasma generating electrode is formed, and when the substrate processing is completed, the heat medium is circulated through the bypass path. And increasing the temperature of the heat medium using the heater, and circulating the heat medium so as to pass through the electrode to stabilize the heat medium at the set temperature. May be.

前記バイパス路を通過させる前記熱媒体の循環と,前記電極の内部を通過させる前記熱媒体の循環とを交互に行うことにより,前記熱媒体の温度を前記設定温度に安定させるようにしてもよい。なお,前記液体冷媒は,水であってもよい。   The temperature of the heat medium may be stabilized at the set temperature by alternately performing circulation of the heat medium that passes through the bypass path and circulation of the heat medium that passes through the inside of the electrode. . The liquid refrigerant may be water.

基板のプラズマ処理装置においてプラズマ生成用の高周波電力が印加される電極の温度調整装置であって,電極の内部を通過し,前記電極に対して熱媒体を循環させる循環路と,前記循環路において,前記電極を通過した前記熱媒体に対して液体冷媒の顕熱により熱交換を行う第1の熱交換器と,前記循環路において,前記第1の熱交換器を通過した前記熱媒体に対して冷媒の潜熱により熱交換を行う第2の熱交換器と,前記循環路において,前記電極の内部に供給される熱媒体を加熱する加熱器と,基板の処理が行われないアイドル状態時に,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器により前記循環路内の熱媒体の温度を調整して,前記第1の循環により前記電極の温度を所定の設定温度に調整し,前記電極に高周波電力が印加される基板の処理開始時に,前記加熱器を停止させた状態で前記第1の熱交換器と第2の熱交換器を用いて前記熱媒体の温度を前記電極の設定温度よりも下げて,前記第1の循環により前記電極の温度を前記設定温度に維持する制御部と,を有し,前記循環路には,前記プラズマ生成用の電極を迂回して,前記加熱器を通過した熱媒体を循環させるためのバイパス路が形成され且つ前記加熱器を通過した熱媒体の循環を前記電極を通る第1の循環と前記電極を通らずに前記バイパス路を通る第2の循環とに切り替える弁体が設けられており,前記制御部は,基板の処理が終了した時に,前記第2の循環より前記バイパス路を通じて前記熱媒体を循環させて,前記第1の熱交換器及び前記第2の熱交換器を停止した状態で前記加熱器を用いて前記熱媒体の温度を上昇させ,加えて,前記弁体により前記第1の循環に切り替え,前記電極の内部を通過するように前記熱媒体を前記第1の循環により循環させて,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器を用いて前記電極を前記設定温度に安定させる制御をさらに行うことを特徴とする。 An electrode temperature adjusting device to which high-frequency power for plasma generation is applied in a plasma processing apparatus for a substrate, wherein the circuit passes through the electrode and circulates a heat medium to the electrode, , A first heat exchanger that exchanges heat with the sensible heat of the liquid refrigerant with respect to the heat medium that has passed through the electrode, and the heat medium that has passed through the first heat exchanger in the circulation path. A second heat exchanger that exchanges heat by the latent heat of the refrigerant, a heater that heats the heat medium supplied to the inside of the electrode in the circulation path, and an idle state in which the substrate is not processed, While the first heat exchanger is stopped, the temperature of the heat medium in the circulation path is adjusted by the second heat exchanger and the heater, and the temperature of the electrode is set to a predetermined value by the first circulation. The electrode is adjusted to the set temperature of At the start of processing of the substrate to which high-frequency power is applied, the temperature of the heat medium is set from the set temperature of the electrode using the first heat exchanger and the second heat exchanger while the heater is stopped. And a controller that maintains the temperature of the electrode at the set temperature by the first circulation, and bypasses the plasma generation electrode in the circulation path, A bypass path for circulating the passed heat medium is formed and the heat medium that has passed through the heater is circulated through the first circulation through the electrode and the second circulation through the bypass path without passing through the electrode. DOO valve body is provided for switching on, the control unit, when the processing of the substrate is finished, the by circulating the heating medium through more the bypass passage to the second circulation, the first heat exchanger And with the second heat exchanger stopped The temperature of the heat medium is increased using a heater, and in addition, the valve body is switched to the first circulation, and the heat medium is circulated by the first circulation so as to pass through the inside of the electrode. Then, the control is further performed to stabilize the electrode at the set temperature by using the second heat exchanger and the heater while the first heat exchanger is stopped.

前記プラズマ生成用の電極は,上部電極であり,前記プラズマ処理装置は,基板を載置する下部電極を備え,前記下部電極には,高周波電力を印加可能であり,前記制御部は,前記アイドル状態時の上部電極の所定温度と,前記基板の処理開始時の前記熱媒体の調整温度との温度差ΔTを,ΔT=k(aA+bB)×D/C(k:電力から温度への換算係数,A:上部電極の高周波電力,B:下部電極の高周波電力,a:上部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,b:下部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,C:基板一枚の処理時間,D:処理時間C中の高周波電力の印加時間)の式により算出して設定するようにしてもよい。   The plasma generating electrode is an upper electrode, the plasma processing apparatus includes a lower electrode on which a substrate is placed, a high frequency power can be applied to the lower electrode, and the control unit ΔT = k (aA + bB) × D / C (k: from electric power to temperature) ΔT = k (aA + bB) × D / C (k is the temperature difference between the predetermined temperature of the upper electrode in the state and the adjustment temperature of the heat medium at the start of the substrate processing Conversion coefficient, A: high frequency power of the upper electrode, B: high frequency power of the lower electrode, a: coefficient indicating the ratio of the influence of the high frequency power of the upper electrode on the temperature of the upper electrode with respect to the influence of the entire high frequency power, b: lower The coefficient indicating the ratio of the influence of the high frequency power of the electrode on the temperature of the upper electrode with respect to the influence of the entire high frequency power, C: processing time of one substrate, D: application time of high frequency power during processing time C) Calculate and set It may be.

前記循環路には,前記プラズマ生成用の電極を迂回して前記熱媒体を循環させるためのバイパス路が形成されており,前記制御部は,基板の処理が終了した時に,前記バイパス路を通じて前記熱媒体を循環させて,前記加熱器を用いて前記熱媒体の温度を上昇させ,加えて,前記電極の内部を通過するように前記熱媒体を循環させて前記熱媒体を前記設定温度に安定させるようにしてもよい。   In the circulation path, a bypass path for circulating the heat medium bypassing the plasma generation electrode is formed, and the control unit passes through the bypass path when the substrate processing is completed. Circulating the heat medium, increasing the temperature of the heat medium using the heater, and additionally circulating the heat medium so as to pass through the inside of the electrode to stabilize the heat medium at the set temperature. You may make it make it.

前記制御部は,前記バイパス路を通過させる前記熱媒体の循環と,前記電極の内部を通過させる前記熱媒体の循環とを交互に行うことにより,前記熱媒体の温度を前記設定温度に安定させるようにしてもよい。なお,前記液体冷媒は,水であってもよい。   The controller stabilizes the temperature of the heat medium at the set temperature by alternately performing circulation of the heat medium passing through the bypass path and circulation of the heat medium passing through the inside of the electrode. You may do it. The liquid refrigerant may be water.

別の観点による本発明によれば,請求項5〜8のいずれかに記載の温度調整装置を備えたプラズマ処理装置が提供される。
According to another aspect of the present invention, there is provided a plasma processing apparatus including the temperature adjusting device according to any one of claims 5 to 8 .

本発明によれば,基板の処理開始当初から上部電極の温度を安定させることができるので,製品用の基板の処理を当初から行うことができ,スループットの向上が図られる。   According to the present invention, since the temperature of the upper electrode can be stabilized from the beginning of substrate processing, product substrate processing can be performed from the beginning, and throughput can be improved.

以下,本発明の好ましい実施の形態について説明する。図1は,本実施の形態にかかるプラズマ処理装置1と温度調整装置100の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is an explanatory diagram showing an outline of the configuration of the plasma processing apparatus 1 and the temperature adjustment apparatus 100 according to the present embodiment.

プラズマ処理装置1は,平行平板型電極構造の容量結合型のプラズマエッチング装置である。プラズマ処理装置1は,略円筒形状の処理容器10を有している。この処理容器10内に処理室Sが形成されている。処理容器10は,例えばアルミニウム合金により形成され,内壁面がアルミナ膜又はイットリウム酸化膜により被覆されている。処理容器10は,接地されている。   The plasma processing apparatus 1 is a capacitively coupled plasma etching apparatus having a parallel plate type electrode structure. The plasma processing apparatus 1 includes a substantially cylindrical processing container 10. A processing chamber S is formed in the processing container 10. The processing vessel 10 is formed of, for example, an aluminum alloy, and the inner wall surface is covered with an alumina film or an yttrium oxide film. The processing container 10 is grounded.

処理容器10内の中央の底部には,絶縁板11を介在してサセプタ12が設けられている。サセプタ12は,略円柱状に形成され,その上面に基板Wを載置することができる。サセプタ12は,例えばアルミニウム合金により形成され,平行平板型電極構造の下部電極を構成している。   A susceptor 12 is provided at the center bottom in the processing vessel 10 with an insulating plate 11 interposed. The susceptor 12 is formed in a substantially cylindrical shape, and the substrate W can be placed on the upper surface thereof. The susceptor 12 is made of, for example, an aluminum alloy and constitutes a lower electrode having a parallel plate type electrode structure.

サセプタ12の内部には,リング状の冷媒室13が形成されている。冷媒室13は,配管13a,13bを通じて,処理容器10の外部に設置されたチラーユニット(図示せず)に連通している。冷媒室13には,配管13a,13bを通じて冷媒が循環供給され,この循環供給によりサセプタ12上の基板Wの温度を制御できる。   A ring-shaped refrigerant chamber 13 is formed inside the susceptor 12. The refrigerant chamber 13 communicates with a chiller unit (not shown) installed outside the processing container 10 through the pipes 13a and 13b. The refrigerant is circulated and supplied to the refrigerant chamber 13 through the pipes 13a and 13b, and the temperature of the substrate W on the susceptor 12 can be controlled by the circulation supply.

サセプタ12の上方には,サセプタ12に対向するプラズマ生成用の上部電極20が設けられている。サセプタ12と上部電極20との間には,プラズマ生成空間が形成されている。   Above the susceptor 12, an upper electrode 20 for plasma generation facing the susceptor 12 is provided. A plasma generation space is formed between the susceptor 12 and the upper electrode 20.

上部電極20は,例えば電極板21,分散板22及び天板23の3層構造になっている。例えば最上部の天板23の中央部には,エッチングのための処理ガスを処理室S内に導入するためのガス供給管24が接続されている。ガス供給管24は,処理ガス供給源25に接続されている。天板23の下層には,例えば略円筒状の分散板22が設けられ,ガス供給管24から導入された処理ガスを均等に分散させることができる。分散板22の下層には,例えばサセプタ12上の基板Wに対向する電極板21が設けられている。電極板21には,多数のガス噴出孔21aが形成されており,分散板22で分散された処理ガスを複数のガス噴出孔21aから均等に噴出できる。   The upper electrode 20 has a three-layer structure of, for example, an electrode plate 21, a dispersion plate 22, and a top plate 23. For example, a gas supply pipe 24 for introducing a processing gas for etching into the processing chamber S is connected to the central portion of the uppermost top plate 23. The gas supply pipe 24 is connected to a processing gas supply source 25. A substantially cylindrical dispersion plate 22 is provided below the top plate 23, for example, so that the processing gas introduced from the gas supply pipe 24 can be evenly dispersed. In the lower layer of the dispersion plate 22, for example, an electrode plate 21 facing the substrate W on the susceptor 12 is provided. A large number of gas ejection holes 21 a are formed in the electrode plate 21, and the processing gas dispersed by the dispersion plate 22 can be evenly ejected from the plurality of gas ejection holes 21 a.

上部電極20の例えば天板23の内部には,熱媒体,例えばブラインが通過するリング状の流路30が形成されている。流路30は,後述する温度調整装置100の循環路110の一部を構成している。また例えば分散板22の内部には,温度制御の制御対象温度となる上部電極20の温度を測定する温度センサ31が設けられている。   In the upper electrode 20, for example, inside the top plate 23, a ring-shaped flow path 30 through which a heat medium such as brine passes is formed. The flow path 30 constitutes a part of the circulation path 110 of the temperature adjusting device 100 described later. Further, for example, a temperature sensor 31 that measures the temperature of the upper electrode 20 that is a control target temperature for temperature control is provided inside the dispersion plate 22.

上部電極20には,整合器40を介して第1の高周波電源41が電気的に接続されている。第1の高周波電源41は,例えば40MHz以上,例えば60MHzの周波数の高周波電力を出力できる。この第1の高周波電源41により,上部電極20に高周波電力を付加し,処理室S内にプラズマを生成できる。   A first high frequency power supply 41 is electrically connected to the upper electrode 20 via a matching unit 40. The first high frequency power supply 41 can output high frequency power having a frequency of, for example, 40 MHz or more, for example, 60 MHz. The first high frequency power supply 41 can apply high frequency power to the upper electrode 20 to generate plasma in the processing chamber S.

サセプタ12には,整合器50を介して第2の高周波電源51が電気的に接続されている。第2の高周波電源51は,例えば2MHz〜20MHzの範囲,例えば20MHzの周波数の高周波電力を出力できる。この第2の高周波電源51により,サセプタ12に高周波電力を印加し,処理室S内の荷電粒子を基板W側に引き込むことができる。   A second high frequency power source 51 is electrically connected to the susceptor 12 via a matching unit 50. The second high-frequency power source 51 can output high-frequency power having a frequency of, for example, 2 MHz to 20 MHz, for example, 20 MHz. The second high frequency power supply 51 can apply high frequency power to the susceptor 12 and draw charged particles in the processing chamber S toward the substrate W.

処理容器10の側面には,図示しない排気装置に連通する排気管60が接続されている。排気管60からの排気により,処理容器10内の所望の真空度に減圧できる。   An exhaust pipe 60 communicating with an exhaust device (not shown) is connected to the side surface of the processing container 10. By exhausting from the exhaust pipe 60, the pressure in the processing container 10 can be reduced to a desired degree of vacuum.

プラズマ処理装置1には,例えば処理ガス供給源25,第1の高周波電源41及び第2の高周波電源51などのエッチング処理を実行するための各種諸元の動作を制御する装置制御部70が設けられている。また,温度センサ31による測定結果は,装置制御部70に出力できる。   The plasma processing apparatus 1 is provided with an apparatus control unit 70 that controls operations of various specifications for performing an etching process such as the processing gas supply source 25, the first high-frequency power source 41, and the second high-frequency power source 51, for example. It has been. In addition, the measurement result by the temperature sensor 31 can be output to the device control unit 70.

このプラズマ処理装置1で行われるプラズマエッチング処理は,先ず基板Wがサセプタ12上に吸着保持される。次に,例えば排気管60からの排気により,処理室S内が所定の圧力に減圧される。上部電極20から処理室S内に処理ガスが供給される。第1の高周波電源41により,上部電極20に高周波電力が印加され,処理室S内の処理ガスがプラズマ化される。また,第2の高周波電源51により,サセプタ12に高周波電力が印加され,プラズマ中の荷電粒子が基板W側に誘導される。これらのプラズマの作用により,基板W上の膜がエッチングされる。エッチングの終了した基板Wは,処理容器10内から搬出され,次の基板Wが搬入される。   In the plasma etching process performed in the plasma processing apparatus 1, first, the substrate W is attracted and held on the susceptor 12. Next, the inside of the processing chamber S is reduced to a predetermined pressure by, for example, exhaust from the exhaust pipe 60. A processing gas is supplied from the upper electrode 20 into the processing chamber S. High frequency power is applied to the upper electrode 20 by the first high frequency power supply 41, and the processing gas in the processing chamber S is turned into plasma. Further, high frequency power is applied to the susceptor 12 by the second high frequency power supply 51, and charged particles in the plasma are induced to the substrate W side. The film on the substrate W is etched by the action of these plasmas. The etched substrate W is unloaded from the processing container 10 and the next substrate W is loaded.

次に,プラズマ処理装置1の上部電極20の温度を調整する温度調整装置100について説明する。   Next, the temperature adjustment device 100 that adjusts the temperature of the upper electrode 20 of the plasma processing apparatus 1 will be described.

温度調整装置100は,上部電極20の内部を通過するようにブラインを循環させる循環路110と,循環路110において上部電極20から流出したブラインを液体冷媒としての水の顕熱により熱交換する第1の熱交換器111と,循環路110においてブラインを潜熱により熱交換する第2の熱交換器112と,ブラインを加温する加熱器としての電気ヒータ113と,上部電極20に供給する前にブラインを貯留するタンク114を有している。なお,ブラインは,例えばシリコンオイル,フッ素系液体,エチレングリコールなどの液体の熱交換媒体である。循環路110において,第1の熱交換器111,第2の熱交換器112,電気ヒータ113及びタンク114は直列的に接続されており,上部電極20→第1の熱交換器111→第2の熱交換器112→電気ヒータ113→タンク114→上部電極20の順にブラインを循環させることができる(図1中の循環E1)。   The temperature adjusting device 100 is configured to circulate a brine 110 so as to pass through the inside of the upper electrode 20 and to exchange heat by using the sensible heat of water as a liquid refrigerant for the brine flowing out from the upper electrode 20 in the circulation passage 110. Before supplying to the upper electrode 20, the first heat exchanger 111, the second heat exchanger 112 for exchanging the brine with latent heat in the circulation path 110, the electric heater 113 as a heater for heating the brine, It has a tank 114 for storing brine. The brine is a liquid heat exchange medium such as silicon oil, fluorine-based liquid, or ethylene glycol. In the circulation path 110, the first heat exchanger 111, the second heat exchanger 112, the electric heater 113, and the tank 114 are connected in series, and the upper electrode 20 → the first heat exchanger 111 → the second heat exchanger. The brine can be circulated in the order of the heat exchanger 112 → the electric heater 113 → the tank 114 → the upper electrode 20 (circulation E1 in FIG. 1).

第1の熱交換器111には,例えば二次冷媒である水を第1の熱交換器111の内部に導入し排出する二次冷媒側の管路120が接続されている。この管路120の上流側は,例えば図示しない水供給装置に接続されている。管路120に水を流すことにより,第1の熱交換器111において水の顕熱により循環路110のブラインを冷却できる。管路120には,開閉バルブ121が設けられている。この開閉バルブ121の開閉を切り替えることにより,第1の熱交換器111の水によるブラインの冷却をオン・オフできる。   To the first heat exchanger 111, for example, a secondary refrigerant-side pipe line 120 for connecting and discharging water, which is a secondary refrigerant, into the first heat exchanger 111 is connected. The upstream side of the pipe 120 is connected to a water supply device (not shown), for example. By flowing water through the pipe line 120, the brine in the circulation path 110 can be cooled by sensible heat of water in the first heat exchanger 111. The pipe line 120 is provided with an opening / closing valve 121. By switching the opening / closing of the opening / closing valve 121, the cooling of the brine by the water of the first heat exchanger 111 can be turned on / off.

第2の熱交換器112は,蒸発器であり,例えば二次冷媒としての代替フロン,例えばハイドロフルオロカーボン(HFC)の潜熱により循環路110のブラインを冷却できる。第2の熱交換器112には,冷凍機を構成する循環回路130が接続されている。循環回路130には,圧縮機131,凝縮器132及び膨張弁133が設けられている。凝縮器132には,例えば三次冷媒となる冷却水の供給管路134が接続されている。供給管路134には,例えば流量調整バルブ135が設けられている。例えばこの流量調整バルブ135により,凝縮器132への冷却水の供給量を調整することにより,第2の熱交換器112における冷却能力を調整できる。   The second heat exchanger 112 is an evaporator, and can cool the brine of the circulation path 110 by latent heat of, for example, an alternative chlorofluorocarbon as a secondary refrigerant, for example, hydrofluorocarbon (HFC). A circulation circuit 130 constituting a refrigerator is connected to the second heat exchanger 112. The circulation circuit 130 is provided with a compressor 131, a condenser 132, and an expansion valve 133. For example, a cooling water supply pipe 134 serving as a tertiary refrigerant is connected to the condenser 132. In the supply line 134, for example, a flow rate adjusting valve 135 is provided. For example, the cooling capacity in the second heat exchanger 112 can be adjusted by adjusting the amount of cooling water supplied to the condenser 132 by the flow rate adjusting valve 135.

電気ヒータ113は,例えばヒータ電源140による給電により発熱して循環路110のブラインを加温できる。   For example, the electric heater 113 can generate heat by supplying power from the heater power supply 140 to heat the brine in the circulation path 110.

タンク114には,例えばポンプ150が配置されており,タンク114内に貯留しているブラインを上部電極20側に圧送できる。   For example, a pump 150 is disposed in the tank 114, and brine stored in the tank 114 can be pumped to the upper electrode 20 side.

例えばタンク114と上部電極20との間の循環路110には,タンク114から圧送されたブラインを上部電極20を迂回して第1の熱交換器111側に流すバイパス路160が形成されている。このバイパス路160により,バイパス路160→第1の熱交換器111→第2の熱交換器112→電気ヒータ113→タンク114→バイパス路160の順にブラインを循環させることができる(図1中の循環E2)。バイパス路160の分岐点には,三方弁161が設けられている。この三方弁161により,上部電極20を通らずにバイパス路150を通る循環E2と,上部電極20を通る循環E1を切り替えることができる。   For example, in the circulation path 110 between the tank 114 and the upper electrode 20, a bypass path 160 is formed in which the brine pumped from the tank 114 bypasses the upper electrode 20 and flows to the first heat exchanger 111 side. . By this bypass passage 160, the brine can be circulated in the order of the bypass passage 160 → the first heat exchanger 111 → the second heat exchanger 112 → the electric heater 113 → the tank 114 → the bypass passage 160 (in FIG. 1). Circulation E2). A three-way valve 161 is provided at a branch point of the bypass passage 160. With this three-way valve 161, it is possible to switch between the circulation E2 that passes through the bypass 150 without passing through the upper electrode 20, and the circulation E1 that passes through the upper electrode 20.

温度調整装置100には,例えば第1の熱交換器111の開閉バルブ121,第2の熱交換器112の流量調整バルブ135,電気ヒータ113のヒータ電源140,タンク114のポンプ150及び三方弁161などの上部電極20の温度調整を実行するための各種諸元の動作を制御する制御部170が設けられている。制御部170は,プラズマ処理装置1の装置制御部70との間で通信可能であり,装置制御部70からの情報に基づいて前記諸元の動作を制御できる。   The temperature adjusting device 100 includes, for example, an opening / closing valve 121 of the first heat exchanger 111, a flow rate adjusting valve 135 of the second heat exchanger 112, a heater power supply 140 of the electric heater 113, a pump 150 of the tank 114, and a three-way valve 161. A control unit 170 is provided for controlling operations of various specifications for performing temperature adjustment of the upper electrode 20 such as the above. The control unit 170 can communicate with the apparatus control unit 70 of the plasma processing apparatus 1, and can control the operation of the specifications based on information from the apparatus control unit 70.

次に,上記温度調整装置100を用いた上部電極20の温度調整プロセスについて説明する。   Next, the temperature adjustment process of the upper electrode 20 using the temperature adjustment device 100 will be described.

プラズマ処理装置1において,基板Wのロット処理が開始される前のアイドル状態のときには,循環路110内の循環E1においてブラインの温度が調整され,図2に示すように上部電極20の温度が予め定められた設定温度Hに調整される。この設定温度Hは,処理時に上部電極20を安定させる温度に設定される。このときの温度調整では,先ず図1に示す上部電極20の温度センサ31による温度測定結果が装置制御部70に出力され,装置制御部70から制御部170に出力される。制御部170は,この温度測定結果に基づいて,第2の熱交換器112の流量調整バルブ135と電気ヒータ113のヒータ電源140を調整して,上部電極20の温度が設定温度Hになるように循環路110内のブラインの温度を調整する。このとき,第1の熱交換器111の開閉バルブ121は閉鎖されており,第2の熱交換器112と電気ヒータ113によってブラインの温度が調整される。つまりブラインの冷却については,第2の熱交換器112の代替フロンの潜熱によって行われる。このアイドル状態時の循環路110内のブラインの温度は,放熱などの影響により結果的に設定温度Hよりも僅かに高い温度に調整される。   When the plasma processing apparatus 1 is in an idle state before the lot processing of the substrate W is started, the temperature of the brine is adjusted in the circulation E1 in the circulation path 110, and the temperature of the upper electrode 20 is set in advance as shown in FIG. The temperature is adjusted to a predetermined set temperature H. This set temperature H is set to a temperature that stabilizes the upper electrode 20 during processing. In the temperature adjustment at this time, first, the temperature measurement result by the temperature sensor 31 of the upper electrode 20 shown in FIG. 1 is output to the device control unit 70 and is output from the device control unit 70 to the control unit 170. Based on the temperature measurement result, the controller 170 adjusts the flow rate adjustment valve 135 of the second heat exchanger 112 and the heater power supply 140 of the electric heater 113 so that the temperature of the upper electrode 20 becomes the set temperature H. The temperature of the brine in the circulation path 110 is adjusted. At this time, the opening / closing valve 121 of the first heat exchanger 111 is closed, and the temperature of the brine is adjusted by the second heat exchanger 112 and the electric heater 113. That is, the cooling of the brine is performed by the latent heat of the substitute chlorofluorocarbon of the second heat exchanger 112. As a result, the temperature of the brine in the circulation path 110 in the idle state is adjusted to a temperature slightly higher than the set temperature H due to the influence of heat radiation or the like.

そして,プラズマ処理装置1において,アイドル状態が終わり,基板Wのロット処理が開始されるときに,図2に示す循環路110におけるブラインの目標温度Tが設定される。例えば装置制御部70の処理開始情報が制御部170に入力されると,ブラインの目標温度Tが設定される。   Then, in the plasma processing apparatus 1, when the idle state ends and the lot processing of the substrate W is started, the brine target temperature T in the circulation path 110 shown in FIG. 2 is set. For example, when the processing start information of the apparatus control unit 70 is input to the control unit 170, the target temperature T of the brine is set.

目標温度Tは,上部電極20の設定温度Hよりも低い温度であり,設定温度Hと目標温度Tとの温度差ΔTは,次の式(1)により求められる。   The target temperature T is a temperature lower than the set temperature H of the upper electrode 20, and the temperature difference ΔT between the set temperature H and the target temperature T is obtained by the following equation (1).

Figure 0004579025
Figure 0004579025

式(1)中のkは,電力から温度への換算係数であり,Aは,上部電極20の高周波電力であり,Bは,サセプタ12の高周波電力である。aは,上下電極の高周波電力全体に対して上部電極20の高周波電力が上部電極20の温度に及ぼす影響の度合いを示す係数であり,bは,上下電極の高周波電力全体に対してサセプタ12の高周波電力が上部電極20の温度に及ぼす影響の度合いを示す係数を示す。またCは,基板一枚あたりの処理時間,Dは,処理時間C中の高周波電力の印加時間である。図2に示すように処理時間Cは,例えば高周波電力が印加されている時間と基板Wの入れ替え時間を合わせた,基板一枚あたりにかかる時間である。温度差ΔTの算出と目標温度Tの設定は,例えば制御部170により行われる。   In Equation (1), k is a conversion factor from power to temperature, A is the high frequency power of the upper electrode 20, and B is the high frequency power of the susceptor 12. a is a coefficient indicating the degree of influence of the high-frequency power of the upper electrode 20 on the temperature of the upper electrode 20 with respect to the entire high-frequency power of the upper and lower electrodes, and b is the coefficient of the susceptor 12 with respect to the entire high-frequency power of the upper and lower electrodes. A coefficient indicating the degree of influence of the high frequency power on the temperature of the upper electrode 20 is shown. C is the processing time per substrate, and D is the application time of the high frequency power during the processing time C. As shown in FIG. 2, the processing time C is a time required for one substrate, for example, a combination of the time during which high-frequency power is applied and the replacement time of the substrate W. The calculation of the temperature difference ΔT and the setting of the target temperature T are performed by the control unit 170, for example.

温度差ΔTが算出され,目標温度Tが設定されると,図1に示す第1の熱交換器111の開閉バルブ121が開放され,第1の熱交換器111における水の顕熱と,第2の熱交換器112における代替フロンの潜熱によって,循環路110内のブラインが急速冷却され,目標温度Tで安定する。基板Wのロット処理が開始されプラズマ生成用の高周波電力が上部電極20に印加されて発生する分の熱が,冷却されたブラインにより排熱され,図2に示すように上部電極20の温度が設定温度Hに維持される。その後,基板Wのロット処理が終了するまで,ブラインの温度が目標温度Tに維持され,上部電極20の温度が設定温度Hに維持される。なお,第1の熱交換器111と第2の熱交換器112によりブラインが急冷され始めるタイミングは,例えば高周波電力が初めて上部電極20に印加される時かその直前が好ましい。   When the temperature difference ΔT is calculated and the target temperature T is set, the on-off valve 121 of the first heat exchanger 111 shown in FIG. 1 is opened, and the sensible heat of water in the first heat exchanger 111 and the first The brine in the circulation path 110 is rapidly cooled by the latent heat of the substitute chlorofluorocarbon in the second heat exchanger 112 and stabilized at the target temperature T. The heat generated by the lot processing of the substrate W being started and the high frequency power for plasma generation being applied to the upper electrode 20 is exhausted by the cooled brine, and the temperature of the upper electrode 20 is increased as shown in FIG. The set temperature H is maintained. Thereafter, the brine temperature is maintained at the target temperature T and the temperature of the upper electrode 20 is maintained at the set temperature H until the lot processing of the substrate W is completed. The timing when the brine is rapidly cooled by the first heat exchanger 111 and the second heat exchanger 112 is preferably, for example, the time when high-frequency power is first applied to the upper electrode 20 or just before that.

その後,ロット処理が終了すると,図1に示す三方弁161のバイパス路160側の流路が開放され,上部電極20を迂回するようにブラインが循環される(循環E2)。このとき,例えば第1の熱交換器111による冷却と,第2の熱交換器112による冷却が停止され,電気ヒータ113により,ブラインが図3に示すように加温される。その後,三方弁161が上部電極20側の流路に切り替えられ,温められたブラインが上部電極20内を通るように循環される(循環E1)。この三方弁161の切り替えが断続的に行われ,上部電極20を通るブラインの循環E1と上部電極20を迂回するショートカットの循環E2が交互に切り替えられる。これにより,ブラインの温度がアイドル状態時の温度に戻される。また,ロット処理の終了直後に低下する上部電極20の温度も,設定温度Hに回復される。   Thereafter, when the lot processing is completed, the flow path on the bypass path 160 side of the three-way valve 161 shown in FIG. 1 is opened, and the brine is circulated so as to bypass the upper electrode 20 (circulation E2). At this time, for example, cooling by the first heat exchanger 111 and cooling by the second heat exchanger 112 are stopped, and the brine is heated by the electric heater 113 as shown in FIG. Thereafter, the three-way valve 161 is switched to the flow path on the upper electrode 20 side, and the warmed brine is circulated so as to pass through the upper electrode 20 (circulation E1). The three-way valve 161 is intermittently switched, and the brine circulation E1 passing through the upper electrode 20 and the shortcut circulation E2 bypassing the upper electrode 20 are alternately switched. Thereby, the temperature of the brine is returned to the temperature in the idle state. Further, the temperature of the upper electrode 20 that decreases immediately after the end of the lot processing is also restored to the set temperature H.

以上の実施の形態によれば,アイドル状態時に,処理時に安定する設定温度Hに予め上部電極20の温度を調整しておき,基板Wの処理開始時に,第1の熱交換器111と第2の熱交換器112を用いてブラインを目標温度Tに急速冷却する。第1の熱交換器111による冷却は,熱容量の大きい水を用いて行われるので,熱容量が大きく発熱量も多い上部電極20であっても急冷でき,処理開始時の高周波電力の印加に起因する上部電極20の温度上昇を抑えることができる。この結果,基板Wの処理が開始されても,上部電極20の温度が設定温度Hに維持され,開始当初から製品用の基板Wの処理を行うことができる。   According to the above embodiment, in the idle state, the temperature of the upper electrode 20 is adjusted in advance to the set temperature H that is stable during the processing, and the first heat exchanger 111 and the second heat exchanger 111 and the second heat treatment are performed at the start of the processing of the substrate W. The heat exchanger 112 is used to rapidly cool the brine to the target temperature T. Since the cooling by the first heat exchanger 111 is performed using water having a large heat capacity, even the upper electrode 20 having a large heat capacity and a large calorific value can be rapidly cooled, resulting from application of high-frequency power at the start of processing. The temperature rise of the upper electrode 20 can be suppressed. As a result, even if the processing of the substrate W is started, the temperature of the upper electrode 20 is maintained at the set temperature H, and the processing of the substrate W for products can be performed from the beginning.

また,式(1)により,上部電極20とサセプタ12の各高周波電力と,各高周波電力による上部電極20への温度影響の比率を考慮して,ブラインの冷却温度ΔTが求められるので,上部電極20の設定温度Hを維持するための正確な温度を算出できる。   In addition, the cooling temperature ΔT of the brine is obtained by the equation (1) in consideration of the ratio of the high frequency power of the upper electrode 20 and the susceptor 12 and the temperature effect of each high frequency power on the upper electrode 20. An accurate temperature for maintaining the set temperature H of 20 can be calculated.

ロット処理が終了したときに,バイパス路160を通じてショートカットでブラインを循環させてブラインを速く昇温し,次にバイパス路160を閉じてブラインを上部電極20に流した。そしてそれを交互に繰り返すようにしたので,基板Wの処理の終了時に一時的に低下する上部電極20の温度を短時間で設定温度Hに回復させることができる。   When the lot processing was completed, the brine was circulated by a shortcut through the bypass path 160 to quickly raise the brine temperature, and then the bypass path 160 was closed and the brine was allowed to flow to the upper electrode 20. Since this is repeated alternately, the temperature of the upper electrode 20 that temporarily decreases at the end of the processing of the substrate W can be restored to the set temperature H in a short time.

プラズマ処理装置1において,一枚の基板Wに対して,複数のエッチング処理が連続して行われることがある。この際,基板Wに対して上部電極20への高周波電力の印加が複数回行われる。この場合,式(1)によりブラインの冷却温度ΔTを求めるにあたり,例えば図4に示すように一枚の基板Wの処理時間Cに対して,高周波電力の印加時間Dは,各高周波電力の印加時間D1,D2,D3を積算することにより求めてもよい。また,各回の高周波電力の出力が異なる場合には,上部電極20の高周波電力Aとサセプタ12の高周波電力Bは,複数回の高周波電力の平均値としてもよい。   In the plasma processing apparatus 1, a plurality of etching processes may be continuously performed on one substrate W. At this time, the high frequency power is applied to the upper electrode 20 a plurality of times with respect to the substrate W. In this case, in obtaining the cooling temperature ΔT of the brine by the equation (1), for example, as shown in FIG. 4, the application time D of the high frequency power is the application time D of each high frequency power with respect to the processing time C of one substrate W. You may obtain | require by integrating | accumulating time D1, D2, D3. When the output of the high frequency power at each time is different, the high frequency power A of the upper electrode 20 and the high frequency power B of the susceptor 12 may be an average value of the high frequency power of a plurality of times.

以上,添付図面を参照しながら本発明の好適な実施の形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された思想の範疇内において,各種の変更例または修正例に相到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。例えば上述の実施の形態においては,エッチングを行うプラズマ処理装置1の上部電極20の温度制御であったが,エッチング処理以外のプラズマ処理,例えば成膜処理を行うプラズマ処理装置における上部電極の温度制御であってもよい。また,温度制御を行う電極は,上部電極に限られず,プラズマ生成用の電極であれば,下部電極であってもよい。さらに第1の熱交換器111の液体冷媒は,水を使い捨てで使用してもよいし,循環させて温度を一定に保つように温調してもよい。温調して循環使用する場合は,液体冷媒としてブラインを使用してもよい。また第2の熱交換器112の冷媒は,代替フロンのHFC以外に,アンモニア,空気,二酸化炭素,炭化水素系ガスなどを使用してもよい。   The preferred embodiment of the present invention has been described above with reference to the accompanying drawings, but the present invention is not limited to such an example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the spirit described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. For example, in the above-described embodiment, the temperature control of the upper electrode 20 of the plasma processing apparatus 1 that performs the etching is performed. However, the temperature control of the upper electrode in the plasma processing apparatus that performs a plasma process other than the etching process, for example, a film forming process. It may be. The electrode for temperature control is not limited to the upper electrode, and may be the lower electrode as long as it is an electrode for plasma generation. Furthermore, the liquid refrigerant of the first heat exchanger 111 may use water in a disposable manner, or may be temperature-controlled so as to keep the temperature constant by circulating water. In the case where the temperature is circulated and used, brine may be used as the liquid refrigerant. The refrigerant of the second heat exchanger 112 may use ammonia, air, carbon dioxide, hydrocarbon-based gas, or the like, in addition to the substitute chlorofluorocarbon HFC.

本発明によれば,プラズマ処理の開始時から上部電極の温度を安定させる際に有用である。   The present invention is useful for stabilizing the temperature of the upper electrode from the start of the plasma treatment.

本実施の形態にかかるプラズマ処理装置と温度調整装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the plasma processing apparatus and temperature control apparatus concerning this Embodiment. アイドル状態からロット処理時までの上部電極とブラインの温度変化と,上部電極のON・OFFタイミングを示すグラフである。It is a graph which shows the temperature change of the upper electrode and brine from the idle state to the time of lot processing, and the ON / OFF timing of the upper electrode. ロット処理終了時の上部電極とブラインの温度変化と,上部電極のON・OFFタイミングと,ブラインの循環の切り替えを示すグラフである。It is a graph which shows the temperature change of the upper electrode and brine at the time of completion | finish of lot processing, the ON / OFF timing of an upper electrode, and the switching of the circulation of a brine. 基板の処理が複数ステップに亘る場合の処理時間と高周波電力印加時間を示す説明図である。It is explanatory drawing which shows the processing time in case the process of a board | substrate covers multiple steps, and high frequency electric power application time.

符号の説明Explanation of symbols

1 プラズマ処理装置
20 上部電極
70 装置制御部
100 温度調整装置
110 循環路
111 第1の熱交換器
112 第2の熱交換器
113 電気ヒータ
160 バイパス路
170 制御部
W 基板
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 20 Upper electrode 70 Apparatus control part 100 Temperature control apparatus 110 Circulation path 111 1st heat exchanger 112 2nd heat exchanger 113 Electric heater 160 Bypass path 170 Control part W board | substrate

Claims (9)

基板のプラズマ処理装置においてプラズマ生成用の高周波電力が印加される電極の温度調整方法であって,
電極の内部を通過し,前記電極に対して熱媒体を循環させる循環路と,
前記循環路において,前記電極を通過した前記熱媒体に対して液体冷媒の顕熱により熱交換を行う第1の熱交換器と,
前記循環路において,前記第1の熱交換器を通過した前記熱媒体に対して冷媒の潜熱により熱交換を行う第2の熱交換器と,
前記循環路において,前記電極の内部に供給される熱媒体を加熱する加熱器と,を備え,前記循環路に,前記プラズマ生成用の電極を迂回して,前記加熱器を通過した熱媒体を循環させるためのバイパス路が形成され且つ前記加熱器を通過した熱媒体の循環を前記電極を通る第1の循環と前記電極を通らずに前記バイパス路を通る第2の循環とに切り替える弁体が設けられた温度調整装置を用いて,
基板の処理が行われないアイドル状態時に,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器により前記循環路内の熱媒体の温度を調整して,前記第1の循環により前記電極の温度を所定の設定温度に調整する工程と,
前記電極に高周波電力が印加される基板の処理開始時に,前記加熱器を停止させた状態で前記第1の熱交換器と第2の熱交換器を用いて前記熱媒体の温度を前記電極の設定温度よりも下げて,前記第1の循環により前記電極の温度を前記設定温度に維持する工程と,
基板の処理が終了した時に,前記第2の循環より前記バイパス路を通じて前記熱媒体を循環させて,前記第1の熱交換器及び前記第2の熱交換器を停止した状態で前記加熱器を用いて前記熱媒体の温度を上昇させる工程と,前記弁体により前記第1の循環に切り替え,前記電極の内部を通過するように前記熱媒体を前記第1の循環により循環させて,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器を用いて前記電極を前記設定温度に安定させる工程と,を有することを特徴とする,温度調整方法。
A method for adjusting the temperature of an electrode to which high-frequency power for plasma generation is applied in a substrate plasma processing apparatus,
A circulation path that passes through the inside of the electrode and circulates a heat medium to the electrode;
A first heat exchanger that exchanges heat with the sensible heat of the liquid refrigerant with respect to the heat medium that has passed through the electrode in the circulation path;
A second heat exchanger for exchanging heat by latent heat of a refrigerant with respect to the heat medium that has passed through the first heat exchanger in the circulation path;
A heater that heats the heat medium supplied to the inside of the electrode in the circulation path, and the heat medium that has passed through the heater bypassing the electrode for plasma generation in the circulation path. A valve body in which a bypass path for circulation is formed and the circulation of the heat medium that has passed through the heater is switched between a first circulation that passes through the electrode and a second circulation that passes through the bypass path without passing through the electrode Using the temperature control device provided with
In the idle state where the substrate is not processed, the temperature of the heat medium in the circulation path is adjusted by the second heat exchanger and the heater while the first heat exchanger is stopped, Adjusting the temperature of the electrode to a predetermined set temperature by a first circulation;
At the start of processing of the substrate to which high frequency power is applied to the electrode, the temperature of the heating medium is set to the temperature of the electrode using the first heat exchanger and the second heat exchanger in a state where the heater is stopped. Lowering below a set temperature and maintaining the temperature of the electrode at the set temperature by the first circulation;
When the processing of the substrate is finished, the by circulating the heating medium through more the bypass passage to the second circulation, the heater in a state of stopping the first heat exchanger and the second heat exchanger The temperature of the heat medium is increased by using the valve body, the valve body is switched to the first circulation, and the heat medium is circulated by the first circulation so as to pass through the inside of the electrode. And a step of stabilizing the electrode at the set temperature using the second heat exchanger and the heater while the first heat exchanger is stopped.
前記プラズマ生成用の電極は,上部電極であり,
前記プラズマ処理装置は,基板を載置する下部電極を備え,
前記下部電極には,高周波電力を印加可能であり,
前記アイドル状態時の上部電極の所定温度と,前記基板の処理開始時の前記熱媒体の調整温度との温度差ΔTは,
ΔT=k(aA+bB)×D/C
(k:電力から温度への換算係数,A:上部電極の高周波電力,B:下部電極の高周波電力,a:上部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,b:下部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,C:基板一枚の処理時間,D:処理時間C中の高周波電力の印加時間)の式により設定されることを特徴とする,請求項1に記載の温度調整方法。
The plasma generating electrode is an upper electrode,
The plasma processing apparatus includes a lower electrode on which a substrate is placed,
High frequency power can be applied to the lower electrode,
The temperature difference ΔT between the predetermined temperature of the upper electrode in the idle state and the adjustment temperature of the heat medium at the start of processing of the substrate is:
ΔT = k (aA + bB) × D / C
(K: conversion factor from power to temperature, A: high frequency power of upper electrode, B: high frequency power of lower electrode, a: influence of high frequency power of upper electrode on temperature of upper electrode A coefficient indicating a ratio, b: a coefficient indicating a ratio of the influence of the high-frequency power of the lower electrode on the temperature of the upper electrode with respect to the influence of the entire high-frequency power, C: processing time of one substrate, D: high frequency during the processing time C The temperature adjustment method according to claim 1, wherein the temperature adjustment method is set by an expression of power application time.
前記バイパス路を通過させる前記熱媒体の循環と,前記電極の内部を通過させる前記熱媒体の循環とを交互に行うことにより,前記熱媒体の温度を前記設定温度に安定させることを特徴とする,請求項1または2のいずれかに記載の温度調整方法。 The temperature of the heat medium is stabilized at the set temperature by alternately performing circulation of the heat medium that passes through the bypass passage and circulation of the heat medium that passes through the inside of the electrode. The temperature adjustment method according to claim 1 or 2. 前記液体冷媒は,水であることを特徴とする,請求項1〜3のいずれかに記載の温度調整方法。 The temperature adjustment method according to claim 1, wherein the liquid refrigerant is water. 基板のプラズマ処理装置においてプラズマ生成用の高周波電力が印加される電極の温度調整装置であって,
電極の内部を通過し,前記電極に対して熱媒体を循環させる循環路と,
前記循環路において,前記電極を通過した前記熱媒体に対して液体冷媒の顕熱により熱交換を行う第1の熱交換器と,
前記循環路において,前記第1の熱交換器を通過した前記熱媒体に対して冷媒の潜熱により熱交換を行う第2の熱交換器と,
前記循環路において,前記電極の内部に供給される熱媒体を加熱する加熱器と,
基板の処理が行われないアイドル状態時に,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器により前記循環路内の熱媒体の温度を調整して,前記第1の循環により前記電極の温度を所定の設定温度に調整し,前記電極に高周波電力が印加される基板の処理開始時に,前記加熱器を停止させた状態で前記第1の熱交換器と第2の熱交換器を用いて前記熱媒体の温度を前記電極の設定温度よりも下げて,前記第1の循環により前記電極の温度を前記設定温度に維持する制御部と,を有し,
前記循環路には,前記プラズマ生成用の電極を迂回して,前記加熱器を通過した熱媒体を循環させるためのバイパス路が形成され且つ前記加熱器を通過した熱媒体の循環を前記電極を通る第1の循環と前記電極を通らずに前記バイパス路を通る第2の循環とに切り替える弁体が設けられており,
前記制御部は,基板の処理が終了した時に,前記第2の循環より前記バイパス路を通じて前記熱媒体を循環させて,前記第1の熱交換器及び前記第2の熱交換器を停止した状態で前記加熱器を用いて前記熱媒体の温度を上昇させ,加えて,前記弁体により前記第1の循環に切り替え,前記電極の内部を通過するように前記熱媒体を前記第1の循環により循環させて,前記第1の熱交換器を停止した状態で前記第2の熱交換器と前記加熱器を用いて前記電極を前記設定温度に安定させる制御をさらに行うことを特徴とする,温度調整装置。
An electrode temperature adjusting device to which a high frequency power for plasma generation is applied in a substrate plasma processing apparatus,
A circulation path that passes through the inside of the electrode and circulates a heat medium to the electrode;
A first heat exchanger that exchanges heat with the sensible heat of the liquid refrigerant with respect to the heat medium that has passed through the electrode in the circulation path;
A second heat exchanger for exchanging heat by latent heat of a refrigerant with respect to the heat medium that has passed through the first heat exchanger in the circulation path;
A heater for heating a heat medium supplied to the inside of the electrode in the circulation path;
In the idle state where the substrate is not processed, the temperature of the heat medium in the circulation path is adjusted by the second heat exchanger and the heater while the first heat exchanger is stopped, The temperature of the electrode is adjusted to a predetermined set temperature by a first circulation, and the heater is stopped at the start of processing of a substrate to which high-frequency power is applied to the electrode. A controller that lowers the temperature of the heating medium below the set temperature of the electrode using a second heat exchanger, and maintains the temperature of the electrode at the set temperature by the first circulation;
A bypass path is formed in the circulation path to circulate the heat medium that has passed through the heater, bypassing the electrode for plasma generation, and circulation of the heat medium that has passed through the heater is routed to the circulation path. A valve body is provided for switching between a first circulation passing through and a second circulation passing through the bypass without passing through the electrode;
Wherein, when the processing of the substrate is finished, the by circulating the heating medium through more the bypass passage to the second circulation was stopped the first heat exchanger and the second heat exchanger In the state, the temperature of the heat medium is increased using the heater, and in addition, the valve body is switched to the first circulation, and the heat medium is passed through the electrode so as to pass through the first circulation. , And further controlling to stabilize the electrode at the set temperature using the second heat exchanger and the heater while the first heat exchanger is stopped. Temperature control device.
前記プラズマ生成用の電極は,上部電極であり,
前記プラズマ処理装置は,基板を載置する下部電極を備え,
前記下部電極には,高周波電力を印加可能であり,
前記制御部は,前記アイドル状態時の上部電極の所定温度と,前記基板の処理開始時の前記熱媒体の調整温度との温度差ΔTを,
ΔT=k(aA+bB)×D/C
(k:電力から温度への換算係数,A:上部電極の高周波電力,B:下部電極の高周波電力,a:上部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,b:下部電極の高周波電力が上部電極の温度に及ぼす影響についての高周波電力全体の影響に対する割合を示す係数,C:基板一枚の処理時間,D:処理時間C中の高周波電力の印加時間)の式により算出して設定することを特徴とする,請求項5に記載の温度調整装置。
The plasma generating electrode is an upper electrode,
The plasma processing apparatus includes a lower electrode on which a substrate is placed,
High frequency power can be applied to the lower electrode,
The control unit calculates a temperature difference ΔT between a predetermined temperature of the upper electrode in the idle state and an adjustment temperature of the heat medium at the start of processing of the substrate,
ΔT = k (aA + bB) × D / C
(K: conversion factor from power to temperature, A: high frequency power of upper electrode, B: high frequency power of lower electrode, a: influence of high frequency power of upper electrode on temperature of upper electrode A coefficient indicating the ratio, b: a coefficient indicating the ratio of the influence of the high-frequency power of the lower electrode on the temperature of the upper electrode with respect to the influence of the entire high-frequency power, C: the processing time of one substrate, D: the high frequency during the processing time C 6. The temperature adjusting device according to claim 5, wherein the temperature adjusting device is calculated and set by an expression of power application time.
前記制御部は,前記バイパス路を通過させる前記熱媒体の循環と,前記電極の内部を通過させる前記熱媒体の循環とを交互に行うことにより,前記熱媒体の温度を前記設定温度に安定させることを特徴とする,請求項5または6のいずれかに記載の温度調整装置。 The controller stabilizes the temperature of the heat medium at the set temperature by alternately performing circulation of the heat medium passing through the bypass path and circulation of the heat medium passing through the inside of the electrode. The temperature control device according to claim 5 or 6, wherein 前記液体冷媒は,水であることを特徴とする,請求項5〜7のいずれかに記載の温度調整装置。 The temperature adjusting device according to claim 5, wherein the liquid refrigerant is water. 請求項5〜8のいずれかに記載の温度調整装置を備えたプラズマ処理装置。 The plasma processing apparatus provided with the temperature control apparatus in any one of Claims 5-8.
JP2005088984A 2005-03-25 2005-03-25 Temperature adjusting method, temperature adjusting device, plasma processing device Expired - Fee Related JP4579025B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005088984A JP4579025B2 (en) 2005-03-25 2005-03-25 Temperature adjusting method, temperature adjusting device, plasma processing device
US11/389,046 US20060213763A1 (en) 2005-03-25 2006-03-27 Temperature control method and apparatus, and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088984A JP4579025B2 (en) 2005-03-25 2005-03-25 Temperature adjusting method, temperature adjusting device, plasma processing device

Publications (2)

Publication Number Publication Date
JP2006269944A JP2006269944A (en) 2006-10-05
JP4579025B2 true JP4579025B2 (en) 2010-11-10

Family

ID=37205541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088984A Expired - Fee Related JP4579025B2 (en) 2005-03-25 2005-03-25 Temperature adjusting method, temperature adjusting device, plasma processing device

Country Status (1)

Country Link
JP (1) JP4579025B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189964A (en) * 2007-02-02 2008-08-21 Ulvac Japan Ltd Cvd apparatus and cvd method
JP4838197B2 (en) * 2007-06-05 2011-12-14 東京エレクトロン株式会社 Plasma processing apparatus, electrode temperature adjusting apparatus, electrode temperature adjusting method
KR100890961B1 (en) 2008-07-08 2009-03-27 (주)피티씨 Hybrid temperature control method for chiller apparatus for decreasing power consumption
US9155134B2 (en) * 2008-10-17 2015-10-06 Applied Materials, Inc. Methods and apparatus for rapidly responsive heat control in plasma processing devices
WO2011149615A2 (en) * 2010-05-24 2011-12-01 Applied Materials, Inc. Hybrid hotwire chemical vapor deposition and plasma enhanced chemical vapor deposition method and apparatus
JP6525751B2 (en) * 2015-06-11 2019-06-05 東京エレクトロン株式会社 Temperature control method and plasma processing apparatus
WO2023162161A1 (en) * 2022-02-25 2023-08-31 東京エレクトロン株式会社 Temperature adjusting system, temperature adjusting method, substrate processing method, and substrate processing device
WO2024048366A1 (en) * 2022-09-01 2024-03-07 東京エレクトロン株式会社 Temperature adjustment system and plasma processing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091239A (en) * 1998-09-14 2000-03-31 Nkk Corp Method of wafer temperature control in plasma processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130822A (en) * 1988-11-11 1990-05-18 Hitachi Ltd Method for plasma etching
JP3931357B2 (en) * 1995-10-18 2007-06-13 ソニー株式会社 Manufacturing method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091239A (en) * 1998-09-14 2000-03-31 Nkk Corp Method of wafer temperature control in plasma processing apparatus

Also Published As

Publication number Publication date
JP2006269944A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4838197B2 (en) Plasma processing apparatus, electrode temperature adjusting apparatus, electrode temperature adjusting method
JP4579025B2 (en) Temperature adjusting method, temperature adjusting device, plasma processing device
US20060213763A1 (en) Temperature control method and apparatus, and plasma processing apparatus
JP4256031B2 (en) Processing apparatus and temperature control method thereof
US6993919B2 (en) Processing apparatus and processing apparatus maintenance method
TWI746460B (en) Temperature adjusting device and substrate processing device
JP4615335B2 (en) Temperature control system and substrate processing apparatus
TWI480918B (en) Component temperature control by coolant flow control and heater duty cycle control
TWI533764B (en) Methods and apparatus for rapidly responsive heat control in plasma processing devices
CN106796882B (en) Refrigerating device for plasma processing device
CN102041487A (en) Temperature control system and temperature control method for substrate mounting table
KR20140044862A (en) Stage temperature control device and substrate processing device
JP2011187758A (en) Temperature control system, temperature control method, plasma treatment device, and computer storage medium
US10128141B2 (en) Plasma processing apparatus and plasma processing method
JP2005089864A (en) Plasma treatment device
JP2004169933A (en) Method and device for controlling chiller for treatment apparatus
JP7330017B2 (en) HEAT MEDIUM CIRCUIT SYSTEM AND HEAT MEDIUM CIRCUIT SYSTEM CONTROL METHOD
CN109427610A (en) Chip temperature control system, chip temperature control method and reaction chamber
US11236420B2 (en) Cleaning method
US20200211872A1 (en) Temperature controlling apparatus and method of controlling the temperature controlling apparatus
US20190304760A1 (en) Temperature adjustment method
JP2023098068A (en) Temperature control system, semiconductor manufacturing apparatus, and temperature control method
JP2020049400A (en) Dry air generation device, dry air generation method and substrate processing system
CN115132559A (en) Temperature control apparatus, substrate processing apparatus, and pressure control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees