JPH0847717A - Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance - Google Patents

Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance

Info

Publication number
JPH0847717A
JPH0847717A JP6202992A JP20299294A JPH0847717A JP H0847717 A JPH0847717 A JP H0847717A JP 6202992 A JP6202992 A JP 6202992A JP 20299294 A JP20299294 A JP 20299294A JP H0847717 A JPH0847717 A JP H0847717A
Authority
JP
Japan
Prior art keywords
carbon dioxide
corrosion resistance
joined
dioxide gas
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6202992A
Other languages
Japanese (ja)
Inventor
Takayuki Otake
隆之 大嶽
Yoshikazu Ishizawa
嘉一 石沢
Toshihiro Takamura
登志博 高村
Yutaka Nagahama
裕 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6202992A priority Critical patent/JPH0847717A/en
Publication of JPH0847717A publication Critical patent/JPH0847717A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

PURPOSE:To manufacture a welded steel pipe excellent in carbon dioxide gas corrosion resistance. CONSTITUTION:This is the manufacture (component and composition are expressed by wt.%.) of a welded steel pipe excellent in carbon dioxide gas corrosion resistance, which is equipped with the following processes. They are a process preparing a hot rolled plate containing 0.3 to 1% Cr in a carbon steel, a process forming the hot rolled plate continuously to an open pipe by multistage forming rolls, a process electrically heating both edge parts to be joined to the open pipe, and a process irradiating the both edge parts to be joined by a laser beam, controlling the quantity of upsetting by a squeeze roll, and being in press welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭酸ガスを含む湿潤環境
において優れた耐食性を有する溶接鋼管の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a welded steel pipe having excellent corrosion resistance in a humid environment containing carbon dioxide.

【0002】[0002]

【従来の技術】炭酸ガスを含む石油、天然ガスを輸送す
る鋼管は内面が全面腐食を起こす恐れがあり、これを抑
制する目的で0.5%程度のCrを含有した炭素鋼鋼材が
使用されている(特開平4-341540号公報)。この鋼材を
使用することで優れた耐食性を持つ継目無管およびUO
E等のアーク溶接鋼管が得られる。
2. Description of the Related Art The inner surface of a steel pipe for transporting petroleum containing carbon dioxide and natural gas may cause general corrosion, and a carbon steel material containing about 0.5% Cr is used for the purpose of suppressing this. (JP-A-4-341540). Seamless pipe and UO with excellent corrosion resistance by using this steel material
An arc welded steel pipe such as E can be obtained.

【0003】しかし、電縫管に関しては、電縫溶接部の
選択腐食が発生するため湿潤炭酸ガス環境では上記鋼材
を使用することができない。ラインパイプ用の鋼管はサ
イズによって使い分けられるのが普通であり、通常大径
サイズはUOE鋼管、小径厚肉サイズは継目無管、小径
薄肉サイズは電縫管が使用される。これらは各製造プロ
セスの本質的な特性に基づいており、電縫管の代わりに
他の鋼管を使用することは多くの場合困難である。
However, with respect to the electric resistance welded pipe, the above steel cannot be used in a wet carbon dioxide environment because selective corrosion of the electric resistance welded portion occurs. Steel pipes for line pipes are usually used properly according to size. Usually, UOE steel pipes are used for large diameter sizes, seamless pipes are used for small diameter and thick wall sizes, and electric resistance welded pipes are used for small diameter and thin wall sizes. These are based on the essential characteristics of each manufacturing process, and it is often difficult to use other steel pipes instead of ERW pipes.

【0004】[0004]

【発明が解決しようとする課題】本発明は、湿潤炭酸ガ
ス環境で優れた耐全面腐食性を持ち、かつ、溶接部の選
択腐食を起こさない小径薄肉溶接管の製造方法の提供を
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a small-diameter thin-walled welded pipe having excellent general corrosion resistance in a wet carbon dioxide environment and not causing selective corrosion of welded portions. .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、所定成分の鋼からなる熱延鋼板を多段
の成形ロールで連続的にオープンパイプに成形し、溶接
すべき両エッジ部を電気的に加熱する工程と、さらに、
接合すべき両エッジ部にレーザビームを照射し、スクイ
ズロールでアプセット量を制御し、圧接する工程とを採
用する。レーザビームの照射により、接合すべき両エッ
ジ部を従来よりも高温に加熱できるため、従来よりもア
プセット量を少なくでき、そのため耐炭酸ガス腐食性に
優れた溶接鋼管の製造が可能だからである。
In order to solve the above-mentioned problems, according to the present invention, a hot-rolled steel sheet made of steel having a predetermined composition is continuously formed into an open pipe by a multi-stage forming roll, and both edge portions to be welded. Electrically heating the
A step of irradiating both edge portions to be joined with a laser beam, controlling the amount of upset by a squeeze roll, and performing pressure welding is adopted. By irradiating the laser beam, both edge portions to be joined can be heated to a higher temperature than before, so that the upset amount can be made smaller than before, and therefore a welded steel pipe excellent in carbon dioxide gas corrosion resistance can be manufactured.

【0006】(1)請求項1の発明は、下記の工程を備
えた耐炭酸ガス腐食性に優れた溶接鋼管の製造方法(成
分組成はwt%である)である。 (a)C:0.01〜0.2%、 Si:0.1〜0.35%、Mn:0.5〜2
% 、 P:0.03%以下、S:0.03%以下、 Cr:0.3
〜1 %を含有した熱延鋼板を用意する工程と、(b)前
記熱延鋼板を多段の成形ロールで連続的にオープンパイ
プに成形する工程と、(c)前記オープンパイプの接合
すべき両エッジ部を電気的に加熱する工程と、(d)接
合すべき前記両エッジ部にレーザビームを照射し、スク
イズロールでアプセット量を制御し、圧接する工程。
(1) The invention of claim 1 is a method for producing a welded steel pipe excellent in carbon dioxide gas corrosion resistance, which comprises the following steps (component composition is wt%). (A) C: 0.01 to 0.2%, Si: 0.1 to 0.35%, Mn: 0.5 to 2
%, P: 0.03% or less, S: 0.03% or less, Cr: 0.3
A step of preparing a hot-rolled steel sheet containing 1 to 1%, (b) a step of continuously forming the hot-rolled steel sheet into an open pipe by a multi-stage forming roll, and (c) both of the open pipes to be joined. A step of electrically heating the edge portion, and (d) a step of irradiating the both edge portions to be joined with a laser beam, controlling the upset amount with a squeeze roll, and press-contacting.

【0007】(2)請求項2の発明は、下記の工程を備
えた耐炭酸ガス腐食性に優れた溶接鋼管の製造方法(成
分組成はwt%である)である。 (a)請求項1(a)に規定する成分の他にCu:0.05〜
0.5%、 Ca:0.001〜0.006%、Ni:0.5%以下、 Mo:
0.5%以下、Nb:0.001〜0.1%、 V:0.001〜0.1%、Ti:0.
001〜0.1%の内、1種又は2種以上を含有した熱延鋼板
を用意する工程と、(b)前記熱延鋼板を多段の成形ロ
ールで連続的にオープンパイプに成形する工程と、
(c)前記オープンパイプの接合すべき両エッジ部を電
気的に加熱する工程と、(d)接合すべき前記両エッジ
部にレーザビームを照射し、スクイズロールでアプセッ
ト量を制御し、圧接する工程。
(2) The invention of claim 2 is a method for producing a welded steel pipe excellent in carbon dioxide gas corrosion resistance (the composition of the composition is wt%), which comprises the following steps. (A) In addition to the components defined in claim 1 (a), Cu: 0.05-
0.5%, Ca: 0.001 to 0.006%, Ni: 0.5% or less, Mo:
0.5% or less, Nb: 0.001-0.1%, V: 0.001-0.1%, Ti: 0.
Of 001 to 0.1%, a step of preparing a hot-rolled steel sheet containing one or more kinds, and (b) a step of continuously forming the hot-rolled steel sheet into an open pipe with a multi-stage forming roll,
(C) electrically heating both edge portions of the open pipe to be joined, and (d) irradiating the both edge portions to be joined with a laser beam, pressing the squeeze roll to control the upset amount, and then performing pressure welding. Process.

【0008】(3)請求項3の発明は、前記アプセット
量を制御し、溶接部のメタルフロー立上がり角度を45
°以下とすることを特徴とする、請求項1または請求項
2記載の耐炭酸ガス腐食性に優れた溶接鋼管の製造方法
である。
(3) According to the invention of claim 3, the upset amount is controlled and the metal flow rising angle of the welded portion is set to 45.
The method for producing a welded steel pipe having excellent carbon dioxide gas corrosion resistance according to claim 1 or 2, characterized in that the temperature is not more than °.

【0009】[0009]

【作用】以下、まず本発明において鋼の成分組成(wt
%である)を上記のように限定した理由について述べ
る。Cは鋼の強度を確保するために0.01 %以上の添加が
必要であるが、溶接性、靭性の観点から上限を0.2%とす
る。
In the present invention, the composition of steel (wt) will be described below.
%) Is described above. C needs to be added in an amount of 0.01% or more to secure the strength of steel, but the upper limit is made 0.2% from the viewpoint of weldability and toughness.

【0010】Siは鋼の脱酸材として0.1%以上の添加が
必要であるが、過剰な添加は鋼を脆化させるので上限を
0.35%とする。
Si is required to be added as a deoxidizing agent for steel in an amount of 0.1% or more, but excessive addition makes the steel brittle, so the upper limit is set.
0.35%

【0011】Mnは鋼の強度確保のために0.5%以上の添
加が必要であるが、過剰な添加は靭性を劣化させるため
上限を2 % とする。
Mn must be added in an amount of 0.5% or more to secure the strength of the steel, but excessive addition deteriorates toughness, so the upper limit is made 2%.

【0012】Pは鋼の靭性を劣化させるため上限を0.03
%とする。
Since P deteriorates the toughness of steel, the upper limit is 0.03.
%.

【0013】Sは鋼の靭性を劣化させるため上限を0.03
%とする。
Since S deteriorates the toughness of steel, the upper limit is 0.03.
%.

【0014】Crは0.3%以上の添加により鋼の耐炭酸ガ
ス腐食性を高めるが、1 % 以上の添加は鋼の溶接性を劣
化させるので上限を1 % とする。
The addition of 0.3% or more of Cr enhances the carbon dioxide corrosion resistance of the steel, but the addition of 1% or more deteriorates the weldability of the steel, so the upper limit is made 1%.

【0015】Cuは0.05%以上の添加により耐HIC特
性が改善されるため必要に応じて添加してもよいが、過
剰な添加は鋼の熱間加工性を劣化させるので上限を0.5%
とする。
Cu may be added if necessary because the HIC resistance is improved by adding more than 0.05%, but excessive addition deteriorates the hot workability of steel, so the upper limit is 0.5%.
And

【0016】Caは0.001%以上の添加で介在物の形態制
御を通じて耐HIC特性を改善するため必要に応じて添
加してもよいが、過剰な添加は鋼の靭性を劣化させるの
で、上限を0.006%とする。
If Ca is added in an amount of 0.001% or more, the HIC resistance can be improved by controlling the morphology of inclusions, but Ca may be added as necessary, but excessive addition deteriorates the toughness of the steel, so the upper limit is 0.006. %.

【0017】Ni、Moは鋼の耐HIC特性を改善する
ため必要に応じて添加してもよいが、過剰な添加は耐S
SCC特性を劣化させるため上限を0.5%とする。
Ni and Mo may be added as necessary in order to improve the HIC resistance of steel, but excessive addition of S and S
The upper limit is set to 0.5% to deteriorate the SCC characteristics.

【0018】Nb、V、Tiは0.001%以上の添加で強度
を向上させるが、過剰な添加は靭性を劣化させるので上
限を0.1%とする。
Nb, V, and Ti improve strength when added in an amount of 0.001% or more, but excessive addition deteriorates toughness, so the upper limit is made 0.1%.

【0019】次に、加工方法について述べる。上記成分
組成の熱延板を用意し、後述する様な加工工程をおこな
うが、まずレーーザビームを照射する理由を述べる。電
縫管は、湿潤炭酸ガス環境中で電縫部が選択腐食され
る。これは、電縫部と母材部の電位差のためであるが、
この理由は次のように説明される。
Next, the processing method will be described. A hot-rolled sheet having the above-mentioned composition is prepared and a processing step as described later is carried out. First, the reason for irradiating the laser beam will be described. In the electric resistance welded pipe, the electric resistance welded part is selectively corroded in a wet carbon dioxide environment. This is due to the potential difference between the electric resistance portion and the base metal portion,
The reason for this is explained as follows.

【0020】電縫溶接は、アーク溶接と比べると、入熱
の小さい溶接であるため、接合後はきわめて急速に冷却
される。このため、加熱時に一度固溶したMnSが完全
には再析出できず、一部はFeS又はMnSとして析出
するが、残りは過飽和に固溶したままとなる。その結
果、電縫部は母材部と比べ固溶Sの濃度が高く、このた
め、浸漬電位が母材より卑となる。
Compared with arc welding, electric resistance welding has a lower heat input, so that it is cooled very rapidly after joining. For this reason, MnS once solid-dissolved at the time of heating cannot be completely re-precipitated and a part is precipitated as FeS or MnS, but the rest remains in a supersaturated solid solution. As a result, the electric resistance welded portion has a higher concentration of solid solution S than the base material portion, so that the immersion potential becomes baser than the base material.

【0021】また、電縫部選択腐食の実際の進行状況を
観察すると、起点が介在物、特にMnS、FeSなどの
A系介在物であることが多く、初期段階では介在物に沿
って腐食が進行する。母材部ではこれらの介在物は圧延
方向に平行(L方向)に伸び、板表面に露出していな
い。これに対し、電縫部は圧接によって板のC断面に相
当する面が表面に露出するとともに、介在物が板の厚さ
方向(Z方向)に伸び、先端が表面に露出する。これが
腐食の起点でありかつ進行経路となる。
Further, observing the actual progress of selective corrosion of the electric resistance weld, the starting point is often inclusions, especially A-type inclusions such as MnS and FeS, and corrosion progresses along the inclusions in the initial stage. To do. In the base material portion, these inclusions extend in parallel to the rolling direction (L direction) and are not exposed on the plate surface. On the other hand, in the electric resistance welded portion, the surface corresponding to the C cross section of the plate is exposed on the surface by pressure contact, the inclusion extends in the thickness direction (Z direction) of the plate, and the tip is exposed on the surface. This is the starting point of corrosion and the path of progress.

【0022】そこで、従来の電縫方法とレーザ照射とを
複合する溶接方法を採用すると以下の様な利点がある。
まず、複合溶接は、入熱量が大きいため電縫単独溶接ほ
ど急冷されないので、過飽和に固溶したSの量が少な
く、電縫部の電位があまり卑でない。
Therefore, if the welding method combining the conventional electric sewing method and laser irradiation is adopted, there are the following advantages.
First, in the composite welding, since the heat input amount is large, it is not rapidly cooled as much as the electric resistance welding alone. Therefore, the amount of S dissolved in supersaturation is small and the electric potential of the electric resistance portion is not so base.

【0023】さらにアプセット量を減らせば介在物の板
表面への露出がなくなるため、腐食の起点が減少する。
ここでアプセット量とは次の定義による。 アプセット量(mm)=造管前のコイル幅(mm)−管外周長さ
(mm)
If the upset amount is further reduced, the inclusions are not exposed on the surface of the plate, so that the starting point of corrosion is reduced.
Here, the upset amount is defined as follows. Upset amount (mm) = coil width before pipe making (mm) -pipe circumference length
(mm)

【0024】アプセットは、接合端面の酸化物を押し出
す工程であるが、電縫溶接では電縫部の品質を保つため
に不可欠な工程である。しかし、レーザを併用すると入
熱量が大きいため、端面の酸化物を溶融分散することが
できるのでアプセットを軽減し、又は殆どなくしても溶
接部品質を維持できる。
Upset is a step of extruding oxides on the joint end surface, but in electric resistance welding, it is an essential step for maintaining the quality of the electric resistance welded portion. However, since the amount of heat input is large when the laser is used in combination, the oxide on the end face can be melted and dispersed, so that the weld quality can be maintained even if the upset is reduced or almost eliminated.

【0025】電縫管の溶接方法は、通電方式の違いから
誘導方式(管外周の誘導コイルからの電磁誘導によ
る)、抵抗方式(管に接触した電極からの直接通電)の
二つに分けられる。しかし、電縫部の特性については全
く違いがない。従って本発明はいずれの通電方式におい
ても適用できる。
The welding method of the electric resistance welded pipe is classified into an induction system (by electromagnetic induction from an induction coil on the outer circumference of the pipe) and a resistance system (direct energization from an electrode in contact with the pipe) depending on the difference in the energization system. . However, there is no difference in the characteristics of the electric seams. Therefore, the present invention can be applied to any energization method.

【0026】溶接後、電縫部のビードは切削されるの
で、メタルフローの立上がり角度が大きいほど、上に述
べた介在物が電縫部の表面への露出点が多くなる。この
露出点が腐食の起点となりかつ進行経路となる。そこ
で、メタルフローの立上がり角度は低い方が望ましい。
種々実験した結果、メタルフローの立上がり角度を45
°以下と限定すると電縫部の表面への露出点が少なく、
湿潤炭酸ガス環境中での電縫部の選択腐食が少ないこと
が判明した。そこで、上記の通り、メタルフローの立上
がり角度を45°以下と限定する。
Since the bead of the electric resistance welded portion is cut after welding, the larger the rising angle of the metal flow, the more the above-mentioned inclusions are exposed on the surface of the electric resistance welded portion. This exposed point serves as a starting point of corrosion and a traveling path. Therefore, it is desirable that the rising angle of the metal flow is low.
As a result of various experiments, the rising angle of the metal flow was set to 45.
If it is limited to ° or less, there are few exposed points on the surface of the electric seam,
It was found that the selective corrosion of the electric resistance welded portion was small in the wet carbon dioxide environment. Therefore, as described above, the rising angle of the metal flow is limited to 45 ° or less.

【0027】[0027]

【実施例】表1に示す化学組成の鋼を実験室で真空溶解
し50kgインゴットに鋳造した。これを1200℃に加熱し、
板厚50mmまで圧延した後空冷した。鋼A〜Eは本発明鋼
であり、鋼Fは本発明外の鋼である。この鋼板から50×
150×200mmの板を切出し、加熱温度1200℃、圧延終了温
度 820℃で板厚6mmまで圧延した。圧延終了直後にミス
トスプレーで冷却速度約10℃/secで 550℃まで冷却した
後、550℃に加熱しておいた電気炉に挿入して炉冷し
た。以上は熱延条件をシミュレートしたものである。
EXAMPLE Steels having the chemical compositions shown in Table 1 were vacuum melted in a laboratory and cast into a 50 kg ingot. Heat this to 1200 ℃,
After rolling to a plate thickness of 50 mm, it was air-cooled. Steels A to E are steels of the present invention, and Steel F is a steel outside the present invention. 50 × from this steel plate
A 150 × 200 mm plate was cut out and rolled to a plate thickness of 6 mm at a heating temperature of 1200 ° C. and a rolling end temperature of 820 ° C. Immediately after the rolling was completed, it was cooled to 550 ° C. with a mist spray at a cooling rate of about 10 ° C./sec, and then inserted into an electric furnace heated to 550 ° C. to cool the furnace. The above is a simulation of hot rolling conditions.

【0028】[0028]

【表1】 [Table 1]

【0029】室温まで冷却された鋼板から 6×35×1000
mmの試験片1を切出し、溶接シミュレータを用いて溶接
した。この装置は図1に示すように多段の成形ロールに
2枚の鋼板を送り込み、相対する鋼板エッジ部をコンタ
クトチップ2から供給される高周波電流で抵抗加熱した
後、スクイズロール3で圧接するもので、さらにエッジ
接合部に炭酸ガスレーザビーム4を照射する機能を備え
ている。
6 × 35 × 1000 from steel sheet cooled to room temperature
mm test piece 1 was cut out and welded using a welding simulator. As shown in FIG. 1, this device feeds two steel plates to a multi-stage forming roll, resistance-heats the opposite steel plate edges with a high-frequency current supplied from a contact tip 2, and then press-contacts them with a squeeze roll 3. Further, it has a function of irradiating the edge joining portion with the carbon dioxide laser beam 4.

【0030】溶接条件は溶接速度15m/min、コンタクト
チップ2からの投入電力200kWであり、アプセット量は0
〜4mmの範囲で変化させた。またレーザ出力は5kW、焦点
位置でのビーム径は0.5mm で、鋼板の垂直上方からエッ
ジ接合点に焦点を合わせて照射した。
The welding conditions are a welding speed of 15 m / min, an input power of 200 kW from the contact tip 2, and an upset amount of 0.
It was changed in the range of ~ 4 mm. The laser output was 5 kW, and the beam diameter at the focal position was 0.5 mm, and irradiation was performed by focusing on the edge joining point from vertically above the steel sheet.

【0031】この溶接部から3.5×30×60mmの試料5を
切り出し、表面を湿式研磨した後、図2に示す設備で炭
酸ガス腐食試験を行った。試験溶液は炭酸ガスを飽和さ
せた人工海水で溶液の温度は80℃、液の流速は3m/sec、
試験時間は300hrである。
A sample 5 of 3.5 × 30 × 60 mm was cut out from this welded portion, the surface was wet-polished, and then a carbon dioxide corrosion test was carried out in the equipment shown in FIG. The test solution is artificial seawater saturated with carbon dioxide, the temperature of the solution is 80 ° C, the flow rate of the solution is 3 m / sec,
The test time is 300 hours.

【0032】腐食試験前後の試料5の重量を測定して、
単位面積あたりの腐食減量C(mg/cm2 )を求めた。湿潤
炭酸ガス環境で使用するにはC≦ 80mg/cm2 である必要
がある。また、試験後の試験片を断面検鏡し、電縫部の
選択腐食の程度を調べた。電縫部の選択腐食の評価には
次式で示される指標αを用いた。α=1.0であれば電縫
部の選択腐食の心配は全くないが、実用的にはα≦1.2
であれば電縫部選択腐食のトラブルは殆ど起こらない。
By measuring the weight of the sample 5 before and after the corrosion test,
The corrosion weight loss C (mg / cm 2 ) per unit area was determined. For use in a wet carbon dioxide environment, C ≦ 80 mg / cm 2 is required. In addition, the test piece after the test was subjected to cross-sectional microscopy to examine the degree of selective corrosion of the electric resistance welded portion. The index α shown by the following equation was used for the evaluation of the selective corrosion of the electric resistance welded portion. If α = 1.0, there is no concern about selective corrosion of the electric resistance welded portion, but in practical use α ≤ 1.2
In that case, the trouble of selective corrosion of the electric resistance part hardly occurs.

【0033】α=d1/d2、 d1:電縫部
の腐食深さ(mm) d2:母材部の腐食深さ(mm)
Α = d1 / d2, d1: Corrosion depth of the seam (mm) d2: Corrosion depth of the base metal (mm)

【0034】また、76.3φ(直径)×7.5t(厚み)mmの
溶接管を実機で製造した。化学成分および製造条件を表
2に示す。製造後の電縫部から同様に試験片を切り出
し、同様の腐食試験を行った。試験結果を表2に示す。
本発明の請求項1、請求項2に従えば、湿潤炭酸ガス環
境で腐食量が小さく、かつ電縫管に比べ溶接部選択腐食
を低減できることがわかる。さらに請求項3に従えば溶
接部選択腐食が全く発生しない溶接管を製造できる。
Further, a welded pipe of 76.3φ (diameter) × 7.5t (thickness) mm was manufactured on an actual machine. Table 2 shows the chemical components and manufacturing conditions. A test piece was similarly cut out from the electric resistance welded portion after the production, and the same corrosion test was performed. The test results are shown in Table 2.
According to claims 1 and 2 of the present invention, it is understood that the amount of corrosion is small in a wet carbon dioxide gas environment and the selective corrosion of welded portions can be reduced as compared with the electric resistance welded pipe. Furthermore, according to claim 3, a welded pipe can be manufactured in which selective corrosion of welded portions does not occur at all.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明により、湿潤炭酸ガス環境で腐食
量が小さく、かつ溶接部の選択腐食を起こさないライン
パイプ用電縫管が得られる。
EFFECTS OF THE INVENTION According to the present invention, an electric resistance welded pipe for line pipe can be obtained which has a small amount of corrosion in a wet carbon dioxide environment and does not cause selective corrosion of the welded portion.

【0037】[0037]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用した溶接シミュレータの
概略を示す斜視図である。
FIG. 1 is a perspective view showing an outline of a welding simulator used in an embodiment of the present invention.

【図2】本発明の実施例で使用した炭酸ガス腐食試験装
置を示す概略を示す断面図である。
FIG. 2 is a schematic sectional view showing a carbon dioxide corrosion test apparatus used in an example of the present invention.

【0038】[0038]

【符号の説明】[Explanation of symbols]

1 試験片 2 コンタクトチップ 3 スクイズロール 4 レーザビーム 5 試料 1 Test piece 2 Contact tip 3 Squeeze roll 4 Laser beam 5 Sample

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 F 38/18 (72)発明者 長浜 裕 東京都千代田区丸の内一丁目1番地2号 日本鋼管株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication C22C 38/00 301 F 38/18 (72) Inventor Yu Nagahama 1-chome, Marunouchi, Chiyoda-ku, Tokyo No. 2 Nippon Steel Tube Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記の工程を備えた耐炭酸ガス腐食性に
優れた溶接鋼管の製造方法(成分組成はwt%であ
る)。 (a)主成分として、 C:0.01〜0.2%、 Si:0.1〜0.35%、 Mn:0.5〜2 % 、 P:0.03%以下、 S:0.03%以下、 Cr:0.3〜1 %を含有した熱延鋼板を
用意する工程と、(b)前記熱延鋼板を多段の成形ロー
ルで連続的にオープンパイプに成形する工程と、(c)
前記オープンパイプの接合すべき両エッジ部を電気的に
加熱する工程と、(d)接合すべき前記両エッジ部にレ
ーザビームを照射し、スクイズロールでアプセット量を
制御し、圧接する工程。
1. A method for producing a welded steel pipe excellent in carbon dioxide gas corrosion resistance, which comprises the following steps (the composition of components is wt%): (A) Heat containing C: 0.01 to 0.2%, Si: 0.1 to 0.35%, Mn: 0.5 to 2%, P: 0.03% or less, S: 0.03% or less, Cr: 0.3 to 1% as main components. A step of preparing a rolled steel sheet, (b) a step of continuously forming the hot rolled steel sheet into an open pipe with a multi-stage forming roll, and (c)
A step of electrically heating both edge portions of the open pipe to be joined, and (d) a step of irradiating the both edge portions to be joined with a laser beam, controlling the upset amount with a squeeze roll, and press-contacting.
【請求項2】 下記の工程を備えた耐炭酸ガス腐食性に
優れた溶接鋼管の製造方法(成分組成はwt%であ
る)。 (a)請求項1(a)に規定する成分の他に Cu:0.05〜0.5%、 Ca:0.001〜0.006%、 Ni:0.5%以下、 Mo:0.5%以下、 Nb:0.001〜0.1%、 V:0.001〜0.1% Ti:0.001〜0.1%の内、1種又は2種以上を含有した熱延
鋼板を用意する工程と、(b)前記熱延鋼板を多段の成
形ロールで連続的にオープンパイプに成形する工程と、
(c)前記オープンパイプの接合すべき両エッジ部を電
気的に加熱する工程と、(d)接合すべき前記両エッジ
部にレーザビームを照射し、スクイズロールでアプセッ
ト量を制御し、圧接する工程。
2. A method for producing a welded steel pipe excellent in carbon dioxide gas corrosion resistance, which comprises the following steps (the composition of components is wt%). (A) In addition to the components defined in claim 1 (a), Cu: 0.05 to 0.5%, Ca: 0.001 to 0.006%, Ni: 0.5% or less, Mo: 0.5% or less, Nb: 0.001 to 0.1%, V : 0.001-0.1% Ti: a step of preparing a hot-rolled steel sheet containing one or more of Ti: 0.001-0.1%, and (b) continuously opening the hot-rolled steel sheet with a multi-stage forming roll. The step of molding into
(C) electrically heating both edge portions of the open pipe to be joined, and (d) irradiating the both edge portions to be joined with a laser beam, and controlling the amount of upset by a squeeze roll to perform pressure welding. Process.
【請求項3】 前記アプセット量を制御し、溶接部のメ
タルフロー立上がり角度を45°以下とすることを特徴
とする請求項1または請求項2記載の耐炭酸ガス腐食性
に優れた溶接鋼管の製造方法。
3. The welded steel pipe excellent in carbon dioxide corrosion resistance according to claim 1 or 2, wherein the upset amount is controlled so that the rising angle of the metal flow of the welded portion is 45 ° or less. Production method.
JP6202992A 1994-08-05 1994-08-05 Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance Pending JPH0847717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6202992A JPH0847717A (en) 1994-08-05 1994-08-05 Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6202992A JPH0847717A (en) 1994-08-05 1994-08-05 Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0847717A true JPH0847717A (en) 1996-02-20

Family

ID=16466544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6202992A Pending JPH0847717A (en) 1994-08-05 1994-08-05 Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0847717A (en)

Similar Documents

Publication Publication Date Title
RU2448796C1 (en) Welded steel tube produced using high-power-density beam and method of its production
JPH0941083A (en) Resistance welded tube excellent in hic resistance and sscc resistance and its production
EP0699773B1 (en) Method for manufacturing electric-resistance-welded steel pipe
Ichiyama et al. Flash-butt welding of high strength steels
JPH09194998A (en) Welded steel tube and its production
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JPH0847717A (en) Manufacture of welded steel pipe excellent in carbon dioxide gas corrosion resistance
JP3149754B2 (en) Method for producing carbon steel pipe excellent in toughness by high energy density beam welding
JP3319358B2 (en) Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JPH09194997A (en) Welded steel tube and its production
JPH08309428A (en) Production of welded steel tube
Kumar et al. Effect of post weld heat treatment on impact toughness of SA 516 GR. 70 Low Carbon Steel Welded by Saw Process
JPH0953145A (en) Resistance welded tube excellent in corrosion resistance to carbon dioxide gas and its production
JPH0971837A (en) Electric resistance welded tube excellent in carbon dioxide resistance and its production
JP3209061B2 (en) Method for producing carbon steel pipe excellent in toughness by high energy density beam welding
JP3033483B2 (en) Method for producing martensitic stainless steel welded pipe with excellent carbon dioxide gas corrosion resistance
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
JP3331825B2 (en) Welded steel pipe and its manufacturing method
JP3146889B2 (en) Method for producing duplex stainless steel welded pipe with excellent weld toughness and corrosion resistance
JP3064851B2 (en) Method for manufacturing martensitic stainless steel welded pipe
JP3265869B2 (en) ERW steel pipe excellent in carbon dioxide gas corrosion resistance and its manufacturing method
JP2000282144A (en) Production of martensitic welded stainless steel pipe
JPH1099984A (en) Manufacture of two-phase stainless steel welded tube