JP3209061B2 - Method for producing carbon steel pipe excellent in toughness by high energy density beam welding - Google Patents

Method for producing carbon steel pipe excellent in toughness by high energy density beam welding

Info

Publication number
JP3209061B2
JP3209061B2 JP30201995A JP30201995A JP3209061B2 JP 3209061 B2 JP3209061 B2 JP 3209061B2 JP 30201995 A JP30201995 A JP 30201995A JP 30201995 A JP30201995 A JP 30201995A JP 3209061 B2 JP3209061 B2 JP 3209061B2
Authority
JP
Japan
Prior art keywords
carbon steel
welding
steel pipe
energy density
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30201995A
Other languages
Japanese (ja)
Other versions
JPH08252681A (en
Inventor
謙一 岩崎
裕 長浜
昭夫 佐藤
幸夫 関根
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP30201995A priority Critical patent/JP3209061B2/en
Publication of JPH08252681A publication Critical patent/JPH08252681A/en
Application granted granted Critical
Publication of JP3209061B2 publication Critical patent/JP3209061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • B23K26/262Seam welding of rectilinear seams of longitudinal seams of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高エネルギ密度ビー
ム溶接による靱性に優れた炭素鋼鋼管の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon steel pipe having excellent toughness by high energy density beam welding.

【0002】[0002]

【従来の技術】炭素鋼鋼管の製造方法の従来技術とし
て、以下に示す電縫溶接法(ERW)、および、高エネ
ルギ密度ビーム複合溶接による鋼管の製造方法が知られ
ている。
2. Description of the Related Art As a conventional technique for producing a carbon steel pipe, there are known an electric resistance welding (ERW) method and a method for producing a steel pipe by high energy density beam composite welding described below.

【0003】電縫溶接法(ERW):電縫溶接法(ER
W)は、炭素鋼鋼板を円筒状に成形しながら、前記炭素
鋼鋼板の両側の端部を突き合わせ、この突き合わせ部に
誘導電流を流すことにより加熱し、前記突き合わせ部を
溶接して炭素鋼鋼管(電縫管)を製造する方法であり、
従来から広く実施されている。この方法において溶接部
およびその周辺は、高周波誘導加熱等の手段で加熱冷却
といった熱処理(シーム熱処理という)を施される場合
がある。
[0003] ERW (ERW): ERW (ER)
W), while forming the carbon steel sheet into a cylindrical shape, butts the ends of both sides of the carbon steel sheet, heats by applying an induced current to the butted part, welds the butted part, and welds the carbon steel pipe. (ERW)
It has been widely practiced conventionally. In this method, a heat treatment such as heating and cooling (referred to as seam heat treatment) may be performed on the welded portion and its periphery by means such as high-frequency induction heating.

【0004】この電縫管の製造方法においては、電縫溶
接部の酸素含有量は数百ppmにも達する。これらの酸
素は溶接部の酸化物介在物という形で存在し、シャルピ
遷移温度に代表される靱性を劣化させている。また、溶
接部の酸化物介在物の形状は10〜30ミクロンまたは
それ以上と大きく、この介在物が大きいことも靱性を劣
化させる原因となっている。このようなことから、酸素
含有量を低減する手段として、電縫溶接時に、その電縫
溶接部を窒素ガスなどの非酸化性ガスによってシールド
する方法が、特開平3−264171号公報に開示され
ている(以下、従来技術1という)。
[0004] In this method of manufacturing an electric resistance welded tube, the oxygen content of the electric resistance welded portion reaches several hundred ppm. These oxygens are present in the form of oxide inclusions in the weld and degrade the toughness represented by the Charpy transition temperature. In addition, the shape of the oxide inclusions in the welded portion is as large as 10 to 30 microns or more, and the large inclusions also cause deterioration in toughness. For this reason, Japanese Patent Application Laid-Open No. 3-264171 discloses a method for shielding the ERW welded portion by a non-oxidizing gas such as nitrogen gas during ERW welding as a means for reducing the oxygen content. (Hereinafter referred to as prior art 1).

【0005】高エネルギ密度ビーム複合溶接による鋼管
の製造方法:炭素鋼鋼管を、高エネルギ密度ビーム複合
溶接により製造する方法は、金属板(鋼板等)を円筒状
に成形しながら前記鋼板の両側の端部を突き合わせ、こ
の突き合わせ部に誘導電流を流し、次いで、前記突き合
わせ部に高エネルギ密度のビームを照射して前記突き合
わせ部を溶融溶接して金属(鋼管)パイプを製造する方
法である。特公平4−18954号公報には、板状の金
属部材を長手方向に搬送しながら順次両側端部が対向す
るように円筒状に成形させて行くと共に、円筒形に成形
されつつある金属部材の両側端部が最初に接するV収束
点より上流側に所定距離隔てて前記金属部材の周囲に巻
回した誘導加熱コイルに前記金属部材に対する加熱浸透
深さが該金属部材の肉厚程度となる周波数で、かつ前記
金属部材の溶融がほとんど起こらない程度の高周波電流
を供給して前記金属部材を予熱し、さらに、前記V収束
点より下流側の前記金属部材の接合部を、前記金属部材
に対する熱影響深さが該金属部材の肉厚になるように出
力設定したレーザ溶接手段によって溶接する金属パイプ
の製造方法において、前記収束点とレーザ溶接における
溶融部との間では前記金属部材の両側端部が単に接触す
る程度となる締付量で該金属部材を両側から締め付け、
さらに、前記溶融部より下流側では前記金属部材の両側
端部が単に接触する程度となる締付量で該金属部材を両
側から締め付けることを特徴とする金属パイプの製造方
法が開示されている。また、誘導加熱コイルに流す高周
波電流として10〜100kHz程度を使用することが
開示されている(以下、従来技術2という)
A method of manufacturing a steel pipe by high energy density beam composite welding: A method of manufacturing a carbon steel pipe by high energy density beam composite welding is to form a metal plate (steel plate or the like) into a cylindrical shape while forming a cylindrical shape on both sides of the steel plate. In this method, a metal (steel pipe) pipe is manufactured by butt-joining the ends, passing an induced current through the butt, and irradiating the butt with a beam having a high energy density to melt-weld the butt. Japanese Patent Publication No. Hei 4-18954 discloses that a metal member in the form of a cylinder is formed while being conveyed in the longitudinal direction while being formed into a cylindrical shape so that both ends are sequentially opposed to each other. A frequency at which the depth of heat penetration to the metal member by the induction heating coil wound around the metal member at a predetermined distance upstream of the V convergence point where both side end portions first contact the metal member is about the thickness of the metal member And supplying a high-frequency current to such an extent that melting of the metal member hardly occurs to preheat the metal member, and furthermore, a joint portion of the metal member downstream of the V convergence point is subjected to heat with respect to the metal member. In a method for manufacturing a metal pipe to be welded by a laser welding means whose output is set so that the depth of influence becomes the thickness of the metal member, the metal portion is provided between the convergence point and a molten portion in laser welding. Clamping the metal member from both sides in the amount tightening a degree that both ends of the simply contacted,
Further, there is disclosed a method for manufacturing a metal pipe, characterized in that the metal member is tightened from both sides with a tightening amount such that both end portions of the metal member are merely in contact with each other on the downstream side of the melting portion. Further, it is disclosed that about 10 to 100 kHz is used as a high-frequency current flowing through the induction heating coil (hereinafter, referred to as Conventional Technique 2).

【0006】従来技術2に類似した技術として、オープ
ンパイプの相対向するエッジ部を高周波誘導または高周
波抵抗方式による第1の加熱源により予熱し、スクイズ
ロール近傍で第2の加熱源により溶融させて接合する複
合熱源製管溶接方法において、第1の加熱源による予熱
温度を200〜600℃とする方法が、特開平3−29
1176号公報に開示されている(以下、従来技術3と
いう)。
[0006] As a technique similar to the prior art technique 2, opposing edges of an open pipe are preheated by a first heating source based on a high-frequency induction or high-frequency resistance method, and are melted by a second heating source near a squeeze roll. Japanese Patent Laid-Open No. 3-29 discloses a method of joining a composite heat source made of pipes in which a preheating temperature of a first heating source is set to 200 to 600 ° C.
No. 1176 (hereinafter referred to as prior art 3).

【0007】また、特公昭61−29830号公報に
は、高エネルギ密度ビーム溶接で鋼管を製造する際、溶
接条件によっては溶接部に酸化物が残留して機械的性質
に悪影響を及ぼすことが開示されている(以下、従来技
術4という)。なお、従来技術2〜4においても、シー
ム溶接後、従来技術1に記したシーム熱処理が施される
場合があることは言う迄もない。
[0007] Japanese Patent Publication No. 61-29830 discloses that when a steel pipe is manufactured by high energy density beam welding, oxides remain in a welded portion depending on welding conditions and adversely affect mechanical properties. (Hereinafter referred to as prior art 4). It is needless to say that also in the prior arts 2 to 4, the seam heat treatment described in the prior art 1 may be performed after the seam welding.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来技
術1〜4には、以下に示す問題がある。
However, the prior arts 1 to 4 have the following problems.

【0009】従来技術1では、酸素量の低減による靱性
の向上効果は若干あるものの、非金属介在物が小さくな
るわけではないため、靱性向上には限度があった。
In the prior art 1, although the effect of improving the toughness by reducing the amount of oxygen is slight, the improvement in toughness is limited because nonmetallic inclusions are not reduced.

【0010】従来技術2には、溶接速度を増すための手
段として予熱が有効であることが述べられているが、予
熱が金属パイプの機械的性質にどう影響するかについて
は全く触れられていない。
The prior art 2 states that preheating is effective as a means for increasing the welding speed, but does not mention at all how the preheating affects the mechanical properties of the metal pipe. .

【0011】従来技術3は、高強度鋼管またはステンレ
ス鋼管の溶接速度を早める手段として提案されたもの
で、この方法により溶接速度を従来技術1の方法よりも
早めても、溶接部に割れなどの欠陥が発生せず健全な溶
接部が得られることが述べられているものの、溶接部の
靱性についてはなんら配慮されていない。
The prior art 3 has been proposed as a means for increasing the welding speed of a high-strength steel pipe or a stainless steel pipe. Although it is stated that sound welds can be obtained without defects, no consideration is given to the toughness of the welds.

【0012】また、従来技術4の内容は一般的な記述に
過ぎず、溶接部の靱性に悪影響を及ぼさない程度の酸化
物の量、形状については何ら言及されていない。
Further, the content of the prior art 4 is merely a general description, and no mention is made of the amount and shape of the oxide that does not adversely affect the toughness of the weld.

【0013】以上述べた如く、従来技術1〜4では溶接
部の靱性に問題があることから、溶接部の靱性に優れた
炭素鋼鋼管の製造方法の開発が望まれているが、このよ
うな方法は未だ提案されていない。
As described above, in the prior arts 1 to 4, there is a problem in the toughness of the welded portion. Therefore, it is desired to develop a method of manufacturing a carbon steel pipe having excellent toughness in the welded portion. No method has been proposed yet.

【0014】従って、この発明の目的は、上述の問題を
解決し、高エネルギ密度ビーム溶接による靱性に優れた
炭素鋼鋼管の製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a carbon steel pipe excellent in toughness by high energy density beam welding.

【0015】請求項1記載の発明は、炭素鋼鋼板を管状
に成形しながら前記炭素鋼鋼板の両側の端部を突き合わ
せその突き合わせ部を予熱し、次いで、前記突き合わせ
部に高エネルギ密度のビームを照射して前記突き合わせ
部を溶融溶接する炭素鋼鋼管の製造方法において、前記
突き合わせ部を予熱するときの予熱温度を400〜90
0℃の範囲内に限定し、溶融溶接する前記突き合わせ部
の溶接金属中の酸素含有量を300ppm以下とする
とに特徴を有するものである。
According to the first aspect of the present invention, both ends of the carbon steel sheet are butted against each other while the carbon steel sheet is formed into a tubular shape, and the butt is preheated. Then, a beam having a high energy density is applied to the butt. In the method for manufacturing a carbon steel pipe in which the butt portion is melt-welded by irradiation, a preheating temperature for preheating the butt portion is 400 to 90.
The butt portion to be melt-welded within a range of 0 ° C.
The oxygen content in the weld metal and has a feature in this <br/> and to 300ppm or less.

【0016】[0016]

【作用】本発明においては、炭素鋼板の溶接法として、
予熱を伴う高エネルギ密度ビーム溶接を採用したので、
溶接部の酸化物の大きさを微細にすることができ、靱性
が向上する。
According to the present invention, as a method for welding carbon steel sheets,
Since high energy density beam welding with preheating is adopted,
The size of the oxide at the weld can be reduced, and the toughness is improved.

【0017】予熱温度の限定理由は、以下の通りであ
る。予熱は、高エネルギ密度のビームで突き合わせ部を
溶接する際の溶接入熱不足を補う目的で行う。しかしな
がら、炭素鋼鋼管の高エネルギ密度ビーム溶接におい
て、予熱温度が400℃未満では、溶接入熱不足を補う
に十分な予熱の効果が得られない。そのため、溶接速度
が著しく低い能率の溶接となり、あるいは、ビームのエ
ネルギ密度を著しく大きくするために大容量の電源を用
意する等設備コストの増大を招く。一方、予熱温度が9
00℃を超えると、突き合わせ部の予熱から溶接への過
程で、突き合わせ部の酸化が激しくなり溶接金属の酸素
含有量が激増し、溶接部の靱性を劣化させる。従って、
予熱温度は、400〜900℃の範囲内に限定すべきで
ある。
The reasons for limiting the preheating temperature are as follows. The preheating is performed for the purpose of compensating for insufficient heat input when welding the butt portion with a beam having a high energy density. However, in high energy density beam welding of carbon steel pipes, if the preheating temperature is lower than 400 ° C. , a sufficient preheating effect cannot be obtained to compensate for insufficient welding heat input. Therefore, the welding speed becomes extremely low and the welding cost is extremely low, or the cost of equipment is increased, such as preparing a large-capacity power supply to significantly increase the energy density of the beam. On the other hand, when the preheating temperature is 9
When the temperature exceeds 00 ° C., in the process from the preheating of the butt portion to the welding, the butt portion is oxidized intensely, the oxygen content of the weld metal increases drastically, and the toughness of the weld portion is deteriorated. Therefore,
Preheating temperature should be limited within the range of 400 to 900 ° C..

【0018】溶融溶接する突き合わせ部の溶接金属中の
酸素含有量の限定理由は、以下の通りである。高エネル
ギ密度ビーム溶接された炭素鋼鋼管においては、溶接金
属中の酸素含有量が300ppmを超えると靱性が急激
に劣化する。従って、酸素含有量は300ppm以下に
限定した。
The reasons for limiting the oxygen content in the weld metal at the butt portion to be melt-welded are as follows. In a carbon steel pipe welded with a high energy density beam, when the oxygen content in the weld metal exceeds 300 ppm, the toughness rapidly deteriorates. Therefore, the oxygen content was limited to 300 ppm or less.

【0019】[0019]

【実施例】次に、この発明の実施例を図面を参照しなが
ら説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0020】図1は、この発明の実施例に係る溶接方法
を示す斜視図である。図1において、1は炭素鋼鋼管
(1aは炭素鋼鋼板)、2は突き合わせ部を予熱する誘
導電流を供給する給電装置、5は高エネルギ密度のビー
ム、6は溶接が終了した部分(溶接点)、3a、3bは
スクイズスタンド、4a、4bはトップロール、7は溶
接線である。
FIG. 1 is a perspective view showing a welding method according to an embodiment of the present invention. In FIG. 1, 1 is a carbon steel pipe (1a is a carbon steel plate), 2 is a power supply device for supplying an induced current for preheating a butt portion, 5 is a beam having a high energy density, 6 is a portion where welding has been completed (welding point). ), 3a and 3b are squeeze stands, 4a and 4b are top rolls, and 7 is a welding line.

【0021】図1に示すように炭素鋼鋼板1aを管状
(本実施例では円筒状)に成形しながら鋼板1aの両側
の端部を突き合わせ、この突き合わせ部に誘導電流を流
して誘導加熱により予熱し、次いで、突き合わせ部に高
エネルギ密度のビーム5を照射して突き合わせ部を溶融
溶接して表1に示す化学成分組成を有する炭素鋼鋼管の
試験鋼管No. 1〜6を、以下に示す溶接条件によって製
造した。なお、表1においては、残部Feおよび不純物
元素として含有されるS、P等は記載されていない。 溶接条件: 鋼管寸法 ;72.0mm(外径)×9.7
mm(管厚) 溶接速度 ;2m/分 ビームのエネルギ密度;25kW/mm2 ガスシールド ;無し また、これら試験鋼管は、溶接後直ちに溶接線後面に配
置されているシーム熱処理装置(図示せず)によりシー
ム熱処理を施した。その方法は、溶接線外面温度が10
50℃に達する迄加熱後空気中で冷却した。ここで、シ
ーム熱処理を行うことは、本発明に必須ではないが、適
切なシーム熱処理を行うことにより熱処理しない場合に
比べ溶接部靱性を更に向上させることができる。
As shown in FIG. 1, while forming the carbon steel sheet 1a into a tubular shape (in this embodiment, a cylindrical shape), the ends on both sides of the steel sheet 1a are butted, and an induction current is passed through the butted portion to preheat by induction heating. Then, the butt portion is irradiated with a beam 5 having a high energy density to melt-weld the butt portion, and the test steel pipe Nos. 1 to 6 of the carbon steel pipe having the chemical composition shown in Table 1 are welded as follows. Manufactured according to conditions. Table 1 does not describe the balance of Fe, S, P, and the like, which are contained as impurity elements. Welding conditions: Steel pipe dimensions: 72.0 mm (outer diameter) x 9.7
mm (pipe thickness) Welding speed; 2 m / min Beam energy density; 25 kW / mm 2 Gas shield; none In addition, these test steel pipes are provided immediately after welding with a seam heat treatment device (not shown) arranged on the rear surface of the welding line. For seam heat treatment. The method uses a welding line outer surface temperature of 10
After heating until reaching 50 ° C., the mixture was cooled in air. Here, performing the seam heat treatment is not essential to the present invention, but by performing an appropriate seam heat treatment, the weld toughness can be further improved as compared with the case where no heat treatment is performed.

【0022】[0022]

【表1】 [Table 1]

【0023】図2は、試験鋼管No. 1を、本発明方法、
および、従来技術1で示した方法(ERW)によって、
溶接金属部の酸素含有量を種々変えて製造した場合につ
いて、溶接部の靱性と溶接金属部の酸素含有量との関係
を示した結果のグラフである。図2において、溶接部の
靱性は溶接金属について行ったシャルピー衝撃試験の破
面遷移温度vTs(℃)で定義した。
FIG. 2 shows a test steel pipe No. 1 prepared according to the method of the present invention.
And by the method (ERW) described in Prior Art 1
It is a graph which showed the relationship between the toughness of a welding part and the oxygen content of a welding metal part about the case where it manufactures by changing the oxygen content of a welding metal part variously. In FIG. 2, the toughness of the welded portion was defined as the fracture surface transition temperature vTs (° C.) in the Charpy impact test performed on the weld metal.

【0024】図2より、高エネルギ密度ビーム溶接によ
り製造した場合において、溶接金属部の酸素含有量が3
00ppmを超えると靱性が急激に劣化し始めるが、そ
れ以下では良好な靱性を保つことがわかる。
FIG. 2 shows that when manufactured by high energy density beam welding, the oxygen content of the weld metal was 3%.
If it exceeds 00 ppm, the toughness starts to deteriorate rapidly, but if it is less than that, it can be seen that good toughness is maintained.

【0025】また、図2においては比較例として従来技
術1の場合を△印で示したが、ERWで製造した従来技
術1の場合、酸素含有量が300ppm以下であっても
溶接部の靱性が本発明に比較して著しく劣っていること
がわかる。この違いが生じる原因は、溶接部の酸化物の
大きさが違うためである。即ち、本発明における溶接部
の酸化物の大きさは、直径1ミクロン以下と小さいのに
対し、従来技術1では直径10ミクロン以上と大きい。
In FIG. 2, the case of the prior art 1 is indicated by a triangle as a comparative example. However, in the case of the prior art 1 manufactured by ERW, even if the oxygen content is 300 ppm or less, the toughness of the welded portion is reduced. It turns out that it is significantly inferior to the present invention. The reason for this difference is that the size of the oxide at the weld is different. That is, in the present invention, the size of the oxide at the welded portion is as small as 1 micron or less in diameter, whereas in the prior art 1, it is as large as 10 microns or more in diameter.

【0026】図3は、試験鋼管No. 1の予熱温度を種々
変えて製造した場合について、予熱温度と溶接部の酸素
含有量との関係を示すグラフである。図3に示す予熱温
度は、高エネルギ密度のビームが照射される点の50m
m手前の位置の温度を測定して得た値で示されている。
図3より、溶接金属中の酸素含有量を300ppm以下
に抑えるには、予熱温度を900℃以下にする必要があ
ることがわかる。
FIG. 3 is a graph showing the relationship between the preheating temperature and the oxygen content of the welded portion when the test steel pipe No. 1 was manufactured with various preheating temperatures. The preheating temperature shown in FIG. 3 is 50 m of the point irradiated with the high energy density beam.
It is indicated by a value obtained by measuring the temperature at a position m in front.
From FIG. 3, it is understood that the preheating temperature needs to be 900 ° C. or less in order to suppress the oxygen content in the weld metal to 300 ppm or less.

【0027】表2は、表1に示した試験鋼管No. 1〜6
を、高エネルギ密度のビームにより溶接して製造した結
果を、本発明範囲内の方法により実施した場合(本発明
例No. 1〜10、8は欠番)と、本発明範囲外の方法に
より製造した場合(比較例No. 1〜4)とについて示し
ている。
Table 2 shows the test steel pipe Nos. 1 to 6 shown in Table 1.
Are produced by welding with a beam of high energy density, and the results are produced by a method within the scope of the present invention (Examples Nos. 1 to 10 and 8 are missing numbers ) ; (Comparative Examples Nos. 1 to 4) are shown.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示すように、高エネルギ密度ビーム
で溶接した炭素鋼鋼管においては、予熱温度が本発明範
囲内であれば、溶接部靱性(vTs)が−20℃以下と
良好であることがわかる
As shown in Table 2, in the carbon steel pipe welded by the high energy density beam, if the preheating temperature is within the range of the present invention, the weld toughness (vTs) is as good as −20 ° C. or less. Understand

【0030】なお、本実施例においては予熱部および溶
接部のガスシールドは特に実施しなかったが、ガスシー
ルドしないことが本発明の必須要件ではなく、ガスシー
ルドすれば溶接部の酸素含有量は更に低減され、溶接部
靱性も更に向上する。
In this embodiment, the gas shielding of the preheated portion and the welded portion was not particularly performed. However, it is not an essential requirement of the present invention that the gas shield is not performed. It is further reduced, and the weld toughness is further improved.

【0031】また、溶接部の酸素含有量は、予熱温度、
ガスシールド条件のみによって決まるものではなく、溶
接速度、エネルギビームの密度等の条件によっても変化
し、本発明の範囲内である300ppm以下に抑える条
件は一意的でなく種々の組合せが可能である。
The oxygen content of the weld is determined by the preheating temperature,
The condition is not determined solely by the gas shield conditions, but also varies depending on conditions such as the welding speed and the energy beam density. Conditions for suppressing the concentration to 300 ppm or less within the scope of the present invention are not unique, and various combinations are possible.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれ
ば、炭素鋼鋼管の溶接方法として、第1に、高エネルギ
密度ビームによる方法を用いたので、溶接部の酸化物の
大きさを微細にし、第2に、溶接の予熱温度を400
900℃の範囲内に限定し、更に、溶接金属中の酸素含
有量を300ppm以下に抑えたので、溶接金属中の酸
化物の量を制限することができ、この2つの効果により
溶接部の靱性に優れた炭素鋼鋼管を提供することがで
き、かくして、工業上有用な効果がもたらされる。
As described above, according to the present invention, as a method for welding carbon steel pipes, first, a method using a high energy density beam is used. Second, the welding preheating temperature is set to 400 to
Since the oxygen content in the weld metal is limited to 900 ppm or less and the oxygen content in the weld metal is suppressed to 300 ppm or less, the amount of oxide in the weld metal can be limited. Thus, a carbon steel pipe excellent in quality can be provided, and an industrially useful effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の炭素鋼鋼管の製造方法の一実施例に
係る溶接方法を示す斜視図である。
FIG. 1 is a perspective view showing a welding method according to an embodiment of a method for manufacturing a carbon steel pipe of the present invention.

【図2】溶接金属部の酸素含有量と溶接部の靱性との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the oxygen content of the weld metal and the toughness of the weld.

【図3】溶接金属部の酸素含有量と予熱温度との関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between an oxygen content of a weld metal part and a preheating temperature.

【符号の説明】[Explanation of symbols]

1 炭素鋼鋼管 1a 炭素鋼鋼板 2 予熱のための給電装置 3a、3b スクイズスタンド 4a、4b トップロール 5 高エネルギ密度のビーム 6 溶接点 7 溶接線 DESCRIPTION OF SYMBOLS 1 Carbon steel pipe 1a Carbon steel sheet 2 Power supply device for preheating 3a, 3b Squeeze stand 4a, 4b Top roll 5 High energy density beam 6 Welding point 7 Welding line

フロントページの続き (72)発明者 関根 幸夫 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 大村 雅紀 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭53−22152(JP,A) 特開 平3−281078(JP,A) 特開 昭57−106488(JP,A) 特開 平4−238681(JP,A) 特開 昭60−33890(JP,A) 特開 平5−23867(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 26/00 B21C 37/08 B23K 15/00 Continued on the front page (72) Inventor Yukio Sekine 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Masaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-53-22152 (JP, A) JP-A-3-281078 (JP, A) JP-A-57-106488 (JP, A) JP-A-4-238681 (JP, A) JP-A-60-33890 (JP, A) JP-A-5-23867 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 26/00 B21C 37/08 B23K 15/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素鋼鋼板を管状に成形しながら前記炭素
鋼鋼板の両側の端部を突き合わせその突き合わせ部を予
熱し、次いで、前記突き合わせ部に高エネルギ密度のビ
ームを照射して前記突き合わせ部を溶融溶接する炭素鋼
鋼管の製造方法において、 前記突き合わせ部を予熱するときの予熱温度を400〜
900℃の範囲内に限定し、溶融溶接する前記突き合わ
せ部の溶接金属中の酸素含有量を300ppm以下とす
ことを特徴とする高エネルギ密度ビーム溶接による靱
性に優れた炭素鋼鋼管の製造方法。
1. A method for forming a carbon steel sheet into a tubular shape, butting both ends of said carbon steel sheet, preheating the butted portion, and then irradiating said butted portion with a beam having a high energy density. In the method for producing a carbon steel pipe by melt welding, a preheating temperature for preheating the butt portion is 400 to
Limited to the range of 900 ℃
The oxygen content in the weld metal at the weld
Method for producing a carbon steel pipe excellent in toughness by the high energy density beam welding, characterized in that that.
JP30201995A 1995-01-20 1995-10-26 Method for producing carbon steel pipe excellent in toughness by high energy density beam welding Expired - Fee Related JP3209061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30201995A JP3209061B2 (en) 1995-01-20 1995-10-26 Method for producing carbon steel pipe excellent in toughness by high energy density beam welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-25905 1995-01-20
JP2590595 1995-01-20
JP30201995A JP3209061B2 (en) 1995-01-20 1995-10-26 Method for producing carbon steel pipe excellent in toughness by high energy density beam welding

Publications (2)

Publication Number Publication Date
JPH08252681A JPH08252681A (en) 1996-10-01
JP3209061B2 true JP3209061B2 (en) 2001-09-17

Family

ID=26363603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30201995A Expired - Fee Related JP3209061B2 (en) 1995-01-20 1995-10-26 Method for producing carbon steel pipe excellent in toughness by high energy density beam welding

Country Status (1)

Country Link
JP (1) JP3209061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092427B2 (en) * 2006-01-31 2012-12-05 Jfeスチール株式会社 High-tensile steel plate with excellent laser weldability
JP5901940B2 (en) 2011-11-08 2016-04-13 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint

Also Published As

Publication number Publication date
JPH08252681A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
RU2448796C1 (en) Welded steel tube produced using high-power-density beam and method of its production
US9616527B2 (en) Process for laser-arc hybrid welding aluminized metal workpieces
KR100228252B1 (en) The method for producing electric-resistance-welded steel pipe
JP3209061B2 (en) Method for producing carbon steel pipe excellent in toughness by high energy density beam welding
JPH09220682A (en) Production of duplex stainless steel welded tube
JP3149754B2 (en) Method for producing carbon steel pipe excellent in toughness by high energy density beam welding
JP3079962B2 (en) Manufacturing method of welded steel pipe
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JP3134706B2 (en) Manufacturing method of welded steel pipe
JPH08174249A (en) Manufacture of welded steel pipe
JP2001287061A (en) Method of manufacturing welded pipe of martensite-based stainless steel
WO2018147389A1 (en) Method for manufacturing electroseamed metal tube, and electroseamed metal tube
JP2008142744A (en) Method for butt-welding steel tube, and method for manufacturing welded steel tube
JP2792802B2 (en) Manufacturing method of powder filled tube
JP3331825B2 (en) Welded steel pipe and its manufacturing method
JPH08155665A (en) Laser beam welding method of ferritic stainless steel
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
JPH04258390A (en) Manufacture of ferritic stainless steel welded tube
JPH0523869A (en) Manufacture of weld tube
JP3360621B2 (en) Manufacturing method of welded steel pipe by high energy beam
JPH10296458A (en) Manufacture of welded steel tube
JPH1099984A (en) Manufacture of two-phase stainless steel welded tube
JP2870432B2 (en) Manufacturing method of welded steel pipe
JPH1058029A (en) Production of welded steel tube
JPH10109108A (en) Manufacture of welded stainless steel tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees