JPH0845946A - Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor device - Google Patents
Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor deviceInfo
- Publication number
- JPH0845946A JPH0845946A JP17996494A JP17996494A JPH0845946A JP H0845946 A JPH0845946 A JP H0845946A JP 17996494 A JP17996494 A JP 17996494A JP 17996494 A JP17996494 A JP 17996494A JP H0845946 A JPH0845946 A JP H0845946A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- single crystal
- heat treatment
- crystal substrate
- silicon semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコン半導体単結晶
基板(以下、シリコンウエハという)の熱処理方法及び
その装置と、半導体装置とに係り、特に大口径で厚い単
結晶基板の高温熱処理に適したシリコンウエハの熱処理
方法及びその装置と、該方法を用いて製造した半導体装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for heat treating a silicon semiconductor single crystal substrate (hereinafter referred to as a silicon wafer) and a semiconductor device, and is particularly suitable for high temperature heat treatment of a large diameter and thick single crystal substrate. The present invention also relates to a method for heat treating a silicon wafer and its apparatus, and a semiconductor device manufactured by using the method.
【0002】[0002]
【従来の技術】半導体装置の製造プロセスでは、シリコ
ンウエハに対して種々の熱処理が施されるが、この熱処
理工程においては、熱処理によって組成(ドーパントの
濃度)の均一性が損なわれないように、またスリップラ
イン、酸化誘起欠陥(OSF)等の結晶欠陥が発生しな
いようにする必要がある。このための従来技術として
は、大別すると次の3方式が挙げられる。 (1)熱処理プロセス、特に所定温度までの昇温や所定
温度からの降温の温度制御に関するもの(特開昭49−
67566、特開昭49−53763等)。 (2)半導体基板に特殊な加工を施し欠陥の発生を防止
するもの(特公昭49−12512、特公昭49−28
271、特公昭54−2064、特開昭49−4957
6、特開昭62−143432等)。 (3)半導体基板の熱処理装置、特にウエハの保持治具
の形状・材質等の改善に関するもの(特開昭48−66
76、実開昭49−17158、実開昭49−7335
4、実開昭49−59464、実開昭49−5826
5、特開平4−304652、特開平4−88656、
特開平5−129214、特開平5−114645、特
開平5−152228等)。2. Description of the Related Art In a semiconductor device manufacturing process, a silicon wafer is subjected to various heat treatments. In this heat treatment step, the heat treatment does not impair the uniformity of the composition (dopant concentration). It is also necessary to prevent crystal defects such as slip lines and oxidation-induced defects (OSF) from occurring. As a conventional technique for this purpose, when roughly classified, there are the following three systems. (1) Heat treatment process, particularly for temperature control of temperature increase to and decrease from a predetermined temperature (JP-A-49-
67566, JP-A-49-53763, etc.). (2) Those in which a semiconductor substrate is subjected to special processing to prevent the occurrence of defects (Japanese Patent Publication Nos. 49-12512 and 49-28)
271, Japanese Patent Publication No. 54-2064, Japanese Patent Laid-Open No. 49-4957.
6, JP-A-62-143432, etc.). (3) Heat treatment apparatus for semiconductor substrate, especially for improvement of shape and material of wafer holding jig (Japanese Patent Laid-Open No. 48-66)
76, Actual Development Sho 49-17158, Actual Development Sho 49-7335
4, actual development Sho 49-59464, actual development Sho 49-5826
5, JP-A-4-304652, JP-A-4-88656,
JP-A-5-129214, JP-A-5-114645, and JP-A-5-152228).
【0003】[0003]
【発明が解決しようとする課題】最近、シリコン半導体
プロセスでは大口径基板(直径150mm以上)が用い
られ、さらに、高耐圧大電流用のパワーデバイスでは、
シリコンウエハの厚みが1.5mm以上で重さが60g
以上にも達するものがある。このような高耐圧パワーデ
バイスのプロセスにおいては、深い拡散層の形成のため
高温で長時間の熱処理が行われる。また熱処理の高温化
により、工程時間の短縮を図ることができる。Recently, a large-diameter substrate (diameter of 150 mm or more) is used in a silicon semiconductor process, and further, in a power device for high withstand voltage and large current,
The thickness of the silicon wafer is 1.5 mm or more and the weight is 60 g.
There are more than that. In the process of such a high breakdown voltage power device, heat treatment is performed at high temperature for a long time in order to form a deep diffusion layer. Further, the process time can be shortened by increasing the temperature of the heat treatment.
【0004】このような大口径で厚い基板の場合、例え
ば特開昭49ー67566号に示されたような、炉への
出し入れ時の温度変化をゆっくり行うという熱処理の制
御方法では、充分な効果が得られない。特に、昇温中に
シリコンウエハ内に温度分布が生じて弾性変形以上の応
力が発生したり、シリコンウエハの重さにより結晶中に
スリップラインが発生したりする問題があり、従来技術
では熱処理によるプロセス誘起欠陥の発生防止が困難で
ある。また、大口径基板の高温熱処理では、熱膨張によ
る径の拡大が大きくなり、ウエハと治具サイズのマッチ
ング(寸法公差、均一性)が厳しくなる。In the case of such a large-diameter and thick substrate, the heat treatment control method of slowly changing the temperature at the time of putting in and out of the furnace as shown in, for example, Japanese Patent Application Laid-Open No. 49-67566 has a sufficient effect. Can't get In particular, there is a problem that a temperature distribution is generated in the silicon wafer during the temperature rise, stress more than elastic deformation is generated, and a slip line is generated in the crystal due to the weight of the silicon wafer. It is difficult to prevent the occurrence of process-induced defects. Further, in the high-temperature heat treatment of a large-diameter substrate, the expansion of the diameter due to thermal expansion becomes large, and the matching of the size of the wafer and the jig (dimensional tolerance, uniformity) becomes severe.
【0005】本発明の目的は、大口径で厚いシリコンウ
エハの高温熱処理における結晶欠陥の発生を防止し、か
つ拡散等のドーパントの分布の均一性を確保できるシリ
コンウエハの熱処理方法及びその装置と、その方法を用
いて製造した半導体装置とを提供するにある。An object of the present invention is to provide a silicon wafer heat treatment method and apparatus capable of preventing the occurrence of crystal defects during high temperature heat treatment of a large-diameter thick silicon wafer and ensuring a uniform distribution of dopant such as diffusion. And a semiconductor device manufactured by using the method.
【0006】[0006]
【課題を解決するための手段】本発明は、シリコン半導
体単結晶基板を熱処理するための温度を、シリコン半導
体単結晶基板内の熱応力が弾性変形を生じないような温
度分布を保持できるように、高温になるほど昇温速度が
小さくなるように制御することを特徴とするシリコン半
導体単結晶基板の熱処理方法を開示する。又本発明は、
上記熱処理の温度が低い間は、上記熱応力が弾性変形を
生じないような温度分布を保持できる昇温速度の範囲内
で、より大きい昇温速度とすることを特徴とする請求項
1に記載のシリコン半導体単結晶基板の熱処理方法を開
示する。According to the present invention, the temperature for heat-treating a silicon semiconductor single crystal substrate can be maintained such that the thermal stress in the silicon semiconductor single crystal substrate does not cause elastic deformation. Disclosed is a heat treatment method for a silicon semiconductor single crystal substrate, which is controlled so that the temperature rising rate becomes smaller as the temperature becomes higher. Also, the present invention
2. While the temperature of the heat treatment is low, a higher heating rate is set within a range of a heating rate capable of maintaining a temperature distribution such that the thermal stress does not cause elastic deformation. Discloses a method for heat treating a silicon semiconductor single crystal substrate.
【0007】[0007]
【作用】シリコン単結晶が、弾性変形から塑性変形に変
わる降伏応力は、高温ほど小さく、750℃を超えると
急激に低下する。特に、結晶中の酸素の含有量が少ない
フローティングゾーン法(FZ法)で作製されたシリコ
ン単結晶ではこの傾向が顕著である。従って、昇降温速
度を遅くすることにより、シリコンウエハ全体を熱平衡
状態に保持することができ、シリコン単結晶基板内の熱
応力分布を小さくでき、結晶欠陥の発生を防止すること
ができる。また、比較的低温では、昇温速度が大きくて
シリコンウエハ内に温度分布が生じても、降伏応力が大
きいため弾性変形で留まり、結晶欠陥の発生は防止でき
る。また低温部の昇温速度を大きくすることにより、偏
析係数が大きい低温の時間を短縮でき、拡散層のドーパ
ント濃度のばらつきを低減できる。The yield stress at which a silicon single crystal changes from elastic deformation to plastic deformation is smaller at higher temperatures, and sharply decreases above 750 ° C. In particular, this tendency is remarkable in a silicon single crystal produced by the floating zone method (FZ method) in which the oxygen content in the crystal is small. Therefore, by slowing the temperature raising / lowering rate, the entire silicon wafer can be held in a thermal equilibrium state, the thermal stress distribution in the silicon single crystal substrate can be reduced, and the occurrence of crystal defects can be prevented. Further, at a relatively low temperature, even if the temperature rising rate is large and the temperature distribution is generated in the silicon wafer, the yield stress is large, so that the silicon wafer remains elastically deformed and the occurrence of crystal defects can be prevented. Further, by increasing the temperature rising rate of the low temperature portion, the time of low temperature where the segregation coefficient is large can be shortened, and the dispersion of the dopant concentration of the diffusion layer can be reduced.
【0008】[0008]
【実施例】以下、本発明を実施例により詳細に説明す
る。まず大口径で厚いシリコンウエハの拡散のための熱
処理方法を改善するために行った実験について述べる。
図2は、シリコン基板の熱処理炉(拡散炉)を示してお
り、拡散炉10は横型で、石英製プロセス管11内にウ
エハホルダ13が設置されている。ウエハホルダ13は
シリコンカーバイド製で、ウエハピッチ5mmで50枚
のシリコンウエハ12をセットできる。ただし、ウエハ
ホルダの両端各2枚は他と同一のシリコンウエハ12で
あるが、熱遮蔽等のバッファを兼ねるため、以下の実験
では評価の対象外とした。炉の均熱長は800mm、温
度の均一性は±0.5℃である。熱処理は、窒素気流中
で60分間保持した。窒素雰囲気は、酸化膜の形成によ
る応力発生を防止するためである。EXAMPLES The present invention will be described in detail below with reference to examples. First, an experiment conducted to improve a heat treatment method for diffusion of a large-diameter and thick silicon wafer will be described.
FIG. 2 shows a heat treatment furnace (diffusion furnace) for a silicon substrate. The diffusion furnace 10 is a horizontal type, and a wafer holder 13 is installed in a quartz process tube 11. The wafer holder 13 is made of silicon carbide, and 50 silicon wafers 12 can be set at a wafer pitch of 5 mm. However, although the two wafers on each end of the wafer holder are the same silicon wafers 12 as the others, they also serve as buffers for heat shielding and so are excluded from the evaluation targets in the following experiments. The soaking length of the furnace is 800 mm, and the temperature uniformity is ± 0.5 ° C. The heat treatment was held for 60 minutes in a nitrogen stream. The nitrogen atmosphere is for preventing the generation of stress due to the formation of the oxide film.
【0009】シリコンウエハ12は、フローティングゾ
ーン法で作成した直径150mm、厚み1.60mm、
鏡面仕上げ、端面面取り加工のウエハである。イオン打
ち込みによりアルミニウムが、ドーズ量5×1015/c
m2、エネルギー100keVで打ち込まれている 。シ
リコン酸化膜等のマスクは用いていない。The silicon wafer 12 has a diameter of 150 mm and a thickness of 1.60 mm and is manufactured by the floating zone method.
This is a wafer that is mirror-finished and chamfered. Aluminum dosed 5 × 10 15 / c by ion implantation
It is driven with m 2 and energy of 100 keV. No mask such as a silicon oxide film is used.
【0010】図3は、各熱処理温度までの昇温速度とシ
リコン単結晶基板12の欠陥発生状況の実験結果を示す
ものである。結晶欠陥は、X線トポグラフィや選択エッ
チング法で観察した。図中、○印は結晶欠陥の発生が見
られないもの、●印はスリップラインやエッチピット等
の結晶欠陥の発生が見られたものを示す。この結果から
次のことが判る。 (1)750℃以下の熱処理においては、炉の最大昇温
速度である20℃/min で加熱しても、所定温度に設定
された炉内に急速にウエハを挿入しても、結晶欠陥の発
生が見られない。 (2)1100℃までの熱処理においては、4.0℃/
min の昇温速度では結晶欠陥の発生が見られる場合もあ
り、不安定である。結晶欠陥(スリップライン)はウエ
ハの周辺部、特にシリコンウエハのホルダ接点部から中
心方向に向かって発生している。3.5℃/min 以下の
昇温速度では結晶欠陥の発生が防止できる。 (3)1150℃までの熱処理においては、上記の場合
と同様に、3.0℃/min の昇温速度が臨界点で、不安
定であり、2.5℃/min 以下の昇温速度で結晶欠陥の
発生が防止できる。 (4)1250℃までの熱処理においては、上記の場合
と同様に、1.5℃/min の昇温速度が臨界点で、不安
定であり、1.0℃/min 以下の昇温速度で結晶欠陥の
発生が防止できる。なお、以上の結果は拡散時間に殆ど
依存しないことも明らかとなった。FIG. 3 shows the experimental results of the rate of temperature rise up to each heat treatment temperature and the defect occurrence state of the silicon single crystal substrate 12. Crystal defects were observed by X-ray topography and selective etching. In the figure, ○ marks indicate that no crystal defects were found, and ● marks indicate that crystal defects such as slip lines and etch pits were found. From this result, the following can be understood. (1) In the heat treatment at 750 ° C. or less, even if the wafer is heated at the maximum temperature rising rate of 20 ° C./min or a wafer is rapidly inserted into the furnace set to a predetermined temperature, crystal defects No occurrence is seen. (2) In heat treatment up to 1100 ° C, 4.0 ° C /
Occurrence of crystal defects may be observed at the temperature rising rate of min, which is unstable. Crystal defects (slip lines) are generated from the peripheral portion of the wafer, particularly from the holder contact portion of the silicon wafer toward the center. The occurrence of crystal defects can be prevented at a temperature rising rate of 3.5 ° C./min or less. (3) In the heat treatment up to 1150 ° C, as in the above case, the temperature rising rate of 3.0 ° C / min is unstable at the critical point, and the temperature rising rate of 2.5 ° C / min or less Generation of crystal defects can be prevented. (4) In the heat treatment up to 1250 ° C, as in the above case, the temperature rising rate of 1.5 ° C / min is unstable at the critical point, and the temperature rising rate of 1.0 ° C / min or less Generation of crystal defects can be prevented. It was also clarified that the above results hardly depend on the diffusion time.
【0011】図4は、各熱処理温度までの昇温速度とシ
リコン単結晶基板12のアルミニウム拡散層のシート抵
抗分布の実験結果を示すものである。拡散層のシート抵
抗は四端針法により、ウエハ内25点を測定した。図中
の数字はウエハ内シート抵抗のばらつきを示す。この実
験から、どの熱処理温度においても、昇温速度が遅くな
るほどシート抵抗、即ち拡散層のウエハ内ばらつきが大
きく、特に、熱処理温度が低温の場合に顕著であること
が判る。これは、900〜1000℃以下の比較的低温
では、ドーパントの偏析係数が大きいため、低温で長時
間保持されていると、外向拡散や、雰囲気中の微量酸素
による酸化膜の形成のため、ドーパントの再分布による
ばらつきが顕著になるものと考えられる。これを防止す
るためには、比較的低温過程の処理時間を短縮すること
が必要であり、昇温速度を早めることが有効である。FIG. 4 shows the experimental results of the heating rate up to each heat treatment temperature and the sheet resistance distribution of the aluminum diffusion layer of the silicon single crystal substrate 12. The sheet resistance of the diffusion layer was measured at 25 points on the wafer by the four-point probe method. The numbers in the figure indicate variations in sheet resistance within the wafer. From this experiment, it can be seen that at any heat treatment temperature, the slower the heating rate is, the larger the sheet resistance, that is, the variation in the diffusion layer within the wafer, is particularly remarkable when the heat treatment temperature is low. This is because the segregation coefficient of the dopant is large at a relatively low temperature of 900 to 1000 ° C. or less, and if it is kept at a low temperature for a long time, the dopant diffuses outward and forms an oxide film due to a slight amount of oxygen in the atmosphere. It is considered that the variation due to the redistribution of is significant. In order to prevent this, it is necessary to shorten the processing time in the relatively low temperature process, and it is effective to increase the temperature rising rate.
【0012】以上の実験結果から、さらにシート抵抗の
ウエハ内ばらつきが小さい熱処理条件を種々実験し、か
つ前述の結晶欠陥の発生防止の条件を考慮して、以下の
条件が適していることが判った。 室温〜750℃までは、少なくとも1.5℃/min 以上
のできるだけ高速で昇温させる 750〜950℃では、 1.5〜3.5℃/min の範
囲の速度で昇温させる 950〜1100℃では、3.5℃/min 以下の速度で
昇温させる 1100〜1150℃では、2.5℃/min 以下の速度
で昇温させる 1150〜1250℃では、1.0℃/min 以下の速度
で昇温させるFrom the above experimental results, it has been found that the following conditions are suitable in consideration of various heat treatment conditions in which the sheet resistance variation within the wafer is small and the above-mentioned conditions for preventing the occurrence of crystal defects. It was From room temperature to 750 ° C, raise the temperature as fast as possible at least 1.5 ° C / min or more. At 750 to 950 ° C, raise the temperature at a rate in the range of 1.5 to 3.5 ° C / min 950 to 1100 ° C. Then, raise the temperature at a rate of 3.5 ° C / min or less. At 1100 to 1150 ° C, raise the temperature at a rate of 2.5 ° C / min or less. At 1150 to 1250 ° C, at a rate of 1.0 ° C / min or less. Raise the temperature
【0013】図1は、以上の条件を考慮した熱処理方法
の実施例を示すもので、上記の条件(図中に付記した)
を満たしながら、高温になるにつれて昇温速度が低下す
るような制御方法になっている。FIG. 1 shows an embodiment of a heat treatment method in consideration of the above conditions. The above conditions (added in the drawing)
While satisfying the above condition, the control method is such that the temperature rising rate decreases as the temperature rises.
【0014】本実施例の熱処理方法で作成したpn接合
及びpnp接合は、直径136mmのペレットで端部を加
工した後、耐圧6〜9kVが得られた。なお耐圧は、シ
リコンウエハの抵抗率や厚みなどにより決定される。こ
のような高耐圧用の素子は、高圧直流送電、周波数変換
器、無効電力補償装置などの電力変換器に用いるサイリ
スタや、大容量圧延機や車両などのインバータに用いる
ゲートターンオフサイリスタの製造プロセスに適用でき
る。With respect to the pn junction and the pnp junction produced by the heat treatment method of this embodiment, a breakdown voltage of 6 to 9 kV was obtained after processing the end portion with a pellet having a diameter of 136 mm. The breakdown voltage is determined by the resistivity and thickness of the silicon wafer. Such high breakdown voltage devices are used in the manufacturing process of thyristors used for high voltage DC power transmission, frequency converters, power converters such as reactive power compensators, and gate turn-off thyristors used for inverters of large capacity rolling mills and vehicles. Applicable.
【0015】次に、シリコンウエハに酸化膜を生成する
ための熱処理実験について説明する。これは、シリコン
ウエハの表面にシリコン酸化膜(SiO2)を形成し、リ
ンやボロンの拡散マスクとするためである。実験の温度
は1150℃、雰囲気は水素の酸素燃焼による水蒸気流
中、酸化時間100min で、約1μm の酸化膜を形成し
た。Next, a heat treatment experiment for forming an oxide film on a silicon wafer will be described. This is because a silicon oxide film (SiO2) is formed on the surface of the silicon wafer to serve as a diffusion mask of phosphorus or boron. The temperature of the experiment was 1150 ° C., the atmosphere was a steam flow of oxygen combustion of hydrogen, and the oxidation time was 100 min, and an oxide film of about 1 μm was formed.
【0016】この実験により、1150℃までの昇温過
程では、まず750℃に設定された炉内に挿入後、11
00℃まで3.0/min で昇温し、その後1150℃ま
では1.0℃/min で昇温させる、という条件が好まし
いことが明かとなった。750℃に設定された炉内に挿
入後、1150℃まで3.0℃/min で昇温した場合
は、スリップラインの発生のみ成らず、酸化誘起欠陥
(OSF:Oxidation-induced Stacking Faults)も約
103個発生したが、上記の条件によると、結晶基板の
スリップラインの発生は全く防止でき、また1100℃
付近の酸化で約106個と発生がピークとなる酸化誘起
欠陥は、1150℃の酸化により約102個に減少でき
た。また、前記の図1の方法で作成したpnp接合を、
上記の酸化膜生成方法で酸化すると、pn接合の耐圧の
劣化やリーク電流の増大はみられなかった。According to this experiment, in the temperature rising process up to 1150 ° C., after first inserting into the furnace set at 750 ° C.,
It became clear that it is preferable to raise the temperature to 00 ° C. at 3.0 / min and then to 1150 ° C. at 1.0 ° C./min. When the temperature is raised to 1150 ° C at 3.0 ° C / min after being inserted into the furnace set at 750 ° C, not only slip lines are generated but also oxidation-induced defects (OSF: Oxidation-induced Stacking Faults) Although 10 3 were generated, the occurrence of slip lines on the crystal substrate could be completely prevented under the above conditions.
Oxidation-induced defects whose generation peaks at about 10 6 due to oxidation in the vicinity could be reduced to about 10 2 by oxidation at 1150 ° C. In addition, the pnp junction created by the method of FIG.
When oxidized by the above-mentioned oxide film forming method, deterioration of breakdown voltage of the pn junction and increase of leak current were not observed.
【0017】[0017]
【発明の効果】本発明によれば、大口径で厚いシリコン
ウエハの高温熱処理時の結晶欠陥の発生を防止し、かつ
拡散の均一性を確保できる。このため素子、特にパワー
デバイスの特性不良や歩留まり低下が防止できる効果が
ある。According to the present invention, it is possible to prevent the generation of crystal defects during high-temperature heat treatment of a large-diameter thick silicon wafer and to ensure the uniformity of diffusion. Therefore, there is an effect that it is possible to prevent the characteristic defect of the element, particularly the power device, and the reduction of the yield.
【図1】本発明になる熱処理方法の一実施例を示す温度
プロファイルである。FIG. 1 is a temperature profile showing an example of a heat treatment method according to the present invention.
【図2】シリコンウエハの熱処理装置の構成を示す図で
ある。FIG. 2 is a diagram showing a configuration of a silicon wafer heat treatment apparatus.
【図3】熱処理によるシリコンウエハの結晶欠陥の発生
状況の実験結果を示す図である。FIG. 3 is a diagram showing an experimental result of a generation state of crystal defects of a silicon wafer due to heat treatment.
【図4】熱処理によるシリコンウエハ拡散層のシート抵
抗のばらつきの実験結果を示す図である。FIG. 4 is a diagram showing an experimental result of variations in sheet resistance of a silicon wafer diffusion layer due to heat treatment.
10 拡散炉 11 石英製プロセス管 12 シリコン単結晶基板 13 ウエハホルダ 10 Diffusion Furnace 11 Quartz Process Tube 12 Silicon Single Crystal Substrate 13 Wafer Holder
Claims (6)
ための温度を、シリコン半導体単結晶基板内の熱応力が
弾性変形を生じないような温度分布を保持できるよう
に、高温になるほど昇温速度が小さくなるように制御す
ることを特徴とするシリコン半導体単結晶基板の熱処理
方法。1. A temperature rising rate for a heat treatment of a silicon semiconductor single crystal substrate is higher as the temperature is higher so that a temperature distribution in which thermal stress in the silicon semiconductor single crystal substrate does not cause elastic deformation can be maintained. A method for heat-treating a silicon semiconductor single crystal substrate, which is controlled to be small.
力が弾性変形を生じないような温度分布を保持できる昇
温速度の範囲内で、より大きい昇温速度とすることを特
徴とする請求項1に記載のシリコン半導体単結晶基板の
熱処理方法。2. While the temperature of the heat treatment is low, a higher heating rate is set within a heating rate range capable of maintaining a temperature distribution in which the thermal stress does not cause elastic deformation. The heat treatment method for a silicon semiconductor single crystal substrate according to claim 1.
ーティングゾーン法で作製された基板であり、かつ昇温
速度を、750℃以上1100℃までは3.5℃/min
以下、1100℃以上1150℃までは2.5℃/min
以下、1150℃以上1250℃までは1.0℃/min
以下とすることを特徴とする請求項1に記載のシリコン
半導体単結晶基板の熱処理方法。3. The silicon semiconductor single crystal substrate is a substrate manufactured by a floating zone method and has a temperature rising rate of 3.5 ° C./min from 750 ° C. to 1100 ° C.
2.5 ° C / min from 1100 ° C to 1150 ° C
Below 1.0 ° C / min from 1150 ° C to 1250 ° C
The heat treatment method for a silicon semiconductor single crystal substrate according to claim 1, wherein:
ーティングゾーン法で作製された基板であり、かつ昇温
速度を、950℃以下において1.5℃/min 以上とす
ることを特徴とする請求項2に記載のシリコン半導体単
結晶基板の熱処理方法。4. The silicon semiconductor single crystal substrate is a substrate manufactured by a floating zone method and has a temperature rising rate of 1.5 ° C./min or more at 950 ° C. or less. 2. The heat treatment method for a silicon semiconductor single crystal substrate according to 2.
れたシリコン半導体単結晶基板の拡散処理及び酸化膜生
成処理を、請求項2に記載の熱処理方法を用いて行うこ
とにより製造されたことを特徴とする半導体装置。5. A semiconductor manufactured by subjecting a silicon semiconductor single crystal substrate manufactured by a floating zone method to a diffusion treatment and an oxide film generation treatment using the heat treatment method according to claim 2. apparatus.
ための温度を、シリコン半導体単結晶基板内の熱応力が
弾性変形を生じないような温度分布を保持できるよう
に、高温になるほど昇温速度が小さくなるように制御す
る第1の手段と、上記熱処理の温度を、その温度が低い
間は、上記熱応力が弾性変形を生じないような温度分布
を保持できる昇温速度の範囲内で、より大きい昇温速度
とするように制御する第2の手段とから成ることを特徴
とするシリコン半導体単結晶基板の熱処理装置。6. The temperature rising rate for the heat treatment of the silicon semiconductor single crystal substrate is higher as the temperature is higher so that the temperature distribution in which the thermal stress in the silicon semiconductor single crystal substrate does not cause elastic deformation can be maintained. The first means for controlling the temperature to be small, and the temperature of the heat treatment, within the range of the temperature rising rate that can maintain the temperature distribution such that the thermal stress does not cause elastic deformation while the temperature is low, 2. A heat treatment apparatus for a silicon semiconductor single crystal substrate, comprising: a second means for controlling so as to have a high temperature rising rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17996494A JPH0845946A (en) | 1994-08-01 | 1994-08-01 | Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17996494A JPH0845946A (en) | 1994-08-01 | 1994-08-01 | Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0845946A true JPH0845946A (en) | 1996-02-16 |
Family
ID=16075059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17996494A Pending JPH0845946A (en) | 1994-08-01 | 1994-08-01 | Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0845946A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998000860A1 (en) * | 1996-06-28 | 1998-01-08 | Sumitomo Sitix Corporation | Method and device for heat-treating single-crystal silicon wafer, single-crystal silicon wafer, and process for producing single-crystal silicon wafer |
EP0798773A3 (en) * | 1996-03-25 | 1998-12-09 | Sumitomo Electric Industries, Ltd. | Method of evaluating and method and apparatus for thermally processing semiconductor wafer |
WO2003009365A1 (en) * | 2001-07-10 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Silicon wafer manufacturing method, silicon epitaxial wafer manufacturing method, and silicon epitaxial wafer |
JP2003527738A (en) * | 1998-07-13 | 2003-09-16 | エーケーティー株式会社 | Heating of the substrate support in the substrate handling chamber |
FR2856194A1 (en) * | 2003-06-10 | 2004-12-17 | Soitec Silicon On Insulator | Improved stabilization of the annealing heat treatment applied to slices of semiconductor materials used in micro-electronic, optical and opto-electronic applications |
US7098148B2 (en) | 2003-06-10 | 2006-08-29 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Method for heat treating a semiconductor wafer |
JP2010258074A (en) * | 2009-04-22 | 2010-11-11 | Sumco Corp | Method of heating wafer, and method of manufacturing epitaxial wafer |
-
1994
- 1994-08-01 JP JP17996494A patent/JPH0845946A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6235543B1 (en) | 1996-03-25 | 2001-05-22 | Sumitomo Electric Industries, Ltd. | Method of evaluating a semiconductor wafer |
EP0798773A3 (en) * | 1996-03-25 | 1998-12-09 | Sumitomo Electric Industries, Ltd. | Method of evaluating and method and apparatus for thermally processing semiconductor wafer |
US5985678A (en) * | 1996-03-25 | 1999-11-16 | Sumitomo Electric Industries, Ltd. | Method of evaluating and thermally processing semiconductor wafer |
US6127288A (en) * | 1996-03-25 | 2000-10-03 | Sumitomo Electric Industries, Ltd. | Method of thermally processing semiconductor wafer |
US6184498B1 (en) | 1996-03-25 | 2001-02-06 | Sumitomo Electric Industries, Ltd. | Apparatus for thermally processing semiconductor wafer |
KR100296365B1 (en) * | 1996-06-28 | 2001-11-30 | 고지마 마타오 | Heat treatment method of silicon single crystal wafer, heat treatment device and silicon single crystal wafer and manufacturing method thereof |
WO1998000860A1 (en) * | 1996-06-28 | 1998-01-08 | Sumitomo Sitix Corporation | Method and device for heat-treating single-crystal silicon wafer, single-crystal silicon wafer, and process for producing single-crystal silicon wafer |
JP2003527738A (en) * | 1998-07-13 | 2003-09-16 | エーケーティー株式会社 | Heating of the substrate support in the substrate handling chamber |
WO2003009365A1 (en) * | 2001-07-10 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Silicon wafer manufacturing method, silicon epitaxial wafer manufacturing method, and silicon epitaxial wafer |
JPWO2003009365A1 (en) * | 2001-07-10 | 2004-11-11 | 信越半導体株式会社 | Method for manufacturing silicon wafer, method for manufacturing silicon epitaxial wafer, and silicon epitaxial wafer |
US7033962B2 (en) | 2001-07-10 | 2006-04-25 | Shin-Etsu Handotai Co., Ltd. | Methods for manufacturing silicon wafer and silicone epitaxial wafer, and silicon epitaxial wafer |
FR2856194A1 (en) * | 2003-06-10 | 2004-12-17 | Soitec Silicon On Insulator | Improved stabilization of the annealing heat treatment applied to slices of semiconductor materials used in micro-electronic, optical and opto-electronic applications |
WO2004112124A3 (en) * | 2003-06-10 | 2005-05-12 | Soitec Silicon On Insulator | Improved annealing method for stabilisation |
US7098148B2 (en) | 2003-06-10 | 2006-08-29 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Method for heat treating a semiconductor wafer |
JP2010258074A (en) * | 2009-04-22 | 2010-11-11 | Sumco Corp | Method of heating wafer, and method of manufacturing epitaxial wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478141B2 (en) | Heat treatment method for silicon wafer and silicon wafer | |
JP3746153B2 (en) | Heat treatment method for silicon wafer | |
JP2006344823A (en) | Silicon wafer for igbt and its manufacturing method | |
JPH0511415B2 (en) | ||
KR19990044245A (en) | Heat treatment method of silicon single crystal wafer, heat treatment apparatus and silicon single crystal wafer and manufacturing method thereof | |
WO2000041227A1 (en) | Method for thermally annealing silicon wafer and silicon wafer | |
KR100562438B1 (en) | Heat Treatment Method of Silicon Wafer and Silicon Wafer Heat Treated thereby | |
JP3451908B2 (en) | SOI wafer heat treatment method and SOI wafer | |
TW508701B (en) | Method for manufacturing single-crystal silicon wafer | |
US20070240628A1 (en) | Silicon wafer | |
JPH0845946A (en) | Thermal treatment method and device of silicon semiconductor single crystal substrate and semiconductor device | |
JPH06295912A (en) | Manufacture of silicon wafer and silicon wafer | |
US6403502B1 (en) | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method | |
KR20090051756A (en) | Method for heat-treating silicon wafer | |
CN109830437B (en) | Wafer heat treatment method and wafer | |
JPH06295913A (en) | Manufacture of silicon wafer and silicon wafer | |
JP4609029B2 (en) | Annealed wafer manufacturing method | |
JP3565068B2 (en) | Heat treatment method for silicon wafer and silicon wafer | |
Wilson | Transient annealing of ion implanted semiconductor materials | |
JPH06196459A (en) | Manufacture of semiconductor silicon wafer | |
JPH08203913A (en) | Method of heat-treating semiconductor wafer | |
JPH0434299B2 (en) | ||
KR100328753B1 (en) | Semiconductor device manufacturing method for gettering contamination elements | |
US9779964B2 (en) | Thermal processing method for wafer | |
KR20230092790A (en) | Silicon wafer and manufacturing method thereof |