JPH0844309A - High-frequency deflecting yoke drive circuit - Google Patents

High-frequency deflecting yoke drive circuit

Info

Publication number
JPH0844309A
JPH0844309A JP17776894A JP17776894A JPH0844309A JP H0844309 A JPH0844309 A JP H0844309A JP 17776894 A JP17776894 A JP 17776894A JP 17776894 A JP17776894 A JP 17776894A JP H0844309 A JPH0844309 A JP H0844309A
Authority
JP
Japan
Prior art keywords
deflection
voltage
deflecting
yoke
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17776894A
Other languages
Japanese (ja)
Other versions
JP3503082B2 (en
Inventor
Takashi Nagamatsu
▲たか▼史 永末
Katsuhiko Shiomi
勝彦 汐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17776894A priority Critical patent/JP3503082B2/en
Publication of JPH0844309A publication Critical patent/JPH0844309A/en
Application granted granted Critical
Publication of JP3503082B2 publication Critical patent/JP3503082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-frequency deflecting yoke drive circuit which gives a specified driving sensitivity by setting the inductance of the deflecting yoke large. CONSTITUTION:One terminal of the deflecting yoke 7 is impressed with a positive deflecting voltage caused by the primary coil 5 of a deflecting transformer and the other terminal is impressed with the negative deflecting voltage which is caused by the secondary coil of the deflecting transformer in correspondence to the positive deflecting voltage. Consequently the deflecting yoke 7 can be impressed with a deflecting voltage larger than the positive deflecting voltage which is established under a specified source voltage, a specified deflecting frequency and the dielectric withstand voltage of the horizontal switching element 1 and, through this, the inductance of the deflecting yoke can be established that much larger, increasing the design freedom to improve the convergence characteristics and reducing heat emission because of a smaller deflecting current. In addition, the deflecting current can be adjusted by varying the coupling between the primary- and secondary coils. Furthermore the distribution capacity of the deflecting yoke 7 to ground can be reduced and the parasitic oscillation is attenuated too.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディスプレイなどに用
いられる高周波偏向ヨーク駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency deflection yoke drive circuit used in displays and the like.

【0002】[0002]

【従来の技術】近年、フライバックトランスまたは偏向
ヨークを使用した水平偏向回路は、高画質化、高密度表
示に伴って、水平偏向周波数がテレビジョン放送の2な
いし6倍となる高周波化が進んでいる。
2. Description of the Related Art In recent years, a horizontal deflection circuit using a flyback transformer or a deflection yoke has become higher in frequency so that the horizontal deflection frequency becomes 2 to 6 times higher than that of television broadcasting due to higher image quality and higher density display. I'm out.

【0003】以下、従来のフライバックトランスまたは
偏向ヨークを使用した偏向ヨーク駆動回路について図面
を参照しながら説明する。図2は従来の偏向ヨーク駆動
回路の構成を示す回路図である。図において、9はスイ
ッチング素子、10はダンパダイオード、11は共振コ
ンデンサ、12は偏向トランスの1次巻線、13は電
源、14は偏向ヨーク、15はS字補正コンデンサであ
る。
A deflection yoke drive circuit using a conventional flyback transformer or deflection yoke will be described below with reference to the drawings. FIG. 2 is a circuit diagram showing the configuration of a conventional deflection yoke drive circuit. In the figure, 9 is a switching element, 10 is a damper diode, 11 is a resonance capacitor, 12 is a primary winding of a deflection transformer, 13 is a power supply, 14 is a deflection yoke, and 15 is an S-shaped correction capacitor.

【0004】上記構成要素の相互関係と動作について説
明する。スイッチング素子9がオンとされると、偏向ト
ランスの1次巻線12を通してエネルギが供給され、時
間にほぼ比例した正の偏向電流が偏向ヨーク14に流れ
る。つぎにスイッチング素子9がオフにされると、偏向
トランスの1次巻線12と偏向ヨーク14との合成イン
ダクタンス成分と共振コンデンサ11の容量成分とが共
振を起こしながら偏向電流は急激に反対方向に流れ、共
振コンデンサ11の両端の電圧がゼロ以下になったとき
ダンパダイオード10がオンとなって共振がダンプさ
れ、つぎにスイッチング素子9がオンとされたときにふ
たたび正の偏向電流が流れる。この動作を繰り返すこと
によって水平偏向が継続される。
The mutual relationship and operation of the above-mentioned components will be described. When the switching element 9 is turned on, energy is supplied through the primary winding 12 of the deflection transformer, and a positive deflection current substantially proportional to time flows through the deflection yoke 14. Next, when the switching element 9 is turned off, the combined inductance component of the primary winding 12 of the deflection transformer and the deflection yoke 14 and the capacitance component of the resonance capacitor 11 resonate, and the deflection current sharply moves in the opposite direction. When the voltage across the resonance capacitor 11 becomes zero or less, the damper diode 10 is turned on to dump the resonance, and when the switching element 9 is turned on next time, a positive deflection current flows again. Horizontal deflection is continued by repeating this operation.

【0005】いま、偏向電流をIDY、電源電圧をB、水
平周期をTH、帰線期間をTF、偏向ヨークのL値をLDY
とすると、 IDY=B・(TH−TF)/LDY 一方、このときのスイッチング素子のコレクタに発生す
るVCPは VCP=B・[{(TH/TF)−1}・(π/2)+1] で表される。また、偏向感度=LDY・(IPP)2なる数
値で偏向能力が示されるが、偏向電流の振幅IPPはVCP
/LDYに比例するので、偏向感度はVCP2/LDY=VCP
・IDYに比例する。
Now, the deflection current is IDY, the power supply voltage is B, the horizontal period is TH, the retrace line period is TF, and the L value of the deflection yoke is LDY.
Then, IDY = B. (TH-TF) / LDY On the other hand, the VCP generated in the collector of the switching element at this time is VCP = B. [{(TH / TF) -1}. (Π / 2) +1] It is represented by. The deflection capability is indicated by the value of deflection sensitivity = LDY · (IPP) 2, but the deflection current amplitude IPP is VCP.
Since it is proportional to / LDY, the deflection sensitivity is VCP 2 / LDY = VCP
・ Proportional to IDY.

【0006】[0006]

【発明が解決しようとする課題】このような従来の偏向
ヨーク駆動回路において、偏向周波数の高周波化により
水平期間THの値が小さい値に指定されるとともに、前
記VCPの式で与えられる偏向パルス電圧の値がスイッチ
ング素子であるスイッチングトランジスタの耐圧から規
制されることにより、所定の電源電圧Bのもとでは、帰
線期間TFの値も必然的に決ってくる。このような条件
のもとでは、偏向電流IDYの値は、上記のIDYの式から
明らかなように、偏向ヨークのインダクタンスのみで決
まると言っても過言でない。いま、大画面化により所定
の偏向感度を得ようとすると、偏向電流IDYの値を大き
く設定しなければならず、偏向ヨークのインダクタンス
を非常に小さく設定する必要に迫られる。たとえば、計
算例として15.75KHzと64KHzとでその事例を下記
に示す。VCPを1500Vと仮定するとき、 15.75KHz、パルス幅=12.0μsec、B=194V、 L
DY=2.85mH 64 KHz、パルス幅= 3.0μsec、B=197.5V、LDY
=179μH となり、インダクタンスを著しく小さく設定しなければ
ならない。
In such a conventional deflection yoke drive circuit, the value of the horizontal period TH is specified to be a small value by increasing the deflection frequency, and the deflection pulse voltage given by the equation of VCP is given. The value of is regulated by the withstand voltage of the switching transistor which is a switching element, so that the value of the blanking period TF is inevitably determined under the predetermined power supply voltage B. Under such conditions, it is no exaggeration to say that the value of the deflection current IDY is determined only by the inductance of the deflection yoke, as is clear from the above equation of IDY. Now, in order to obtain a predetermined deflection sensitivity by increasing the screen size, it is necessary to set a large value of the deflection current IDY, and it is necessary to set the inductance of the deflection yoke to be extremely small. For example, the calculation examples are shown below at 15.75 KHz and 64 KHz. Assuming that VCP is 1500V, 15.75KHz, pulse width = 12.0μsec, B = 194V, L
DY = 2.85mH 64 KHz, pulse width = 3.0μsec, B = 197.5V, LDY
= 179 μH, so the inductance must be set to be extremely small.

【0007】このように、インダクタンスを小さく設定
すると、偏向ヨークの構造上、コイルの巻数が低下し、
磁界分布の調整、すなわち導線の巻位置調整の自由度が
低下する結果をもたらし、画質のコンバー特性を著しく
悪くする要因となるとともに、偏向電流が大きいために
発熱が大きくなり、偏向コイルを設計する上で、所定の
磁界分布を実現し、発熱の問題を解決するなどの点で支
障をきたす状況となってきており、高性能化と相反する
問題を有している。
As described above, when the inductance is set small, the number of turns of the coil decreases due to the structure of the deflection yoke,
The degree of freedom in adjusting the magnetic field distribution, that is, adjusting the winding position of the conducting wire, is reduced, which is a factor that significantly deteriorates the image quality conversion characteristic. In addition, the large deflection current causes large heat generation, and the deflection coil is designed. In the above situation, there is a problem in that a predetermined magnetic field distribution is realized and the problem of heat generation is solved, which is a problem contradictory to higher performance.

【0008】本発明は上記の課題を解決するもので、所
定の電源電圧、スイッチング素子の耐圧および水平駆動
周波数のもとで、偏向ヨークのインダクタンスを従来よ
りも大きく設定でき、したがって、磁界分布の調整が容
易にできてコンバーゼンス特性を改善できるとともに、
偏向電流を小さくできて発熱特性を改善できる高周波偏
向ヨーク駆動回路を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and the inductance of the deflection yoke can be set larger than before under a given power supply voltage, withstand voltage of the switching element and horizontal drive frequency. Easy to adjust and improve the convergence characteristics,
An object of the present invention is to provide a high-frequency deflection yoke drive circuit that can reduce the deflection current and improve the heat generation characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するために、水平偏向回路において、偏向トランスの
1次巻線の一端を電源に接続し、他端をスイッチング素
子に接続し、前記スイッチング素子のオン−オフにより
正の偏向電圧を発生させて前記偏向ヨークの一端に印加
するとともに、前記正の偏向電圧に対応する負の偏向電
圧をアース電位に対して生成し、前記負の偏向電圧を前
記偏向ヨークの他端に印加して偏向回路を構成し、前記
偏向ヨークの両端に印加される偏向電圧を前記正の偏向
電圧より大きくすることにより、前記偏向ヨークのイン
ダクタンスを前記正の偏向電圧のみ印加するときよりも
大きく設定できるようにした高周波偏向ヨーク駆動回路
である。
In order to achieve the above object, the present invention provides a horizontal deflection circuit in which one end of a primary winding of a deflection transformer is connected to a power source and the other end is connected to a switching element. A positive deflection voltage is generated by turning the switching element on and off and is applied to one end of the deflection yoke, and a negative deflection voltage corresponding to the positive deflection voltage is generated with respect to the ground potential. A deflection circuit is configured by applying a deflection voltage to the other end of the deflection yoke, and the deflection voltage applied to both ends of the deflection yoke is made larger than the positive deflection voltage, thereby making the inductance of the deflection yoke positive. The high-frequency deflection yoke drive circuit can be set larger than when only the deflection voltage is applied.

【0010】[0010]

【作用】本発明は上記の構成において、偏向ヨークの一
端に偏向トランスの1次巻線による正の偏向電圧が印加
され、他端には負の偏向電圧が印加され、所定の電源電
圧および所定の正の偏向電圧のもとで、偏向ヨークに印
加される偏向電圧の大きさは(正の偏向電圧+負の偏向
電圧)となって負の偏向電圧分だけ大きくなり、所定の
偏向感度を実現するときにはその分だけ偏向電流を低減
できるので偏向ヨークのインダクタンスを正の偏向電圧
のみ与えるときよりも大きく設定できる。また、負の偏
向電圧を偏向トランスに設けた2次巻線により得る場合
には、1次2次間の結合度を調整することにより、巻線
数が少なくても偏向電流を調整できる。
According to the present invention, in the above construction, a positive deflection voltage by the primary winding of the deflection transformer is applied to one end of the deflection yoke, and a negative deflection voltage is applied to the other end of the deflection yoke. Under the positive deflection voltage of, the magnitude of the deflection voltage applied to the deflection yoke becomes (positive deflection voltage + negative deflection voltage) and increases by the amount of the negative deflection voltage. When it is realized, the deflection current can be reduced by that amount, so that the inductance of the deflection yoke can be set larger than that when only the positive deflection voltage is applied. Further, when a negative deflection voltage is obtained by the secondary winding provided in the deflection transformer, the deflection current can be adjusted by adjusting the degree of coupling between the primary and the secondary even if the number of windings is small.

【0011】[0011]

【実施例】以下、本発明の高周波偏向ヨーク駆動回路の
一実施例について図面を参照しながら説明する。図1は
本実施例の構成を示す回路図である。図において、1は
水平スイッチング素子、2はダンパダイオード、3は共
振コンデンサ、4は電源、5は偏向トランスの1次巻
線、6は偏向トランスの2次巻線、7は偏向ヨーク、8
はS次コンデンサである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a high frequency deflection yoke drive circuit of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing the configuration of this embodiment. In the figure, 1 is a horizontal switching element, 2 is a damper diode, 3 is a resonance capacitor, 4 is a power supply, 5 is a primary winding of a deflection transformer, 6 is a secondary winding of the deflection transformer, 7 is a deflection yoke, and 8 is a deflection yoke.
Is an S-th capacitor.

【0012】上記構成要素の相互関係と動作について説
明する。水平スイッチング素子1をオン−オフさせるこ
とにより偏向電流が形成されることは前述の通りである
が、本発明では偏向トランスに1次巻線5と独立分離し
た2次巻線6を備え、1次巻線5と結合して負の偏向パ
ルスが発生するように一端を接地する。偏向ヨーク7の
一端を水平スイッチング素子1のコレクタ部に接続し、
他端を前記2次巻線6の負の偏向パルス発生端子に接続
する。いま、偏向トランスの1次巻線5と2次巻線6の
巻線比を1:nとする。上記構成において、水平スイッ
チング素子1がオン状態のとき、偏向ヨーク7には電源
電圧Bと2次電圧n・Bとによる正方向の偏向電流が流
れ、水平スイッチング素子1をオフとした時点から、偏
向トランスと偏向ヨーク7との合成インダクタンスと共
振コンデンサ3の容量とによる負方向の共振電流が流
れ、共振コンデンサ3の両端の電圧が負に転じた時点で
ダンパダイオード2がオンとなって共振がダンプされ、
つぎに水平スイッチング素子1がオンとされて再度正の
偏向電流が流れる動作に移行する。以上の動作を繰り返
して水平偏向動作が実行される。
The mutual relationship and operation of the above components will be described. As described above, the deflection current is formed by turning the horizontal switching element 1 on and off, but in the present invention, the deflection transformer is provided with the primary winding 5 and the secondary winding 6 which are independently separated. One end is grounded so as to be coupled with the secondary winding 5 and generate a negative deflection pulse. One end of the deflection yoke 7 is connected to the collector portion of the horizontal switching element 1,
The other end is connected to the negative deflection pulse generation terminal of the secondary winding 6. Now, the winding ratio of the primary winding 5 and the secondary winding 6 of the deflection transformer is set to 1: n. In the above configuration, when the horizontal switching element 1 is in the ON state, the deflection current in the positive direction due to the power supply voltage B and the secondary voltage n · B flows in the deflection yoke 7, and from the time when the horizontal switching element 1 is turned off, A negative resonance current flows due to the combined inductance of the deflection transformer and the deflection yoke 7 and the capacitance of the resonance capacitor 3, and when the voltage across the resonance capacitor 3 turns negative, the damper diode 2 turns on and resonance occurs. Dumped,
Next, the horizontal switching element 1 is turned on, and the operation again shifts to the flow of the positive deflection current. The horizontal deflection operation is executed by repeating the above operation.

【0013】この動作において、偏向コイルの1次巻線
5の一端は電源4に接続されて従来通りの偏向電圧を発
生する動作であるため、その正の偏向パルス電圧VCPを
水平スイッチング素子1の耐圧に対応して設定すること
ができる。一方、偏向ヨークには、この正の偏向電圧と
2次巻線6による負の偏向電圧との合計電圧を印加して
おり、偏向パルス電圧で言えば、VCP+n・VCP=(1
+n)・VCPの電圧が印加している。したがって、偏向
ヨーク7にはスイッチング素子1の耐圧で決まる正の偏
向電圧の(1+n)倍の偏向電圧を印加できることにな
る。所定の偏向感度を得たいときに、偏向電圧を(1+
n)倍に与えると、インダクタンスを(1+n)2倍に
してよいことは言うまでもない。このように、偏向ヨー
ク7に1次巻線5による正の偏向電圧と2次巻線6によ
る負の偏向電圧との合計電圧を印加し、正の偏向電圧を
スイッチング素子1の耐圧で決まる所定の電圧に設定す
ることにより、偏向ヨークのインダクタンスを従来より
も大きく設定できる。また、インダクタンスを大きした
分だけ偏向電流が小さくなるので、偏向ヨークにおける
電流損の発熱も低減される。
In this operation, one end of the primary winding 5 of the deflection coil is connected to the power supply 4 to generate a deflection voltage as in the conventional case, so that the positive deflection pulse voltage VCP is applied to the horizontal switching element 1. It can be set according to the breakdown voltage. On the other hand, a total voltage of the positive deflection voltage and the negative deflection voltage by the secondary winding 6 is applied to the deflection yoke, and in terms of deflection pulse voltage, VCP + n · VCP = (1
+ N) -VCP voltage is applied. Therefore, a deflection voltage (1 + n) times the positive deflection voltage determined by the breakdown voltage of the switching element 1 can be applied to the deflection yoke 7. To obtain a predetermined deflection sensitivity, set the deflection voltage to (1+
It goes without saying that the inductance may be (1 + n) 2 times when given n times. In this way, the total voltage of the positive deflection voltage from the primary winding 5 and the negative deflection voltage from the secondary winding 6 is applied to the deflection yoke 7, and the positive deflection voltage is determined by the breakdown voltage of the switching element 1. The inductance of the deflection yoke can be set larger than that of the related art by setting the voltage to. Further, since the deflection current is reduced by the amount of the increased inductance, heat generation due to current loss in the deflection yoke is also reduced.

【0014】また、偏向動作時において、偏向ヨーク7
にかかる偏向電圧は、図3(b)に示したように、アー
スに対して1:nの正と負に分割されるので、巻線比
1:nの位置に電気中性点が存在し、偏向ヨークにおけ
る対アースの分布容量は、図3(a)に示した従来の場
合に対して、電位分布の変化により等価的に1/(1+
n)2に低減でき、帰線期間の終了後の振動回路におけ
る寄生振動成分を小さくできる効果もある。
Further, during the deflection operation, the deflection yoke 7
As shown in FIG. 3 (b), the deflection voltage applied to is divided into positive and negative of 1: n with respect to the ground, so that there is an electric neutral point at the position of the winding ratio 1: n. , The distributed capacitance of the deflection yoke with respect to ground is equivalent to 1 / (1+) due to the change in the potential distribution as compared with the conventional case shown in FIG.
n) 2, and also has the effect of reducing the parasitic vibration component in the vibration circuit after the blanking period.

【0015】図4は偏向トランスと、2次巻線6に接続
される偏向ヨーク7との結合を示す等価回路図である。
図において、偏向電流はリーケージインダクタンス21
を介して流れることになり、kの値を調整することによ
り偏向電流の調整が可能となり、偏向ヨークの巻線数が
少なくて適切な巻線調整が困難な場合でも、結合度を調
整することにより偏向ヨークを調整することができるよ
うになる。
FIG. 4 is an equivalent circuit diagram showing the coupling between the deflection transformer and the deflection yoke 7 connected to the secondary winding 6.
In the figure, the deflection current is the leakage inductance 21.
The deflection current can be adjusted by adjusting the value of k, and the degree of coupling can be adjusted even when the winding number of the deflection yoke is small and proper winding adjustment is difficult. This allows the deflection yoke to be adjusted.

【0016】以上のように本実施例によれば、スイッチ
ング素子の耐圧などで決まる所定の正の偏向電圧と、2
次巻線による負の偏向電圧とを偏向ヨークに印加するこ
とにより、偏向ヨークのインダクタンスを大きく設定で
きるとともに、発熱を低減し、さらに、結合度の調整に
より偏向ヨークの調整が容易になる他、対アースの分布
容量を等価的に低減して寄生振動を小さくすることもで
きる。
As described above, according to this embodiment, a predetermined positive deflection voltage determined by the breakdown voltage of the switching element and 2
By applying a negative deflection voltage from the next winding to the deflection yoke, the deflection yoke inductance can be set large, heat generation can be reduced, and the degree of coupling can be adjusted to facilitate adjustment of the deflection yoke. It is also possible to equivalently reduce the distributed capacitance with respect to ground to reduce parasitic vibration.

【0017】なお、実施例では負の偏向電圧を偏向トラ
ンスの2次巻線により実現したが、他の同等な手段を用
いてもよいことは言うまでもない。
In the embodiment, the negative deflection voltage is realized by the secondary winding of the deflection transformer, but it goes without saying that other equivalent means may be used.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
は、水平偏向回路において、偏向トランスの1次巻線の
一端を電源に接続し、他端をスイッチング素子に接続
し、前記スイッチング素子のオン−オフにより正の偏向
電圧を発生させて前記偏向ヨークの一端に印加するとと
もに、前記正の偏向電圧に対応する負の偏向電圧をアー
ス電位に対して生成し、前記負の偏向電圧を前記偏向ヨ
ークの他端に印加して偏向回路を構成し、前記偏向ヨー
クの両端に印加される偏向電圧を前記正の偏向電圧より
大きくすることにより、前記偏向ヨークのインダクタン
スを前記正の偏向電圧のみ印加するときよりも大きく設
定できるようにしたことにより、スイッチング素子の耐
圧などにより制限される偏向電圧よりも大きい偏向電圧
を偏向ヨークに印加でき、その分だけ偏向ヨークのイン
ダクタンスを大きく設定でき、したがって偏向ヨークの
設計の自由度を大きくしてコンバーゼンス特性を改善で
きるとともに発熱も低減でき、さらにトランスにより負
の偏向電圧を得る場合には結合度の調整により偏向電流
の調整を容易にできるようになる。また、対アースの分
布容量をも低減して寄生振動を少なくする効果もある。
As is apparent from the above description, according to the present invention, in the horizontal deflection circuit, one end of the primary winding of the deflection transformer is connected to the power supply and the other end is connected to the switching element, and the switching element is connected. Is turned on and off to generate a positive deflection voltage, which is applied to one end of the deflection yoke, and a negative deflection voltage corresponding to the positive deflection voltage is generated with respect to the ground potential. The deflection circuit is configured by applying the deflection voltage to the other end of the deflection yoke, and the deflection voltage applied to the both ends of the deflection yoke is made larger than the positive deflection voltage, whereby the inductance of the deflection yoke is increased to the positive deflection voltage. By setting it so that it can be set larger than when only applying it, a deflection voltage larger than the deflection voltage limited by the breakdown voltage of the switching element is applied to the deflection yoke. In that case, the inductance of the deflection yoke can be set to a correspondingly large value, so the degree of freedom in designing the deflection yoke can be increased to improve the convergence characteristics, heat generation can be reduced, and when a negative deflection voltage is obtained by the transformer, By adjusting the degree, the deflection current can be easily adjusted. It also has the effect of reducing the parasitic capacitance by reducing the distributed capacitance to earth.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高周波偏向ヨーク駆動回路の構成を示
す回路図
FIG. 1 is a circuit diagram showing a configuration of a high-frequency deflection yoke drive circuit of the present invention.

【図2】従来の偏向ヨーク駆動回路の構成を示す回路図FIG. 2 is a circuit diagram showing a configuration of a conventional deflection yoke drive circuit.

【図3】偏向ヨークの対アース電圧と分布容量との関係
を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the ground voltage of the deflection yoke and the distributed capacitance.

【図4】本発明の等価回路図FIG. 4 is an equivalent circuit diagram of the present invention.

【符号の説明】[Explanation of symbols]

1 水平スイッチング素子(スイッチングトランジス
タ) 2 ダンパダイオード 3 共振コンデンサ 4 電源 5 偏向トランスの1次巻線 6 負の偏向電圧を生成するための偏向トランス2次巻
線 7 偏向ヨーク 8 S字コンデンサ
1 Horizontal switching element (switching transistor) 2 Damper diode 3 Resonant capacitor 4 Power supply 5 Primary winding of deflection transformer 6 Deflection transformer secondary winding for generating negative deflection voltage 7 Deflection yoke 8 S-shaped capacitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水平偏向回路において、偏向トランスの
1次巻線の一端を電源に接続し、他端をスイッチング素
子に接続し、前記スイッチング素子のオン−オフにより
正の偏向電圧を発生させて前記偏向ヨークの一端に印加
するとともに、前記正の偏向電圧に対応する負の偏向電
圧をアース電位に対して生成し、前記負の偏向電圧を前
記偏向ヨークの他端に印加して偏向回路を構成し、前記
偏向ヨークの両端に印加される偏向電圧を前記正の偏向
電圧より大きくすることにより、前記偏向ヨークのイン
ダクタンスを前記正の偏向電圧のみ印加するときよりも
大きく設定できるようにした高周波偏向ヨーク駆動回
路。
1. In a horizontal deflection circuit, one end of a primary winding of a deflection transformer is connected to a power source, the other end is connected to a switching element, and a positive deflection voltage is generated by turning on / off the switching element. While applying to one end of the deflection yoke, a negative deflection voltage corresponding to the positive deflection voltage is generated with respect to the ground potential, and the negative deflection voltage is applied to the other end of the deflection yoke to form a deflection circuit. A high-frequency wave which is configured so that the deflection voltage applied to both ends of the deflection yoke is made larger than the positive deflection voltage, so that the inductance of the deflection yoke can be set larger than that when only the positive deflection voltage is applied. Deflection yoke drive circuit.
【請求項2】 負の偏向電圧を偏向トランスに設けた2
次巻線により得るようにした請求項1記載の高周波偏向
ヨーク駆動回路。
2. A deflection transformer provided with a negative deflection voltage.
The high-frequency deflection yoke drive circuit according to claim 1, wherein the high-frequency deflection yoke drive circuit is obtained by a secondary winding.
【請求項3】 2次巻線と1次巻線との結合度により偏
向ヨークの偏向電流を調整するようにした請求項2記載
の高周波偏向ヨーク駆動回路。
3. The high frequency deflection yoke drive circuit according to claim 2, wherein the deflection current of the deflection yoke is adjusted by the degree of coupling between the secondary winding and the primary winding.
JP17776894A 1994-07-29 1994-07-29 High frequency deflection yoke drive circuit Expired - Fee Related JP3503082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17776894A JP3503082B2 (en) 1994-07-29 1994-07-29 High frequency deflection yoke drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17776894A JP3503082B2 (en) 1994-07-29 1994-07-29 High frequency deflection yoke drive circuit

Publications (2)

Publication Number Publication Date
JPH0844309A true JPH0844309A (en) 1996-02-16
JP3503082B2 JP3503082B2 (en) 2004-03-02

Family

ID=16036791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17776894A Expired - Fee Related JP3503082B2 (en) 1994-07-29 1994-07-29 High frequency deflection yoke drive circuit

Country Status (1)

Country Link
JP (1) JP3503082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264742A (en) * 2008-04-21 2009-11-12 Ntt Docomo Inc Navigation support device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001234137A1 (en) 2000-02-23 2001-09-03 Arkray, Inc. Sensor cartridge, sensor feeder, and measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264742A (en) * 2008-04-21 2009-11-12 Ntt Docomo Inc Navigation support device
JP4611400B2 (en) * 2008-04-21 2011-01-12 株式会社エヌ・ティ・ティ・ドコモ Navigation support device

Also Published As

Publication number Publication date
JP3503082B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
KR840001292B1 (en) Raster distortion corrected deflection circuit
US4027200A (en) High voltage generating circuit
US5350980A (en) Nonlinear inductor with magnetic field reduction
JP3450867B2 (en) Video display
JPH11261839A (en) Image distortion correction device
JP3503082B2 (en) High frequency deflection yoke drive circuit
US4634938A (en) Linearity corrected deflection circuit
EP0487795B1 (en) Linearity correction apparatus
JPH0828827B2 (en) Horizontal output circuit
JP3367029B2 (en) Deflection yoke
JP3832090B2 (en) Horizontal deflection circuit
JPH0568178A (en) Deflected current generating circuit
JP3063110B2 (en) Dynamic focus circuit
JPH0516766Y2 (en)
JP2001218460A (en) Switching power supply circuit
JP2888421B2 (en) Display monitor
KR800000293B1 (en) Circuit arrangement including a line deflection circuit
JPH04177978A (en) High voltage generating circuit
JPH09307782A (en) High frequency horizontal deflection and high voltage generating circuit
EP0114430B1 (en) Picture display device comprising a power supply circuit and a line deflection circuit
JPH10108034A (en) Horizontal deflection circuit
JP2001320601A (en) Image distortion correction device
JP2000333034A (en) Horizontal deflection circuit
JPH09224169A (en) Dynamic focus circuit
JPH0531347B2 (en)

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031128

LAPS Cancellation because of no payment of annual fees