JPH0843506A - Method for detecting deterioration state of nickel-based battery - Google Patents
Method for detecting deterioration state of nickel-based batteryInfo
- Publication number
- JPH0843506A JPH0843506A JP6181545A JP18154594A JPH0843506A JP H0843506 A JPH0843506 A JP H0843506A JP 6181545 A JP6181545 A JP 6181545A JP 18154594 A JP18154594 A JP 18154594A JP H0843506 A JPH0843506 A JP H0843506A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- impedance
- absolute value
- frequency
- deterioration state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、交流インピーダンスを
測定することによって劣化状態の検知や電池容量の推定
を行うニッケル系電池の劣化状態検知方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-based battery deterioration state detecting method for detecting a deterioration state and estimating a battery capacity by measuring an AC impedance.
【0002】[0002]
【従来の技術】従来からNi−Cd電池の劣化状態を検
知する方法として、実際に所定の電流を放電して所定の
電圧に達するまでの時間を測定し容量を判断するという
容量試験方法がある。これは、正確な劣化状態の検知が
可能であるが、測定に長時間を要するという欠点があ
る。また、測定の最中に停電が生じると本来の目的であ
る負荷に無停電に電力を供給するということができず信
頼性の悪いシステムや装置となる。そこで、これらの欠
点を解決し、短時間で簡単に劣化状態を検知する方法と
して電池の両極間の交流インピーダンスの測定値から推
定する方法が提案されている。この方法は、電池の交流
インピーダンスが劣化状態と相関関係があるということ
を利用したものである。Ni−Cd電池は劣化すると活
物質の減少および電解液の消失等が発生する。このた
め、活物質や電解液のインピーダンスが変化し、交流イ
ンピーダンスが増加する。さらに、極板の有効面積が減
少し、電池容量も低下する。2. Description of the Related Art Conventionally, as a method for detecting the deterioration state of a Ni-Cd battery, there is a capacity test method in which a capacity is judged by actually measuring a time until a predetermined current is discharged and reaching a predetermined voltage. . This allows accurate detection of the deteriorated state, but has the drawback of requiring a long time for measurement. Further, if a power failure occurs during measurement, the original purpose of the power cannot be supplied uninterruptibly to the load, resulting in a system or device with poor reliability. Therefore, as a method of solving these drawbacks and simply detecting the deterioration state in a short time, a method of estimating from the measured value of the AC impedance between both electrodes of the battery has been proposed. This method takes advantage of the fact that the AC impedance of the battery has a correlation with the deterioration state. When the Ni-Cd battery deteriorates, the active material decreases and the electrolytic solution disappears. Therefore, the impedance of the active material and the electrolytic solution changes, and the AC impedance increases. Furthermore, the effective area of the electrode plate is reduced and the battery capacity is also reduced.
【0003】[0003]
【発明が解決しようとする課題】しかし、この方法で
は、測定に使用する交流電源の周波数如何によって、あ
るいは、測定した交流インピーダンスの形態(実数部、
虚数部および位相角)如何によっては、交流インピーダ
ンスと電池容量との相関が無くなって、劣化状態検知が
高い精度にできないことがある。その理由は、高い周波
数では、電池構造上生じるインダクタンス成分および配
線等によるインダクタンス成分のためにインピーダンス
に正の虚数部が生じ測定すべき電圧/電流波形が歪み、
正確な測定ができなくなるためである。また、低い周波
数では、液濃度や電池電圧によってイオンの状態が左右
されてインピーダンスの負の虚数部が大きく変化するの
で、電池容量との相関が低くなるためである。ところが
従来では、劣化状態検知に適した周波数や交流インピー
ダンスの形態については明らかにされておらず、Ni−
Cd電池の劣化状態検知方法としてはまだ技術的に確立
していなかった。However, according to this method, it depends on the frequency of the AC power source used for measurement, or the form of the measured AC impedance (real part,
Depending on the imaginary part and the phase angle, there may be no correlation between the AC impedance and the battery capacity, and the deterioration state may not be detected with high accuracy. The reason for this is that at high frequencies, a positive imaginary part is generated in the impedance due to the inductance component caused by the battery structure and the inductance component due to wiring, etc., and the voltage / current waveform to be measured is distorted.
This is because accurate measurement cannot be performed. Also, at low frequencies, the state of ions is influenced by the liquid concentration and the battery voltage, and the negative imaginary part of the impedance changes significantly, so the correlation with the battery capacity becomes low. However, conventionally, the frequency and the form of the AC impedance suitable for detecting the deterioration state have not been clarified, and Ni-
The method for detecting the deterioration state of the Cd battery has not been technically established yet.
【0004】本発明は上記の事情に鑑みてなされたもの
で、相関の高い周波数や交流インピーダンスの形態を特
定することにより、ニッケル系電池の劣化状態の検知や
容量の推定の精度を高くし得るニッケル系電池の劣化状
態検知方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and the accuracy of detection of the deterioration state of the nickel-based battery and estimation of the capacity can be increased by specifying the form of the frequency and the AC impedance having a high correlation. An object of the present invention is to provide a method for detecting a deterioration state of a nickel-based battery.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に本発明のニッケル系電池の劣化状態検知方法は、交流
インピーダンスのうち虚数部の絶対値が実数部の絶対値
の1/30以下となる周波数で、被測定電池の交流イン
ピーダンスを測定し、前記交流インピーダンスあるいは
前記交流インピーダンスの実数部の値を前記被測定電池
の劣化状態検知に用いたことを特徴とする。In order to achieve the above object, the method for detecting a deteriorated state of a nickel-based battery of the present invention is such that the absolute value of the imaginary part of the AC impedance is 1/30 or less of the absolute value of the real part. The alternating current impedance of the measured battery is measured at the following frequency, and the value of the alternating current impedance or the real part of the alternating current impedance is used to detect the deterioration state of the measured battery.
【0006】また、本発明のニッケル系電池の劣化状態
検知方法は、新品電池の交流インピーダンスのうち虚数
部の絶対値が実数部の絶対値の1/30以下となる周波
数で、被測定電池の交流インピーダンスを測定し、測定
した交流インピーダンスの虚数部の絶対値もしくは絶対
値の増分または交流インピーダンスの位相角もしくは位
相角の増分を前記被測定電池の劣化状態検知に用いたこ
とを特徴とする。The method for detecting the state of deterioration of a nickel-based battery according to the present invention is one in which the absolute value of the imaginary part of the AC impedance of a new battery is 1/30 or less of the absolute value of the real part, and The alternating current impedance is measured, and the absolute value of the measured imaginary part of the alternating current impedance or the increment of the absolute value or the phase angle of the alternating current impedance or the increment of the phase angle is used for detecting the deterioration state of the battery to be measured.
【0007】また、本発明のニッケル系電池の劣化状態
検知方法は、新品電池と被測定電池の交流インピーダン
スをそれぞれ測定し、前記交流インピーダンスのうち虚
数部の絶対値が実数部の絶対値の1/30以下となる周
波数を特定し、前記新品電池の測定周波数と前記被測定
電池の測定周波数の差を前記被測定電池の劣化状態検知
に用いたことを特徴とする。Further, in the method for detecting the deterioration state of the nickel-based battery of the present invention, the AC impedances of the new battery and the battery to be measured are respectively measured, and the absolute value of the imaginary part of the AC impedance is 1 of the absolute value of the real part. A frequency that is equal to or less than / 30 is specified, and the difference between the measured frequency of the new battery and the measured frequency of the measured battery is used for detecting the deterioration state of the measured battery.
【0008】[0008]
【作用】上記手段により本発明は、交流インピーダンス
を測定することによって劣化状態の検知や電池容量の推
定を行うニッケル系電池の劣化状態検知方法において、
交流インピーダンスの虚数部の絶対値と実数部の絶対値
の比が十分小さくなる周波数範囲を有する交流電源で上
記交流インピーダンスを測定し、ニッケル系電池の劣化
状態検知方法に用いるように構成したので、ニッケル系
電池の劣化状態の検知や容量の推定の精度を高く行うこ
とができる。According to the above-mentioned means, the present invention provides a method for detecting the deterioration state of a nickel-based battery, which detects the deterioration state and estimates the battery capacity by measuring the AC impedance,
Since the ratio of the absolute value of the imaginary part of the AC impedance and the absolute value of the real part of the AC power source has a frequency range in which the ratio is sufficiently small, the AC impedance was measured, and the nickel-based battery was configured to be used for the deterioration state detection method. It is possible to detect the deterioration state of the nickel-based battery and estimate the capacity with high accuracy.
【0009】[0009]
【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。交流インピーダンスによってニッケル系電池
例えばNi−Cd電池の劣化状態の検知を行う原理は、
前述のように交流インピーダンスと劣化状態との相関が
あることを利用するものであるが、劣化状態の尺度とし
て電池容量に着目すれば、電池は劣化に伴って容量が減
少する。このため、交流インピーダンスと電池容量との
相関性が高く、しかも、測定が容易な劣化状態検知に適
した周波数あるいは、インピーダンスの形態である実数
部や虚数部あるいは位相や絶対値等を特定すれば、精度
の高い劣化状態検知方法を実現できる。Embodiments of the present invention will now be described in detail with reference to the drawings. The principle of detecting the deterioration state of a nickel-based battery, for example, a Ni-Cd battery, by AC impedance is as follows.
As described above, the fact that there is a correlation between the AC impedance and the deterioration state is used, but if the battery capacity is focused on as a measure of the deterioration state, the capacity of the battery decreases with deterioration. Therefore, if the frequency is suitable for detection of a deteriorated state, which has a high correlation between the AC impedance and the battery capacity and is easy to measure, or the real part or the imaginary part, which is the form of the impedance, the phase, the absolute value, or the like is specified. A highly accurate deterioration state detection method can be realized.
【0010】以下に劣化状態検知に適した周波数あるい
は、交流インピーダンスの形態について説明する。実験
に使用した電池は1.2Vで公称容量1800mAhの
Ni−Cd電池で実際に使用されていた電池(以下、回
収劣化電池と称する)である。さらに、もう1種類の電
池として新品電池の電解液量を故意に減少させた電池
(以下、劣化モデル電池と称する)を用いた。電池の実
際の容量は、JISに基づく試験にて測定した。交流イ
ンピーダンスの測定には、周波数応答アナライザを使用
し、ガルバノスタットにより、0.5Aの交流電流を流
し定電流法で行った。The frequency suitable for detecting the deterioration state or the form of AC impedance will be described below. The battery used in the experiment is a battery actually used as a Ni-Cd battery having a nominal capacity of 1800 mAh at 1.2 V (hereinafter, referred to as a recovered deteriorated battery). Furthermore, as another type of battery, a battery (hereinafter referred to as a deteriorated model battery) in which the amount of electrolytic solution of a new battery was intentionally reduced was used. The actual capacity of the battery was measured by a test based on JIS. A frequency response analyzer was used to measure the AC impedance, and the galvanostat was used to flow an AC current of 0.5 A by the constant current method.
【0011】図2は公称容量1800mAhのA社製回
収劣化電池における交流インピーダンスの虚数部の絶対
値が実数部の絶対値に比べて約1/50以下となる周波
数における交流インピーダンスの実数部(抵抗)と電池
容量との相関を示す特性図である。図8は図2に用いた
測定値の各成分(測定周波数、インピーダンスの実数
部、虚数部)を示す。図8に示すように虚数部の絶対値
と実数部の絶対値の比は約1/50以下になっている。
交流インピーダンスの実数部が小さいほど電池容量が大
きくなる傾向があり、劣化はあまり進んでいない。図に
示すように交流インピーダンスの実数部と容量との間に
は強い相関(相関係数0.96)のあることがわかる。
交流インピーダンス実数部と容量との間には、指数関数
が成立し、容量の低下に伴い、交流インピーダンスの実
数部は指数関数的に増大する。FIG. 2 shows the real part of the AC impedance (resistance) at the frequency at which the absolute value of the imaginary part of the AC impedance of the recovered and deteriorated battery manufactured by Company A having a nominal capacity of 1800 mAh is about 1/50 or less of the absolute value of the real part. 3] and a battery capacity. FIG. 8 shows each component (measurement frequency, impedance real number part, imaginary number part) of the measured values used in FIG. As shown in FIG. 8, the ratio of the absolute value of the imaginary part and the absolute value of the real part is about 1/50 or less.
The smaller the real part of the AC impedance, the larger the battery capacity tends to be, and the deterioration has not progressed so much. As shown in the figure, there is a strong correlation (correlation coefficient 0.96) between the real part of the AC impedance and the capacitance.
An exponential function is established between the AC impedance real part and the capacitance, and the real part of the AC impedance exponentially increases as the capacitance decreases.
【0012】図3は公称容量1650mAhのB社製回
収劣化電池における交流インピーダンスの虚数部の絶対
値が実数部の絶対値に比べて約1/30以下となる周波
数における交流インピーダンスの実数部と電池容量との
相関を示す特性図である。図9は図3に用いた測定値の
各成分(測定周波数、インピーダンスの実数部、虚数
部)を示す。図9に示すように虚数部の絶対値と実数部
の絶対値の比は約1/30以下になっている。交流イン
ピーダンスの実数部が小さいほど電池容量が大きくなる
傾向があり、劣化はあまり進んでいない。図に示すよう
に抵抗が大きく容量が無い電池が見られるが、多くの電
池は図2と同様に交流インピーダンスの実数部と容量と
の間には強い相関のあることがわかる。FIG. 3 shows the battery and the real part of the AC impedance at a frequency at which the absolute value of the imaginary part of the AC impedance of the recovered deteriorated battery manufactured by Company B having a nominal capacity of 1650 mAh is about 1/30 or less of the absolute value of the real part. It is a characteristic view which shows the correlation with capacity. FIG. 9 shows each component (measurement frequency, real number part, imaginary number part of impedance) of the measured value used in FIG. As shown in FIG. 9, the ratio of the absolute value of the imaginary part and the absolute value of the real part is about 1/30 or less. The smaller the real part of the AC impedance, the larger the battery capacity tends to be, and the deterioration has not progressed so much. As shown in the figure, there are batteries with high resistance and no capacity, but it can be seen that in many batteries, as in FIG. 2, there is a strong correlation between the real part of the AC impedance and the capacity.
【0013】図4は、公称容量4000mAhの劣化モ
デル電池における図2と同様な測定基準(虚数部の絶対
値が実数部の絶対値に比べて十分に小さい)での交流イ
ンピーダンスの実数部と電池容量との相関を示す特性図
である。図2と同様に交流インピーダンスの実数部と容
量との間には強い相関があることがわかる。図10は図
4に用いた絶対値の各成分(測定周波数、インピーダン
スの実数部、虚数部)を示す。図10に示すように虚数
部の絶対値と実数部の絶対値の比は約1/60以下にな
っている。FIG. 4 shows the real part of the AC impedance and the battery under the same measurement standard (the absolute value of the imaginary part is sufficiently smaller than the absolute value of the real part) as in FIG. 2 in the deteriorated model battery having a nominal capacity of 4000 mAh. It is a characteristic view which shows the correlation with capacity. As in FIG. 2, it can be seen that there is a strong correlation between the real part of the AC impedance and the capacitance. FIG. 10 shows each component of the absolute value used in FIG. 4 (measurement frequency, real part of impedance, imaginary part). As shown in FIG. 10, the ratio of the absolute value of the imaginary part and the absolute value of the real part is about 1/60 or less.
【0014】以上、図2〜図4に示したようにインピー
ダンスの虚数部の絶対値と実数部の絶対値の比が十分に
小さくなるような周波数、すなわちインピーダンスの位
相がほぼ0となる周波数でNi−Cd電池のインピーダ
ンスを測定し、インピーダンスの実数部を算出すればN
i−Cd電池の劣化状態を高精度に検知できる。なお、
ここでは、インピーダンスの実数部のみについて説明し
たが、本実施例においては、虚数部が実数部に比べて十
分に小さいのでインピーダンス自体を劣化状態検知方法
として用いることができる。As described above, as shown in FIGS. 2 to 4, at a frequency at which the ratio between the absolute value of the imaginary part of the impedance and the absolute value of the real part is sufficiently small, that is, at the frequency at which the impedance phase is almost zero. If the impedance of the Ni-Cd battery is measured and the real part of the impedance is calculated, N
The deterioration state of the i-Cd battery can be detected with high accuracy. In addition,
Although only the real number part of the impedance has been described here, in the present embodiment, the imaginary number part is sufficiently smaller than the real number part, so that the impedance itself can be used as the deterioration state detection method.
【0015】図1に本実施例に係る劣化状態検知方法の
フローチャートを示す。本フローチャートにより測定周
波数を選定し、本周波数におけるインピーダンスあるい
はインピーダンスの実数部を用いることにより図2〜図
4に示したようにNi−Cd電池の劣化状態を検知でき
る。FIG. 1 shows a flowchart of the deterioration state detecting method according to this embodiment. The deterioration state of the Ni-Cd battery can be detected as shown in FIGS. 2 to 4 by selecting the measurement frequency according to this flowchart and using the impedance or the real part of the impedance at this frequency.
【0016】即ち、イにおいて、測定する周波数を変え
て電池の交流インピーダンスを測定する。ロにおいて、
イで測定した交流インピーダンスの実数部、虚数部を算
出する。ハにおいて、ロで算出した実数部の絶対値と虚
数部の絶対値の比、あるいはイで測定した交流インピー
ダンスの位相角を算出する。ニにおいて、ハで算出した
比が1/30以下、あるいはハで算出した位相角が十分
0に近い周波数を選定する。ホにおいて、ニで選定した
周波数を劣化状態検知に使用する。That is, in (a), the AC impedance of the battery is measured by changing the frequency to be measured. In Russia,
Calculate the real and imaginary parts of the AC impedance measured in b. In c, the ratio of the absolute value of the real part and the absolute value of the imaginary part calculated in (b) or the phase angle of the AC impedance measured in (a) is calculated. In D, the frequency at which the ratio calculated by C is 1/30 or less, or the phase angle calculated by C is sufficiently close to 0 is selected. In E, the frequency selected in D is used for deterioration condition detection.
【0017】図5は、図2におけるA社製電池の測定点
を得た交流電源の周波数(測定周波数)を示した図であ
り、図2の測定点は、劣化が少ない電池では測定周波数
100Hz付近で生じ、劣化が大きくなってくると測定
周波数は大きくなり、容量が0付近では2kHz程度に
なる。従って、本電池では、測定周波数は、約100〜
2000Hz程度において交流インピーダンスの虚数部
の絶対値と実数部の絶対値の比が1/50以下になる。FIG. 5 is a diagram showing the frequency (measurement frequency) of the AC power source at which the measurement point of the battery manufactured by Company A in FIG. 2 was obtained. The measurement point of FIG. The measurement frequency increases as the deterioration occurs in the vicinity and becomes large, and becomes about 2 kHz when the capacity is near 0. Therefore, in this battery, the measurement frequency is about 100 to
At about 2000 Hz, the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance becomes 1/50 or less.
【0018】この原因は、数kHz以上の高い周波数領
域では、電池の構造上から生じるインダクタンス成分お
よび配線等によるインダクタンス成分のため、測定すべ
き電圧/電流波形が歪み、正の虚数部の値が大きくなり
測定基準を満足しなくなり、正確な測定ができなくなる
ためである。また、100Hz以下の低い周波数領域で
は、液濃度や電池電圧によりイオンの状態が左右され、
インピーダンスが大きく変化して、負の虚数部が生じ容
量との相関が低くなるためである。The cause of this is that, in the high frequency region of several kHz or more, the voltage / current waveform to be measured is distorted and the value of the positive imaginary part is due to the inductance component caused by the structure of the battery and the inductance component due to the wiring. This is because the size becomes large and the measurement standard is not satisfied, and accurate measurement cannot be performed. Also, in the low frequency region of 100 Hz or less, the state of ions depends on the liquid concentration and the battery voltage,
This is because the impedance greatly changes, a negative imaginary part is generated, and the correlation with the capacitance becomes low.
【0019】図6は、図3におけるB社製電池の測定点
を得た交流電源の周波数(測定周波数)を示した図であ
り、図3の測定点は、劣化が少ない電池では測定周波数
約100Hz付近で生じ、劣化が大きくなってくると測
定周波数は大きくなり、容量が0付近では一部の例外試
料を除き2〜10kHz程度になる。従って、本電池で
は、測定周波数は、約100〜10kHz程度において
交流インピーダンスの虚数部の絶対値と実数部の絶対値
の比が1/30以下になる。FIG. 6 is a diagram showing the frequency (measurement frequency) of the AC power source at which the measurement points of the battery manufactured by Company B in FIG. 3 were obtained. The measurement points of FIG. The measurement frequency increases as the deterioration occurs in the vicinity of 100 Hz and becomes large, and becomes about 2 to 10 kHz when the capacity is near 0, except for some exceptional samples. Therefore, in this battery, the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance is 1/30 or less at the measurement frequency of about 100 to 10 kHz.
【0020】図7は、図4における劣化モデル電池の測
定点を得た交流電源の周波数(測定周波数)を示した図
であり、図4の測定点は、劣化が少ない電池では測定周
波数60Hz付近で生じ、劣化が大きくなってくると測
定周波数は大きくなり、容量が0付近では1kHz程度
になる。従って、本電池では、測定周波数は、約60〜
1kHz程度において交流インピーダンスの虚数部の絶
対値と実数部の絶対値の比が約1/60以下になる。FIG. 7 is a diagram showing the frequency (measurement frequency) of the AC power source at which the measurement point of the deterioration model battery in FIG. 4 was obtained. The measurement point of FIG. Occurs, the measurement frequency increases as the deterioration increases, and becomes about 1 kHz when the capacity is near zero. Therefore, with this battery, the measurement frequency is about 60-
At about 1 kHz, the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance becomes about 1/60 or less.
【0021】以上、図5〜図7に示したように劣化が大
きくなってくると虚数部が小さくなる周波数は急激に大
きくなってくる。したがって、本周波数を劣化検知の手
段として用いれば高精度なNi−Cd電池の劣化状態検
知方法となる。As described above, as shown in FIGS. 5 to 7, as the deterioration becomes larger, the frequency at which the imaginary part becomes smaller rapidly increases. Therefore, if this frequency is used as a means for detecting deterioration, it becomes a highly accurate method for detecting the deterioration state of the Ni-Cd battery.
【0022】また、虚数部が小さくなる周波数が大きく
異なるということは、劣化していない時に測定したと同
じ周波数で劣化した電池のインピーダンスを測定すると
インピーダンスの虚数部が実数部に比べて増加が大きい
ということである。そこで、この増加分または虚数部と
実数部の比率すなわち位相を劣化検知手段として十分に
用いることができる。Also, the fact that the frequency at which the imaginary part becomes smaller greatly differs means that when measuring the impedance of a battery that has deteriorated at the same frequency as when measured without deterioration, the imaginary part of the impedance greatly increases compared to the real part. That's what it means. Therefore, this increase or the ratio of the imaginary part and the real part, that is, the phase can be sufficiently used as the deterioration detecting means.
【0023】さらに、上記測定基準が生じる60〜10
kHz程度の範囲で測定したインピーダンスは、電池内
部のリード抵抗と電解液抵抗を表しており、Ni−Cd
電池の劣化状態の大部分である電解液の消失の影響を大
きく受けるため相関が高い。この結果から、交流インピ
ーダンス法によるNi−Cd電池の劣化状態検知方法に
は、交流インピーダンスの虚数部の絶対値と実数部の絶
対値が1/30以下程度になるか、あるいは、インピー
ダンスの位相が0に近くなる測定周波数を有する交流電
源で測定することが最も有効であることがわかる。以上
の発明は、Ni−Cd電池について述べたが、Ni−M
H電池やリチウム2次電池等のニッケル系電池にも適用
できる。Furthermore, 60 to 10 in which the above-mentioned measurement standards occur
The impedance measured in the range of about kHz represents the lead resistance and the electrolyte resistance inside the battery.
The correlation is high because it is greatly affected by the disappearance of the electrolytic solution, which is the majority of the deterioration state of the battery. From this result, in the deterioration state detection method of the Ni-Cd battery by the AC impedance method, the absolute value of the imaginary part and the absolute value of the real part of the AC impedance is about 1/30 or less, or the impedance phase is It turns out that it is most effective to measure with an AC power supply having a measurement frequency close to zero. The above invention describes the Ni-Cd battery.
It can also be applied to nickel-based batteries such as H batteries and lithium secondary batteries.
【0024】[0024]
【発明の効果】以上説明したように本発明によれば、交
流インピーダンスを劣化状態と相関の強い周波数の交流
電源で測定するため、精度の高い劣化状態検知ができ
る。これを交流インピーダンスによる劣化状態検知方法
に適用することによりニッケル系電池の劣化状態あるい
は、電池容量の推定が高精度に行え、今後の通信のパー
ソナル化が進展し、電池を装備した機器が増大する事を
考えれば情報通信産業の発達の面で大きな貢献をするも
のである。As described above, according to the present invention, since the AC impedance is measured by the AC power source having a frequency having a strong correlation with the deterioration state, the deterioration state can be detected with high accuracy. By applying this to the deterioration state detection method by AC impedance, the deterioration state of the nickel-based battery or the battery capacity can be estimated with high accuracy, the personalization of communication in the future will progress, and the equipment equipped with the battery will increase. Considering this, it will make a great contribution to the development of the information and communication industry.
【図1】本発明の一実施例を示すフローチャートであ
る。FIG. 1 is a flowchart showing an embodiment of the present invention.
【図2】Ni−Cd電池のA社製劣化回収電池における
交流インピーダンスの虚数部の絶対値と実数部の絶対値
との比が1/50以下における交流インピーダンスと電
池容量との相関の一例を示す特性図である。FIG. 2 shows an example of the correlation between the AC impedance and the battery capacity when the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance of the Ni-Cd battery deterioration recovery battery manufactured by Company A is 1/50 or less. It is a characteristic view to show.
【図3】Ni−Cd電池のB社製劣化回収電池における
交流インピーダンスの虚数部の絶対値と実数部の絶対値
との比が1/30以下における交流インピーダンスと電
池容量との相関の一例を示す特性図である。FIG. 3 shows an example of the correlation between AC impedance and battery capacity when the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance in the Ni-Cd battery deterioration recovery battery manufactured by Company B is 1/30 or less. It is a characteristic view to show.
【図4】Ni−Cd電池のモデル劣化電池における交流
インピーダンスの虚数部の絶対値と実数部の絶対値との
比が1/60以下における交流インピーダンスと電池容
量との相関の一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of the correlation between the AC impedance and the battery capacity when the ratio of the absolute value of the imaginary part and the absolute value of the real part of the AC impedance in a model-degraded Ni-Cd battery is 1/60 or less. Is.
【図5】図2の測定点を得た測定周波数と電池容量の関
係の一例を示す特性図である。5 is a characteristic diagram showing an example of a relationship between a measurement frequency obtained at the measurement points of FIG. 2 and a battery capacity.
【図6】図3の測定点を得た測定周波数と電池容量の関
係の一例を示す特性図である。FIG. 6 is a characteristic diagram showing an example of the relationship between the measurement frequency at which the measurement points of FIG. 3 are obtained and the battery capacity.
【図7】図4の測定点を得た測定周波数と電池容量の関
係の一例を示す特性図である。FIG. 7 is a characteristic diagram showing an example of the relationship between the measurement frequency obtained at the measurement points of FIG. 4 and the battery capacity.
【図8】図2に用いた測定値の各成分を示す説明図であ
る。FIG. 8 is an explanatory diagram showing each component of the measurement values used in FIG.
【図9】図3に用いた測定値の各成分を示す説明図であ
る。9 is an explanatory diagram showing each component of the measurement values used in FIG.
【図10】図4に用いた絶対値の各成分を示す説明図で
ある。10 is an explanatory diagram showing each component of the absolute value used in FIG. 4. FIG.
イ,ロ,ハ,ニ,ホ…本発明の一実施例に係るニッケル
系電池の劣化状態検知方法の各ステップ。A, B, C, D, E ... Each step of the deterioration state detection method for a nickel-based battery according to an embodiment of the present invention.
Claims (3)
値が実数部の絶対値の1/30以下となる周波数で、被
測定電池の交流インピーダンスを測定し、前記交流イン
ピーダンスあるいは前記交流インピーダンスの実数部の
値を前記被測定電池の劣化状態検知に用いたことを特徴
とするニッケル系電池の劣化状態検知方法。1. The AC impedance of a battery under test is measured at a frequency at which the absolute value of the imaginary part of the AC impedance is 1/30 or less of the absolute value of the real part, and the AC impedance or the real part of the AC impedance is measured. Is used to detect the deterioration state of the battery to be measured.
数部の絶対値が実数部の絶対値の1/30以下となる周
波数で、被測定電池の交流インピーダンスを測定し、測
定した交流インピーダンスの虚数部の絶対値もしくは絶
対値の増分または交流インピーダンスの位相角もしくは
位相角の増分を前記被測定電池の劣化状態検知に用いた
ことを特徴とするニッケル系電池の劣化状態検知方法。2. The imaginary part of the measured AC impedance is measured by measuring the AC impedance of the battery under test at a frequency at which the absolute value of the imaginary part of the AC impedance of the new battery is 1/30 or less of the absolute value of the real part. The method for detecting a deterioration state of a nickel-based battery, wherein the absolute value or the absolute value of the absolute value or the phase angle or the phase angle of the AC impedance is used for detecting the deterioration state of the battery to be measured.
ンスをそれぞれ測定し、前記交流インピーダンスのうち
虚数部の絶対値が実数部の絶対値の1/30以下となる
周波数を特定し、前記新品電池の測定周波数と前記被測
定電池の測定周波数の差を前記被測定電池の劣化状態検
知に用いたことを特徴とするニッケル系電池の劣化状態
検知方法。3. The new battery and the battery under test are each measured for AC impedance, and the frequency at which the absolute value of the imaginary part of the AC impedance is 1/30 or less of the absolute value of the real part is specified, and the new battery is specified. The method for detecting a deterioration state of a nickel-based battery, wherein the difference between the measurement frequency of 1. and the measurement frequency of the measured battery is used for detecting the deterioration state of the measured battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6181545A JPH0843506A (en) | 1994-08-02 | 1994-08-02 | Method for detecting deterioration state of nickel-based battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6181545A JPH0843506A (en) | 1994-08-02 | 1994-08-02 | Method for detecting deterioration state of nickel-based battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0843506A true JPH0843506A (en) | 1996-02-16 |
Family
ID=16102662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6181545A Pending JPH0843506A (en) | 1994-08-02 | 1994-08-02 | Method for detecting deterioration state of nickel-based battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0843506A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250160A (en) * | 1995-03-08 | 1996-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Method for deriving regression expression for estimating capacity of trickling ni-cd battery |
US6924623B2 (en) | 1998-08-10 | 2005-08-02 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
WO2012118005A1 (en) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | Device for detecting condition of battery, power supply device, mobile body, charging device, accumulator pack and detection device |
JP2014044149A (en) * | 2012-08-28 | 2014-03-13 | Suzuki Motor Corp | Method for estimating deterioration of lithium ion battery |
JPWO2013114669A1 (en) * | 2012-01-31 | 2015-05-11 | プライムアースEvエナジー株式会社 | Charge detection device |
JP2015222195A (en) * | 2014-05-22 | 2015-12-10 | トヨタ自動車株式会社 | Method of determining applicability of used secondary battery to reconstituted product, and method of reconstituting battery-pack |
US9354278B2 (en) | 2012-01-31 | 2016-05-31 | Primearth Ev Energy Co., Ltd. | Device for detecting normal, abnormal or deteriorated battery state |
CN109994790A (en) * | 2019-03-27 | 2019-07-09 | 东莞市坤乾新能源科技有限公司 | A kind of dynamic lithium battery group and its group gas-mixing screening method |
-
1994
- 1994-08-02 JP JP6181545A patent/JPH0843506A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250160A (en) * | 1995-03-08 | 1996-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Method for deriving regression expression for estimating capacity of trickling ni-cd battery |
US6924623B2 (en) | 1998-08-10 | 2005-08-02 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
US7030618B2 (en) | 1998-08-10 | 2006-04-18 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
US7075305B2 (en) | 1998-08-10 | 2006-07-11 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
US7180298B2 (en) | 1998-08-10 | 2007-02-20 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
US7235326B2 (en) | 1998-08-10 | 2007-06-26 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
WO2012118005A1 (en) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | Device for detecting condition of battery, power supply device, mobile body, charging device, accumulator pack and detection device |
JPWO2013114669A1 (en) * | 2012-01-31 | 2015-05-11 | プライムアースEvエナジー株式会社 | Charge detection device |
US9354278B2 (en) | 2012-01-31 | 2016-05-31 | Primearth Ev Energy Co., Ltd. | Device for detecting normal, abnormal or deteriorated battery state |
JP2016166880A (en) * | 2012-01-31 | 2016-09-15 | プライムアースEvエナジー株式会社 | Charging amount detection device |
US10429444B2 (en) | 2012-01-31 | 2019-10-01 | Primearth Ev Energy Co., Ltd. | State of charge detection device |
JP2014044149A (en) * | 2012-08-28 | 2014-03-13 | Suzuki Motor Corp | Method for estimating deterioration of lithium ion battery |
JP2015222195A (en) * | 2014-05-22 | 2015-12-10 | トヨタ自動車株式会社 | Method of determining applicability of used secondary battery to reconstituted product, and method of reconstituting battery-pack |
CN109994790A (en) * | 2019-03-27 | 2019-07-09 | 东莞市坤乾新能源科技有限公司 | A kind of dynamic lithium battery group and its group gas-mixing screening method |
CN109994790B (en) * | 2019-03-27 | 2021-09-28 | 东莞市坤乾新能源科技有限公司 | Power lithium battery pack and matching and screening method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3379298B2 (en) | Device for determining the life of sealed lead-acid batteries | |
EP0913697B1 (en) | Electric leak detecting apparatus for electric motorcars | |
US6495990B2 (en) | Method and apparatus for evaluating stored charge in an electrochemical cell or battery | |
JPH08507368A (en) | Method and apparatus for determining the state of charge of an electrochemical cell | |
EP2494372B1 (en) | Device and method for testing internal resistance of battery pack | |
US6920404B2 (en) | Method of detecting residual capacity of secondary battery | |
JP6027030B2 (en) | Charge detection device | |
JP4017770B2 (en) | Electric vehicle leakage detection device | |
JP2007333494A (en) | Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof | |
JPH0843506A (en) | Method for detecting deterioration state of nickel-based battery | |
JP3654469B2 (en) | Rechargeable battery remaining capacity detection method | |
JPH0843507A (en) | Method for detecting deterioration state of ni-based battery | |
JPH05281310A (en) | Method and device for detecting deterioration of lead battery | |
JP2000228337A (en) | Quality determining method for capacitor | |
JP3675678B2 (en) | Probe contact state detection method and probe contact state detection device | |
JP2010197354A (en) | Capacity estimating device for secondary battery | |
JP6826016B2 (en) | Secondary battery ion concentration estimation method and ion concentration estimation device | |
JPH0821434B2 (en) | Method for detecting deterioration of sealed lead-acid battery | |
JP3925136B2 (en) | Capacitor pass / fail judgment method | |
JP2999405B2 (en) | Battery deterioration judgment method | |
JPS60625B2 (en) | Storage battery performance determination method and device | |
JP3385780B2 (en) | Method for deriving regression equation for estimating capacity of Ni-Cd battery for trickle | |
JPH08250159A (en) | Detecting method for deteriorated state of ni-cd battery | |
JP2546050B2 (en) | Deterioration state detection method for stationary lead batteries | |
JP2014006099A (en) | Deterioration determination method and device for storage battery |