JP3654469B2 - Rechargeable battery remaining capacity detection method - Google Patents

Rechargeable battery remaining capacity detection method Download PDF

Info

Publication number
JP3654469B2
JP3654469B2 JP23925496A JP23925496A JP3654469B2 JP 3654469 B2 JP3654469 B2 JP 3654469B2 JP 23925496 A JP23925496 A JP 23925496A JP 23925496 A JP23925496 A JP 23925496A JP 3654469 B2 JP3654469 B2 JP 3654469B2
Authority
JP
Japan
Prior art keywords
remaining capacity
battery
equivalent circuit
measurement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23925496A
Other languages
Japanese (ja)
Other versions
JPH1082843A (en
Inventor
輝壽 神原
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23925496A priority Critical patent/JP3654469B2/en
Publication of JPH1082843A publication Critical patent/JPH1082843A/en
Application granted granted Critical
Publication of JP3654469B2 publication Critical patent/JP3654469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池などの二次電池の使用可能な残存容量の検出方法に関するものである。
【0002】
【従来の技術】
現在、ノート型パソコン、携帯電話等、リチウム二次電池を電源とした携帯機器が急速に普及しつつある。これらの機器には、使用可能時間を表す残存容量計が搭載されている。残存容量は、電池の電圧を測定し、これにより決定する直接法と、充電電流の積算値をメモリーに記憶し、これから放電電流を逐次差し引くことで行う間接法がある。現在市販されている携帯電話には上述の電池電圧測定法が、またノート型パソコンには電流積算法が主に採用されている。
電流積算による残存容量の検出方法は、数多くの提案がなされている(特開平7−241039号公報他)。また、電池電圧測定による残存容量の検出も数多く提案されている(特開平7−98367号公報他)。
【0003】
その他の残存容量の検出法として、パルス放電の際の電池電圧の降下量により残存容量を測定する方法、パルス放電後の電池電圧の回復特性により残存容量を測定する方法、電池のキャパシタンス測定により残存容量を測定する方法、特定周波数の交流インピーダンスにより残存容量を測定する方法(特開平5−281310号公報)、さらに交流インピーダンスの実数成分と虚数成分の比や虚数成分と測定周波数との演算により残存容量を測定する方法(特開平5−135806号公報)が提案されている。
【0004】
【発明が解決しようとする課題】
この種二次電池の残存容量の検出装置は、前述の電池電圧検出方式によるものでは、比較的安価に製造できるが、検出精度が低いという問題がある。そのためこの方式を用いた携帯電話等の機器の残存容量の表示は、フル充電状態及び残存容量0の空状態を両端としたLEDの段階別点灯方式を用いている。
また、ノート型パソコンで主に採用されている電気量積算方式は、検出精度が高く、残存容量を分単位で表示できる長所がある、しかし、積算した電気量を記録するためのメモリーを必要とするため、コスト高になるという問題がある。
本発明は、上記の課題に鑑み、二次電池、特にリチウムイオン二次電池の残存容量をより高い精度で直接検出できる方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、被検二次電池の複素インピーダンスを測定し、その測定値より算出される等価回路的抵抗値または等価回路的容量値を用いると、メモリー回路を用いることなく、直接的に残存容量を判別できることを見いだした。
ここにおいて、前記等価回路的抵抗値は、複素インピーダンスの測定値より得られるインピーダンスの実数成分―虚数成分図において、100Hzから0.1Hzの周波数領域に出現する円弧の半径より算出される。また、前記等価回路的容量値は、複素インピーダンスの測定値より得られるインピーダンスの実数成分―虚数成分図において、100Hzから0.1Hzの周波数領域に出現する円弧の半径をRとし、前記円弧の頂点を与える周波数をfとするとき、1/(2πfR)をもとに算出される。
【0006】
【発明の実施の形態】
本発明の残存容量の検出方法を実施するための機器を構成するためには、複素インピーダンス測定回路及び測定データ演算回路が必要である。また、必要に応じて電池温度を測定する部分が必要である。
複素インピーダンスの測定方法及び回路に関しては、交流ブリッジ法(電気化学測定法p216、藤島昭著、技報堂出版1984年)、電流―位相検知法(電気化学測定法p217、藤島昭著、技報堂出版1984年)、ホワイトノイズ入力−FFT解析法(電気化学測定法p51、電気化学協会発行、1988年)等、数多く提案されているが、本発明の検出方法については特定の測定方式及び測定機器を用いる必要はない。
【0007】
本発明の残存容量の検出プロセスは、まず上記方法により複素インピーダンスを測定し、次にこれにより得られるインピーダンスの実数成分―虚数成分図において、低周波数領域(100Hzから0.1Hzの周波数領域)に出現する円弧の半径つまり等価回路的抵抗値を算出する。そして、この値を必要に応じて温度補正を施し、あらかじめ定められた等価回路的抵抗値と残存容量値との対応表に照らし合わせて二次電池の残存容量を決定する。
また、上述の等価回路的抵抗値つまりインピーダンスの実数成分―虚数成分図において得られる円弧の半径をRとし、前記円弧の頂点を与える周波数をfとするとき、1/(2πfR)をもとに算出される等価回路的容量値を用い、あらかじめ定められた等価回路的容量値と残存容量値との対応表に照らし合わすことで二次電池の残存容量を決定することも可能である。
【0008】
上記プロセス中、低周波数領域に出現する円弧の半径つまり等価回路的抵抗値の算出手法は、電気化学的測定法では測定する周波数領域を対数的に分割し、最小二乗法によりフィッティングを施し、円の半径を求めるのが一般的である。このとき測定点の個数が多いほど得られる結果の信頼性が高くなることは言うまでもない。しかしながら、実際的には本発明の二次電池の残存容量の検出方法としては、100Hzから0.1Hzの周波数領域より最適な3点をあらかじめ選択しておき、この3点のデータにより円の半径を計算する方法が、回路的には簡単に構成できる。
【0009】
また、上述の等価回路的容量値の測定は、100Hzから0.1Hzの周波数を対数的に分割し、その結果得られるインピーダンス図における円弧のなかで、最大の虚数成分を与える測定周波数をfとする必要があり、このとき測定する周波数の個数が多いほど得られる結果の信頼性が高くなることは言うまでもない。一方、電池のインピーダンスは、温度の影響を受けることが多く、この場合、インピーダンス測定により得られた等価回路的抵抗値をあらかじめ定められた係数により温度補正を行う必要がある。そのためには、本発明の残存容量の検出方法により機器を構成する時、必要によりサーミスタなどの温度測定端子を電池表面に取り付ける必要がある。
【0010】
【実施例】
以下、実施例により本発明の方法を具体的に説明する。
《実施例1》
残存容量の異なるリチウムイオン二次電池の複素インピーダンス測定を行い、これにより得られる等価回路的抵抗値及び等価回路的容量値と電池残容量の対比を行うことにより残存容量を求めた。測定は以下に記載した手順に従い実施した。
【0011】
1−1.異なる残存容量を有する電池状態の再現
試験電池は松下電池工業(株)製円筒型リチウムイオン電池(品番CGR17500:上限電圧4.1V、下限電圧3.0V、放電容量700mAh)10個を用いた。複素インピーダンスの測定は、電池の残存容量が100%、50%、30%、10%、5%、0%の状態で実施した。電池状態の作成は、25℃の電池温度において、電池電圧が上限カット電圧である4.1Vに到達するまで70mA(10時間率相当)の定電流で充電した状態を残存容量100%とし、この後70mA(10時間率相当)の定電流で所定時間放電することにより、残存容量50%、30%、10%、5%、0%の電池状態とした。
【0012】
試験電池の残存容量の確認の一例として、本測定に用いた電池(電池番号1番)の放電曲線を図1に示した。図1において、下限カット電圧である3.0V到達までの放電時間が10.0時間であることより、この電池の放電容量は70mA×10時間=0.7Ahであり、公称通りの容量を有することが確認された。これにより、電池の残存容量の再現として上述の方法が妥当であることが示された。
この結果も含め、評価した10個の電池の放電容量を表1に示した。この結果、放電容量の最も低いもので0.69Ah、また最も大きいもので0.72Ahであり、これにより放電容量が、(0.72−0.69)/0.7=5%以内のバラツキ範囲にあることが判明した。
【0013】
【表1】

Figure 0003654469
【0014】
1−2.複素インピーダンスの測定
上記10個の電池の複素インピーダンスを測定した。複素インピーダンスは、上述のプロセスに従い電池を充放電処理後、25℃で20時間の休止を経た後測定した。本測定では、英国シューレンベルガー社製ソーラトロンを用い、電池の開路電圧を中心に実効値10mVの正弦波を電池に印加し、印加電圧の減衰及び位相差を求めることにより行った。測定周波数域は100kHz〜100mHzとし、これを対数で各オーダー毎に10分割し、合計60個の測定数とした。
本測定の代表例として、電池番号1番の複素インピーダンスの実数ー虚数成分図を図2に示した。図中○印及び×印はそれぞれ、上述のプロセスに従い再現した残存容量100%及び0%の電池状態での測定データである。
【0015】
図2に示されるように、残存容量100%及び0%の電池の測定データは、100Hz以上の高周波数領域とそれ以下の低周波数領域において、測定点を結ぶ円弧を有する。図2において、r1(=47mΩ)は残存容量0%の電池の低周波数領域における測定点を結ぶ円弧の半径であり、r2(=22.5mΩ)は残存容量100%の電池の低周波数領域における測定点を結ぶ円弧の半径である。このようにして、残存容量の異なる電池の測定データから低周波数領域における測定点を結ぶ円弧の半径を求めたところ、電池の残存容量が低下すると、低周波数領域における測定点を結ぶ円弧の半径が増大することがわかった。この円弧の半径は電気化学的には、等価回路的抵抗値と呼ばれ、電子の授受を伴う電気化学反応の反応抵抗を表すものである。
【0016】
次に、この円弧の半径つまり等価回路的抵抗値を最小二乗法を用いて算出した結果を表2に示した。表2においては、残存容量50%、30%、10%、5%の状態での結果を併せて記載した。さらに、他の9個の電池の同様の測定の結果を表3に示した。表3においては、円弧の半径の平均値、最大値及び最小値を併せて記載した。
【0017】
【表2】
Figure 0003654469
【0018】
【表3】
Figure 0003654469
【0019】
本測定では合計60個の測定周波数によりインピーダンス解析を行ったが、測定周波数点を3カ所に絞り、そのデータにより円弧の半径つまり等価回路的抵抗値を計算すると、表4に示した結果を得た。この結果は表3に示した最小二乗法による値とほぼ同程度となり、実際上の測定機器としては、本電池系での測定回路は大きく単純化することができることを見いだした。
【0020】
【表4】
Figure 0003654469
【0021】
1−3.インピーダンスの温度依存性評価
次に、インピーダンスの温度依存性を評価した。測定は上述のプロセスと同じ処理を電池に施し、各温度で複素インピーダンスの測定を行った。代表的な例として電池番号1番の残存容量100%の状態での測定結果を図3に示した。
この結果、本電池のインピーダンスは温度に依存し、これを補正するには例えば下記の式を用いることができる。また、この補正式は、電池番号2番から10番までの電池にも適応可能であったが、補正式は特にこの式に限定されるものではなく、その他多数提案できることは言うまでもない。
【0022】
【数1】
Figure 0003654469
【0023】
式(1)において、Rは等価回路的抵抗値、Tは温度(K)である。
【0024】
1−4.実モードでのインピーダンス値の確認
以上の評価において、インピーダンス値は電池の休止状態での測定値である。実際の機器においては、インピーダンス測定は機器へ電力を供給している状態で行う必要がある。電池に定電流を印加した状態でインピーダンスを測定し、等価回路的抵抗値を算出した。その結果の一例を図4に示した。図4の曲線部分に示される供給電流と等価回路的抵抗値との関係は、例えば次式(2)で表される。なお、測定電池は電池番号1を、また電池の残存容量は100%の状態のものを用いた。
【0025】
【数2】
Figure 0003654469
【0026】
式(2)において、Rは等価回路的抵抗値、iは機器への供給電流値である。この結果、等価回路的抵抗値は、電池(公称容量700mAh)の機器への供給電流が20mAまでは変化しないが、それ以上の電流を供給していると、供給電流が大きいほどインピーダンス測定より算出される等価回路的抵抗値は小さくなることが確認された。つまり本測定法を用い実際に残存容量計を作成する際は、供給電流を測定し、それが20mAより大きいときは、補正式(2)に従い補正する必要がある。本測定では、測定電池は電池番号1の残存容量は100%の状態のものを用いたが、その他の残存容量の状態でも同様の結果を得た。
また、本補正方法は、電池番号2番から10番までの電池にも適応可能であった。しかし、補正式は特に本式に限定されるものではなく、その他多数提案できることは言うまでもない。
【0027】
1−5.等価回路的抵抗値による電池残容量の検出
以上のプロセスに従うと、等価回路的抵抗値の測定によりリチウムイオン二次電池の残存容量を直接的に検出することが可能である。
その算出方法の一例を図5に示した。図5は表3に示した等価回路抵抗値の平均を独立変数に、また電池残存容量を従属変数とする図表であり、等価回路抵抗値(R)と電池残存容量(A)は、以下の指数関数式(3)で表現できることを見いだした。つまり、複素インピーダンス測定により等価回路的抵抗値を算出し、これに温度及び回路への供給電流による補正を加えた後、本式に入力することにより残存容量を検知することが可能となった。
【0028】
【数3】
Figure 0003654469
【0029】
《実施例2》
実施例1では、複素インピーダンス測定により等価回路的抵抗値を算出し、これにより電池残存容量を検出した例を示した。本実施例では、複素インピーダンス測定により等価回路的容量値を算出し、これにより電池残存容量を検出する例を示す。
測定において、(1.異なる残存容量を有する電池状態の再現),(2.複素インピーダンスの測定),(3.インピーダンスの温度依存性評価),(4.実モードでのインピーダンス値の確認)までのプロセスは実施例1と同一である。
【0030】
実施例1で算出した等価回路的抵抗値をR、また円弧の頂点を与える周波数をfとし、円周率πを3.14とするとき、C=1/(6.28fR)をもとに算出される値Cは等価回路的容量値と呼ばれ、電気化学的には電極と電解液の接触部分で発生する電気二重層容量と呼ばれる。図2に示したように、100Hzから0.1Hzの周波数領域に出現する円弧の半径つまり等価回路的抵抗値及び円弧の頂点を与える周波数fにより等価回路的容量値を算出し、表5に記載した。表5においては、残存容量50%、30%、10%、5%の状態での結果を併せて記載した。さらに、他の9個の電池の同様の計算の結果も示した。表5においては、測定結果の平均値、最大値及び最小値を記載した。なお、図2において、残存容量0%および100%の電池の測定点を結ぶ円弧の頂点を与える周波数f1およびf2は、それぞれの円弧の虚数0の点と円弧で構成される円の中心を結ぶ線(r1、r2で表している)に対して垂直に円の中心を通る線を引いたとき、この線がそれぞれの円弧と交わる部分の測定点を与える周波数である。
【0031】
【表5】
Figure 0003654469
【0032】
また、上述のfは、電池の性能保証温度である−20℃から65℃の範囲では大きく変化しないことが確認された。そこで、Rに関しては先の温度補正式(1)を用いることにより、等価回路的容量値も結果的に温度補正を行えることが確認された。
【0033】
以上のプロセスに従うと、等価回路的容量値の測定によりリチウムイオン二次電池の残存容量を直接的に検出することが可能である。
その算出方法の一例を図6に示した。図6は表5に示した等価回路的容量値の平均を独立変数に、また電池残存容量を従属変数とする図表であり、等価回路的容量値(C)と電池残存容量(A)は、以下の指数関数式(4)で表現できることを見いだした。つまり、複素インピーダンス測定により等価回路容量値を定め、これを本式に入力することにより残存容量を検知することが可能となった。
【0034】
【数4】
Figure 0003654469
【0035】
また、本補正式は、電池番号2番から10番までの電池にも適応可能であった。しかし、補正式は特に本式に限定されるものではなく、その他多数提案できることは言うまでもない。
以上の実施例においては、リチウムイオン二次電池の残存容量を検出する例をしましたが、本発明は、他の二次電池の残存容量の検出にも適用できることはいうまでもない。
【0036】
【発明の効果】
以上のように本発明によれば、複素インピーダンス測定により算出される等価回路的抵抗値または等価回路的容量値を用いることにより、メモリー回路を用いることなく二次電池の残存容量を直接的に高い精度で判別することができる。
【図面の簡単な説明】
【図1】本発明の実施例に用いた電池の放電曲線を示す図である。
【図2】同電池の複素インピーダンス実数−虚数成分図である。
【図3】等価回路的抵抗値の温度特性を示す図である。
【図4】供給電流と等価回路的抵抗値との関係を示す図である。
【図5】等価回路的抵抗値と残存容量の関係を示す図である。
【図6】等価回路的容量値と残存容量の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a usable remaining capacity of a secondary battery such as a lithium ion secondary battery.
[0002]
[Prior art]
Currently, portable devices such as notebook computers and mobile phones that use lithium secondary batteries as a power source are rapidly spreading. These devices are equipped with a remaining capacity meter indicating the usable time. There are a direct method in which the remaining capacity is determined by measuring the voltage of the battery, and an indirect method in which the accumulated value of the charging current is stored in a memory and the discharge current is sequentially subtracted therefrom. The battery voltage measurement method described above is mainly used for mobile phones currently on the market, and the current integration method is mainly used for notebook computers.
Many proposals have been made for a method of detecting a remaining capacity by current integration (Japanese Patent Laid-Open No. 7-241039). In addition, many detections of remaining capacity by measuring battery voltage have been proposed (JP-A-7-98367, etc.).
[0003]
Other remaining capacity detection methods include a method of measuring the remaining capacity based on the battery voltage drop during pulse discharge, a method of measuring the remaining capacity based on the recovery characteristics of the battery voltage after pulse discharge, and a remaining capacity by measuring the battery capacitance. A method for measuring the capacity, a method for measuring the remaining capacity with an alternating current impedance at a specific frequency (Japanese Patent Laid-Open No. 5-281310), and a residual by calculating the ratio between the real component and the imaginary component of the alternating current impedance and the imaginary component and the measurement frequency A method for measuring capacitance (Japanese Patent Laid-Open No. 5-135806) has been proposed.
[0004]
[Problems to be solved by the invention]
Although this type of secondary battery remaining capacity detection device is based on the above-described battery voltage detection method, it can be manufactured at a relatively low cost, but has a problem of low detection accuracy. For this reason, the display of the remaining capacity of a device such as a mobile phone using this method uses a stepwise lighting system of LEDs with both the full charge state and the empty state of the remaining capacity being zero.
In addition, the electric charge integration method mainly used in notebook computers has the advantages of high detection accuracy and the ability to display the remaining capacity in minutes, but it requires a memory to record the integrated electric charge. Therefore, there is a problem that the cost becomes high.
An object of this invention is to provide the method which can detect directly the remaining capacity of a secondary battery, especially a lithium ion secondary battery with higher precision in view of said subject.
[0005]
[Means for Solving the Problems]
The present inventors measure the complex impedance of the secondary battery to be tested, and use the equivalent circuit resistance value or the equivalent circuit capacitance value calculated from the measured value, directly without using a memory circuit. We found that the remaining capacity can be determined.
Here, the equivalent circuit resistance value is calculated from the radius of an arc appearing in a frequency region from 100 Hz to 0.1 Hz in the real component-imaginary component diagram of the impedance obtained from the measured value of the complex impedance. In addition, the equivalent circuit-like capacitance value is represented by R as the radius of an arc appearing in a frequency region from 100 Hz to 0.1 Hz in the real component-imaginary component diagram of impedance obtained from the measured value of complex impedance. Is calculated based on 1 / (2πfR).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In order to configure a device for carrying out the remaining capacity detection method of the present invention, a complex impedance measurement circuit and a measurement data calculation circuit are required. Moreover, the part which measures battery temperature is required as needed.
Regarding the measurement method and circuit of the complex impedance, the AC bridge method (electrochemical measurement method p216, written by Akira Fujishima, Gihodo Publishing 1984), current-phase detection method (electrochemical measurement method p217, written by Fujishima Akira, Gihodo Publishing 1984), Many proposals such as a white noise input-FFT analysis method (electrochemical measurement method p51, published by the Electrochemical Society, 1988) have been proposed, but it is not necessary to use a specific measurement method and measurement device for the detection method of the present invention. .
[0007]
In the process of detecting the remaining capacity of the present invention, first, the complex impedance is measured by the above method, and then in the real component-imaginary component diagram of the impedance obtained thereby, in the low frequency region (frequency region from 100 Hz to 0.1 Hz). The radius of the arc that appears, that is, the equivalent circuit resistance value is calculated. Then, temperature correction is performed on this value as necessary, and the remaining capacity of the secondary battery is determined by comparing with a predetermined correspondence table of equivalent circuit resistance values and remaining capacity values.
Further, when the radius of the arc obtained in the above-described equivalent circuit resistance value, that is, the impedance component real component-imaginary component diagram is R and the frequency giving the apex of the arc is f, 1 / (2πfR) It is also possible to determine the remaining capacity of the secondary battery by using the calculated equivalent circuit capacity value and comparing it with a predetermined table of equivalent circuit capacity values and remaining capacity values.
[0008]
During the above process, the radius of the arc appearing in the low frequency region, that is, the equivalent circuit resistance value is calculated by dividing the frequency region to be measured logarithmically in the electrochemical measurement method, and fitting by the least square method, It is common to find the radius of. Needless to say, the larger the number of measurement points, the higher the reliability of the obtained result. However, in practice, as a method for detecting the remaining capacity of the secondary battery of the present invention, the optimum three points are selected in advance from the frequency range of 100 Hz to 0.1 Hz, and the radius of the circle is determined based on the data of these three points. The method of calculating can be easily configured in terms of circuit.
[0009]
The above-mentioned equivalent circuit capacitance value is measured by dividing the frequency from 100 Hz to 0.1 Hz logarithmically, and the measurement frequency giving the maximum imaginary component in the arc in the resulting impedance diagram is f. Needless to say, the larger the number of frequencies to be measured, the higher the reliability of the obtained result. On the other hand, the impedance of the battery is often affected by temperature, and in this case, it is necessary to correct the temperature of the equivalent circuit resistance value obtained by impedance measurement using a predetermined coefficient. For this purpose, when a device is configured by the method for detecting a remaining capacity of the present invention, it is necessary to attach a temperature measurement terminal such as a thermistor to the battery surface as necessary.
[0010]
【Example】
Hereinafter, the method of the present invention will be described specifically by way of examples.
Example 1
The complex impedance of lithium ion secondary batteries having different remaining capacities was measured, and the remaining capacity was obtained by comparing the equivalent circuit resistance value obtained thereby and the equivalent circuit capacity value with the remaining battery capacity. The measurement was performed according to the procedure described below.
[0011]
1-1. Ten cylindrical lithium ion batteries (product number CGR17500: upper limit voltage 4.1 V, lower limit voltage 3.0 V, discharge capacity 700 mAh) manufactured by Matsushita Battery Industry Co., Ltd. were used as the battery state reproduction test batteries having different remaining capacities. The complex impedance was measured with the remaining capacity of the battery being 100%, 50%, 30%, 10%, 5%, and 0%. The battery state was created by charging the battery at a constant current of 70 mA (corresponding to a 10-hour rate) at a battery temperature of 25 ° C. until the battery voltage reached 4.1 V which is the upper limit cut voltage. Thereafter, the battery was discharged at a constant current of 70 mA (corresponding to a 10-hour rate) for a predetermined time to obtain a battery state with a remaining capacity of 50%, 30%, 10%, 5%, and 0%.
[0012]
As an example of the confirmation of the remaining capacity of the test battery, the discharge curve of the battery (battery number 1) used in this measurement is shown in FIG. In FIG. 1, since the discharge time until reaching the lower limit cut voltage of 3.0 V is 10.0 hours, the discharge capacity of this battery is 70 mA × 10 hours = 0.7 Ah, and has a nominal capacity. It was confirmed. Thereby, it was shown that the above-mentioned method is appropriate for reproducing the remaining capacity of the battery.
Table 1 shows the discharge capacities of the 10 batteries evaluated including this result. As a result, the lowest discharge capacity is 0.69 Ah and the largest discharge capacity is 0.72 Ah, so that the discharge capacity varies within (0.72−0.69) /0.7=5%. It was found to be in range.
[0013]
[Table 1]
Figure 0003654469
[0014]
1-2. Measurement of Complex Impedance The complex impedance of the 10 batteries was measured. The complex impedance was measured after charging and discharging the battery according to the above-described process and after a 20-hour rest at 25 ° C. In this measurement, a solartron manufactured by Schleenberger, UK, was used, a sine wave having an effective value of 10 mV was applied to the battery centering on the open circuit voltage of the battery, and the attenuation and phase difference of the applied voltage were obtained. The measurement frequency range was 100 kHz to 100 mHz, and this was divided into 10 logarithmically for each order, for a total of 60 measurements.
As a representative example of this measurement, a real-imaginary component diagram of the complex impedance of battery number 1 is shown in FIG. In the figure, circles and crosses are measured data in a battery state of 100% and 0% remaining capacity reproduced according to the above-described process, respectively.
[0015]
As shown in FIG. 2, the measurement data of the batteries having a remaining capacity of 100% and 0% have arcs connecting measurement points in a high frequency region of 100 Hz or higher and a low frequency region of 100 Hz or higher. In FIG. 2, r 1 (= 47 mΩ) is the radius of the arc connecting the measurement points in the low frequency region of the battery with 0% remaining capacity, and r 2 (= 22.5 mΩ) is the low frequency of the battery with 100% remaining capacity. The radius of the arc connecting the measurement points in the region. Thus, when the radius of the arc connecting the measurement points in the low frequency region is obtained from the measurement data of the batteries having different remaining capacities, the radius of the arc connecting the measurement points in the low frequency region decreases when the remaining capacity of the battery decreases. It was found to increase. The radius of the arc is electrochemically called an equivalent circuit resistance value, and represents the reaction resistance of an electrochemical reaction involving the transfer of electrons.
[0016]
Next, Table 2 shows the result of calculating the radius of the arc, that is, the equivalent circuit resistance value by using the least square method. In Table 2, the results in a state where the remaining capacity is 50%, 30%, 10% and 5% are also shown. Furthermore, Table 3 shows the results of similar measurements for the other nine batteries. In Table 3, the average value, maximum value, and minimum value of the radius of the arc are shown together.
[0017]
[Table 2]
Figure 0003654469
[0018]
[Table 3]
Figure 0003654469
[0019]
In this measurement, impedance analysis was performed with a total of 60 measurement frequencies. When the measurement frequency points were narrowed down to three locations and the radius of the arc, that is, the equivalent circuit resistance value was calculated from the data, the results shown in Table 4 were obtained. It was. This result is almost the same as the value obtained by the least square method shown in Table 3, and as a practical measuring instrument, it was found that the measuring circuit in this battery system can be greatly simplified.
[0020]
[Table 4]
Figure 0003654469
[0021]
1-3. Evaluation of temperature dependence of impedance Next, the temperature dependence of impedance was evaluated. The measurement was performed on the battery in the same manner as described above, and the complex impedance was measured at each temperature. As a typical example, the measurement result in a state where the remaining capacity of battery number 1 is 100% is shown in FIG.
As a result, the impedance of the battery depends on the temperature, and for example, the following equation can be used to correct this. Further, this correction formula can be applied to the batteries No. 2 to No. 10, but it goes without saying that the correction formula is not particularly limited to this formula, and many others can be proposed.
[0022]
[Expression 1]
Figure 0003654469
[0023]
In Equation (1), R is an equivalent circuit resistance value, and T is temperature (K).
[0024]
1-4. Confirmation of Impedance Value in Real Mode In the evaluation above the impedance value, the impedance value is a measured value in a battery rest state. In an actual device, it is necessary to perform impedance measurement while supplying power to the device. The impedance was measured with a constant current applied to the battery, and an equivalent circuit resistance value was calculated. An example of the result is shown in FIG. The relationship between the supply current and the equivalent circuit resistance shown in the curved portion of FIG. 4 is expressed by the following equation (2), for example. The measurement battery used was battery number 1 and the remaining capacity of the battery was 100%.
[0025]
[Expression 2]
Figure 0003654469
[0026]
In Expression (2), R is an equivalent circuit resistance value, and i is a current value supplied to the device. As a result, the equivalent circuit resistance value does not change until the supply current to the battery (nominal capacity 700 mAh) device is up to 20 mA. However, if more current is supplied, the larger the supply current, the greater the impedance calculation. It was confirmed that the equivalent circuit resistance value is small. In other words, when actually creating a remaining capacity meter using this measurement method, it is necessary to measure the supply current and correct it according to the correction formula (2) if it is greater than 20 mA. In this measurement, a measurement battery having a remaining capacity of battery number 1 of 100% was used, but similar results were obtained in other remaining capacity states.
In addition, this correction method was applicable to batteries Nos. 2 to 10. However, the correction formula is not particularly limited to this formula, and it goes without saying that many other correction formulas can be proposed.
[0027]
1-5. Detection of Battery Remaining Capacity by Equivalent Circuit Resistance Value According to the above process, it is possible to directly detect the remaining capacity of the lithium ion secondary battery by measuring the equivalent circuit resistance value.
An example of the calculation method is shown in FIG. FIG. 5 is a chart in which the average of the equivalent circuit resistance values shown in Table 3 is an independent variable, and the battery remaining capacity is a dependent variable. The equivalent circuit resistance value (R) and the battery remaining capacity (A) are as follows. We found that it can be expressed by the exponential function formula (3). In other words, it is possible to detect the remaining capacity by calculating the equivalent circuit resistance value by complex impedance measurement, adding the correction based on the temperature and the current supplied to the circuit, and inputting it to this equation.
[0028]
[Equation 3]
Figure 0003654469
[0029]
Example 2
In Example 1, the equivalent circuit resistance value was calculated by complex impedance measurement, and the battery remaining capacity was detected by this. In this embodiment, an equivalent circuit capacity value is calculated by complex impedance measurement, and the battery remaining capacity is detected by this.
In measurement, (1. Reproduction of battery state with different remaining capacity), (2. Measurement of complex impedance), (3. Evaluation of temperature dependence of impedance), (4. Confirmation of impedance value in actual mode) This process is the same as in the first embodiment.
[0030]
When the equivalent circuit resistance value calculated in the first embodiment is R, the frequency giving the top of the arc is f, and the circumference ratio π is 3.14, C = 1 / (6.28 fR) The calculated value C is referred to as an equivalent circuit capacity value, and electrochemically referred to as an electric double layer capacity generated at the contact portion between the electrode and the electrolyte. As shown in FIG. 2, the equivalent circuit capacitance value is calculated from the radius of the arc appearing in the frequency region from 100 Hz to 0.1 Hz, that is, the equivalent circuit resistance value and the frequency f giving the apex of the arc, and is shown in Table 5. did. In Table 5, the results for the remaining capacity of 50%, 30%, 10%, and 5% are also shown. Furthermore, the results of similar calculations for the other nine batteries are also shown. In Table 5, the average value, the maximum value, and the minimum value of the measurement results are shown. In FIG. 2, the frequencies f 1 and f 2 that give the apexes of the arcs connecting the measurement points of the batteries having the remaining capacity of 0% and 100% are the imaginary 0 points of the respective arcs and the center of the circle formed by the arcs. When a line passing through the center of the circle is drawn perpendicular to the line connecting the two (represented by r 1 and r 2 ), this line gives a measurement point at a portion where the line intersects each arc.
[0031]
[Table 5]
Figure 0003654469
[0032]
In addition, it was confirmed that f described above does not change significantly in the range of −20 ° C. to 65 ° C., which is the battery performance guarantee temperature. Therefore, it has been confirmed that the equivalent circuit capacitance value can be corrected as a result with respect to R by using the above temperature correction formula (1).
[0033]
According to the above process, the remaining capacity of the lithium ion secondary battery can be directly detected by measuring the equivalent circuit capacity value.
An example of the calculation method is shown in FIG. FIG. 6 is a chart in which the average of equivalent circuit capacity values shown in Table 5 is an independent variable and the remaining battery capacity is a dependent variable. The equivalent circuit capacity value (C) and the remaining battery capacity (A) are We found that it can be expressed by the following exponential function equation (4). That is, it is possible to detect the remaining capacity by determining an equivalent circuit capacity value by complex impedance measurement and inputting this into this equation.
[0034]
[Expression 4]
Figure 0003654469
[0035]
In addition, this correction formula can be applied to batteries Nos. 2 to 10. However, the correction formula is not particularly limited to this formula, and it goes without saying that many other correction formulas can be proposed.
In the above embodiment, the example of detecting the remaining capacity of the lithium ion secondary battery has been described. However, it goes without saying that the present invention can also be applied to detection of the remaining capacity of other secondary batteries.
[0036]
【The invention's effect】
As described above, according to the present invention, the remaining capacity of the secondary battery is directly increased without using a memory circuit by using an equivalent circuit resistance value or an equivalent circuit capacity value calculated by complex impedance measurement. It can be determined with accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a discharge curve of a battery used in an example of the present invention.
FIG. 2 is a complex impedance real-imaginary component diagram of the battery.
FIG. 3 is a graph showing temperature characteristics of equivalent circuit resistance values;
FIG. 4 is a diagram showing a relationship between a supply current and an equivalent circuit resistance value.
FIG. 5 is a diagram showing a relationship between an equivalent circuit resistance value and a remaining capacity.
FIG. 6 is a diagram illustrating a relationship between an equivalent circuit capacity value and a remaining capacity.

Claims (2)

被検二次電池の複素インピーダンスを測定し、その測定値より算出される等価回路的抵抗値から残存容量を判別する二次電池の残存容量検出方法であって、
前記等価回路的抵抗値が、複素インピーダンスの測定値より得られるインピーダンスの実数成分―虚数成分図において、100Hzから0.1Hzの周波数領域に出現する円弧の半径より算出されることを特徴とする二次電池の残存容量検出方法
Measuring the complex impedance of the subject secondary battery, a remaining capacity detecting method for a secondary battery you determine the remaining capacity from the equivalent circuit resistance value calculated from the measured value,
The equivalent circuit resistance value is calculated from a radius of an arc appearing in a frequency region from 100 Hz to 0.1 Hz in the real component-imaginary component diagram of impedance obtained from a measured value of complex impedance. Method for detecting remaining capacity of secondary battery .
被検二次電池の複素インピーダンスを測定し、その測定値より算出される等価回路的容量値から残存容量を判別する二次電池の残存容量検出方法であって、
前記等価回路的容量値が、複素インピーダンスの測定値より得られるインピーダンスの実数成分―虚数成分図において、100Hzから0.1Hzの周波数領域に出現する円弧の半径をRとし、前記円弧の頂点を与える周波数をfとするとき、1/(2πfR)をもとに算出されることを特徴とする電池の残存容量検出方法。
Measuring the complex impedance of the subject secondary battery, a remaining capacity detecting method for a secondary battery you determine the remaining capacity from the equivalent circuit capacitance value calculated from the measured value,
In the real component-imaginary component diagram of the impedance obtained from the measured value of the complex impedance, the equivalent circuit-like capacitance value is R, where the radius of the arc that appears in the frequency region from 100 Hz to 0.1 Hz is given. A method for detecting a remaining capacity of a battery, wherein f is a frequency and f is calculated based on 1 / (2πfR).
JP23925496A 1996-09-10 1996-09-10 Rechargeable battery remaining capacity detection method Expired - Fee Related JP3654469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23925496A JP3654469B2 (en) 1996-09-10 1996-09-10 Rechargeable battery remaining capacity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23925496A JP3654469B2 (en) 1996-09-10 1996-09-10 Rechargeable battery remaining capacity detection method

Publications (2)

Publication Number Publication Date
JPH1082843A JPH1082843A (en) 1998-03-31
JP3654469B2 true JP3654469B2 (en) 2005-06-02

Family

ID=17042034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23925496A Expired - Fee Related JP3654469B2 (en) 1996-09-10 1996-09-10 Rechargeable battery remaining capacity detection method

Country Status (1)

Country Link
JP (1) JP3654469B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388314B1 (en) * 2001-09-03 2003-06-25 금호석유화학 주식회사 method to group single cells of power sources to build optimal packs using parameters obtained by analysis of impedance spectrum
FR2871624B1 (en) 2004-06-14 2006-11-17 Commissariat Energie Atomique METHOD FOR MANAGING A PARK OF RECHARGEABLE BATTERIES
JP4956476B2 (en) * 2008-03-31 2012-06-20 古河電気工業株式会社 Battery discharge duration prediction method, battery state detection method, battery state detection device, and battery power supply system
JP5378099B2 (en) 2009-08-07 2013-12-25 三洋電機株式会社 Capacity maintenance rate determination device, battery system, and electric vehicle including the same
US20130069660A1 (en) * 2010-02-17 2013-03-21 Julien Bernard Method for in situ battery diagnostic by electrochemical impedance spectroscopy
KR101145993B1 (en) 2010-12-08 2012-05-15 한국항공우주연구원 Prediction method of soc for battery
KR101220761B1 (en) 2011-05-25 2013-01-09 한국전기안전공사 An impedance and life-cycle measuring apparatus for multi channel fuel cell
JP5897344B2 (en) * 2012-02-20 2016-03-30 日置電機株式会社 Battery sorting apparatus and battery sorting method
JP6931847B2 (en) * 2017-10-13 2021-09-08 アサダ株式会社 Vacuum pump
JP2021076421A (en) * 2019-11-06 2021-05-20 三菱重工業株式会社 Battery diagnosis device, forklift, charger, method for diagnosing battery, and program

Also Published As

Publication number Publication date
JPH1082843A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP6114433B2 (en) Charge detection device
TWI235514B (en) Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting a
US9354278B2 (en) Device for detecting normal, abnormal or deteriorated battery state
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
US6920404B2 (en) Method of detecting residual capacity of secondary battery
JP4940889B2 (en) Battery characteristic detection method and battery characteristic detection apparatus
WO2006121289A1 (en) Method of estimating soc of battery for hybrid electric vehicle
JP3654469B2 (en) Rechargeable battery remaining capacity detection method
JP2002507826A (en) Method and device for enhancing performance of smart battery
TWI331417B (en) Method for assessing state-of-charge and state-of-health of rechargeable batteries
JP3478069B2 (en) Method for detecting remaining capacity of lithium ion secondary battery
JPH0843507A (en) Method for detecting deterioration state of ni-based battery
JPH0843506A (en) Method for detecting deterioration state of nickel-based battery
JP7468395B2 (en) Secondary battery control device
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
JP2999405B2 (en) Battery deterioration judgment method
JPH08233917A (en) Estimation method of battery capacity using natural logarithm
CN111781502B (en) Battery detection method and device for electric automobile and detection equipment
KR101145993B1 (en) Prediction method of soc for battery
JP3263336B2 (en) Method for estimating secondary battery capacity
JPH1051972A (en) Method and apparatus for charging secondary battery
JP2546050B2 (en) Deterioration state detection method for stationary lead batteries
JP3694391B2 (en) Secondary battery capacity detection method
JPH08250159A (en) Detecting method for deteriorated state of ni-cd battery
JPS63157078A (en) Method for detecting remaining capacity of lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees