JPS63157078A - Method for detecting remaining capacity of lead-acid battery - Google Patents

Method for detecting remaining capacity of lead-acid battery

Info

Publication number
JPS63157078A
JPS63157078A JP61302775A JP30277586A JPS63157078A JP S63157078 A JPS63157078 A JP S63157078A JP 61302775 A JP61302775 A JP 61302775A JP 30277586 A JP30277586 A JP 30277586A JP S63157078 A JPS63157078 A JP S63157078A
Authority
JP
Japan
Prior art keywords
battery
current
internal resistance
remaining capacity
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61302775A
Other languages
Japanese (ja)
Inventor
Yutaka Oya
豊 大矢
Katsuji Abe
阿部 勝司
Tomo Morimoto
友 森本
Aogu Yoshida
吉田 仰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP61302775A priority Critical patent/JPS63157078A/en
Publication of JPS63157078A publication Critical patent/JPS63157078A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Abstract

PURPOSE:To easily know the remaining capacity of a battery by measuring a terminal voltage V when the battery is discharged with current density of 100-400mA/cm<2>, a battery current I, and the liquid temperature of the battery, and finding differential internal resistance (V0-V)/I from the reference voltage V0 at the temperature. CONSTITUTION:The relation between the differential internal resistance obtained as a gradient and remaining capacity is found from the V-I (V: terminal volt age, I: battery current) at the time of large current discharging by using plural batteries whose remaining capacities are already known. Further, the tempera ture of the batteries is measured. Then, the voltage V, current I, and the liquid temperature of the battery when the battery is discharged while the discharging current density is 100-400mA/cm<2> are measured to find the reference voltage V0 at the temperature. Further, the differential internal resistance (V0-V)/I is found and the remaining capacity of an optional battery is known from the correlation between the differential internal resistance and remaining capac ity which are already found.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉛−酸電池の劣化度合、および充電状態に関わ
りなく電池の有している残存容量を検出する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting the degree of deterioration of a lead-acid battery and the remaining capacity of the battery regardless of the state of charge.

(従来技術) 従来、鉛−酸電池の残存容量(放電容量)を知る方法と
して電解液比重、大電流短時間放電時の端子電圧あるい
は内部抵抗などの測定から推測する方法がある。
(Prior Art) Conventionally, there is a method of determining the remaining capacity (discharge capacity) of a lead-acid battery by estimating it from measurements of electrolyte specific gravity, terminal voltage or internal resistance during high current short-time discharge, etc.

(発明が解決しようとする問題点) しかし、電解液比重を測定する方法では操作が煩雑であ
り、比重センサとなる浮子あるいは比重を電圧信号でと
らえる電極(特開昭60−29635)を電池内に組込
むとしても電池自体の改造が必要である上、温度や保守
(補水、補液)状況に影響され易い欠点がある。
(Problems to be Solved by the Invention) However, the method of measuring the specific gravity of the electrolyte is complicated to operate, and a float serving as a specific gravity sensor or an electrode (Japanese Unexamined Patent Publication No. 60-29635) that detects specific gravity using a voltage signal is placed inside the battery. Even if it is incorporated into a battery, it requires modification of the battery itself, and it also has the drawback of being easily affected by temperature and maintenance (water replenishment, fluid replacement) conditions.

大電流短時間放電時の端子電圧を測定する方法(特開昭
53−78029)では測定電流を特定の値に限定しな
ければ放電容量と端子電圧との関係が得られず電気自動
車用電池、バッテリフォークリフト用電池、あるいはS
LI用(Starting。
In the method of measuring terminal voltage during short-time discharge of large current (Japanese Patent Laid-Open No. 53-78029), the relationship between discharge capacity and terminal voltage cannot be obtained unless the measured current is limited to a specific value. Battery forklift battery or S
For LI (Starting.

Lighting、 Ignition)電池など放電
電流が定まっていない応用分野で使用時の電圧−電流の
情報から残存容量を知ることは非常に難しい。
In applications where the discharge current is not fixed, such as in lighting, ignition) batteries, it is very difficult to know the remaining capacity from voltage-current information during use.

また、内部抵抗を測定する方法では鉛−酸電池の電圧−
電流の関係が一次の関係でないため。
In addition, in the method of measuring internal resistance, the voltage of a lead-acid battery is
This is because the current relationship is not a linear relationship.

一定の直流抵抗が規定できず交流抵抗による方法(M、
 llughes et al、 Journal o
(’^ppHedEIeetrochem1stry 
16.555 (198B))が用いられるが、交流抵
抗は電池使用時の測定が困難であり。
A method using AC resistance (M,
llughes et al, Journal o
('^ppHedEIeetrochem1try
16.555 (198B)) is used, but AC resistance is difficult to measure when using batteries.

測定のための別装置を必要とする欠点がある。It has the disadvantage of requiring separate equipment for measurement.

本発明は、上記従来技術の欠点を解消する鉛−酸電池の
残存容量を検出する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting the remaining capacity of a lead-acid battery that overcomes the drawbacks of the prior art described above.

(問題を解決するための手段) 本発明によれば、残存容量が既知の鉛−酸電池の電池温
度、基準電圧及び微分内部抵抗を求めることによって鉛
−酸電池温度と基準電圧との相関関係、及び微分内部抵
抗と残存容量との相関関係を得、任意の鉛−酸電池をそ
の電極表面において100〜400mA/cシの範囲内
の電流密度で放電させたときの端子電圧V、該電池電流
I及び該電池の液温を測定し、前記液温と基準電圧との
相関関係により該温度における基準電圧V。を求め、さ
らに微分内部抵抗(Vo−V)/Iを求め、前記微分内
部抵抗と残存容量との相関関係により任意の鉛−酸電池
の残存容量を求める鉛−酸電池の残存容量検出法により
上記目的が達成される。
(Means for Solving the Problem) According to the present invention, the correlation between the lead-acid battery temperature and the reference voltage is determined by determining the battery temperature, reference voltage, and differential internal resistance of a lead-acid battery whose remaining capacity is known. , and the correlation between the differential internal resistance and the remaining capacity, and the terminal voltage V when an arbitrary lead-acid battery is discharged at a current density within the range of 100 to 400 mA/c on the electrode surface, the battery Measure the current I and the temperature of the liquid in the battery, and determine the reference voltage V at the temperature based on the correlation between the liquid temperature and the reference voltage. is determined, and further the differential internal resistance (Vo-V)/I is determined, and the remaining capacity of any lead-acid battery is determined by the correlation between the differential internal resistance and the remaining capacity. The above objectives are achieved.

但し、基準電圧■。は、電極単位面積あたり100〜4
00−^/C−の異なる2つ以上の電流密度(放電電流
:i、i2.・・・)で短時間放電したときの端子電圧
(V1、V2、・・・)をそれぞれの温度で計M1シ、
それぞれの電池のV−1(Iは電池の放電電流)の関係
から直線外挿して得られる1−0での電圧値であり、微
分内部抵抗は、電池の単セルの電極tl1位面積あたり
の放電電流密度が100〜400mA/c−の範囲で得
られるV−1直線の勾配である。
However, the reference voltage ■. is 100 to 4 per unit area of electrode.
Measure the terminal voltage (V1, V2,...) at each temperature when discharging for a short time at two or more current densities (discharge current: i, i2...) with different 00-^/C-. M1shi,
It is the voltage value at 1-0 obtained by linear extrapolation from the relationship of V-1 (I is the discharge current of the battery) of each battery, and the differential internal resistance is the voltage value per electrode tl area of a single cell of the battery. This is the slope of the V-1 straight line obtained when the discharge current density is in the range of 100 to 400 mA/c.

以下1本発明の基本的着想について概説する。The basic idea of the present invention will be outlined below.

鉛−酸電池の放電電流密度(1)と端子電圧(■)との
関係は、第1図に示すように放電電流密度の大きさによ
って2つの部分に分けられる。即ち。
The relationship between the discharge current density (1) and the terminal voltage (■) of a lead-acid battery can be divided into two parts depending on the magnitude of the discharge current density, as shown in FIG. That is.

小電流域ではVはiの増加に伴い指数関数的に減少し、
大電流域ではVはiに対し一次関数の関係で減少する。
In the small current range, V decreases exponentially as i increases,
In a large current range, V decreases with respect to i in a linear function relationship.

小電流域でのV−iの関係は放電反応抵抗が活性化過電
圧によって支配されているために生じ。
The V-i relationship in the small current range occurs because the discharge reaction resistance is dominated by the activation overvoltage.

この活性化過電圧の寄与を取り除かないかぎりV−iの
関係から電流に依存しない一定の内部抵抗を求めること
はできない。
Unless the contribution of this activation overvoltage is removed, it is not possible to obtain a constant internal resistance that does not depend on the current from the V-i relationship.

そこで、放電電流密度iが電極単位面積あたり100m
A/ cj 〜400mA/ cjの範囲でV−iが直
線関係を持つことに着眼し、この部分での微分内部抵抗
と電池の残存容量が良い相関性を持つことを見い出すこ
とにより1本発明の鉛−酸電池の大電流放電時の微分内
部抵抗から残存容量を検出する方法を完成するに至った
ものである。
Therefore, the discharge current density i is 100 m per unit area of the electrode.
By focusing on the fact that V-i has a linear relationship in the range of A/cj to 400mA/cj and finding that there is a good correlation between the differential internal resistance in this area and the remaining capacity of the battery, one aspect of the present invention was achieved. We have completed a method for detecting the remaining capacity of a lead-acid battery from the differential internal resistance during large current discharge.

(好適な実施の態様) 本発明の鉛−酸電池の残存容量検出法はあらかじめ残存
容量の判っているいくつかの電池で大電流放電時のV−
1(但しIは電池電流)直線から、その勾配として得ら
れる微分内部抵抗と残存容量との関係を求めておき、同
種の任意の電池で測定した微分内部抵抗を上記の関係と
比較することによって、電池の電解液の温度における残
存容量を知る方法である。ここで微分内部抵抗とは電池
の単セルの電極単位面積あたり(通常、鉛−酸電池の電
極は正極に比べ負極が1枚多い構成となっているが両端
におかれた負極の外側面はほとんど働いていないため正
極の見掛けの面積と考えてよい)の放電電流密度iが1
00〜400mA/ ci (1)範囲で得られるV−
1直線の勾配であり、■は組電池の端子電圧、■は電池
電流を用いて算出する。
(Preferred Embodiment) The method for detecting the remaining capacity of a lead-acid battery according to the present invention uses several batteries whose remaining capacities are known in advance, and the V-
1 (where I is the battery current) Find the relationship between the differential internal resistance obtained as the slope of the straight line and the remaining capacity, and then compare the differential internal resistance measured with any battery of the same type with the above relationship. This is a method for determining the remaining capacity of a battery at different electrolyte temperatures. Here, the differential internal resistance is per unit area of the electrode of a single battery cell (normally, the electrode of a lead-acid battery has one more negative electrode than the positive electrode, but the outer surface of the negative electrode placed at both ends is Since it is hardly working, it can be considered as the apparent area of the positive electrode), the discharge current density i is 1
V- obtained in the range of 00 to 400 mA/ci (1)
It is the slope of one straight line, and ■ is calculated using the terminal voltage of the assembled battery and ■ is the battery current.

本発明の鉛−酸電池の残存容量検出法において、鉛−酸
電池温度と基準電圧との相関関係及び微分内部抵抗を得
るために用いられる鉛−酸電池は、あらかじめ公知の残
存容量測定方法により測定温度における残存容量が判っ
ている鉛−酸電池を用いることができる。該鉛−酸電池
の温度及び電圧の測定には、公知の測定方法及び装置等
を用いることができる。該鉛−酸電池をその電極表面に
おいて100〜400mA/c−の範囲の電流密度で放
電することは、公知の方法を用いることができ。
In the lead-acid battery remaining capacity detection method of the present invention, the lead-acid battery used to obtain the correlation between the lead-acid battery temperature and the reference voltage and the differential internal resistance is measured in advance by a known remaining capacity measurement method. A lead-acid battery whose remaining capacity at the measurement temperature is known can be used. Known measuring methods and devices can be used to measure the temperature and voltage of the lead-acid battery. A known method can be used to discharge the lead-acid battery at a current density in the range of 100 to 400 mA/c at the electrode surface.

−例として該電極表面において上記電流密度となるよう
な電流を定電流電源を用いて放電させることもできる。
- For example, a constant current power source can be used to discharge a current that has the above-mentioned current density on the surface of the electrode.

本発明の鉛−酸電池の残存容量検出法において、任意の
鉛−酸電池の残存容量を求めるために、該電極表面にお
いて100〜400vA/C−の範囲内の電流密度で行
う放電は、特に限定されず公知の方法を用いることがで
き、該電極表面において」−記電流密度となるような電
流を例えば既述の如く定電流電源を用いて行うことがで
きる。また。
In the method for detecting the remaining capacity of a lead-acid battery of the present invention, in order to determine the remaining capacity of an arbitrary lead-acid battery, discharging is performed at a current density within the range of 100 to 400 vA/C on the surface of the electrode. Any known method can be used without limitation, and a current such that a current density of "-" can be applied to the surface of the electrode using, for example, a constant current power source as described above. Also.

電気自動車用電池、バッテリフォークリフト用電池、あ
るいはSLI電池等のようにエンジン始動時に100〜
400mA/cdの範囲内の電流密度で放電されるとい
うことが知られている場合は、電池を回路に接続したま
ま測定でき、何ら特別な手段を要しない。   ・ 以下実際のデータに基づき微分内部抵抗と残存容量との
関係について説明する。
100~ when starting the engine, such as electric vehicle batteries, battery forklift batteries, or SLI batteries, etc.
If it is known that the battery is discharged at a current density within the range of 400 mA/cd, measurements can be made with the battery connected to the circuit and no special measures are required. - The relationship between differential internal resistance and remaining capacity will be explained below based on actual data.

55D23型、 N50Z型およびN540Z^型電池
の新品あるいはこれらをSLI川として1〜5年間使用
した中古電池を第1表の電池温度および残存容量条件下
でω、0の2つの大電流密度iで5秒間放電しそのV−
I(但しIは電池電流)直線勾配からそれぞれの電池の
微分内部抵抗を求め残存容量に対し第2図にプロットし
た。第2図にみられるように電池温度、電池の劣化度合
、充電状態に関わりなく微分内部抵抗と残存容量との間
には良い相関性が存在する。従って、同種の任意の状態
の電池の微分内部抵抗がわかれば第2図の関係からその
電池の残存容量を知ることができる。そこで次に任意の
電池の微分内部抵抗を求める方法について述べる。
New 55D23 type, N50Z type and N540Z^ type batteries or used batteries that have been used for 1 to 5 years as SLI rivers were tested at two large current densities i of ω and 0 under the battery temperature and residual capacity conditions shown in Table 1. Discharge for 5 seconds and the V-
The differential internal resistance of each battery was determined from the linear slope of I (where I is the battery current) and plotted against the remaining capacity in FIG. As shown in FIG. 2, there is a good correlation between the differential internal resistance and the remaining capacity, regardless of the battery temperature, the degree of battery deterioration, and the state of charge. Therefore, if the differential internal resistance of a battery of the same type in any state is known, the remaining capacity of the battery can be determined from the relationship shown in FIG. Next, we will discuss how to find the differential internal resistance of any battery.

上述したように電池の微分内部抵抗は単セルの電極単位
面積あたり 100〜400mA/ cjの放電電流密
度範囲で端子電圧Vと放電電流Iとが一次の関係にあり
、そのV−1(但しIは電池電流)直線の勾配から求ま
る。
As mentioned above, the differential internal resistance of a battery has a linear relationship between the terminal voltage V and the discharge current I in the discharge current density range of 100 to 400 mA/cj per unit electrode area of a single cell, and that V-1 (however, I (battery current) is determined from the slope of the straight line.

従って基本的には大電流で短時間放電した時のVとIと
の関係が2点以上必要である。一方。
Therefore, basically, two or more points are required for the relationship between V and I when discharging at a large current for a short time. on the other hand.

SL!電池が100〜400mA/cシの大電流密度で
放電されるのはエンジン始動時のみであり、短時間のう
ちに異なる2つ以上の大電流で放電されることはほとん
どない。しかしV−1直線上の点であってほぼ同格の電
池で充電状態、劣化度合に依存することのない基準電圧
が存在すれば一度だけの大電流放電でもその基準電圧を
もとにして微分内部抵抗を求めることができる。幸いに
してこのような基準電圧は大電流放電域でのV−1直線
を電流1−0に外挿した点(第1図のV。)に存在した
。即ち、第1表の実験において得たV−1(但しIは電
池電流)直線を!−0に外挿した電圧値V。が電池の種
類、充電状態、劣化度合に関わりなくほぼ一定値に収束
させ得ることを見い出した。
SL! The battery is discharged at a large current density of 100 to 400 mA/c only when the engine is started, and it is almost never the case that the battery is discharged at two or more different large currents within a short period of time. However, if there is a reference voltage that is a point on the V-1 line and does not depend on the state of charge or the degree of deterioration of batteries of approximately the same rating, even a single large current discharge can be differentiated based on that reference voltage. resistance can be found. Fortunately, such a reference voltage existed at the point (V in FIG. 1) where the V-1 straight line in the large current discharge region was extrapolated to the current 1-0. In other words, the V-1 (where I is the battery current) straight line obtained in the experiment shown in Table 1! The voltage value V extrapolated to -0. It has been found that it is possible to converge to a nearly constant value regardless of the type of battery, state of charge, and degree of deterioration.

第3図に、得られたV。の値を電池温度に対して示した
。従って電池の温度を測定しておけばその温度に対応す
るV。の値を用いて一度だけの大まり第2図の関係から
電池の残存容量を知ることができる。
Figure 3 shows the obtained V. The value of is shown against battery temperature. Therefore, if you measure the temperature of the battery, the V corresponding to that temperature. Using the value of , the remaining capacity of the battery can be determined from the relationship shown in FIG. 2, which occurs only once.

以上2本発明の鉛−酸電池の残存容量検出法において微
分内部抵抗を測定するための放電電流密度は100〜4
00gA/c−の範囲が望ましく、  100*A/ 
cj以下では活性化過電圧の影響を受け、微分内部抵抗
と残存容量との対応がつかなくなる弊害が生じる。一方
上限電流密度は電池の残存容量によって異なるが400
mA/cd以上では通電時間に対し、電圧降下が大きく
なる可能性があり、 all定誤差が無視できなくなる
ため好ましくない。通電時間においても上記電流密度範
囲内であれば通電開始後〜5秒までは比較的電圧が安定
しており、この間に電圧測定を行うのが望ましい。
The discharge current density for measuring the differential internal resistance in the method for detecting the remaining capacity of a lead-acid battery of the present invention is 100 to 4.
The range is preferably 00gA/c-, 100*A/
If it is less than cj, the activation overvoltage will affect the differential internal resistance and the remaining capacity will not correspond. On the other hand, the upper limit current density varies depending on the remaining capacity of the battery, but is 400
If it is more than mA/cd, the voltage drop may become large with respect to the energization time, and the all constant error cannot be ignored, which is not preferable. As long as the current density is within the above-mentioned current density range, the voltage is relatively stable for up to 5 seconds after the start of current flow, and it is desirable to measure the voltage during this period.

尚9本発明での残存容量は5時間率(5HR)容量で示
した。電池の放電容量(残存容量)は放電される電流の
大きさによって変化し、放電電流が大きいほど取り出せ
る放電容量は少くなる傾向にある。このため放電容量は
放電電流の大きさを表示して一般に5時間率放電容量あ
るいは20時間率放電容量という様に表わされる。ここ
で5時間率および20時間率とは新品電池の公称容ff
i (Ah)をそれぞれの時間で放電し終る電流値を意
味している。
Note that the remaining capacity in the present invention is expressed as a 5 hour rate (5HR) capacity. The discharge capacity (residual capacity) of a battery changes depending on the magnitude of the discharged current, and the larger the discharge current, the lower the discharge capacity that can be taken out. Therefore, the discharge capacity is generally expressed as a 5-hour rate discharge capacity or a 20-hour rate discharge capacity by indicating the magnitude of the discharge current. Here, the 5 hour rate and 20 hour rate are the nominal capacity of a new batteryff
It means the current value at which i (Ah) is completely discharged at each time.

この様な放電容量の電流依存性は鉛−酸電池の電極が多
孔板であるために生じ、放電電流が大きいほど放電反応
が正・負極の表面付近にのみ集中し、電極内部の活物質
が有効に使用されないのが原因である。しかしそれぞれ
の時間率での放電容量の間にはほぼ一定の関係があるた
め通常5時間率容量あるいは20時間率容量で代表させ
て電池の放電容量が表わされている。したがって本発明
での残存容量は5時間率容量を用いた。
This current dependence of discharge capacity occurs because the electrodes of lead-acid batteries are porous plates, and as the discharge current increases, the discharge reaction concentrates only near the surfaces of the positive and negative electrodes, and the active material inside the electrodes becomes more concentrated. This is because it is not used effectively. However, since there is a substantially constant relationship between the discharge capacity at each time rate, the discharge capacity of a battery is usually expressed as a 5-hour rate capacity or a 20-hour rate capacity. Therefore, the 5-hour rate capacity was used as the remaining capacity in the present invention.

第  1  表 (実施例) 本発明の鉛−酸電池の残存容量検出法の有効性を実証す
るため第4図の試験回路を構成し実験した。試験電池4
0には55D23型の新品電池および!115oZ型中
古電池、 N540ZA型中古電池3個の計5個を用い
、電池温度、充電状態、放電型*1を変えて1秒〜5秒
間放電を行った。実験条件を第2表にまとめた。各試験
において温度計42を使用して求めた電池温度 Tから
第3図を用いて対応する■ を求め、このV。と定電流
電?R43により測定した放電電流Iおよび電圧計41
により測定した1砂目電池電圧V  あるいは5砂目電
池電圧1秒 ■5秒を使ってそれぞれ電池の微分内部抵抗を算出し、
第2図の実線に対応させて電池の残存容量を求めた。第
2表に71秒あるいはV  から求5秒 めた残存容量を示した。両者とも大差なくまたいずれも
試験前に調整した残存容量と極めて近い値となっており
1本発明の鉛−酸電池の残存容ffi検出法の有効性が
実証されている。
Table 1 (Example) In order to demonstrate the effectiveness of the method for detecting the remaining capacity of a lead-acid battery according to the present invention, an experiment was conducted using the test circuit shown in FIG. 4. Test battery 4
0 has a new 55D23 type battery and! A total of 5 batteries, 115oZ type used batteries and 3 N540ZA type used batteries, were used and discharged for 1 to 5 seconds while changing the battery temperature, charging state, and discharge type*1. The experimental conditions are summarized in Table 2. From the battery temperature T determined using the thermometer 42 in each test, the corresponding ■ is determined using FIG. 3, and this V is determined. And constant current electricity? Discharge current I measured by R43 and voltmeter 41
Calculate the differential internal resistance of the battery using the 1st grain battery voltage V or the 5th grain battery voltage 1 second × 5 seconds measured by
The remaining capacity of the battery was determined in accordance with the solid line in FIG. Table 2 shows the remaining capacity calculated from 71 seconds or 5 seconds from V. There is no significant difference between the two, and both values are extremely close to the residual capacity adjusted before the test, thus proving the effectiveness of the method for detecting the residual capacity ffi of a lead-acid battery according to the present invention.

第  2  表 (作用及び効果) 本発明において、電池の残存容量とよい相関性が見い出
された大電流放電域での微分内部抵抗には放電反応の抵
抗(拡散過電圧に基づく抵抗)。
Table 2 (Functions and Effects) In the present invention, the differential internal resistance in the large current discharge region, which has been found to have a good correlation with the remaining capacity of the battery, includes the resistance of the discharge reaction (resistance based on diffusion overvoltage).

活物質の表面積、活物質同士の接触抵抗および格子の抵
抗など電極の劣化および充電状態に関係し、なおかつ純
抵抗として扱える因子が寄与している。このため電池の
劣化度合あるいは充電状態に関わりなく残存容量と良い
相関性を持つものと考える。また基準電圧V。の導入は
任意の大電流での一回の放電で微分内部抵抗の算出を可
能にし、電池の残存容量検出を極めて容易にしている点
でメリットは大きい。
Factors that are related to the deterioration of the electrode and the state of charge, such as the surface area of the active materials, the contact resistance between the active materials, and the resistance of the lattice, and which can be treated as pure resistance, contribute. Therefore, it is considered that there is a good correlation with the remaining capacity regardless of the degree of deterioration of the battery or the state of charge. Also, the reference voltage V. The introduction of this has a great advantage in that it makes it possible to calculate the differential internal resistance with a single discharge at an arbitrary large current, making it extremely easy to detect the remaining capacity of the battery.

以上本発明の鉛−酸電池の残存容量検出法は。The method for detecting the remaining capacity of a lead-acid battery according to the present invention has been described above.

電気自動車用電池、バッテリフォークリフト用電池ある
いはSLI用電池のいずれにおいても電気回路に電池を
つないだままで使用時の大電流放電時の前記電池の電圧
−電流から簡単に電池の残存容量を知ることができ、応
用分野での利用価値は非常に大きい。
Whether it is an electric vehicle battery, battery forklift battery, or SLI battery, the remaining capacity of the battery can be easily determined from the voltage-current of the battery when a large current is discharged when the battery is connected to an electric circuit. It can be used, and its utility value in applied fields is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基準電圧V。の概念図。第2図は微分内部抵抗
と残存容量との関係図。第3図は基準電圧■。の温度依
存性を示す図。第4図は電圧−電流の関係を得るための
試験回路の一例。 出願人  株式会社豊田中央研究所 代理人  弁理士  加 藤 朝 道 (他1名) 第1図 放電電流密度i (mA/cj) 第3図 −2002040e、Q 電池温度(°C)
Figure 1 shows the reference voltage V. Conceptual diagram. FIG. 2 is a diagram showing the relationship between differential internal resistance and remaining capacity. Figure 3 shows the reference voltage■. A diagram showing the temperature dependence of. FIG. 4 is an example of a test circuit for obtaining the voltage-current relationship. Applicant Toyota Central Research Institute Co., Ltd. Agent Patent attorney Asami Kato (1 other person) Figure 1 Discharge current density i (mA/cj) Figure 3-2002040e, Q Battery temperature (°C)

Claims (1)

【特許請求の範囲】 残存容量が既知の鉛−酸電池の電池温度、 基準電圧及び微分内部抵抗を求めることによって鉛−酸
電池温度と基準電圧との相関関係、及び微分内部抵抗と
残存容量との相関関係を得、任意の鉛−酸電池をその電
極表面において100〜400mA/cm^2の範囲内
の電流密度で放電させたときの端子電圧V、該電池電流
I及び該電池の液温を測定し、前記液温と基準電圧との
相関関係により該温度における基準電圧V_0を求め、
さらに微分内部抵抗(V_0−V)/Iを求め、前記微
分内部抵抗と残存容量との相関関係により任意の鉛−酸
電池の残存容量を求める鉛−酸電池の残存容量検出法。 (但し、基準電圧V_0は、電極単位面積あたり100
〜400mA/cm^2の異なる2つ以上の電流密度(
放電電流:i_1、i_2、・・・)で短時間放電した
ときの端子電圧(V_1、V_2、・・・)をそれぞれ
の温度で計測し、それぞれの電池のV−I(Iは電池の
放電電流)の関係から直線外挿して得られるI=0での
電圧値であり、微分内部抵抗は、電池の単セルの電極単
位面積あたりの放電電流密度が100〜400mA/c
m^2の範囲で得られるV−I直線の勾配である。)
[Claims] By determining the battery temperature, reference voltage, and differential internal resistance of a lead-acid battery whose remaining capacity is known, the correlation between the lead-acid battery temperature and the reference voltage, and the relationship between the differential internal resistance and the remaining capacity can be determined. Terminal voltage V, battery current I, and liquid temperature of the battery when an arbitrary lead-acid battery is discharged at a current density within the range of 100 to 400 mA/cm^2 at the electrode surface. and determine the reference voltage V_0 at the temperature based on the correlation between the liquid temperature and the reference voltage,
A residual capacity detection method for a lead-acid battery that further determines the differential internal resistance (V_0-V)/I and determines the residual capacity of an arbitrary lead-acid battery based on the correlation between the differential internal resistance and the residual capacity. (However, the reference voltage V_0 is 100% per unit area of the electrode.
Two or more different current densities of ~400mA/cm^2 (
The terminal voltage (V_1, V_2, ...) when discharging for a short time with discharge current: i_1, i_2, ...) was measured at each temperature, and the V-I of each battery (I is the discharge of the battery) was measured at each temperature. It is the voltage value at I=0 obtained by linear extrapolation from the relationship (current), and the differential internal resistance is the voltage value when the discharge current density per unit area of the electrode of a single cell of the battery is 100 to 400 mA/c.
This is the slope of the VI straight line obtained in the range of m^2. )
JP61302775A 1986-12-20 1986-12-20 Method for detecting remaining capacity of lead-acid battery Pending JPS63157078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302775A JPS63157078A (en) 1986-12-20 1986-12-20 Method for detecting remaining capacity of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302775A JPS63157078A (en) 1986-12-20 1986-12-20 Method for detecting remaining capacity of lead-acid battery

Publications (1)

Publication Number Publication Date
JPS63157078A true JPS63157078A (en) 1988-06-30

Family

ID=17912976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302775A Pending JPS63157078A (en) 1986-12-20 1986-12-20 Method for detecting remaining capacity of lead-acid battery

Country Status (1)

Country Link
JP (1) JPS63157078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539318A (en) * 1992-07-16 1996-07-23 Toyota Jidosha Kabushiki Kaisha Residual capacity meter for electric car battery
US5680050A (en) * 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523117A (en) * 1975-06-24 1977-01-11 Aichi Electric Mfg Device for detecting residual capacity of storage battery
JPS5217213A (en) * 1975-07-30 1977-02-09 Shimadzu Corp Spool valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523117A (en) * 1975-06-24 1977-01-11 Aichi Electric Mfg Device for detecting residual capacity of storage battery
JPS5217213A (en) * 1975-07-30 1977-02-09 Shimadzu Corp Spool valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539318A (en) * 1992-07-16 1996-07-23 Toyota Jidosha Kabushiki Kaisha Residual capacity meter for electric car battery
US5680050A (en) * 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method
US5864237A (en) * 1994-03-07 1999-01-26 Nippondenso Co., Ltd. Battery condition detection method

Similar Documents

Publication Publication Date Title
US6556019B2 (en) Electronic battery tester
CN102565710B (en) Method and apparatus for assessing battery state of health
CN102468521B (en) Method and apparatus for assessing battery state of health
Hammouche et al. Monitoring state-of-charge of Ni–MH and Ni–Cd batteries using impedance spectroscopy
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US8589097B2 (en) Method for diagnosing the state of health of a battery
JP4940889B2 (en) Battery characteristic detection method and battery characteristic detection apparatus
JPH05135806A (en) Method for determining remaining capacitance of storage battery
Kordesch et al. Sine wave pulse current tester for batteries
US20220082630A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
US5304433A (en) Capacity indicator for lead-acid batteries
US20110215761A1 (en) Method for determining the state of charge of a battery in charging or discharging phase
TWI579575B (en) Battery health detection method and its circuit
Huet et al. Investigation of the high-frequency resistance of a lead-acid battery
JP3412355B2 (en) Nickel-based battery deterioration determination method
JPH03182063A (en) Deteriorated condition sensing method for sealed lead-acid battery
JPS63157078A (en) Method for detecting remaining capacity of lead-acid battery
Kordesch Charging method for batteries, using the resistance-free voltage as endpoint indication
Blanchard Electrochemical impedance spectroscopy of small Ni− Cd sealed batteries: Application to state of charge determinations
JPS63168582A (en) Detecting of residual capacity for lead-acid battery
JP2000133322A (en) Charge/discharge system for secondary battery
JPH07272747A (en) Lead storage battery with capacitance indicator
MacDonald et al. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni (OH) 2/NiOOH electrodes
CN112769178A (en) Method for acquiring optimal frequency of pulse type charging
SU756527A1 (en) Method of quality control of chemical current source