JP3379298B2 - Device for determining the life of sealed lead-acid batteries - Google Patents

Device for determining the life of sealed lead-acid batteries

Info

Publication number
JP3379298B2
JP3379298B2 JP22211195A JP22211195A JP3379298B2 JP 3379298 B2 JP3379298 B2 JP 3379298B2 JP 22211195 A JP22211195 A JP 22211195A JP 22211195 A JP22211195 A JP 22211195A JP 3379298 B2 JP3379298 B2 JP 3379298B2
Authority
JP
Japan
Prior art keywords
voltage
battery
unit
measured
impedance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22211195A
Other languages
Japanese (ja)
Other versions
JPH0961505A (en
Inventor
彰彦 工藤
浩明 宮地
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP22211195A priority Critical patent/JP3379298B2/en
Publication of JPH0961505A publication Critical patent/JPH0961505A/en
Application granted granted Critical
Publication of JP3379298B2 publication Critical patent/JP3379298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフロート充電あるい
はトリクル充電されているシール鉛蓄電池の寿命判定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a life determining device for a sealed lead acid battery which is float-charged or trickle-charged.

【0002】[0002]

【従来の技術】従来よりフロー充電あるいはトリクル充
電されているシール鉛蓄電池の寿命判定方法としては、
電解液の比重を測定する方法がもっとも一般的に行われ
てきた。ところが、完全密閉式のシール鉛蓄電池では電
解液の比重を直接測定できないため、電解液比重測定用
の二酸化鉛電極を電槽内に設置して電解液比重を測定す
る方法(特開昭61−294771号)、陽極板の伸び
を検出する方法(特開平2−152170号)、インピ
ーダンスを測定する方法(特開平4−198783号)
などが提案されてきた。
2. Description of the Related Art As a method for determining the life of a sealed lead-acid battery that has been conventionally flow-charged or trickle-charged,
The most common method has been to measure the specific gravity of the electrolyte. However, since the specific gravity of the electrolytic solution cannot be directly measured in the completely sealed sealed lead acid battery, a method of measuring the specific gravity of the electrolytic solution by installing a lead dioxide electrode for measuring the specific gravity of the electrolytic solution in a battery case (Japanese Patent Laid-Open No. 61- 294771), a method for detecting the elongation of the anode plate (JP-A-2-152170), and a method for measuring impedance (JP-A-4-198783).
Have been proposed.

【0003】しかし、上記の寿命判定方法のなかで、電
解液比重測定用電極を電槽内に設置する方法では、電池
に加工する必要性がある点と、二酸化鉛電極を定期的に
充電する必要性がある点から実際的ではない。又、陽極
板の伸びを検出する方法では、同様に電池に加工する必
要がある点と、全ての陽極板の伸びを検出するのは困難
なために信頼性に欠けるという問題点を有していた。
However, among the above-mentioned methods of determining the life, the method of installing the electrode for measuring the specific gravity of the electrolytic solution in the battery case requires that the battery be processed, and the lead dioxide electrode is regularly charged. It is not practical because of the need. In addition, the method of detecting the elongation of the anode plate has the problems that it is necessary to process the battery in the same manner and that it is difficult to detect the elongation of all the anode plates, resulting in lack of reliability. It was

【0004】寿命判定では最も確実な方法は放電容量を
実測することであるが、放電試験を行うためには機器の
運転を止める必要がある点と、放電試験に多大な労力と
時間を必要とする点が実際的でなかった。
The most reliable method for determining the life is to measure the discharge capacity. However, in order to perform the discharge test, it is necessary to stop the operation of the equipment, and the discharge test requires a lot of labor and time. The point to do was not practical.

【0005】この点を解決するために、実負荷で放電を
行うことも考えられるが、実負荷の放電試験は放電後に
回復充電が終了するまで機器をバックアップする時間が
定格より長くなるために事実上その期間機器の運転を行
えないという問題点があった。
In order to solve this problem, it is possible to discharge the battery under an actual load. However, in the actual load discharge test, the time for backing up the equipment until the recovery charge is completed after discharging becomes longer than the rated value. There was a problem that the equipment could not be operated during that period.

【0006】短時間の放電から放電容量を推定する試み
も行われているが(電気学会論文誌87,No.5,V
OL.107−D,P606)、精度よく放電容量を推
定するには0.1C放電で1時間以上とかなりの放電時
間が必要であった。
Attempts have been made to estimate the discharge capacity from short-time discharge (Journal of the Institute of Electrical Engineers of Japan, 87, No. 5, V).
OL. 107-D, P606), it took a considerable discharge time of 1 hour or more at 0.1 C discharge to accurately estimate the discharge capacity.

【0007】またインピーダンスを測定する方法では、
放電容量とインピーダンスの相関が必ずしも良くなく、
インピーダンスから放電持続時間を推定した場合にはか
なり大きい誤差が生じる可能性があり、寿命判定を誤る
可能性がある。
Further, in the method of measuring impedance,
The correlation between discharge capacity and impedance is not always good,
When the discharge duration is estimated from the impedance, a considerably large error may occur, and the life judgment may be erroneous.

【0008】この点を解決する方法として、インピーダ
ンスの測定とごく短時間の放電試験を行う方法がある。
この方法はインピーダンスの測定値と、ごく短時間(5
分程度)の放電電圧の測定値から放電容量を推定するも
ので、インピーダンスあるいは短時間放電電圧いずれか
一方から推定するよりも精度は良くなるという結果がで
ている(電気設備学会誌 1993,No.12,VO
L.13,P1247)。
As a method of solving this point, there is a method of measuring impedance and performing a discharge test for a very short time.
This method uses the measured impedance value and very short time (5
The discharge capacity is estimated from the measured value of the discharge voltage (about a minute), and the result is more accurate than the estimation from either the impedance or the short-time discharge voltage (Journal of the Institute of Electrical Equipment, 1993, No). .12, VO
L. 13, P1247).

【0009】[0009]

【発明が解決しようとする課題】しかし、上述のインピ
ーダンスと短時間放電電圧から容量を推定する方法で
は、インピーダンスの測定精度が問題となる。インピー
ダンスの測定精度が悪ければ放電容量の推定精度も当然
悪くなり、寿命判定を誤る可能性がある。
However, in the above method of estimating the capacity from the impedance and the short-time discharge voltage, the impedance measurement accuracy becomes a problem. If the impedance measurement accuracy is poor, the discharge capacity estimation accuracy will naturally be poor, and there is a possibility of erroneous life determination.

【0010】一般的にシール鉛蓄電池のインピーダンス
は、一定振幅の交流電流通電時の端子電圧に含まれる交
流電圧成分を測定することによって求められるが、シー
ル鉛蓄電池はインピーダンス値が小さいために、ノイズ
の影響を受けやすく精度良く測定するのは困難である。
Generally, the impedance of a sealed lead acid battery is obtained by measuring an AC voltage component contained in a terminal voltage when an alternating current of a constant amplitude is energized. It is difficult to measure accurately because it is easily affected by.

【0011】2V,200Ahの据置シール電池の例で
は、周波数10Hz程度で1mΩ以下のインピーダンス
値であり、±2Aの交流電流を通電とした場合に端子電
圧に現れる交流電圧成分は、±2mV以下と非常に小さ
い値となりノイズの影響を受けやすい。通電電流の値を
大きくすればよいが、交流電流通電部の素子の大型化、
発熱、消費電力、コスト等の点から大きくするのは難し
い。
In the case of the stationary sealed battery of 2 V, 200 Ah, the impedance value is 1 mΩ or less at a frequency of about 10 Hz, and the AC voltage component appearing in the terminal voltage when an AC current of ± 2 A is applied is ± 2 mV or less. It has a very small value and is easily affected by noise. It is enough to increase the value of the energizing current, but the size of the element of the alternating current energizing part is increased,
It is difficult to increase the heat generation, power consumption, and cost.

【0012】又、フロート充電でリプル電流がシール鉛
蓄電池に流れている場合もあり、測定時の端子電圧にリ
プル電圧が含まれて誤差となる場合がある。インバータ
を負荷とするシステムの実測では、フロート充電中で周
波数50Hzまたは60Hzのリプル電圧が10mVも
シール鉛蓄電池の端子電圧に含まれている例もある。こ
の場合、単にシール鉛蓄電池の端子電圧に含まれる交流
電圧成分のP−P値を通電電流で割ってインピーダンス
値とすると大きな誤差となってしまう。
In some cases, the ripple current may flow through the sealed lead-acid battery due to the float charge, and the ripple voltage may be included in the terminal voltage during measurement, resulting in an error. In an actual measurement of a system using an inverter as a load, there is an example in which a ripple voltage having a frequency of 50 Hz or 60 Hz is included in the terminal voltage of the sealed lead-acid battery as much as 10 mV during float charging. In this case, if the P-P value of the AC voltage component included in the terminal voltage of the sealed lead-acid battery is simply divided by the applied current to obtain the impedance value, a large error will occur.

【0013】又、別の問題として、温度によってインピ
ーダンスと短時間の放電電圧測定値が変わり、放電容量
の推定精度が悪化するという問題点がある。
Another problem is that the impedance and the short-time discharge voltage measurement value change depending on the temperature, which deteriorates the estimation accuracy of the discharge capacity.

【0014】本発明の目的は、リプル電圧、温度の影響
を受けずに精度よくシール鉛蓄電池のインピーダンスを
測定し、測定された短時間の放電電圧とあわせて精度よ
く放電容量を推定するシール鉛蓄電池の寿命判定装置を
提供することである。
An object of the present invention is to measure the impedance of a sealed lead acid battery accurately without being affected by ripple voltage and temperature, and to accurately estimate the discharge capacity together with the measured short-term discharge voltage. An object of the present invention is to provide a life determining device for a storage battery.

【0015】[0015]

【課題を解決するための手段】本発明に係るシール鉛蓄
電池の寿命判定装置は、以下に述べる手段により上記の
課題を解決する。
A life determining device for a sealed lead-acid battery according to the present invention solves the above problems by the means described below.

【0016】通・放電制御部により制御して、交流電流
通電部より被測定電池へ一定振幅、一定周波数で、且つ
周期が100msの整数倍の交流電流を所定の期間通電す
る。また、放電用負荷部に被測定電池を所定の時間だけ
放電させる。被測定電池に通電する交流電流の周波数と
同一の周波数成分のみを通すフィルタ特性を有する交流
電圧振幅部により、電池電圧中の交流電圧成分を増幅す
る。交流電圧増幅部の出力に基いて、インピーダンス値
算出部が電池の内部インピーダンス値を算出し、算出結
果を表示部で表示する。被測定電池を所定時間放電した
ときの直流電圧成分を直流電圧測定部で測定し、電池周
囲温度を温度検出部で測定する。以上により得られた被
測定電池のインピーダンス値と、所定時間放電時の直流
電圧値と、周囲温度値とから容量推定部が被測定電池の
容量を推定演算し、その結果を表示部に表示する。
Controlled by the current / discharge control unit, the AC current conducting unit transfers to the battery under test at a constant amplitude and a constant frequency, and
An alternating current whose cycle is an integral multiple of 100 ms is supplied for a predetermined period. Further, the battery under test is discharged to the discharging load for a predetermined time. The AC voltage component in the battery voltage is amplified by the AC voltage amplitude unit having a filter characteristic that allows only the same frequency component as the frequency of the AC current supplied to the battery to be measured. The impedance value calculation unit calculates the internal impedance value of the battery based on the output of the AC voltage amplification unit, and the calculation result is displayed on the display unit. The DC voltage component when the measured battery is discharged for a predetermined time is measured by the DC voltage measuring unit, and the battery ambient temperature is measured by the temperature detecting unit. The capacity estimation unit estimates and calculates the capacity of the measured battery from the impedance value of the measured battery obtained above, the DC voltage value at the time of discharging for a predetermined time, and the ambient temperature value, and displays the result on the display unit. .

【0017】インピーダンス値算出部は、交流電圧増幅
部の出力の電圧応答波形をフーリエ変換し、フーリエ変
換した値から通電電流と同一周波数成分の交流電圧成分
の振幅を求め、この振幅からインピーダンス値を算出す
る。
The impedance value calculating section Fourier transforms the voltage response waveform of the output of the AC voltage amplifying section, obtains the amplitude of the AC voltage component having the same frequency component as the energizing current from the Fourier transformed value, and obtains the impedance value from this amplitude. calculate.

【0018】なお、交流電流通電部は、通電する交流電
流の周期を100msの整数倍の周期とするとよい。これ
はリプル電圧がインバータ等の負荷で発生する場合が多
く、その場合にはリプル電圧が商用周波数、つまり50
又は60Hzの整数倍となることに着目したものであ
る。即ち、フーリエ変換を行うと、入力波形の基本波の
整数倍の周波数成分は除去作用があるため、商用周波数
50又は60Hzの最大公約数10Hz、つまり周期1
00msの整数倍に入力波形周期を設定すれば、10Hz
の整数倍のリプル電圧は除去できることになる。従っ
て、通電電流の周期を100msの整数倍とすると、50
又は60Hzの整数倍のリプル電圧成分はフーリエ変換
で除去可能である。
It is preferable that the alternating current conducting section has a period of the alternating current to be an integral multiple of 100 ms. In many cases, the ripple voltage is generated by a load such as an inverter. In that case, the ripple voltage is the commercial frequency, that is, 50
Or, it focuses on the fact that it becomes an integral multiple of 60 Hz. That is, when the Fourier transform is performed, a frequency component that is an integral multiple of the fundamental wave of the input waveform has a removing effect. Therefore, the greatest common divisor 10 Hz of the commercial frequency 50 or 60 Hz, that is, the period 1
10Hz if the input waveform cycle is set to an integral multiple of 00ms
The ripple voltage that is an integral multiple of can be removed. Therefore, if the cycle of the energizing current is an integral multiple of 100 ms, 50
Alternatively, a ripple voltage component that is an integral multiple of 60 Hz can be removed by Fourier transform.

【0019】また、インピーダンス値算出部は、被測定
電池に交流電流の通電開始後所定の周期以降の交流電圧
増幅部の出力の平均の電圧応答波形から被測定電池の内
部インピーダンス値を算出するようにするとよい。具体
的には、複数周期通電時の電圧応答波形から平均の電圧
応答波形(1周期分)を求め、この平均の電圧応答波形
から内部インピーダンス値を算出する。これは、更にリ
プル電圧及びノイズの影響を少なくしようとするもの
で、電圧応答波形を平均化することにより、通電周波数
の整数倍以外の周波数成分が減少するため、一層精度の
よい測定が可能となる。
Further, the impedance value calculating unit calculates the internal impedance value of the battery to be measured from the average voltage response waveform of the output of the AC voltage amplifying unit after a predetermined period after the start of the application of the alternating current to the battery to be measured. It should be set to. Specifically, an average voltage response waveform (for one cycle) is obtained from the voltage response waveforms when a plurality of cycles are energized, and the internal impedance value is calculated from this average voltage response waveform. This is to further reduce the effects of ripple voltage and noise, and by averaging the voltage response waveforms, frequency components other than integer multiples of the energization frequency are reduced, enabling more accurate measurement. Become.

【0020】本発明に係るシール鉛蓄電池の寿命判定装
置においては、電池の内部インピーダンスの測定と短時
間放電電圧の測定を併せて行い、これらの測定値から電
池放電容量を適確に推定する。そして、電池の周囲温度
を測定した結果に基づき温度補正を行うことにより、放
電容量の推定精度が高められる。また、インピーダンス
測定においては、交流電圧増幅部に、通電する交流電流
と同一周波数の周波数成分のみを通すフィルタ特性を持
たせるため、リプル電圧とノイズによる測定誤差が軽減
される。更に、交流電圧増幅部の出力の電圧応答波形を
フーリエ変換し、フーリエ変換した値から通電電流と同
一周波数成分の交流電圧成分の振幅を求めてインピーダ
ンス値を算出するので、交流電圧増幅部のフィルタ特性
では十分に除去できないリプル電圧又はノイズを減少さ
せて、より高い精度でインピーダンスが測定され、電池
容量が推定される。
In the life determining apparatus for a sealed lead-acid battery according to the present invention, the internal impedance of the battery and the short-time discharge voltage are measured together, and the battery discharge capacity is accurately estimated from these measured values. Then, by correcting the temperature based on the result of measuring the ambient temperature of the battery, the accuracy of estimating the discharge capacity can be improved. Further, in impedance measurement, the AC voltage amplification unit is provided with a filter characteristic that allows only a frequency component having the same frequency as that of the AC current to be passed, so that measurement error due to ripple voltage and noise is reduced. Further, the voltage response waveform of the output of the AC voltage amplification unit is Fourier-transformed, and the impedance value is calculated by obtaining the amplitude of the AC voltage component having the same frequency component as the energized current from the Fourier-transformed value. By reducing ripple voltage or noise that cannot be sufficiently removed by characteristics, impedance is measured with higher accuracy and battery capacity is estimated.

【0021】上記を簡単にまとめると、実際の機器では
ノイズ、リプル電圧成分が存在するため、インピーダン
スを正確に測定するためには、測定周波数以外の成分を
除去することが必要になる。測定周波数成分を通すフィ
ルタを通して交流電圧成分を測定すればよいが、精度が
悪い。そこで本発明では電圧応答波形をフーリエ変換し
て、測定周波数成分のみの大きさを求めて精度を高めて
いる。また電圧応答波形の平均値をフーリエ変換し、測
定周波数成分のみの大きさを求めると、更に測定周波数
以外の除去が可能となり精度を高めることができる。
To summarize the above briefly, noise and ripple voltage components are present in an actual device, so that components other than the measurement frequency must be removed in order to accurately measure impedance. The AC voltage component may be measured through a filter that passes the measurement frequency component, but the accuracy is poor. Therefore, in the present invention, the voltage response waveform is Fourier-transformed to obtain the magnitude of only the measurement frequency component to improve the accuracy. Further, if the average value of the voltage response waveform is Fourier-transformed and the magnitude of only the measurement frequency component is obtained, it is possible to remove other than the measurement frequency, and the accuracy can be improved.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1は本発明の実施例を示す説明図
で、1は寿命を判定するシール鉛蓄電池、2は一定振
、一定周波数で、且つ周期が100msの整数倍の交流
電流を出力する交流電流通電部である。被測定電池1は
交流電流通電部2にリレー3の接点を通して接続され、
電池1の内部インピーダンス測定時の交流電流は交流電
流通電部2から通電される。被測定電池1の端子電圧
は、交流電圧増幅部4の入力となり、インピーダンス測
定時に被測定電池1の端子電圧に発生する交流電圧成分
は、通電電流と同一周波数成分のみを通すフィルタ特性
を有する交流電圧増幅部4で増幅される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing an embodiment of the present invention, in which 1 is a sealed lead acid battery for determining the life, 2 is an alternating current energizing section that outputs an alternating current with a constant amplitude , a constant frequency and a cycle of an integral multiple of 100 ms. Is. The battery 1 to be measured is connected to the alternating current conducting part 2 through the contacts of the relay 3,
An alternating current when measuring the internal impedance of the battery 1 is supplied from the alternating current supply unit 2. The terminal voltage of the battery under test 1 becomes an input to the AC voltage amplifying section 4, and the AC voltage component generated in the terminal voltage of the battery under test 1 at the time of impedance measurement is an alternating current having a filter characteristic that passes only the same frequency component as the energized current. The voltage is amplified by the voltage amplifier 4.

【0023】5は放電試験用の負荷抵抗で、この負荷抵
抗はリレー6の接点を通して被測定電池1に接続され
る。電池1の端子電圧はまた、直流電圧測定部7の入力
となり、短時間放電時の電池の直流電圧は直流電圧測定
部7で測定される。この直流電圧測定部7は、電池1の
出力の直流電圧成分を測定し、測定した値を所定の信号
に変換する。8は電池1の周囲温度の変化を検出する熱
電対であり、この熱電対8は温度検出部9に接続されて
いる。温度検出部9は熱電対8の出力から電池1の周囲
温度を検出して、検出した温度を所定の信号に変換す
る。
Reference numeral 5 is a load resistance for a discharge test, and this load resistance is connected to the battery 1 to be measured through a contact of a relay 6. The terminal voltage of the battery 1 is also input to the DC voltage measuring unit 7, and the DC voltage of the battery during short-time discharge is measured by the DC voltage measuring unit 7. The DC voltage measuring unit 7 measures the DC voltage component of the output of the battery 1 and converts the measured value into a predetermined signal. Reference numeral 8 is a thermocouple for detecting a change in the ambient temperature of the battery 1, and the thermocouple 8 is connected to the temperature detection unit 9. The temperature detector 9 detects the ambient temperature of the battery 1 from the output of the thermocouple 8 and converts the detected temperature into a predetermined signal.

【0024】10は交流電流通電部2及びリレー3,6
等の動作を制御するマイクロプロセッサを制御部に有し
ていて、電池1への交流電流の通電と電池1から負荷抵
抗5への放電を制御する通・放電制御部である。
Reference numeral 10 is an alternating current conducting section 2 and relays 3 and 6.
The control unit has a microprocessor for controlling operations such as the above, and is a communication / discharge control unit for controlling energization of an alternating current to the battery 1 and discharging from the battery 1 to the load resistor 5.

【0025】交流電圧増幅部4の出力は、マイクロプロ
セッサを利用して実現されるインピーダンス値算出部1
1のA/D変換入力に接続される。インピーダンス値算
出部11は、交流電圧増幅部4の出力の電圧応答波形を
フーリエ変換し、フーリエ変換した値からインピーダン
ス値を算出するものである。具体的には、電池1に交流
電流を通電開始した後所定の周期以降の交流電圧増幅部
4の出力の平均の電圧応答波形からインピーダンス値を
算出する。
The output of the AC voltage amplifying unit 4 is the impedance value calculating unit 1 realized by using a microprocessor.
1 is connected to the A / D conversion input. The impedance value calculation unit 11 performs a Fourier transform on the voltage response waveform of the output of the AC voltage amplification unit 4, and calculates the impedance value from the value obtained by the Fourier transform. Specifically, the impedance value is calculated from the average voltage response waveform of the output of the AC voltage amplification unit 4 after a predetermined period after the AC current starts to be supplied to the battery 1.

【0026】また、直流電圧測定部7、温度検出部9及
びインピーダンス値算出部11の各出力はマイクロプロ
セッサを用いて実現される容量推定部12に入力され
る。なお直流電圧測定部7及び温度検出部9の出力は、
容量推定部12の対応する入力部に設けられたA/D変
換器によりA/D変換されて使用される。インピーダン
ス値算出部11及び容量推定部12の各出力はLEDセ
グメントを表示手段として備えた表示部13に入力さ
れ、電池1のインピーダンス算出値及び容量推定値が表
示部13に表示される。本実施例において、インピーダ
ンス算出表示部がインピーダンス値算出部11と表示部
13とから構成され、容量推定表示部が容量推定部12
と表示部13とから構成される。実際には、インピーダ
ンス値算出部11と容量推定部12は共通のマイクロプ
ロセッサを用いて実現される。
The outputs of the DC voltage measuring unit 7, the temperature detecting unit 9 and the impedance value calculating unit 11 are input to the capacity estimating unit 12 realized by using a microprocessor. The outputs of the DC voltage measuring unit 7 and the temperature detecting unit 9 are
It is used after being A / D converted by an A / D converter provided in the corresponding input section of the capacity estimation section 12. The respective outputs of the impedance value calculation unit 11 and the capacity estimation unit 12 are input to the display unit 13 having an LED segment as a display unit, and the calculated impedance value and the estimated capacity value of the battery 1 are displayed on the display unit 13. In the present embodiment, the impedance calculation display unit is composed of the impedance value calculation unit 11 and the display unit 13, and the capacity estimation display unit is the capacity estimation unit 12
And a display unit 13. In reality, the impedance value calculation unit 11 and the capacitance estimation unit 12 are realized by using a common microprocessor.

【0027】次に、本実施例の動作を説明する。先ず、
被測定電池1の内部インピーダンスを測定する場合、通
・放電制御部10によりリレー3の接点をONとしたの
ち、一定周期で割り込みがかけられ、交流電流通電部2
を制御して、一定振幅、一定周波数で、且つ周期が10
0msの整数倍の交流電流を所定の期間だけ電池1に通電
する。交流電圧増幅部4は、内蔵するフィルタにより通
電する交流電流の周波数と同一の周波数成分のみを測定
してこれを増幅して出力する。そして、交流電圧増幅部
4の出力電圧をインピーダンス値算出部11の入力部に
内蔵した図示しないA/D変換器でA/D変換する。A
/D変換された交流電圧成分は、インピーダンス値算出
部11に内蔵された図示しないメモリに順次保存され
る。所定数の周期分または所定期間の交流電流の通電が
終了すると、通・放電制御部10はリレー3の接点をO
FFとして交流電流通電部2の動作を終了させる。イン
ピーダンス値算出部11では、その後電池1の内部イン
ピーダンスの計算を行って、内蔵する図示しないメモリ
にその計算結果を記憶させる。そしてインピーダンス値
算出部11は、メモリに記憶したインピーダンス値をL
EDセグメントを表示手段として有する表示部13に表
示させる。また同時に、インピーダンス値算出部11
は、メモリに記憶したインピーダンス値をインピーダン
ス値信号として容量推定部12に出力する。
Next, the operation of this embodiment will be described. First,
When measuring the internal impedance of the battery 1 to be measured, after the contact of the relay 3 is turned ON by the communication / discharge control unit 10, an interrupt is applied at a constant cycle, and the AC current conducting unit 2
Is controlled to have a constant amplitude , a constant frequency, and a period of 10
An alternating current of an integral multiple of 0 ms is applied to the battery 1 for a predetermined period. The AC voltage amplifying unit 4 measures only the same frequency component as the frequency of the AC current conducted by the built-in filter, amplifies this frequency component, and outputs it. Then, the output voltage of the AC voltage amplification unit 4 is A / D converted by an A / D converter (not shown) built in the input unit of the impedance value calculation unit 11. A
The / D-converted AC voltage components are sequentially stored in a memory (not shown) built in the impedance value calculation unit 11. When the energization of the alternating current for a predetermined number of cycles or for a predetermined period is completed, the communication / discharge control unit 10 turns on the contact of the relay 3.
As the FF, the operation of the AC current supply unit 2 is terminated. The impedance value calculation unit 11 then calculates the internal impedance of the battery 1 and stores the calculation result in a built-in memory (not shown). Then, the impedance value calculation unit 11 sets the impedance value stored in the memory to L
The ED segment is displayed on the display unit 13 having display means. At the same time, the impedance value calculation unit 11
Outputs the impedance value stored in the memory to the capacitance estimating unit 12 as an impedance value signal.

【0028】インピーダンス値算出部11がインピーダ
ンスの算出を行う場合には、交流電圧増幅部4から出力
される電圧応答波形をA/D変換した後に、マイクロプ
ロセッサによりフーリエ変換し、フーリエ変換した交流
電圧成分から通電交流電流と同一周波数成分の交流電圧
成分の振幅を求めて、この振幅からインピーダンス値を
算出する。これにより、交流電圧増幅部4のフィルタ特
性では十分に除去されないリプル電圧又はノイズを減少
させることができ、より高い精度でインピーダンス値を
算出することができる。具体的なインピーダンス値は、
フーリエ変換して求められた測定周波数の交流電圧成分
の振幅値を通電電流の値で除することにより求められ
る。
When the impedance value calculation unit 11 calculates the impedance, the voltage response waveform output from the AC voltage amplification unit 4 is A / D-converted, then Fourier-transformed by the microprocessor, and the AC-transformed AC voltage is obtained. The amplitude of the AC voltage component having the same frequency component as the energizing AC current is obtained from the component, and the impedance value is calculated from this amplitude. As a result, the ripple voltage or noise that is not sufficiently removed by the filter characteristics of the AC voltage amplifier 4 can be reduced, and the impedance value can be calculated with higher accuracy. The specific impedance value is
It is obtained by dividing the amplitude value of the AC voltage component of the measurement frequency obtained by Fourier transform by the value of the energizing current.

【0029】また本発明の装置においては、被測定電池
1の短時間放電試験を行う。短時間放電試験を行う場合
には、通・放電制御部10がリレー6の接点を所定の時
間(例えば30秒)だけONとして、電池1より負荷抵
抗5に短時間放電電流を流す。この放電時間は、放電電
圧が判定するまでの時間でよく、負荷抵抗の大きさに応
じて定めればよい。そして、放電時の電池電圧を直流電
圧測定部7で測定し、直流電圧測定部7から出力される
電池電圧信号を容量推定部12のA/D変換入力部に入
力する。容量推定部12では、直流電圧測定部7で測定
した電池電圧を放電電圧として図示しないメモリに記憶
する。更に、熱電対8と温度検出部9により検出された
電池1の周囲温度値を示す周囲温度信号が、容量推定部
12のA/D変換入力部に入力され,電池1の周囲温度
値は容量推定部12の図示しないメモリに記憶される。
Further, in the apparatus of the present invention, a short-time discharge test of the battery 1 to be measured is performed. When performing a short-time discharge test, the conduction / discharge control unit 10 turns on the contact of the relay 6 for a predetermined time (for example, 30 seconds), and causes a short-time discharge current to flow from the battery 1 to the load resistor 5. This discharge time may be the time until the discharge voltage is determined, and may be set according to the magnitude of the load resistance. Then, the battery voltage at the time of discharging is measured by the DC voltage measuring unit 7, and the battery voltage signal output from the DC voltage measuring unit 7 is input to the A / D conversion input unit of the capacity estimating unit 12. The capacity estimation unit 12 stores the battery voltage measured by the DC voltage measurement unit 7 as a discharge voltage in a memory (not shown). Further, an ambient temperature signal indicating the ambient temperature value of the battery 1 detected by the thermocouple 8 and the temperature detecting unit 9 is input to the A / D conversion input unit of the capacity estimating unit 12, and the ambient temperature value of the battery 1 is the capacity. It is stored in a memory (not shown) of the estimation unit 12.

【0030】容量推定部12は、上記のようにして入力
された被測定電池1のインピーダンス値、短時間放電時
の電池電圧信号及び周囲温度信号をそれぞれA/D変換
してメモリに記憶したデータを用いてマイクロプロセッ
サにより放電容量の推定演算を行う。具体的には、イン
ピーダンス値と短時間放電電圧値を電池1の周囲温度で
温度補正した値を用いて放電容量を推定演算して、LE
Dセグメントを表示手段として有する表示部13にその
演算結果を表示する。この放電容量の推定演算は、従来
の技術の欄で説明した電気設備学会誌「1993,N
o.12,VOL.13,P1247」に説明されてい
る推定演算を用いればよい。
The capacity estimating unit 12 A / D-converts the impedance value of the battery 1 to be measured, the battery voltage signal at the time of short-term discharge, and the ambient temperature signal, which are stored in the memory. Is used to estimate the discharge capacity by the microprocessor. Specifically, the impedance value and the short-time discharge voltage value are temperature-corrected with the ambient temperature of the battery 1, and the discharge capacity is estimated and calculated using the LE value.
The calculation result is displayed on the display unit 13 having the D segment as the display means. This estimation calculation of the discharge capacity is performed by the journal of the Institute of Electrical Equipment, "1993, N
o. 12, VOL. 13, P1247 ”may be used.

【0031】なお、本実施例においては、交流電流通電
部2が電池1に通電する交流電流の周期を100msの整
数倍の周期としている。その理由は課題を解決するため
の手段の項で述べた通りであるが、その作用効果を図2
を用いて説明する。即ち交流電流の周期を100msの整
数倍の周期としたのは、リプル電圧がインバータ等の負
荷で発生する場合が多く、その場合にはリプル電圧が商
用周波数、つまり50又は60Hzの整数倍となること
に着目したものである。図2は、フーリエ変換する波形
として、振幅を100とした場合で周波数が10Hzか
ら60Hzの高周波成分を重畳した波形を用い、この波
形をフーリエ変換して基本波成分の振幅を計算した場合
の誤差をプロットしたものである。図示されるように、
基本波成分の整数倍の周波数に対しては誤差が0%とな
っていて基本波成分の影響はなく、周波数が50及び6
0Hzの成分も除去可能である。即ち、フーリエ変換を
行うと、入力波形の基本波の整数倍の周波数成分は除去
作用があるため、商用周波数50又は60Hzの最大公
約数10Hz、つまり周期100msの整数倍に入力波形
周期を設定すれば、10Hzの整数倍のリプル電圧は除
去できることになる。従って、通電交流電流の周期を1
00msの整数倍とすると、50又は60Hzの整数倍の
リプル電圧成分はフーリエ変換で除去可能になる。
In the present embodiment, the cycle of the AC current supplied to the battery 1 by the AC current supply unit 2 is set to an integral multiple of 100 ms. The reason is as described in the section of means for solving the problem.
Will be explained. That is, the reason why the cycle of the alternating current is an integral multiple of 100 ms is that the ripple voltage is often generated in a load such as an inverter. In that case, the ripple voltage is an integral multiple of the commercial frequency, that is, 50 or 60 Hz. It focuses on that. FIG. 2 shows an error when the amplitude of the fundamental wave component is calculated by Fourier transforming a waveform in which a high frequency component having a frequency of 10 Hz to 60 Hz is superimposed when the amplitude is 100 as the waveform to be Fourier transformed. Is a plot of. As shown,
The error is 0% for frequencies that are integer multiples of the fundamental wave component, and there is no influence of the fundamental wave component.
The 0 Hz component can also be removed. That is, when the Fourier transform is performed, since the frequency component that is an integral multiple of the fundamental wave of the input waveform has a removing effect, the maximum common divisor 10 Hz of the commercial frequency 50 or 60 Hz, that is, the input waveform cycle is set to an integral multiple of the cycle 100 ms. For example, the ripple voltage that is an integral multiple of 10 Hz can be removed. Therefore, the cycle of the energizing AC current is 1
If it is an integral multiple of 00 ms, the ripple voltage component of an integral multiple of 50 or 60 Hz can be removed by Fourier transform.

【0032】また本実施例において、インピーダンス算
出部11は、被測定電池1に交流電流の通電を開始した
後所定周期分(具体的には、8周期分)の交流電流が通
電された以降に交流電圧増幅部4から出力された電圧応
答波形のデータを前述した図示しないメモリから読み出
し、この読み出したデータに基いて平均の電圧応答波形
を求め、この平均の電圧応答波形からインピーダンス値
を算出している。通電開始後、所定周期分のデータを利
用しないのは、電池の電圧応答波形が安定するまでに時
間を要するのと、フィルタ特性を有する交流電圧増幅部
の電圧応答波形が安定するまでに時間を要するためであ
る。この所定周期は、電圧応答波形が安定するまでの最
短時間とすればよい。このように平均の電圧応答波形を
用いると、リプル電圧及びノイズの影響を更に抑制でき
る。これを図3を参照して説明する。この例では、通電
交流電流の周波数の4.2倍の周波数で振幅が基本周波
数と同一のリプル電圧が重畳された場合を想定したもの
で、16周期の平均をとった場合である。図示されるよ
うに、入力波形aにはリプル電圧成分が重畳されている
が、16回積算平均化した波形bではリプル電圧成分が
減少している。
Further, in the present embodiment, the impedance calculation section 11 starts the energization of the alternating current to the battery 1 to be measured, and then, after the alternating current of a predetermined period (specifically, 8 cycles) is energized. The voltage response waveform data output from the AC voltage amplifying unit 4 is read from the above-mentioned memory (not shown), an average voltage response waveform is obtained based on the read data, and an impedance value is calculated from this average voltage response waveform. ing. After the start of energization, not using the data for a predetermined period takes time until the voltage response waveform of the battery stabilizes, and it takes time until the voltage response waveform of the AC voltage amplifying unit having the filter characteristic stabilizes. This is because it costs. This predetermined period may be the shortest time until the voltage response waveform stabilizes. By using the average voltage response waveform in this way, the influence of ripple voltage and noise can be further suppressed. This will be described with reference to FIG. In this example, a case is assumed in which a ripple voltage having the same amplitude as the fundamental frequency is superimposed at a frequency 4.2 times the frequency of the energizing alternating current, and an average of 16 cycles is taken. As shown in the figure, the ripple voltage component is superimposed on the input waveform a, but the ripple voltage component is reduced in the waveform b which is integrated and averaged 16 times.

【0033】更に、図2と同様に交流電流の基本周波数
を10Hzとして、周波数が10Hzから60Haの高
調波を重畳した波形を入力波形とし、16周期積算平均
した電圧応答波形をフーリエ変換した値で基本成分の振
幅を求めた場合の誤差特性を図4に示した。図4に示さ
れるように、基本周波数の整数倍以外の周波数でも誤差
が少なく、リプル電圧及びノイズの影響を少なくするこ
とができる。
Further, as in the case of FIG. 2, the fundamental frequency of the alternating current is 10 Hz, and the waveform obtained by superimposing the harmonics of the frequency of 10 Hz to 60 Ha is used as the input waveform. The error characteristic when the amplitude of the basic component is obtained is shown in FIG. As shown in FIG. 4, the error is small even at frequencies other than integral multiples of the fundamental frequency, and the influence of ripple voltage and noise can be reduced.

【0034】次に、本実施例での実際の動作条件を示
す。寿命判定対象のシール鉛蓄電池は、定格が2V、2
00Ahの据置形シール鉛蓄電池である。この電池のイ
ンピーダンス測定時の通電交流電流は周波数10Hz、
±2Aであり、この交流電流を25周期間通電し、9周
期から25周期の電圧応答波形データを積算平均化して
フーリエ変換を行い、インピーダンス値を算出する。イ
ンピーダンス値の測定上限は2.5mΩ、電圧応答波形
データのサンプリング点数は1周期当り128点であ
る。また短時間放電は、放電電流を約46Aで30秒間
行うものである。
Next, the actual operating conditions in this embodiment will be shown. The sealed lead-acid battery whose life is to be judged is rated at 2V, 2
It is a stationary sealed lead acid battery of 00Ah. The AC current applied when measuring the impedance of this battery had a frequency of 10 Hz,
It is ± 2 A, and this AC current is supplied for 25 cycles, and the voltage response waveform data of 9 cycles to 25 cycles are integrated and averaged to perform Fourier transform to calculate the impedance value. The upper limit of impedance measurement is 2.5 mΩ, and the number of sampling points of the voltage response waveform data is 128 points per cycle. The short-time discharge is performed at a discharge current of about 46 A for 30 seconds.

【0035】次に、本発明の特徴の一つである、対リプ
ル電圧特性について実測した結果を示す。測定対象物は
抵抗値がそれぞれ1mΩと0.333mΩの二つのシャ
ント抵抗とした。リプル電圧として10nV、50Hz
のリプル電圧を重畳させて100回測定した結果を図5
に示す。図示のように、リプル電圧の有無に拘らず、最
大誤差と誤差の標準偏差はほとんど変わらず、リプル電
圧存在の影響は測定値に現れなかった。従って、リプル
電圧はインピーダンスの測定値に影響を及ぼさないと判
断できる。
Next, the results of actual measurement of the ripple voltage characteristic, which is one of the features of the present invention, will be shown. The objects to be measured were two shunt resistors having resistance values of 1 mΩ and 0.333 mΩ, respectively. 10nV, 50Hz as ripple voltage
Fig. 5 shows the results of 100 measurements with the ripple voltage of Fig.
Shown in. As shown in the figure, the maximum error and the standard deviation of the error were almost the same regardless of the presence or absence of the ripple voltage, and the influence of the presence of the ripple voltage did not appear in the measured value. Therefore, it can be determined that the ripple voltage does not affect the measured impedance value.

【0036】[0036]

【発明の効果】以上述べたように、本発明に係るシール
鉛蓄電池の寿命判定装置によれば、対象となる電池の内
部インピーダンスの算出と短時間放電電池の測定を併せ
て行い、インピーダンス値及び放電電圧値を電池の周囲
温度測定値により補正した値に基づいて電池の放電容量
を推定するようにしたので、放電容量を適確に推定して
電池の寿命を良好に判定することができる。
As described above, according to the life determining apparatus for a sealed lead-acid battery according to the present invention, calculation of the internal impedance of the target battery and measurement of the short-time discharge battery are performed together, and the impedance value and Since the discharge capacity of the battery is estimated based on the value obtained by correcting the discharge voltage value with the measured ambient temperature of the battery, the discharge capacity can be accurately estimated and the life of the battery can be satisfactorily determined.

【0037】また、本発明によれば、電池への交流電流
通電に対する電池端子間の交流電圧の増幅出力をフーリ
エ変換し、変換した値から通電電流と同一周波数成分の
交流電圧の振幅を求めてインピーダンス値を算出するよ
うにしたので、リプル電圧及びノイズの影響を減少させ
て、高精度でインピーダンス値を算出し、電池容量を推
定することができる。これにより、電池寿命判定の信頼
度を高めることができる。
Further, according to the present invention, the amplified output of the alternating voltage between the battery terminals when the alternating current is applied to the battery is Fourier transformed, and the amplitude of the alternating voltage having the same frequency component as the applied current is obtained from the converted value. Since the impedance value is calculated, the influence of the ripple voltage and noise can be reduced, the impedance value can be calculated with high accuracy, and the battery capacity can be estimated. As a result, the reliability of battery life determination can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】 基本波の高調波周波数とフーリエ変換後の基
本波成分の振幅の誤差を示す特性曲線図である。
FIG. 2 is a characteristic curve diagram showing an error between a harmonic frequency of a fundamental wave and an amplitude of a fundamental wave component after Fourier transform.

【図3】 電池の交流入力に対する電圧応答波形を積算
平均化した場合の波形の変化を示す特性曲線図である。
FIG. 3 is a characteristic curve diagram showing a change in waveform when a voltage response waveform with respect to an AC input of a battery is integrated and averaged.

【図4】 交流入力の高調波周波数と電圧応答波形を積
算平均化した場合のフーリエ変換後の基本波成分の振幅
の誤差を示す特性曲線図である。
FIG. 4 is a characteristic curve diagram showing an error in the amplitude of the fundamental wave component after Fourier transform when the harmonic frequency of the AC input and the voltage response waveform are integrated and averaged.

【図5】 リプル電圧が存在する場合の誤差を示す特性
説明図である。
FIG. 5 is a characteristic explanatory diagram showing an error when a ripple voltage exists.

【符号の説明】[Explanation of symbols]

1 被測定シール鉛蓄電池 2 交流電流通電部 3,6 リレー接点 4 交流電圧増幅部 5 放電用負荷抵抗(放電用負荷部) 7 直流電圧測定部 8 熱電対 9 温度検出部 10 通・放電制御部 11 インピーダンス値算出部 12 容量推定部 13 表示部 1 Sealed lead acid battery to be measured 2 AC current energizer 3,6 relay contact 4 AC voltage amplifier 5 Discharge load resistance (discharge load section) 7 DC voltage measurement section 8 thermocouple 9 Temperature detector 10 communication / discharge control unit 11 Impedance value calculator 12 Capacity estimation section 13 Display

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−155778(JP,A) 特開 平4−244981(JP,A) 特開 平3−180770(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/36 H01M 10/42 - 10/48 H01J 7/00 - 7/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-155778 (JP, A) JP-A-4-244981 (JP, A) JP-A-3-180770 (JP, A) (58) Field (Int.Cl. 7 , DB name) G01R 31/36 H01M 10/42-10/48 H01J 7/ 00-7/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定振幅、一定周波数で、且つ周期が1
00msの整数倍の交流電流を被測定電池に通電する交流
電流通電部(2)と、 前記交流電流の周波数と同一の周波数成分のみを通すフ
ィルタ特性を有して被測定電池の端子電圧から交流電圧
成分を検出してこれを増幅する交流電圧増幅部(4)
と、 前記交流電圧増幅部の出力からインピーダンス値を算出
するインピーダンス値算出部(11)と、 被測定電池を放電させる放電用負荷部(5)と、 前記交流電流通電部より前記被測定電池への通電を所定
の期間行わせるとともに、前記放電用負荷部に前記被測
定電池を所定の時間だけ放電させる通・放電制御部(1
0)と、 前記被測定電池の直流電圧成分を測定する直流電圧測定
部(7)と、 前記被測定電池の周囲温度を測定する温度検出部(8,
9)と、 前記被測定電池のインピーダンス値と一定時間放電時の
直流電圧値と周囲温度値とから前記被測定電池の容量を
推定演算する容量推定部(12)とを具備し、 前記インピーダンス値算出部(11)は、前記交流電圧
増幅部(4)の出力の電圧応答波形をフーリエ変換し、
フーリエ変換した値から通電電流と同一周波数成分の交
流電圧成分の振幅を求め、該振幅からインピーダンス値
を算出することを特徴とするシール鉛蓄電池の寿命判定
装置。
1. A constant amplitude , a constant frequency, and a period of 1
An alternating current conducting part (2) for supplying an alternating current of an integral multiple of 00 ms to the battery under test, and a filter characteristic for passing only a frequency component having the same frequency as the frequency of the alternating current. AC voltage amplification unit (4) that detects a voltage component and amplifies it
An impedance value calculating unit (11) for calculating an impedance value from the output of the AC voltage amplifying unit; a discharging load unit (5) for discharging the battery under test; and the AC current conducting unit to the battery under test. And a discharge / discharge control unit (1) for causing the discharge load unit to discharge the battery under test for a predetermined time.
0), a DC voltage measuring unit (7) for measuring a DC voltage component of the measured battery, and a temperature detection unit (8, 8) for measuring the ambient temperature of the measured battery.
9) and a capacity estimation unit (12) for estimating and calculating the capacity of the measured battery from the impedance value of the measured battery, the DC voltage value when discharging for a certain period of time, and the ambient temperature value, The calculation unit (11) Fourier transforms the voltage response waveform of the output of the AC voltage amplification unit (4),
A life determining device for a sealed lead storage battery, characterized in that an amplitude of an AC voltage component having the same frequency component as that of an energized current is obtained from a Fourier-transformed value, and an impedance value is calculated from the amplitude.
【請求項2】 一定振幅、一定周波数で、且つ周期が1
00msの整数倍の交流電流を被測定電池に通電する交流
電流通電部(2)と、 前記交流電流の周波数と同一の周波数成分のみを通すフ
ィルタ特性を有して被測定電池の端子電圧から交流電圧
成分を検出してこれを増幅する交流電圧増幅部(4)
と、 前記交流電圧増幅部の出力からインピーダンス値を算出
して表示するインピーダンス値算出表示部(11,1
3)と、 被測定電池を放電させる放電用負荷部(5)と、 前記交流電流通電部より前記被測定電池への通電を所定
の期間行わせるとともに、前記放電用負荷部に前記被測
定電池を所定の時間だけ放電させる通・放電制御部(1
0)と、 前記被測定電池の直流電圧成分を測定する直流電圧測定
部(7)と、 前記被測定電池の周囲温度を測定する温度検出部(8,
9)と、 前記被測定電池のインピーダンス値と一定時間放電時の
直流電圧値と周囲温度値とから前記被測定電池の容量を
推定計算して表示する容量推定表示部(12,13)と
を具備し、 前記インピーダンス値算出表示部(11,13)は、前
記交流電圧増幅部の出力の電圧応答波形をフーリエ変換
し、フーリエ変換した値から通電電流と同一周波数成分
の交流電圧成分の振幅を求め、該振幅からインピーダン
ス値を算出して表示することを特徴とするシール鉛蓄電
池の寿命判定装置。
2. A constant amplitude , a constant frequency, and a period of 1
An alternating current conducting part (2) for supplying an alternating current of an integral multiple of 00 ms to the battery under test, and a filter characteristic for passing only a frequency component having the same frequency as the frequency of the alternating current. AC voltage amplification unit (4) that detects a voltage component and amplifies it
And an impedance value calculation display unit (11, 1) for calculating and displaying an impedance value from the output of the AC voltage amplification unit.
3), a discharging load part (5) for discharging the battery to be measured, and energization of the alternating current conducting part to the battery to be measured for a predetermined period, and the discharging load part to the battery to be measured. The discharge / discharge control unit (1
0), a DC voltage measuring unit (7) for measuring a DC voltage component of the measured battery, and a temperature detection unit (8, 8) for measuring the ambient temperature of the measured battery.
9), and a capacity estimation display section (12, 13) for estimating and displaying the capacity of the measured battery from the impedance value of the measured battery, the DC voltage value at the time of discharging for a fixed time, and the ambient temperature value. The impedance value calculating and displaying unit (11, 13) Fourier transforms the voltage response waveform of the output of the AC voltage amplifying unit, and calculates the amplitude of the AC voltage component of the same frequency component as the energized current from the Fourier transformed value. A life determining device for a sealed lead-acid battery, which is characterized by calculating and displaying an impedance value from the amplitude.
【請求項3】 前記インピーダンス値算出部(11)
は、前記被測定電池に交流電流の通電開始後所定の周期
以降の前記交流電圧増幅部の出力の平均の電圧応答波形
からインピーダンス値を算出して表示することを特徴と
する請求項1に記載のシール鉛蓄電池の寿命判定装置。
3. The impedance value calculation unit (11)
Is a predetermined period after the AC current starts to flow to the battery to be measured.
Subsequent average voltage response waveform of the output of the AC voltage amplifier
It is characterized by calculating and displaying the impedance value from
The life determining device for a sealed lead-acid battery according to claim 1 .
JP22211195A 1995-08-30 1995-08-30 Device for determining the life of sealed lead-acid batteries Expired - Fee Related JP3379298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22211195A JP3379298B2 (en) 1995-08-30 1995-08-30 Device for determining the life of sealed lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22211195A JP3379298B2 (en) 1995-08-30 1995-08-30 Device for determining the life of sealed lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH0961505A JPH0961505A (en) 1997-03-07
JP3379298B2 true JP3379298B2 (en) 2003-02-24

Family

ID=16777324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22211195A Expired - Fee Related JP3379298B2 (en) 1995-08-30 1995-08-30 Device for determining the life of sealed lead-acid batteries

Country Status (1)

Country Link
JP (1) JP3379298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193181A4 (en) * 2014-09-12 2018-05-16 NTN Corporation Battery checker

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
JP3598873B2 (en) 1998-08-10 2004-12-08 トヨタ自動車株式会社 Secondary battery state determination method and state determination device, and secondary battery regeneration method
US6002238A (en) * 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
JP4759795B2 (en) 2000-09-28 2011-08-31 株式会社Gsユアサ Rechargeable battery remaining capacity detection method
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
GB2463829B (en) 2007-07-17 2012-11-21 Midtronics Inc Battery tester for electric vehicle
JP2010102869A (en) * 2008-10-22 2010-05-06 Shin Kobe Electric Mach Co Ltd Degradation state estimation method of lead storage battery
JP5321248B2 (en) * 2009-05-27 2013-10-23 株式会社Jvcケンウッド OBE and program
WO2011056779A2 (en) * 2009-11-03 2011-05-12 Bravo Zulu International, Ltd. Automated battery scanning, repair, and optimization
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
WO2011109343A2 (en) 2010-03-03 2011-09-09 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
WO2011153419A2 (en) 2010-06-03 2011-12-08 Midtronics, Inc. Battery pack maintenance for electric vehicle
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
DE112012004706T5 (en) 2011-11-10 2014-08-21 Midtronics, Inc. Battery pack test device
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US9067504B1 (en) 2014-01-14 2015-06-30 Ford Global Technologies, Llc Perturbative injection for battery parameter identification
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
CN103884995B (en) * 2014-03-13 2017-01-04 清华大学 The impedance measurement system of a kind of secondary cell and impedance measurement method
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
JP6353758B2 (en) * 2014-09-26 2018-07-04 日置電機株式会社 Measuring apparatus, measuring method, and program
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
JP6890302B2 (en) * 2017-03-31 2021-06-18 パナソニックIpマネジメント株式会社 Power conversion system
WO2019054020A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Battery management device, battery system, and battery management method
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193181A4 (en) * 2014-09-12 2018-05-16 NTN Corporation Battery checker
US10459036B2 (en) 2014-09-12 2019-10-29 Ntn Corporation Battery checker

Also Published As

Publication number Publication date
JPH0961505A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP3379298B2 (en) Device for determining the life of sealed lead-acid batteries
JP3564885B2 (en) Power supply with sealed lead-acid battery
KR0128039B1 (en) Method and device for detecting remaining charge in battery for electric vehicle
KR101511655B1 (en) Charger with Embedded Battery Diagnosis And Control Method thereof
KR101516419B1 (en) Power conversion devices for fuel cell and the control method
EP2664938B1 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
JPH03503936A (en) Charging status indication
US10444296B2 (en) Control device, control method, and recording medium
JP2004191373A (en) Electronic battery tester
JP4884435B2 (en) Storage battery state determination device and storage battery state determination method
TW201539008A (en) Method and apparatus of estimating state of health of a battery
JP3367320B2 (en) Method and apparatus for determining deterioration of sealed lead-acid battery
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
TWI579575B (en) Battery health detection method and its circuit
KR102002859B1 (en) Charger with battery diagnosis and control method thereof
JP5554310B2 (en) Internal resistance measuring device and internal resistance measuring method
JPH05281310A (en) Method and device for detecting deterioration of lead battery
JP2002323526A (en) Insulation resistance deterioration detecting method and apparatus
JP6240059B2 (en) Apparatus and method for estimating deterioration state of primary smoothing capacitor in power supply device
JP3412355B2 (en) Nickel-based battery deterioration determination method
JP2001015180A (en) Battery service life deciding device
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
JP2999405B2 (en) Battery deterioration judgment method
JP3430600B2 (en) Method and apparatus for estimating deterioration state of storage battery
JP2001351696A (en) Charging and discharging device of secondary cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees