JP2010102869A - Degradation state estimation method of lead storage battery - Google Patents

Degradation state estimation method of lead storage battery Download PDF

Info

Publication number
JP2010102869A
JP2010102869A JP2008271585A JP2008271585A JP2010102869A JP 2010102869 A JP2010102869 A JP 2010102869A JP 2008271585 A JP2008271585 A JP 2008271585A JP 2008271585 A JP2008271585 A JP 2008271585A JP 2010102869 A JP2010102869 A JP 2010102869A
Authority
JP
Japan
Prior art keywords
discharge
storage battery
lead storage
current value
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271585A
Other languages
Japanese (ja)
Inventor
Masaji Miyata
昌時 宮田
Nobunaga Tsujii
伸長 辻井
Yuichiro Mishiro
祐一朗 三代
Hisayoshi Takeuchi
久喜 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008271585A priority Critical patent/JP2010102869A/en
Publication of JP2010102869A publication Critical patent/JP2010102869A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a degradation state estimation method for a lead storage battery of high reliability capable of using a small electronic load. <P>SOLUTION: The lead storage battery 1 is discharged at a relatively small current value (A), and a voltage value (V) at a plateau region is measured, which is made correspondent to a preliminarily measured regression line to estimate discharging time (min) at a large current value (A). Here, a discharging time (min) at the large current value (A) is corrected the shorter, the higher an ambient temperature is, and the longer, the lower the ambient temperature is. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無停電電源装置などのバックアップ用電源に用いられている鉛蓄電池の劣化状態推定方法に関するものである。   The present invention relates to a method for estimating a deterioration state of a lead storage battery used in a backup power source such as an uninterruptible power supply.

無停電電源装置などのバックアップ用電源には、10分間率程度の大きな電流値(A)での放電が可能な鉛蓄電池が用いられている。なお、これらの鉛蓄電池は、通常、トリクル電流で充電がされており、落雷や地震等による停電事故が発生した場合に、パソコン等の電気機器の非常用バックアップ電源に用いられている。   A lead-acid battery capable of discharging at a large current value (A) of about 10 minutes is used for a backup power source such as an uninterruptible power supply. These lead storage batteries are normally charged with a trickle current, and are used as an emergency backup power source for electric devices such as personal computers in the event of a power failure due to a lightning strike or earthquake.

これらのバックアップ用電源として用いられている鉛蓄電池は、一般的には7年〜10年程度の寿命が要求されており、定期的なメンテナンス作業がなされている。なお、鉛蓄電池の劣化原因としては、活物質の劣化、格子体の腐食、電解液枯れ、ショート等さまざまな要因によるものがある。   Lead-acid batteries used as backup power sources generally require a life of about 7 to 10 years, and regular maintenance work is performed. As a cause of deterioration of the lead storage battery, there are various causes such as deterioration of the active material, corrosion of the grid, electrolyte withering, and short circuit.

鉛蓄電池の劣化状態を短時間で簡易に推定する方法として、従来から、さまざまな方法について検討がされている。例えば、実際に鉛蓄電池の放電カーブを測定し、放電開始後の電圧の変化状況から鉛蓄電池の劣化状態を推定する方法が検討されている(例えば、特許文献1参照。)。   Conventionally, various methods have been studied as a method for easily estimating a deterioration state of a lead storage battery in a short time. For example, a method of actually measuring a discharge curve of a lead storage battery and estimating a deterioration state of the lead storage battery from a voltage change state after the start of discharge has been studied (for example, see Patent Document 1).

また、2種類の異なる電流値で鉛蓄電池を放電させて放電電圧を測定し、それぞれの放電電圧の差分値を算出し、その差分値から鉛蓄電池の劣化状態を推定する方法も検討されている(例えば、特許文献2参照。)。   In addition, a method has been studied in which a lead storage battery is discharged at two different current values, the discharge voltage is measured, the difference value of each discharge voltage is calculated, and the deterioration state of the lead storage battery is estimated from the difference value. (For example, refer to Patent Document 2).

特開平8−55642号公報JP-A-8-55642 特開平10−92472号公報JP-A-10-92472

しかしながら、上述したような従来からの劣化状態推定方法ではバラツキが大きく、信頼性が低いという問題点があった。すなわち、従来からの手法で劣化状態を推定した結果と、実際に大きな電流値(例えば、10分間率程度の電流値。)で放電試験をした場合の結果が一致しないために信頼性が低いという問題点があった。   However, the conventional degradation state estimation methods as described above have a problem that variations are large and reliability is low. That is, the reliability is low because the result of estimating the deterioration state by the conventional method and the result of actually conducting a discharge test with a large current value (for example, a current value of about 10 minutes) are not consistent. There was a problem.

また、無停電電源装置などのバックアップ用電源には、上述したような10分間率程度の大電流での放電性能が重視されている。そして、放電試験をするための電子負荷が巨大化し、試験装置購入費用やそのメンテナンスに多大なコストが必要となるという問題点があった。また、放電試験用の電子負荷が大型であるために、試験場所の確保や装置の持ち運びが大変にわずらわしいという問題点もあった。   In addition, the backup power source such as the uninterruptible power supply apparatus emphasizes the discharge performance at a large current of about 10 minutes as described above. And the electronic load for performing a discharge test became huge, and there existed a problem that a test apparatus purchase expense and the great cost were needed for the maintenance. Further, since the electronic load for the discharge test is large, there is a problem that it is very troublesome to secure a test place and carry the apparatus.

本発明の目的は、比較的小さな放電試験用の電子負荷を用いることができるとともに、信頼性の高い鉛蓄電池の劣化状態推定方法を提供することである。   An object of the present invention is to provide a method for estimating the deterioration state of a lead-acid battery that can use a relatively small electronic load for a discharge test and has high reliability.

上記した課題を解決するために、本発明に係わる鉛蓄電池の劣化状態推定方法は、3時間率程度の比較的に小さな電流値(A)で放電して放電カーブを測定する。そして、その放電初期のプラトー領域での電圧値(V)を測定して、あらかじめ測定してある回帰直線と対応させて、10分間率程度の大きな電流値(A)での放電時間を推定することを特徴にしている。   In order to solve the above-described problems, the degradation state estimation method for a lead storage battery according to the present invention measures the discharge curve by discharging at a relatively small current value (A) of about 3 hours. Then, the voltage value (V) in the plateau region at the initial stage of discharge is measured, and the discharge time at a large current value (A) of about 10 minutes is estimated in correspondence with the regression line measured in advance. It is characterized by that.

すなわち、請求項1の発明は、鉛蓄電池の劣化状態推定方法において、
前記鉛蓄電池を小さな電流値(A)で放電してプラトー領域での電圧値(V)を測定し、
前記プラトー領域での電圧値(V)を、あらかじめ測定してある回帰直線と対応させて、
大きな電流値(A)での放電時間(min)を推定することを特徴とするものである。
That is, the invention of claim 1 is a method for estimating a deterioration state of a lead storage battery.
The lead storage battery is discharged at a small current value (A), and the voltage value (V) in the plateau region is measured.
The voltage value (V) in the plateau region is associated with a regression line measured in advance,
The discharge time (min) at a large current value (A) is estimated.

請求項2の発明は、請求項1の発明において、前記大きな電流値(A)での放電時間(min)は、周囲温度が高いほど短く、周囲温度が低いほど長く補正をすることを特徴とするものである。   The invention of claim 2 is characterized in that, in the invention of claim 1, the discharge time (min) at the large current value (A) is corrected shorter as the ambient temperature is higher and longer as the ambient temperature is lower. To do.

本発明を用いると、小さな電流値(例えば、3時間率放電電流値。)における放電初期の電圧値(V)から、大きな電流値(例えば、10分間率放電電流値。)での放電時間(min)をバラツキの小さな状態で推定し、信頼性の高い状態で鉛蓄電池の劣化状態を推定することができる。   When the present invention is used, a discharge time (from a voltage value (V) at the initial stage of discharge at a small current value (for example, 3-hour rate discharge current value) to a large current value (for example, 10-minute rate discharge current value). min) can be estimated in a state of small variation, and the deterioration state of the lead-acid battery can be estimated in a highly reliable state.

したがって、本発明を用いると、比較的小さな放電試験用の電子負荷装置を用いて鉛蓄電池の劣化状態を推定することができる。   Therefore, if this invention is used, the deterioration state of a lead storage battery can be estimated using the electronic load apparatus for a comparatively small discharge test.

以下において、本発明の実施をするための最良の形態について、図1〜図4を用いて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS.

1.実験装置の概略図
本発明に係わる鉛蓄電池の劣化状態推定方法に用いる実験装置の概略図を図4に示す。放電試験中に鉛蓄電池1を流れる電流値(A)を電流計2で測定し、その電圧値(V)を電圧計3で測定する。
1. Schematic diagram of experimental apparatus FIG. 4 shows a schematic diagram of an experimental apparatus used in the method for estimating the deterioration state of a lead storage battery according to the present invention. During the discharge test, the current value (A) flowing through the lead storage battery 1 is measured by the ammeter 2, and the voltage value (V) is measured by the voltmeter 3.

本実施例では、鉛蓄電池1として、12V−167Ah(ただし、公称容量、10時間率放電容量。)の制御弁式のモノブロック型鉛蓄電池を使用した。また、使用した電圧計1は、鉛蓄電池1の放電時間に対応した電圧値(V)をデジタル記憶ができ、試験終了後に鉛蓄電池1の放電カーブを描くことができる。   In this embodiment, a 12V-167Ah (however, nominal capacity, 10 hour rate discharge capacity) control valve type monoblock type lead storage battery was used as the lead storage battery 1. Moreover, the used voltmeter 1 can digitally store the voltage value (V) corresponding to the discharge time of the lead storage battery 1, and can draw the discharge curve of the lead storage battery 1 after the test.

放電時の電流値(A)を一定に保つために電子負荷4を用いて放電試験をしている(図4)。ここで、実験用の電子負荷4として、150V−1800A(最大で9KW。)の放電が可能な比較的容量の大きな装置を用いた。なお、電子負荷4の替わりに、カーボン抵抗と電源装置とを組み合わせた負荷を用いることもできる(図示なし。)。   In order to keep the current value (A) at the time of discharge constant, a discharge test is performed using the electronic load 4 (FIG. 4). Here, as an experimental electronic load 4, a device having a relatively large capacity capable of discharging 150 V to 1800 A (9 kW at the maximum) was used. Note that a load combining a carbon resistor and a power supply device can be used instead of the electronic load 4 (not shown).

2.10分間率放電時間(min)の測定
使用年数や周囲温度などの使用環境の異なる複数個の鉛蓄電池1を用いて実験した。まず、それらの鉛蓄電池1を0.1CA(16.7A)の電流値で放電終止電圧として10.8Vまで放電させて容量抜きをした後に、0.1CA(16.7A)の電流値で満充電状態まで充電する。
2. Measurement of 10-minute rate discharge time (min) An experiment was conducted using a plurality of lead storage batteries 1 having different usage environments such as years of use and ambient temperature. First, the lead-acid batteries 1 were discharged at a current value of 0.1 CA (16.7 A) to a discharge end voltage of 10.8 V, the capacity was removed, and the lead-acid batteries 1 were fully charged with a current value of 0.1 CA (16.7 A). Charge to charge.

その後、25℃の雰囲気中で約半日間の放置した後に10分間率放電電流(451A)で放電終止電圧として9.6Vまで放電し、それぞれの鉛蓄電池1の放電時間(min)を測定した。すなわち、最初に大きな電流値(A)で放電時間(min)を測定する。その後、0.1CA(16.7A)の電流値で満充電状態まで回復充電をした。   Then, after leaving it for about half a day in an atmosphere at 25 ° C., it was discharged to a discharge final voltage of 9.6 V at a rate discharge current (451 A) for 10 minutes, and the discharge time (min) of each lead storage battery 1 was measured. That is, first, the discharge time (min) is measured with a large current value (A). Thereafter, recovery charging was performed to a fully charged state with a current value of 0.1 CA (16.7 A).

3.劣化状態推定試験方法
図1に、周囲温度が25℃における比較的に小さな電流値(例えば、3時間率放電電流(38.4A))で放電した場合の放電カーブの一例を示す。鉛蓄電池1の電圧(V)は、放電初期において急激に低下した後に一度は回復し、放電電圧がほぼ一定の領域(図1において、プラトー領域と示す。以下において、単に、プラトー領域と呼ぶ。)を経た後に次第に低下して10.2Vで放電が終了する。ここで、周囲温度が25℃では、上述した、いずれの鉛蓄電池1においても、放電開始後3分〜15分程度の間、プラトー領域が存在することを確認した。
3. Deterioration State Estimation Test Method FIG. 1 shows an example of a discharge curve when discharging is performed with a relatively small current value (for example, 3 hour rate discharge current (38.4 A)) at an ambient temperature of 25 ° C. The voltage (V) of the lead storage battery 1 recovers once after abruptly decreasing in the initial stage of discharge, and is indicated as a plateau region in which the discharge voltage is substantially constant (hereinafter referred to as a plateau region in FIG. 1). ), The voltage gradually decreases, and the discharge ends at 10.2V. Here, at an ambient temperature of 25 ° C., it was confirmed that in any of the lead storage batteries 1 described above, a plateau region exists for about 3 to 15 minutes after the start of discharge.

図2に、周囲温度が25℃において、上述した鉛蓄電池1の3時間率放電時での放電開始後5分目の電圧(V)(図1において、プラトー領域での電圧(V)。)と、上述した10分間率放電電流(451A)における放電時間(min)との関係を示す。   In FIG. 2, the voltage (V) at the fifth minute after the start of discharge at the time of 3-hour rate discharge of the lead storage battery 1 described above at an ambient temperature of 25 ° C. (voltage (V) in the plateau region in FIG. 1). And the discharge time (min) in the 10-minute rate discharge current (451A) described above.

3時間率放電時での放電開始後5分目の電圧(V)が高いほど、10分間率放電電流(451A)における放電時間(min)も長くなっており、それぞれの値には対応関係があることがわかる。すなわち、鉛蓄電池1を比較的に小さな電流値(A)で放電し、プラトー領域での電圧値(V)を測定し、あらかじめ測定してある回帰直線(図2に相当する実験結果から求めた直線。)と対応させることによって、大きな電流値(A)での放電時間(min)を推定することができる。   The higher the voltage (V) at the fifth minute after the start of discharge at the time of 3 hour rate discharge, the longer the discharge time (min) at the 10 minute rate discharge current (451A). I know that there is. That is, the lead-acid battery 1 is discharged at a relatively small current value (A), the voltage value (V) in the plateau region is measured, and the regression line that has been measured in advance (obtained from the experimental results corresponding to FIG. 2). The discharge time (min) at a large current value (A) can be estimated.

なお、図2における回帰直線(y=29.8x − 356)は、表計算ソフト(商品名:エクセル、マイクロソフト社製)の最小二乗法(ただし、線形近似。)を用いて算出した。また、図2の結果から、相関係数は0.95であり、極めて相関性が高く、良好な結果を得ることができた。   The regression line (y = 29.8x−356) in FIG. 2 was calculated using the least square method (however, linear approximation) of spreadsheet software (trade name: Excel, manufactured by Microsoft Corporation). Moreover, from the result of FIG. 2, the correlation coefficient was 0.95, and the correlation was extremely high, and a good result could be obtained.

それぞれの鉛蓄電池1を周囲温度が25℃において、3時間率放電時での放電開始後の時間(h)と、上述した相関係数との関係を図3に示す。図3より、3時間率での放電時間(h)と10分間率放電時間(min)との相関係数はプラトー領域で高い値を示している。したがって、鉛蓄電池を小さな電流値(A)で放電してプラトー領域での電圧値(V)を測定し、その電圧値(V)を、あらかじめ測定してある回帰直線と対応させることによって、大きな電流値(A)での放電時間(min)をバラツキの小さい状態で推定することができる。すなわち、鉛蓄電池の劣化状態を推定することができる。   FIG. 3 shows the relationship between the time (h) after the start of discharge of each lead storage battery 1 at the time of 3 hour rate discharge at the ambient temperature of 25 ° C. and the correlation coefficient described above. From FIG. 3, the correlation coefficient between the discharge time (h) at the 3-hour rate and the 10-minute rate discharge time (min) shows a high value in the plateau region. Therefore, by discharging the lead-acid battery with a small current value (A), measuring the voltage value (V) in the plateau region, and making the voltage value (V) correspond to the regression line that has been measured in advance, The discharge time (min) at the current value (A) can be estimated with a small variation. That is, the deterioration state of the lead storage battery can be estimated.

本発明に係わる劣化状態推定方法を用いると、大きな電流値(A)(例えば、10分間率放電電流値)での放電時間(min)を推定するに際して、小さな電流値(A)(例えば、3時間率放電電流値)での試験によって短時間に結果を出すことができる。したがって、小形の電子負荷4を用いることができるとともに、信頼性の高い状態で鉛蓄電池の劣化状態を推定することができる。   When the degradation state estimation method according to the present invention is used, when estimating the discharge time (min) at a large current value (A) (for example, 10 minute rate discharge current value), the small current value (A) (for example, 3 Results can be obtained in a short time by testing with a time rate discharge current value. Therefore, the small electronic load 4 can be used, and the deterioration state of the lead storage battery can be estimated in a highly reliable state.

なお、周囲温度が35℃では、周囲温度が25℃に比べて、3時間率放電時での放電開始後5分目の同じ電圧(V)で比較した場合、10分間率放電電流(451A)における放電時間(min)が、図2で示した結果よりも約1〜2分間程度短くなる傾向を示した。   In addition, when the ambient temperature is 35 ° C., compared with the ambient temperature of 25 ° C., when compared with the same voltage (V) at the fifth minute after the start of discharge at the time of 3 hour rate discharge, the rate discharge current (451 A) for 10 minutes The discharge time (min) in tended to be shorter by about 1 to 2 minutes than the result shown in FIG.

一方、周囲温度が15℃では、周囲温度が25℃に比べて、3時間率放電時での放電開始後5分目の同じ電圧(V)で比較した場合、10分間率放電電流(451A)における放電時間(min)が、図2で示した結果よりも約1〜2分間程度長くなる傾向を示した。   On the other hand, when the ambient temperature is 15 ° C., compared with the ambient temperature of 25 ° C., when compared with the same voltage (V) at the fifth minute after the start of discharge at the time of 3 hour rate discharge, the discharge current (451 A) for 10 minutes The discharge time (min) in tended to be about 1-2 minutes longer than the result shown in FIG.

加えて、上述した周囲温度が25℃では、放電開始後3分〜15分程度の間、プラトー領域が存在するが、周囲温度が高くなるとプラトー領域も、やや長くなる傾向が認められている。したがって、適切化した温度補正を行うことによって、周囲温度が異なる状況であっても本発明に係わる鉛蓄電池の劣化状態推定方法を用いることができる。   In addition, when the ambient temperature is 25 ° C., a plateau region exists for about 3 to 15 minutes after the start of discharge. However, when the ambient temperature increases, the plateau region tends to be slightly longer. Therefore, by performing an appropriate temperature correction, it is possible to use the lead-acid battery deterioration state estimation method according to the present invention even in a situation where the ambient temperature is different.

本発明は、無停電電源装置などのバックアップ用電源に用いられる鉛蓄電池の劣化状態推定方法に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a method for estimating the deterioration state of a lead storage battery used for a backup power source such as an uninterruptible power supply.

鉛蓄電池の放電カーブの概略図である。It is the schematic of the discharge curve of a lead acid battery. 3時間率放電時5分目電圧(V)と10分間率放電時間(min)との関係図である。It is a relationship figure of the 5th minute voltage (V) at the time of 3 hour rate discharge, and 10 minute rate discharge time (min). 3時間率での放電時間(h)と10分間率放電時間(min)との相関係数の関係図である。It is a related figure of the correlation coefficient of discharge time (h) in 3 hour rate, and 10 minute rate discharge time (min). 本発明に係わる試験装置のブロック図である。1 is a block diagram of a test apparatus according to the present invention.

符号の説明Explanation of symbols

1:鉛蓄電池、2:電流計、3:電圧計、4:電子負荷 1: Lead acid battery, 2: Ammeter, 3: Voltmeter, 4: Electronic load

Claims (2)

鉛蓄電池の劣化状態推定方法において、
前記鉛蓄電池を小さな電流値(A)で放電してプラトー領域での電圧値(V)を測定し、
前記プラトー領域での電圧値(V)を、あらかじめ測定してある回帰直線と対応させて、
大きな電流値(A)での放電時間(min)を推定することを特徴とする鉛蓄電池の劣化状態推定方法。
In the method for estimating the deterioration state of a lead storage battery,
The lead storage battery is discharged at a small current value (A), and the voltage value (V) in the plateau region is measured.
The voltage value (V) in the plateau region is associated with a regression line measured in advance,
A method for estimating a deterioration state of a lead-acid battery, wherein a discharge time (min) at a large current value (A) is estimated.
前記大きな電流値(A)での放電時間(min)は、
周囲温度が高いほど短く、周囲温度が低いほど長く補正をすることを特徴とする請求項1記載の鉛蓄電池の劣化状態推定方法。
The discharge time (min) at the large current value (A) is:
2. The method for estimating the deterioration state of a lead-acid battery according to claim 1, wherein the correction is made shorter as the ambient temperature is higher and longer as the ambient temperature is lower.
JP2008271585A 2008-10-22 2008-10-22 Degradation state estimation method of lead storage battery Pending JP2010102869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271585A JP2010102869A (en) 2008-10-22 2008-10-22 Degradation state estimation method of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271585A JP2010102869A (en) 2008-10-22 2008-10-22 Degradation state estimation method of lead storage battery

Publications (1)

Publication Number Publication Date
JP2010102869A true JP2010102869A (en) 2010-05-06

Family

ID=42293356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271585A Pending JP2010102869A (en) 2008-10-22 2008-10-22 Degradation state estimation method of lead storage battery

Country Status (1)

Country Link
JP (1) JP2010102869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084342A (en) * 2013-02-08 2013-05-08 深圳市沃特玛电池有限公司 Method for separating secondary batteries
WO2014083756A1 (en) * 2012-11-28 2014-06-05 ソニー株式会社 Control apparatus, control method, power supply system, and electric vehicle
US9804230B2 (en) 2013-06-04 2017-10-31 Toyota Jidosha Kabushiki Kaisha Battery degradation detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313604A (en) * 1995-05-22 1996-11-29 Kyushu Electric Power Co Inc Method and system for diagnosing service life of battery
JPH0961505A (en) * 1995-08-30 1997-03-07 Shin Kobe Electric Mach Co Ltd Apparatus for detecting life of sealed lead storage battery
JPH0980130A (en) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Storage battery capacity measurement method
JP2007163145A (en) * 2005-12-09 2007-06-28 Ntt Facilities Inc Discharge time calculation device and discharge time calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313604A (en) * 1995-05-22 1996-11-29 Kyushu Electric Power Co Inc Method and system for diagnosing service life of battery
JPH0961505A (en) * 1995-08-30 1997-03-07 Shin Kobe Electric Mach Co Ltd Apparatus for detecting life of sealed lead storage battery
JPH0980130A (en) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Storage battery capacity measurement method
JP2007163145A (en) * 2005-12-09 2007-06-28 Ntt Facilities Inc Discharge time calculation device and discharge time calculation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083756A1 (en) * 2012-11-28 2014-06-05 ソニー株式会社 Control apparatus, control method, power supply system, and electric vehicle
EP2927703A4 (en) * 2012-11-28 2016-08-03 Sony Corp Control apparatus, control method, power supply system, and electric vehicle
JPWO2014083756A1 (en) * 2012-11-28 2017-01-05 ソニー株式会社 Control device, control method, power supply system, and electric vehicle
US9575137B2 (en) 2012-11-28 2017-02-21 Sony Corporation Control apparatus, control method, power supply system, and electric-powered vehicle
CN103084342A (en) * 2013-02-08 2013-05-08 深圳市沃特玛电池有限公司 Method for separating secondary batteries
US9804230B2 (en) 2013-06-04 2017-10-31 Toyota Jidosha Kabushiki Kaisha Battery degradation detection device

Similar Documents

Publication Publication Date Title
US20200209313A1 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
US8816648B2 (en) Modulated, temperature-based multi-CC-CV charging technique for Li-ion/Li-polymer batteries
JP5297186B2 (en) Lithium sulfur rechargeable battery fuel gauge system and method
JP3669673B2 (en) Electrochemical element degradation detection method, remaining capacity detection method, and charger and discharge control device using the same
TWI464935B (en) Battery module
JP6606292B2 (en) Storage capacity estimation device, method and program
JP5619744B2 (en) Method and apparatus for detecting state of power storage device
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
CN111527643B (en) Method for managing the state of charge of a battery to be rested
US8957640B2 (en) Method for accurately and precisely calculating state of charge of a sodium-sulfur battery
WO2010134515A1 (en) Method for calculating number of healthy strings of sodium-sulfur battery and failure detection method using same
JP2012208027A (en) Method for diagnosing deterioration of battery pack
JP5441735B2 (en) Storage battery deterioration tendency estimation system and storage battery deterioration tendency estimation program
WO2014133009A1 (en) Storage battery, storage battery control method, control device, and control method
KR20140053585A (en) Apparatus and method for estimating state of health of battery
JPWO2010090110A1 (en) Sodium-sulfur battery capacity drop judgment method
US20140028268A1 (en) System and method for a rechargeable battery
JP2006140094A (en) Control device of lithium ion battery, capacity calculating method, and computer program
JP2010102869A (en) Degradation state estimation method of lead storage battery
JP5768914B2 (en) Assembled battery charge state diagnosis method
JP4754509B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
CN111257780A (en) Storage battery health degree evaluation method and device and storage medium
JP4987504B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
KR101675962B1 (en) Control System and Method for Setting Charging Power Reflecting Battery Capacity Efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806