JPH0961505A - Apparatus for detecting life of sealed lead storage battery - Google Patents

Apparatus for detecting life of sealed lead storage battery

Info

Publication number
JPH0961505A
JPH0961505A JP7222111A JP22211195A JPH0961505A JP H0961505 A JPH0961505 A JP H0961505A JP 7222111 A JP7222111 A JP 7222111A JP 22211195 A JP22211195 A JP 22211195A JP H0961505 A JPH0961505 A JP H0961505A
Authority
JP
Japan
Prior art keywords
battery
voltage
unit
measured
impedance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7222111A
Other languages
Japanese (ja)
Other versions
JP3379298B2 (en
Inventor
Kensuke Hironaka
Akihiko Kudo
Hiroaki Miyaji
浩明 宮地
彰彦 工藤
健介 弘中
Original Assignee
Shin Kobe Electric Mach Co Ltd
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Mach Co Ltd, 新神戸電機株式会社 filed Critical Shin Kobe Electric Mach Co Ltd
Priority to JP22211195A priority Critical patent/JP3379298B2/en
Publication of JPH0961505A publication Critical patent/JPH0961505A/en
Application granted granted Critical
Publication of JP3379298B2 publication Critical patent/JP3379298B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads

Abstract

PROBLEM TO BE SOLVED: To exactly detect the life of a sealed lead storage battery by accurately estimating the discharge capacity of the battery without being influenced by a ripple voltage or temperatures. SOLUTION: An A.C. of a constant frequency is supplied to a battery 1 to be measured from an A. C. feed part 2 for a predetermined time. Only an A.C. voltage component of the same frequency as that of the A.C. is detected from a terminal voltage of the battery 1 and amplified at an A.C. voltage amplification part 4. A voltage response waveform output from the amplification part 4 is Fourier-transformed at an impedance calculation part 11, thereby, an amplitude of the A.C. voltage component of the same frequency as that of the supplied current is detected. Impedance value of the battery is calculated from the amplitude. A D.C. voltage and a surrounding temperature of the battery 1 when the battery 1 is discharged through a discharge load resistor 5 for a predetermined time are measured. The discharge capacity is estimated by a capacity estimation part 12 on the basis of values obtained by correcting, with the surrounding temperature of the battery, the impedance value of the battery 1 and the voltage of the battery after discharged for the predetermined time to detect the life of the battery.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明はフロート充電あるいはトリクル充電されているシール鉛蓄電池の寿命判定装置に関する。 The present invention relates to relates to the life determining apparatus of sealed lead acid batteries are float charge or trickle charge.

【0002】 [0002]

【従来の技術】従来よりフロー充電あるいはトリクル充電されているシール鉛蓄電池の寿命判定方法としては、 BACKGROUND ART As life determination method of the sealed lead-acid battery, which is a flow charge or trickle charge than the prior art,
電解液の比重を測定する方法がもっとも一般的に行われてきた。 Method of measuring the specific gravity of the electrolyte has been most commonly performed. ところが、完全密閉式のシール鉛蓄電池では電解液の比重を直接測定できないため、電解液比重測定用の二酸化鉛電極を電槽内に設置して電解液比重を測定する方法(特開昭61−294771号)、陽極板の伸びを検出する方法(特開平2−152170号)、インピーダンスを測定する方法(特開平4−198783号) However, the method in the fully sealed sealed lead-acid battery of measuring the can not measure the specific gravity of the electrolyte solution directly installed to the electrolyte specific gravity lead dioxide electrodes for electrolytic solution density measured within the container (JP 61- No. 294771), a method for detecting the elongation of the anode plate (JP-a-2-152170), a method for measuring the impedance (JP-a-4-198783)
などが提案されてきた。 Such as have been proposed.

【0003】しかし、上記の寿命判定方法のなかで、電解液比重測定用電極を電槽内に設置する方法では、電池に加工する必要性がある点と、二酸化鉛電極を定期的に充電する必要性がある点から実際的ではない。 However, among the above-described life determination method, a method of installing an electrolyte specific gravity measuring electrode in the battery container, and that there is a need to process the battery to charge the lead dioxide electrodes regularly it is not practical from the point where there is a need. 又、陽極板の伸びを検出する方法では、同様に電池に加工する必要がある点と、全ての陽極板の伸びを検出するのは困難なために信頼性に欠けるという問題点を有していた。 Further, in the method for detecting the elongation of the anode plate, have likewise a point that needs to be processed into a battery, the problem is to detect the elongation of all the anode plate unreliable for difficult It was.

【0004】寿命判定では最も確実な方法は放電容量を実測することであるが、放電試験を行うためには機器の運転を止める必要がある点と、放電試験に多大な労力と時間を必要とする点が実際的でなかった。 [0004] The most reliable method in life determination is to actually measure the discharge capacity, and that it is necessary to stop the operation of the device in order to perform the discharge test, it requires much labor and time to discharge tests points is not practical.

【0005】この点を解決するために、実負荷で放電を行うことも考えられるが、実負荷の放電試験は放電後に回復充電が終了するまで機器をバックアップする時間が定格より長くなるために事実上その期間機器の運転を行えないという問題点があった。 [0005] In order to solve this problem, it is conceivable to perform the discharge with actual load, discharge test actual load fact in order time to backup the device until the recovery charge after discharge ends is longer than the rated there is a problem that can not be performed the operation of the period instrument on.

【0006】短時間の放電から放電容量を推定する試みも行われているが(電気学会論文誌87,No.5,V [0006] Although from a short period of time of discharge has also been an attempt to estimate the discharge capacity (Institute of Electrical Engineers Journal 87, No.5, V
OL. OL. 107−D,P606)、精度よく放電容量を推定するには0.1C放電で1時間以上とかなりの放電時間が必要であった。 107-D, P606), the accurately estimated discharge capacity was required significant discharge time and 1 hour or more at 0.1C discharge.

【0007】またインピーダンスを測定する方法では、 [0007] In the method of measuring the impedance,
放電容量とインピーダンスの相関が必ずしも良くなく、 Correlation of the discharge capacity and the impedance is not always good,
インピーダンスから放電持続時間を推定した場合にはかなり大きい誤差が生じる可能性があり、寿命判定を誤る可能性がある。 There is a possibility that an error is quite large occur when estimating the discharge duration from the impedance, there is a possibility of mistaking the lifetime determination.

【0008】この点を解決する方法として、インピーダンスの測定とごく短時間の放電試験を行う方法がある。 As a method to solve this problem, there is a method of performing a very short time discharge test and measurement of the impedance.
この方法はインピーダンスの測定値と、ごく短時間(5 The method and measurement of the impedance, a very short time (5
分程度)の放電電圧の測定値から放電容量を推定するもので、インピーダンスあるいは短時間放電電圧いずれか一方から推定するよりも精度は良くなるという結果がでている(電気設備学会誌 1993,No.12,VO And estimates the discharge capacity from the measured value of the discharge voltage of the minute or so), the impedance or short discharge voltage results in accuracy is better than estimated from either is out (electrical equipment Journal 1993, No .12, VO
L. L. 13,P1247)。 13, P1247).

【0009】 [0009]

【発明が解決しようとする課題】しかし、上述のインピーダンスと短時間放電電圧から容量を推定する方法では、インピーダンスの測定精度が問題となる。 [0008] However, in the method of estimating the capacity from the above impedance and short discharge voltage, the measurement accuracy of the impedance is a problem. インピーダンスの測定精度が悪ければ放電容量の推定精度も当然悪くなり、寿命判定を誤る可能性がある。 Estimation accuracy of the discharge capacity when the impedance measurement accuracy is bad becomes naturally poor, there is a possibility of mistaking the lifetime determination.

【0010】一般的にシール鉛蓄電池のインピーダンスは、一定振幅の交流電流通電時の端子電圧に含まれる交流電圧成分を測定することによって求められるが、シール鉛蓄電池はインピーダンス値が小さいために、ノイズの影響を受けやすく精度良く測定するのは困難である。 [0010] Generally, since the impedance of the sealed lead-acid battery, but is determined by measuring the AC voltage component contained in terminal voltages at the time of the alternating current supply of constant amplitude, sealed lead-acid battery has a smaller impedance value, noise it is difficult to influence the susceptible accurately measured.

【0011】2V,200Ahの据置シール電池の例では、周波数10Hz程度で1mΩ以下のインピーダンス値であり、±2Aの交流電流を通電とした場合に端子電圧に現れる交流電圧成分は、±2mV以下と非常に小さい値となりノイズの影響を受けやすい。 [0011] 2V, in the example of a stationary seal battery 200Ah is less impedance value 1mΩ at a frequency of about 10 Hz, the AC voltage component appearing at terminal voltage for an energized alternating current of ± 2A is a following ± 2 mV susceptible to noise becomes a very small value. 通電電流の値を大きくすればよいが、交流電流通電部の素子の大型化、 It may be increased value of electric current, but upsizing of elements of the alternating current power supply unit,
発熱、消費電力、コスト等の点から大きくするのは難しい。 Fever, consumption, it is difficult to increase in terms of cost and the like.

【0012】又、フロート充電でリプル電流がシール鉛蓄電池に流れている場合もあり、測定時の端子電圧にリプル電圧が含まれて誤差となる場合がある。 [0012] Also, sometimes the ripple current in float charge flows to sealed lead-acid battery, the terminal voltage at the time of measurement contains ripple voltage may become an error. インバータを負荷とするシステムの実測では、フロート充電中で周波数50Hzまたは60Hzのリプル電圧が10mVもシール鉛蓄電池の端子電圧に含まれている例もある。 In actual systems that the inverter and the load, there is an example in which the ripple voltage frequency 50Hz or 60Hz in the float charging 10mV also included in the terminal voltage of the sealed lead-acid battery. この場合、単にシール鉛蓄電池の端子電圧に含まれる交流電圧成分のP−P値を通電電流で割ってインピーダンス値とすると大きな誤差となってしまう。 In this case, it would simply become the the P-P value of the AC voltage component included in the terminal voltage of the sealed lead-acid battery and the impedance value divided by the energization current and a large error.

【0013】又、別の問題として、温度によってインピーダンスと短時間の放電電圧測定値が変わり、放電容量の推定精度が悪化するという問題点がある。 [0013] As another problem, the temperature discharge voltage measurement of the impedance and short time depends, there is a problem that estimation accuracy of the discharge capacity is deteriorated.

【0014】本発明の目的は、リプル電圧、温度の影響を受けずに精度よくシール鉛蓄電池のインピーダンスを測定し、測定された短時間の放電電圧とあわせて精度よく放電容量を推定するシール鉛蓄電池の寿命判定装置を提供することである。 An object of the present invention, ripple voltage, seal lead impedance accurately sealed lead-acid battery without being affected by the temperature measured, accurately estimated discharge capacity along with the measured short discharge voltage to provide a life determination device of the storage battery.

【0015】 [0015]

【課題を解決するための手段】本発明に係るシール鉛蓄電池の寿命判定装置は、以下に述べる手段により上記の課題を解決する。 Life determining apparatus of sealed lead-acid battery according to the present invention, in order to solve the problems] solves the above problems by the following means.

【0016】通・放電制御部により制御して、交流電流通電部より被測定電池へ一定振幅かつ一定周波数の交流電流を所定の期間通電する。 [0016] controlled by a passage and discharging control unit, an alternating current of constant than the alternating current power supply section to be measured battery amplitude and constant frequency to the current predetermined period. また、放電用負荷部に被測定電池を所定の時間だけ放電させる。 Further, to discharge the measured battery for a predetermined time to discharge the load unit. 被測定電池に通電する交流電流の周波数と同一の周波数成分のみを通すフィルタ特性を有する交流電圧振幅部により、電池電圧中の交流電圧成分を増幅する。 The AC voltage amplitude portion having a filter characteristic to pass only the same frequency components as the frequency of the alternating current supplied to the measurement cell, and amplifies the AC voltage component in the battery voltage. 交流電圧増幅部の出力に基いて、インピーダンス値算出部が電池の内部インピーダンス値を算出し、算出結果を表示部で表示する。 Based on the output of the AC voltage amplifier, the impedance calculation unit calculates the internal impedance of the battery, is displayed on the display unit the calculation result. 被測定電池を所定時間放電したときの直流電圧成分を直流電圧測定部で測定し、電池周囲温度を温度検出部で測定する。 The DC voltage component at the time of discharging the measured battery predetermined time measured by the DC voltage measurement unit, measures the battery ambient temperature by the temperature detecting unit. 以上により得られた被測定電池のインピーダンス値と、所定時間放電時の直流電圧値と、周囲温度値とから容量推定部が被測定電池の容量を推定演算し、その結果を表示部に表示する。 And the impedance value of the measured battery obtained as described above, the DC voltage value at a predetermined time discharge capacity estimating unit from the ambient temperature value estimate calculating the capacity of the battery to be measured is displayed on the display unit the result .

【0017】インピーダンス値算出部は、交流電圧増幅部の出力の電圧応答波形をフーリエ変換し、フーリエ変換した値から通電電流と同一周波数成分の交流電圧成分の振幅を求め、この振幅からインピーダンス値を算出する。 The impedance value calculation unit, a voltage response waveform of the output of the AC voltage amplifier Fourier transform to obtain the amplitude of the AC voltage component of the electric current with the same frequency component from the Fourier transformed values, the impedance values ​​from the amplitude calculate.

【0018】なお、交流電流通電部は、通電する交流電流の周期を100msの整数倍の周期とするとよい。 [0018] Incidentally, the alternating current applying unit, a cycle of the alternating current supplied or equal to an integral multiple of the period of 100 ms. これはリプル電圧がインバータ等の負荷で発生する場合が多く、その場合にはリプル電圧が商用周波数、つまり50 This often ripple voltage is generated by the load such as an inverter, the ripple voltage commercial frequency in the case, that is 50
又は60Hzの整数倍となることに着目したものである。 Or it is defined by noting an integer multiple of 60 Hz. 即ち、フーリエ変換を行うと、入力波形の基本波の整数倍の周波数成分は除去作用があるため、商用周波数50又は60Hzの最大公約数10Hz、つまり周期1 That is, when performing a Fourier transform, for an integral multiple of the frequency component of the fundamental wave of the input waveform have a removal action, the commercial frequency of 50 or 60Hz greatest common divisor of 10Hz, i.e. the period 1
00msの整数倍に入力波形周期を設定すれば、10Hz By setting the input waveform cycle to an integral multiple of 00ms, 10Hz
の整数倍のリプル電圧は除去できることになる。 Integral multiples of the ripple voltage will be be removed. 従って、通電電流の周期を100msの整数倍とすると、50 Therefore, when the period of the energizing current to the integral multiple of 100 ms, 50
又は60Hzの整数倍のリプル電圧成分はフーリエ変換で除去可能である。 Or integral multiples of the ripple voltage component of 60Hz may be removed at a Fourier transform.

【0019】また、インピーダンス値算出部は、被測定電池に交流電流の通電開始後所定の周期以降の交流電圧増幅部の出力の平均の電圧応答波形から被測定電池の内部インピーダンス値を算出するようにするとよい。 Further, the impedance value calculating unit to calculate an internal impedance value of the measured cell from the average of the voltage response waveform of the output of the AC voltage amplifier energization after the start after a predetermined period of the alternating current to the battery to be measured better to. 具体的には、複数周期通電時の電圧応答波形から平均の電圧応答波形(1周期分)を求め、この平均の電圧応答波形から内部インピーダンス値を算出する。 Specifically, it obtains the voltage response waveform of the average from the voltage response waveform during a plurality of periods energized (one cycle), and calculates the internal impedance value from the voltage response waveform of this average. これは、更にリプル電圧及びノイズの影響を少なくしようとするもので、電圧応答波形を平均化することにより、通電周波数の整数倍以外の周波数成分が減少するため、一層精度のよい測定が可能となる。 It is further intended to reduce the influence of the ripple voltage and noise, by averaging the voltage response waveform, since the frequency components other than the integer multiple of the current frequency decreases, enabling more accurate measurements Become.

【0020】本発明に係るシール鉛蓄電池の寿命判定装置においては、電池の内部インピーダンスの測定と短時間放電電圧の測定を併せて行い、これらの測定値から電池放電容量を適確に推定する。 [0020] In the life determining apparatus of sealed lead-acid battery according to the present invention is carried out together Measurement of the short discharge voltage of the internal battery impedance, accurately to estimate the battery discharge capacity from these measurements. そして、電池の周囲温度を測定した結果に基づき温度補正を行うことにより、放電容量の推定精度が高められる。 Then, by performing the temperature correction based on the result of measuring the ambient temperature of the battery, the estimation accuracy of the discharge capacity is increased. また、インピーダンス測定においては、交流電圧増幅部に、通電する交流電流と同一周波数の周波数成分のみを通すフィルタ特性を持たせるため、リプル電圧とノイズによる測定誤差が軽減される。 In the impedance measurement, the AC voltage amplifier, in order to have a filter characteristic to pass only the frequency component of the alternating current with the same frequency to be energized, the measurement error due to ripple voltage and noise is reduced. 更に、交流電圧増幅部の出力の電圧応答波形をフーリエ変換し、フーリエ変換した値から通電電流と同一周波数成分の交流電圧成分の振幅を求めてインピーダンス値を算出するので、交流電圧増幅部のフィルタ特性では十分に除去できないリプル電圧又はノイズを減少させて、より高い精度でインピーダンスが測定され、電池容量が推定される。 Further, the voltage response waveform of the output of the AC voltage amplifier Fourier transform, since the calculated impedance value from the Fourier transformed values ​​determined amplitude of the AC voltage component of the energizing current and the same frequency components, of the AC voltage amplifier filter to reduce the ripple voltage or noise can not be sufficiently removed by characteristic impedance is measured at higher accuracy, the battery capacity is estimated.

【0021】上記を簡単にまとめると、実際の機器ではノイズ、リプル電圧成分が存在するため、インピーダンスを正確に測定するためには、測定周波数以外の成分を除去することが必要になる。 [0021] To summarize briefly the above, in the actual equipment noise, since the ripple voltage component is present, in order to accurately measure the impedance, it is necessary to remove the components other than the measurement frequency. 測定周波数成分を通すフィルタを通して交流電圧成分を測定すればよいが、精度が悪い。 It may be measured AC voltage component through a filter through the measurement frequency component, but less accurate. そこで本発明では電圧応答波形をフーリエ変換して、測定周波数成分のみの大きさを求めて精度を高めている。 Therefore, in the present invention, by Fourier transform of the voltage response waveform, to enhance the accuracy in search of only the size measurement frequency component. また電圧応答波形の平均値をフーリエ変換し、測定周波数成分のみの大きさを求めると、更に測定周波数以外の除去が可能となり精度を高めることができる。 The Fourier transform of the mean value of the voltage response waveform, when obtaining only the size of the measurement frequency component, it is possible to improve the accuracy enables the removal of non-further measurement frequency.

【0022】 [0022]

【発明の実施の形態】以下、本発明の実施例を図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention with reference to the drawings. 図1は本発明の実施例を示す説明図で、1は寿命を判定するシール鉛蓄電池、2は一定振幅かつ一定周波数の交流電流を出力する交流電流通電部である。 Figure 1 is a diagram showing an embodiment of the present invention, 1 is sealed lead-acid battery is determined lifetime, 2 is an AC current applying unit for outputting an alternating current of constant amplitude and constant frequency. 被測定電池1は交流電流通電部2にリレー3の接点を通して接続され、電池1の内部インピーダンス測定時の交流電流は交流電流通電部2から通電される。 Measured battery 1 is connected through contacts of the relay 3 to the AC current applying section 2, alternating current during the internal impedance measurement of the battery 1 is energized by AC current energization unit 2. 被測定電池1の端子電圧は、交流電圧増幅部4の入力となり、インピーダンス測定時に被測定電池1の端子電圧に発生する交流電圧成分は、通電電流と同一周波数成分のみを通すフィルタ特性を有する交流電圧増幅部4で増幅される。 The terminal voltage of the measured cell 1 becomes the input of the AC voltage amplifier 4, an AC voltage component generated on the terminal voltage of the measured battery 1 during impedance measurement has a filter characteristic to pass only the energizing current of the same frequency components AC It is amplified by the voltage amplifier 4.

【0023】5は放電試験用の負荷抵抗で、この負荷抵抗はリレー6の接点を通して被測定電池1に接続される。 [0023] 5 is a load resistor for discharge test, the load resistor is connected to the measurement cell 1 through the contact of the relay 6. 電池1の端子電圧はまた、直流電圧測定部7の入力となり、短時間放電時の電池の直流電圧は直流電圧測定部7で測定される。 The terminal voltage of the battery 1 also becomes the input of the DC voltage measurement section 7, the DC voltage of the battery during short discharge is measured by the DC voltage measurement unit 7. この直流電圧測定部7は、電池1の出力の直流電圧成分を測定し、測定した値を所定の信号に変換する。 The DC voltage measurement unit 7 measures the DC voltage component of the output of the battery 1, and converts the measured value into a predetermined signal. 8は電池1の周囲温度の変化を検出する熱電対であり、この熱電対8は温度検出部9に接続されている。 8 is a thermocouple for detecting a change in the ambient temperature of the battery 1, the thermocouple 8 is connected to the temperature detector 9. 温度検出部9は熱電対8の出力から電池1の周囲温度を検出して、検出した温度を所定の信号に変換する。 Temperature detector 9 detects the ambient temperature of the battery 1 from the output of the thermocouple 8, and converts the detected temperature into a predetermined signal.

【0024】10は交流電流通電部2及びリレー3,6 [0024] 10 AC current conducting portion 2 and relay 3, 6
等の動作を制御するマイクロプロセッサを制御部に有していて、電池1への交流電流の通電と電池1から負荷抵抗5への放電を制御する通・放電制御部である。 It has a microprocessor control unit for controlling the operation and the like, which is passing and discharging control unit for controlling the discharge from current and battery 1 of the alternating current into the battery 1 to the load resistor 5.

【0025】交流電圧増幅部4の出力は、マイクロプロセッサを利用して実現されるインピーダンス値算出部1 The output of the AC voltage amplifier 4, the impedance value calculating unit 1 is realized by using a microprocessor
1のA/D変換入力に接続される。 It is connected to one of the A / D conversion input. インピーダンス値算出部11は、交流電圧増幅部4の出力の電圧応答波形をフーリエ変換し、フーリエ変換した値からインピーダンス値を算出するものである。 Impedance calculation unit 11, a voltage response waveform of the output of the AC voltage amplifier 4 Fourier transform, and calculates an impedance value from the Fourier transformed values. 具体的には、電池1に交流電流を通電開始した後所定の周期以降の交流電圧増幅部4の出力の平均の電圧応答波形からインピーダンス値を算出する。 Specifically, it calculates an impedance value from the average of the voltage response waveform of the output of the AC voltage amplifier 4 after a predetermined period after the start of energization of the alternating current to the battery 1.

【0026】また、直流電圧測定部7、温度検出部9及びインピーダンス値算出部11の各出力はマイクロプロセッサを用いて実現される容量推定部12に入力される。 Further, the DC voltage measurement unit 7, the output of the temperature detector 9 and the impedance value calculating unit 11 is input to the capacitance estimation unit 12 which is implemented using a microprocessor. なお直流電圧測定部7及び温度検出部9の出力は、 Note the output of the DC voltage measurement unit 7 and the temperature detector 9,
容量推定部12の対応する入力部に設けられたA/D変換器によりA/D変換されて使用される。 It is used in A / D conversion by the corresponding A / D converter provided in the input portion of the volume estimator 12. インピーダンス値算出部11及び容量推定部12の各出力はLEDセグメントを表示手段として備えた表示部13に入力され、電池1のインピーダンス算出値及び容量推定値が表示部13に表示される。 Each output of the impedance value calculating unit 11 and the capacity estimating unit 12 is input to the display unit 13 provided with a LED segment as a display unit, the impedance calculation value and the capacitance estimated value of the battery 1 is displayed on the display unit 13. 本実施例において、インピーダンス算出表示部がインピーダンス値算出部11と表示部13とから構成され、容量推定表示部が容量推定部12 In the present embodiment, the impedance calculation display unit is composed of an impedance value calculating unit 11 display unit 13. capacity estimation display capacity estimating unit 12
と表示部13とから構成される。 And a display unit 13. 実際には、インピーダンス値算出部11と容量推定部12は共通のマイクロプロセッサを用いて実現される。 In practice, the impedance calculation unit 11 and the capacitance estimation unit 12 is implemented using a common microprocessor.

【0027】次に、本実施例の動作を説明する。 Next, the operation of this embodiment will be described. 先ず、 First of all,
被測定電池1の内部インピーダンスを測定する場合、通・放電制御部10によりリレー3の接点をONとしたのち、一定周期で割り込みがかけられ、交流電流通電部2 When measuring the internal impedance of the measured battery 1, after the contact of the relay 3 is turned ON by passing and discharging control unit 10, an interrupt is applied at a fixed period, the alternating current applying unit 2
を制御して、一定振幅で一定周波数の交流電流を所定の期間だけ電池1に通電する。 And controls the, energized by the battery 1 predetermined time period an alternating current of constant frequency with a constant amplitude. 交流電圧増幅部4は、内蔵するフィルタにより通電する交流電流の周波数と同一の周波数成分のみを測定してこれを増幅して出力する。 AC voltage amplifier 4, by measuring only the same frequency components as the frequency of the alternating current supplied by a built-in filter amplifies and outputs it. そして、交流電圧増幅部4の出力電圧をインピーダンス値算出部11の入力部に内蔵した図示しないA/D変換器でA/D変換する。 Then, A / D converting the output voltage of the AC voltage amplifier 4 by the A / D converter (not shown) incorporated in the input portion of the impedance value calculating unit 11. A/D変換された交流電圧成分は、 AC voltage component that is A / D converted,
インピーダンス値算出部11に内蔵された図示しないメモリに順次保存される。 It is sequentially stored in a memory (not shown) incorporated in the impedance calculation unit 11. 所定数の周期分または所定期間の交流電流の通電が終了すると、通・放電制御部10はリレー3の接点をOFFとして交流電流通電部2の動作を終了させる。 When energization of the alternating current of a predetermined number of cycles or a predetermined period expires, passing and discharging control unit 10 terminates the operation of the alternating current supplying section 2 is turned OFF the contact of the relay 3. インピーダンス値算出部11では、その後電池1の内部インピーダンスの計算を行って、内蔵する図示しないメモリにその計算結果を記憶させる。 In the impedance calculation unit 11, then performs the calculation of the internal impedance of the battery 1, and stores the calculation result in a memory (not shown) built. そしてインピーダンス値算出部11は、メモリに記憶したインピーダンス値をLEDセグメントを表示手段として有する表示部13に表示させる。 The impedance value calculating unit 11 causes the display unit 13 having an impedance value stored in the memory as a display unit of the LED segments. また同時に、インピーダンス値算出部11は、メモリに記憶したインピーダンス値をインピーダンス値信号として容量推定部12に出力する。 At the same time, the impedance value calculating unit 11 outputs the impedance value stored in the memory capacity estimating unit 12 as the impedance value signal.

【0028】インピーダンス値算出部11がインピーダンスの算出を行う場合には、交流電圧増幅部4から出力される電圧応答波形をA/D変換した後に、マイクロプロセッサによりフーリエ変換し、フーリエ変換した交流電圧成分から通電交流電流と同一周波数成分の交流電圧成分の振幅を求めて、この振幅からインピーダンス値を算出する。 [0028] When the impedance value calculating unit 11 calculates the impedance, the voltage response waveform output from the AC voltage amplifier 4 after converting A / D, the Fourier transform by the microprocessor, AC voltage Fourier transform seeking amplitude of the AC voltage component of the energizing AC current of the same frequency component from a component, it calculates an impedance value from the amplitude. これにより、交流電圧増幅部4のフィルタ特性では十分に除去されないリプル電圧又はノイズを減少させることができ、より高い精度でインピーダンス値を算出することができる。 Thus, the filter characteristics of the AC voltage amplifier 4 can be reduced sufficiently not removed ripple voltage or noise, it is possible to calculate the impedance value with higher accuracy. 具体的なインピーダンス値は、 The specific impedance value,
フーリエ変換して求められた測定周波数の交流電圧成分の振幅値を通電電流の値で除することにより求められる。 The amplitude value of the AC voltage component of the measured frequency determined by Fourier transform is determined by dividing the value of the flowing current.

【0029】また本発明の装置においては、被測定電池1の短時間放電試験を行う。 [0029] In the apparatus of the present invention, a short time discharge test of the measurement cell 1. 短時間放電試験を行う場合には、通・放電制御部10がリレー6の接点を所定の時間(例えば30秒)だけONとして、電池1より負荷抵抗5に短時間放電電流を流す。 When performing short discharge test, passing and discharging control unit 10 as ON the contact of the relay 6 by a predetermined time (e.g. 30 seconds), passing a short discharge current to the load resistor 5 from the battery 1. この放電時間は、放電電圧が判定するまでの時間でよく、負荷抵抗の大きさに応じて定めればよい。 The discharge time can be a time until the discharge voltage is determined may be determined according to the load resistor size. そして、放電時の電池電圧を直流電圧測定部7で測定し、直流電圧測定部7から出力される電池電圧信号を容量推定部12のA/D変換入力部に入力する。 Then, the battery voltage during discharge was measured with a DC voltage measurement unit 7, inputs the battery voltage signal outputted from the DC voltage measuring unit 7 to the A / D conversion input unit of volume estimation unit 12. 容量推定部12では、直流電圧測定部7で測定した電池電圧を放電電圧として図示しないメモリに記憶する。 The capacity estimating unit 12 stores the battery voltage measured by the DC voltage measurement unit 7 in a memory (not shown) as a discharge voltage. 更に、熱電対8と温度検出部9により検出された電池1の周囲温度値を示す周囲温度信号が、容量推定部12のA/D変換入力部に入力され,電池1の周囲温度値は容量推定部12の図示しないメモリに記憶される。 Moreover, the ambient temperature signal indicating an ambient temperature value of the thermocouple 8 and the battery 1 detected by the temperature detector 9 is input to A / D conversion input unit of capacity estimating unit 12, the ambient temperature value of the battery 1 capacity It is stored in a memory (not shown) of the estimation unit 12.

【0030】容量推定部12は、上記のようにして入力された被測定電池1のインピーダンス値、短時間放電時の電池電圧信号及び周囲温度信号をそれぞれA/D変換してメモリに記憶したデータを用いてマイクロプロセッサにより放電容量の推定演算を行う。 The capacity estimation unit 12, the impedance value of the measured battery 1 that has been input as described above, and stored in the memory a short time during discharge of the battery voltage signal and the ambient temperature signal to the A / D conversion respectively data It performs estimation calculation of the discharge capacity by the microprocessor used. 具体的には、インピーダンス値と短時間放電電圧値を電池1の周囲温度で温度補正した値を用いて放電容量を推定演算して、LE Specifically, the discharge capacity was estimated calculating the impedance value and the short discharge voltage value by using the value temperature correction at ambient temperature of the battery 1, LE
Dセグメントを表示手段として有する表示部13にその演算結果を表示する。 And displays the calculation result on the display unit 13 having a D segment as a display unit. この放電容量の推定演算は、従来の技術の欄で説明した電気設備学会誌「1993,N Estimation calculation of the discharge capacity, the description of the prior art electrical equipment Journal "1993, N
o. o. 12,VOL. 12, VOL. 13,P1247」に説明されている推定演算を用いればよい。 13, P1247 the estimation calculation may be used as described in ".

【0031】なお、本実施例においては、交流電流通電部2が電池1に通電する交流電流の周期を100msの整数倍の周期としている。 [0031] In the present embodiment, alternating current supplying section 2 is an integral multiple of the cycle period of 100ms AC current supplied to the battery 1. その理由は課題を解決するための手段の項で前述した通りであるが、その作用効果を図2を用いて説明する。 The reason is as described above in the section of means for solving the problems, the effects thereof will be described with reference to FIG. 即ち交流電流の周期を100msの整数倍の周期としたのは、リプル電圧がインバータ等の負荷で発生する場合が多く、その場合にはリプル電圧が商用周波数、つまり50又は60Hzの整数倍となることに着目したものである。 That's the period of the alternating current was set to an integral multiple of the period of 100ms are often ripple voltage is generated by the load such as an inverter, the ripple voltage is an integral multiple of the commercial frequency, i.e. 50 or 60Hz in the case that especially those focusing. 図2は、フーリエ変換する波形として、振幅を100とした場合で周波数が10Hz Figure 2 is a waveform Fourier transform, the frequency in the case where the amplitude a 100 10 Hz
から60Hzの高周波成分を重畳した波形を用い、この波形をフーリエ変換して基本波成分の振幅を計算した場合の誤差をプロットしたものである。 Using the waveform obtained by superimposing a high-frequency component of 60Hz from a plot of the error when calculating the amplitude of the fundamental wave component of the waveform by Fourier transform. 図示されるように、基本波成分の整数倍の周波数に対しては誤差が0% As shown, 0% error for an integer multiple of the frequency of the fundamental wave component
となっていて基本波成分の影響はなく、周波数が50及び60Hzの成分も除去可能である。 No effect of the fundamental wave component has become a component of frequency 50 and 60Hz can also be removed. 即ち、フーリエ変換を行うと、入力波形の基本波の整数倍の周波数成分は除去作用があるため、商用周波数50又は60Hzの最大公約数10Hz、つまり周期100msの整数倍に入力波形周期を設定すれば、10Hzの整数倍のリプル電圧は除去できることになる。 That is, when performing a Fourier transform, an integer multiple of the frequency component of the fundamental wave of the input waveform because of the removal action, the greatest common divisor of 10Hz line frequency 50 or 60 Hz, i.e. by setting the input waveform cycle to an integral multiple of the period 100ms if, integer multiples of the ripple voltage of 10Hz will be be removed. 従って、通電交流電流の周期を100msの整数倍とすると、50又は60Hzの整数倍のリプル電圧成分はフーリエ変換で除去可能になる。 Therefore, when the period of the energizing alternating current to an integer multiple of 100 ms, an integral multiple of the ripple voltage component of 50 or 60Hz will be removed by the Fourier transform.

【0032】また本実施例において、インピーダンス算出部11は、被測定電池1に交流電流の通電を開始した後所定周期分(具体的には、8周期分)の交流電流が通電された以降に交流電圧増幅部4から出力された電圧応答波形のデータを前述した図示しないメモリから読み出し、この読み出したデータに基いて平均の電圧応答波形を求め、この平均の電圧応答波形からインピーダンス値を算出している。 [0032] In the present embodiment, the impedance calculation unit 11, the later (specifically, the 8 cycles) predetermined period after the start of energization of the alternating current to be measured battery 1 is an alternating current of the energized reads the data of the output voltage response waveform from the AC voltage amplifier 4 from the memory (not shown) described above, an average of the voltage response waveform on the basis of the read data, calculates an impedance value from the voltage response waveform of the average ing. 通電開始後、所定周期分のデータを利用しないのは、電池の電圧応答波形が安定するまでに時間を要するのと、フィルタ特性を有する交流電圧増幅部の電圧応答波形が安定するまでに時間を要するためである。 After the start of energization, not to use the data for a predetermined period includes a voltage response waveform of the battery that takes time to stabilize, the voltage response waveform of the AC voltage amplifier having a filter characteristic time to stabilize This is because it takes. この所定周期は、電圧応答波形が安定するまでの最短時間とすればよい。 This predetermined period, the voltage response waveform may be the minimum time to stabilize. このように平均の電圧応答波形を用いると、リプル電圧及びノイズの影響を更に抑制できる。 When used in this manner the average of the voltage response waveform can be further suppress the influence of the ripple voltage and noise. これを図3を参照して説明する。 This will be explained with reference to FIG. この例では、通電交流電流の周波数の4.2倍の周波数で振幅が基本周波数と同一のリプル電圧が重畳された場合を想定したもので、16周期の平均をとった場合である。 In this example, in which the amplitude at 4.2 times the frequency of the energizing alternating current is assumed that the ripple voltage of the same fundamental frequency are superposed, a case where the average of 16 cycles. 図示されるように、入力波形aにはリプル電圧成分が重畳されているが、16回積算平均化した波形bではリプル電圧成分が減少している。 As shown, the input waveform a is the ripple voltage component is superposed, 16 times the accumulated averaged waveform b in the ripple voltage component is reduced.

【0033】更に、図2と同様に交流電流の基本周波数を10Hzとして、周波数が10Hzから60Haの高調波を重畳した波形を入力波形とし、16周期積算平均した電圧応答波形をフーリエ変換した値で基本成分の振幅を求めた場合の誤差特性を図4に示した。 Furthermore, the 10Hz fundamental frequency similarly alternating current and Figure 2, the waveform frequency is superimposed harmonics 60Ha from 10Hz as input waveform, a 16 period integration averaged voltage response waveform by the Fourier transform value an error characteristic in the case of seeking the amplitude of the fundamental component shown in FIG. 図4に示されるように、基本周波数の整数倍以外の周波数でも誤差が少なく、リプル電圧及びノイズの影響を少なくすることができる。 As shown in FIG. 4, fewer errors even at frequencies other than an integral multiple of the fundamental frequency, it is possible to reduce the influence of the ripple voltage and noise.

【0034】次に、本実施例での実際の動作条件を示す。 [0034] Next, the actual operating conditions of the present embodiment. 寿命判定対象のシール鉛蓄電池は、定格が2V、2 Seal lead-acid battery life determination target, rated at 2V, 2
00Ahの据置形シール鉛蓄電池である。 It is a stationary-type seal lead acid battery of 00Ah. この電池のインピーダンス測定時の通電交流電流は周波数10Hz、 Energizing the alternating current during impedance measurement of the battery frequency 10 Hz,
±2Aであり、この交流電流を25周期間通電し、9周期から25周期の電圧応答波形データを積算平均化してフーリエ変換を行い、インピーダンス値を算出する。 A ± 2A, the alternating current energizing 25th period, performs Fourier transform by integrating averaging the voltage response waveform data 25 cycles from 9 cycles to calculate the impedance value. インピーダンス値の測定上限は2.5mΩ、電圧応答波形データのサンプリング点数は1周期当り128点である。 Measurement upper limit of the impedance value 2.5Emuomega, the number of sampling points of the voltage response waveform data is 128 points per cycle. また短時間放電は、放電電流を約46Aで30秒間行うものである。 The short discharge is performed for 30 seconds a discharge current of about 46A.

【0035】次に、本発明の特徴の一つである、対リプル電圧特性について実測した結果を示す。 Next, one of the features of the present invention, shows the results of actual measurement for pairs ripple voltage characteristics. 測定対象物は抵抗値がそれぞれ1mΩと0.333mΩの二つのシャント抵抗とした。 Measurement object resistance was two shunt resistors respectively 1mΩ and 0.333Emuomega. リプル電圧として10nV、50Hz 10nV as ripple voltage, 50Hz
のリプル電圧を重畳させて100回測定した結果を図5 Figure The results ripple voltage was measured 100 times superimposed 5
に示す。 To show. 図示のように、リプル電圧の有無に拘らず、最大誤差と誤差の標準偏差はほとんど変わらず、リプル電圧存在の影響は測定値に現れなかった。 As shown, regardless of the presence of the ripple voltage, the standard deviation of the maximum error and the error hardly changes, the influence of the ripple voltage present did not appear in the measurement value. 従って、リプル電圧はインピーダンスの測定値に影響を及ぼさないと判断できる。 Therefore, it can be determined that the ripple voltage does not affect the measurement of the impedance.

【0036】 [0036]

【発明の効果】以上述べたように、本発明に係るシール鉛蓄電池の寿命判定装置によれば、対象となる電池の内部インピーダンスの算出と短時間放電電池の測定を併せて行い、インピーダンス値及び放電電圧値を電池の周囲温度測定値により補正した値に基づいて電池の放電容量を推定するようにしたので、放電容量を適確に推定して電池の寿命を良好に判定することができる。 As described above, according to the present invention, according to the life determination device sealed lead-acid battery according to the present invention, performed in conjunction measurements calculates a short discharge battery internal impedance of the battery of interest, the impedance value and since the discharge voltage value so as to estimate the discharge capacity of the battery based on the value obtained by correcting the ambient temperature measured value of the battery, by estimating a discharge capacity precisely it is possible to determine the life of the battery well.

【0037】また、本発明によれば、電池への交流電流通電に対する電池端子間の交流電圧の増幅出力をフーリエ変換し、変換した値から通電電流と同一周波数成分の交流電圧の振幅を求めてインピーダンス値を算出するようにしたので、リプル電圧及びノイズの影響を減少させて、高精度でインピーダンス値を算出し、電池容量を推定することができる。 Further, according to the present invention, the amplified output of the alternating voltage between the battery terminals for the alternating current power supply to the battery Fourier transform, to obtain an amplitude of the AC voltage applied current with the same frequency component from the converted value since to calculate the impedance value, to reduce the influence of the ripple voltage and noise, it calculates an impedance value with high precision, it is possible to estimate the battery capacity. これにより、電池寿命判定の信頼度を高めることができる。 Thus, it is possible to increase the reliability of the battery life determination.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の実施例を示す説明図である。 FIG. 1 is an explanatory view showing an embodiment of the present invention.

【図2】 基本波の高調波周波数とフーリエ変換後の基本波成分の振幅の誤差を示す特性曲線図である。 2 is a characteristic diagram showing the error of the amplitude of the fundamental wave component of the harmonic frequencies and Fourier transform of the fundamental wave.

【図3】 電池の交流入力に対する電圧応答波形を積算平均化した場合の波形の変化を示す特性曲線図である。 3 is a characteristic diagram showing changes in the waveform when the voltage response waveform with respect to the AC input of the battery by integrating averaged.

【図4】 交流入力の高調波周波数と電圧応答波形を積算平均化した場合のフーリエ変換後の基本波成分の振幅の誤差を示す特性曲線図である。 4 is a characteristic diagram showing the error of the amplitude of the fundamental wave component after Fourier transform in the case of a harmonic frequency and the voltage response waveform of the AC input and accumulated averaged.

【図5】 リプル電圧が存在する場合の誤差を示す特性説明図である。 5 is a characteristic diagram showing the error when the ripple voltage exists.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 被測定シール鉛蓄電池 2 交流電流通電部 3,6 リレー接点 4 交流電圧増幅部 5 放電用負荷抵抗(放電用負荷部) 7 直流電圧測定部 8 熱電対 9 温度検出部 10 通・放電制御部 11 インピーダンス値算出部 12 容量推定部 13 表示部 1 measured sealed lead-acid battery 2 AC current conducting portion 3,6 relay contact 4 AC voltage amplifier 5 discharge load resistor (discharge load unit) 7 DC voltage measurement unit 8 thermocouple 9 temperature detecting unit 10 copies and discharging control unit 11 impedance value calculator 12 capacity estimating unit 13 display unit

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 一定振幅かつ一定周波数の交流電流を被測定電池に通電する交流電流通電部(2)と、 前記交流電流の周波数と同一の周波数成分のみを通すフィルタ特性を有して被測定電池の端子電圧から交流電圧成分を検出してこれを増幅する交流電圧増幅部(4) 1. A AC current conduction unit for energizing the alternating current of constant amplitude and constant frequency to the measured cell and (2), measured with a filter characteristic which passes only the same frequency components as the frequency of the alternating current AC voltage amplifier for amplifying this by detecting the AC voltage component from the terminal voltage of the battery (4)
    と、 前記交流電圧増幅部の出力からインピーダンス値を算出するインピーダンス値算出部(11)と、 被測定電池を放電させる放電用負荷部(5)と、 前記交流電流通電部より前記被測定電池への通電を所定の期間行わせるとともに、前記放電用負荷部に前記被測定電池を所定の時間だけ放電させる通・放電制御部(1 When, an impedance value calculating unit that calculates an impedance value from the output of the AC voltage amplifier (11), and the discharge load unit for discharging the measured battery (5), to the measured battery from the alternating current applying unit energization causes the performed predetermined period, passing-discharge control unit the discharges to be measured battery for a predetermined time to the discharge load unit (1
    0)と、 前記被測定電池の直流電圧成分を測定する直流電圧測定部(7)と、 前記被測定電池の周囲温度を測定する温度検出部(8, 0), the DC voltage measurement unit for measuring a DC voltage component of the measured battery (7), wherein the temperature detector (8 for measuring the ambient temperature of the measuring cell,
    9)と、 前記被測定電池のインピーダンス値と一定時間放電時の直流電圧値と周囲温度値とから前記被測定電池の容量を推定演算する容量推定部(12)とを具備し、 前記インピーダンス値算出部(11)は、前記交流電圧増幅部(4)の出力の電圧応答波形をフーリエ変換し、 9), wherein comprises a capacitor estimator for estimating the capacity of the measured battery from the impedance value and the DC voltage value and the ambient temperature value at a certain time discharging of the measurement cell (12), said impedance value calculating unit (11), said AC voltage amplifier voltage response waveform of the output of (4) Fourier transform,
    フーリエ変換した値から通電電流と同一周波数成分の交流電圧成分の振幅を求め、該振幅からインピーダンス値を算出することを特徴とするシール鉛蓄電池の寿命判定装置。 Obtain an amplitude of the AC voltage component having the same frequency component as energizing current from the Fourier transformed values, the life determining apparatus of sealed lead-acid battery and calculates an impedance value from the amplitude.
  2. 【請求項2】 一定振幅かつ一定周波数の交流電流を被測定電池に通電する交流電流通電部(2)と、 前記交流電流の周波数と同一の周波数成分のみを通すフィルタ特性を有して被測定電池の端子電圧から交流電圧成分を検出してこれを増幅する交流電圧増幅部(4) Wherein alternating current applying unit for energizing the alternating current of constant amplitude and constant frequency to the measured cell and (2), measured with a filter characteristic which passes only the same frequency components as the frequency of the alternating current AC voltage amplifier for amplifying this by detecting the AC voltage component from the terminal voltage of the battery (4)
    と、 前記交流電圧増幅部の出力からインピーダンス値を算出して表示するインピーダンス値算出表示部(11,1 When the impedance value calculation display unit which displays the calculated impedance values ​​from the output of the AC voltage amplifier (11, 1
    3)と、 被測定電池を放電させる放電用負荷部(5)と、 前記交流電流通電部より前記被測定電池への通電を所定の期間行わせるとともに、前記放電用負荷部に前記被測定電池を所定の時間だけ放電させる通・放電制御部(1 And 3), a discharge load unit for discharging the measured battery (5), together with causing a predetermined time period the power supply to the device under test cell from the alternating current supply section, the measured cell to the discharge load unit passing and discharging control unit to discharge the predetermined time (1
    0)と、 前記被測定電池の直流電圧成分を測定する直流電圧測定部(7)と、 前記被測定電池の周囲温度を測定する温度検出部(8, 0), the DC voltage measurement unit for measuring a DC voltage component of the measured battery (7), wherein the temperature detector (8 for measuring the ambient temperature of the measuring cell,
    9)と、 前記被測定電池のインピーダンス値と一定時間放電時の直流電圧値と周囲温度値とから前記被測定電池の容量を推定計算して表示する容量推定表示部(12,13)とを具備し、 前記インピーダンス値算出表示部(11,13)は、前記交流電圧増幅部の出力の電圧応答波形をフーリエ変換し、フーリエ変換した値から通電電流と同一周波数成分の交流電圧成分の振幅を求め、該振幅からインピーダンス値を算出して表示することを特徴とするシール鉛蓄電池の寿命判定装置。 9), the capacity estimation display unit that displays estimated calculates the amount of the measured battery from the impedance value and the DC voltage value and the ambient temperature value at a certain time discharging of the measurement cell and (12, 13) comprising, wherein the impedance value calculation display unit (11, 13) is a voltage response waveform of the output of the AC voltage amplifier Fourier transform, the amplitude of the AC voltage component of the electric current with the same frequency component from the Fourier transformed values determined, the life determining apparatus of sealed lead-acid battery, characterized in that calculating and displaying an impedance value from the amplitude.
  3. 【請求項3】 前記交流電流通電部から通電する交流電流の周期が100msの整数倍の周期であることを特徴とする請求項1または2に記載のシール鉛蓄電池の寿命判定装置。 3. A life determining apparatus of sealed lead acid battery according to claim 1 or 2, wherein the period of the AC current supplied from the alternating current supply section is an integral multiple cycle of 100 ms.
  4. 【請求項4】 前記インピーダンス値表示部(11) Wherein said impedance value display unit (11)
    は、前記被測定電池に交流電流の通電開始後所定の周期以降の前記交流電圧増幅部の出力の平均の電圧応答波形からインピーダンス値を算出して表示することを特徴とする請求項1に記載のシール鉛蓄電池の寿命判定装置。 Is claimed in claim 1, wherein the displaying the calculated impedance values ​​from the average of the voltage response waveform of the output of the AC voltage amplifier energization after the start after a predetermined period of the alternating current to be measured battery life determination apparatus of sealed lead-acid storage battery.
JP22211195A 1995-08-30 1995-08-30 Life determination apparatus of sealed lead-acid battery Expired - Fee Related JP3379298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22211195A JP3379298B2 (en) 1995-08-30 1995-08-30 Life determination apparatus of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22211195A JP3379298B2 (en) 1995-08-30 1995-08-30 Life determination apparatus of sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0961505A true JPH0961505A (en) 1997-03-07
JP3379298B2 JP3379298B2 (en) 2003-02-24

Family

ID=16777324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22211195A Expired - Fee Related JP3379298B2 (en) 1995-08-30 1995-08-30 Life determination apparatus of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3379298B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010219A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
EP1119882A1 (en) * 1998-09-11 2001-08-01 CHAMPLIN, Keith S Method and apparatus for measuring complex impedance of cells and batteries
WO2002027343A1 (en) * 2000-09-28 2002-04-04 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
JP2010102869A (en) * 2008-10-22 2010-05-06 Shin Kobe Electric Mach Co Ltd Degradation state estimation method of lead storage battery
JP2010276389A (en) * 2009-05-27 2010-12-09 J&K Car Electronics Corp Onboard unit and program
WO2011056779A2 (en) * 2009-11-03 2011-05-12 Bravo Zulu International, Ltd. Automated battery scanning, repair, and optimization
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
CN103884995A (en) * 2014-03-13 2014-06-25 清华大学 Impedance measurement system and method for secondary batteries
US8872516B2 (en) 2000-03-27 2014-10-28 Midtronics, Inc. Electronic battery tester mounted in a vehicle
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US8963550B2 (en) 2004-08-20 2015-02-24 Midtronics, Inc. System for automatically gathering battery information
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9052366B2 (en) 2000-03-27 2015-06-09 Midtronics, Inc. Battery testers with secondary functionality
US9067504B1 (en) 2014-01-14 2015-06-30 Ford Global Technologies, Llc Perturbative injection for battery parameter identification
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
JP2016070660A (en) * 2014-09-26 2016-05-09 日置電機株式会社 Measuring apparatus and measuring method, and program
US9335362B2 (en) 2007-07-17 2016-05-10 Midtronics, Inc. Battery tester for electric vehicle
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
WO2018180435A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Power conversion device, power conversion system, and dc power supply device
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
WO2019054020A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Battery management device, battery system, and battery management method
US10317468B2 (en) 2016-01-26 2019-06-11 Midtronics, Inc. Alternator tester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057264A (en) * 2014-09-12 2016-04-21 Ntn株式会社 Battery Checker

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
EP1115171A1 (en) * 1998-08-10 2001-07-11 Toyota Jidosha Kabushiki Kaisha Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
US7030618B2 (en) 1998-08-10 2006-04-18 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
WO2000010219A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
US7180298B2 (en) 1998-08-10 2007-02-20 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
EP1115171A4 (en) * 1998-08-10 2004-09-29 Toyota Motor Co Ltd Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7075305B2 (en) 1998-08-10 2006-07-11 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7235326B2 (en) 1998-08-10 2007-06-26 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
EP1119882A1 (en) * 1998-09-11 2001-08-01 CHAMPLIN, Keith S Method and apparatus for measuring complex impedance of cells and batteries
EP1119882A4 (en) * 1998-09-11 2002-09-18 Keith S Champlin Method and apparatus for measuring complex impedance of cells and batteries
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US8872516B2 (en) 2000-03-27 2014-10-28 Midtronics, Inc. Electronic battery tester mounted in a vehicle
US9052366B2 (en) 2000-03-27 2015-06-09 Midtronics, Inc. Battery testers with secondary functionality
US6920404B2 (en) 2000-09-28 2005-07-19 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
WO2002027343A1 (en) * 2000-09-28 2002-04-04 Japan Storage Battery Co., Ltd. Method of detecting residual capacity of secondary battery
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8963550B2 (en) 2004-08-20 2015-02-24 Midtronics, Inc. System for automatically gathering battery information
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
US9335362B2 (en) 2007-07-17 2016-05-10 Midtronics, Inc. Battery tester for electric vehicle
JP2010102869A (en) * 2008-10-22 2010-05-06 Shin Kobe Electric Mach Co Ltd Degradation state estimation method of lead storage battery
JP2010276389A (en) * 2009-05-27 2010-12-09 J&K Car Electronics Corp Onboard unit and program
WO2011056779A2 (en) * 2009-11-03 2011-05-12 Bravo Zulu International, Ltd. Automated battery scanning, repair, and optimization
WO2011056779A3 (en) * 2009-11-03 2011-11-10 Bravo Zulu International, Ltd. Automated battery scanning, repair, and optimization
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US9067504B1 (en) 2014-01-14 2015-06-30 Ford Global Technologies, Llc Perturbative injection for battery parameter identification
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
CN103884995B (en) * 2014-03-13 2017-01-04 清华大学 Impedance measurement system and a method for measuring the impedance of the secondary battery
CN103884995A (en) * 2014-03-13 2014-06-25 清华大学 Impedance measurement system and method for secondary batteries
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
JP2016070660A (en) * 2014-09-26 2016-05-09 日置電機株式会社 Measuring apparatus and measuring method, and program
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10317468B2 (en) 2016-01-26 2019-06-11 Midtronics, Inc. Alternator tester
WO2018180435A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Power conversion device, power conversion system, and dc power supply device
WO2019054020A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Battery management device, battery system, and battery management method

Also Published As

Publication number Publication date
JP3379298B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US6495990B2 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6262563B1 (en) Method and apparatus for measuring complex admittance of cells and batteries
US5479085A (en) Method and apparatus for measuring residual capacity of an electric-vehicle battery
Venet et al. Realization of a smart electrolytic capacitor circuit
US6002238A (en) Method and apparatus for measuring complex impedance of cells and batteries
US9091739B2 (en) Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
JP4638251B2 (en) Battery management system
US6806716B2 (en) Electronic battery tester
EP0990150B1 (en) Detecting a bad cell in a storage battery
US6359441B1 (en) Electronic battery tester
US8175826B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
US20050154544A1 (en) System for calculating remaining capacity of energy storage device
US6456045B1 (en) Integrated conductance and load test based electronic battery tester
US6104167A (en) Method and apparatus for charging a battery
US6781382B2 (en) Electronic battery tester
JP4215152B2 (en) Battery capacity detection method
US6249124B1 (en) Electronic battery tester with internal battery
EP1972955A1 (en) Charged state estimation device and charged state estimation method of secondary battery
EP1088240B1 (en) Method of and apparatus for measuring battery capacity
EP1707974B1 (en) Remaining capacity calculating device and method for electric power storage
EP1049231B1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
US7541814B2 (en) Method and device for determining the charge of a battery
US5574355A (en) Method and apparatus for detection and control of thermal runaway in a battery under charge
JP3285720B2 (en) Deterioration detecting method and the deterioration detecting device of the battery pack
KR101750739B1 (en) Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees