JP2003317810A - Battery characteristics estimation method - Google Patents

Battery characteristics estimation method

Info

Publication number
JP2003317810A
JP2003317810A JP2002116705A JP2002116705A JP2003317810A JP 2003317810 A JP2003317810 A JP 2003317810A JP 2002116705 A JP2002116705 A JP 2002116705A JP 2002116705 A JP2002116705 A JP 2002116705A JP 2003317810 A JP2003317810 A JP 2003317810A
Authority
JP
Japan
Prior art keywords
battery
internal impedance
reaction resistance
value
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002116705A
Other languages
Japanese (ja)
Inventor
Toshiro Okamoto
敏郎 岡元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002116705A priority Critical patent/JP2003317810A/en
Publication of JP2003317810A publication Critical patent/JP2003317810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery characteristics estimation method capable of quickly and easily estimating self-discharge amount. <P>SOLUTION: The battery characteristics estimation method comprises an internal impedance measuring process measuring the internal impedance for a plurality of frequencies under the condition that the migration velocity of electric charge at the electrode reaction of the battery is sufficiently higher than that of matter, a reaction resistance measuring process calculating the value of reaction resistance of which, the real part is plotted on the X-axis and the imaginary part is plotted on the Y-axis of an impedance circle on a two-dimensional coordinates, and a minute short circuit estimation process estimating the presence of minute short circuits from the value of the reaction resistance. The minute short circuit can be detected by measuring the valve of the reaction resistance because the value of reaction resistance estimated by measuring the internal impedance sharply varies mainly depending on the size of the minute short circuit. Since the minute short circuit can be quickly measured, the internal impedance can also be quickly detected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池に発生する微
小な内部短絡を高精度に検出できる電池の特性評価方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery characteristic evaluation method capable of highly accurately detecting a minute internal short circuit occurring in a battery.

【0002】[0002]

【従来の技術】情報関連機器、通信機器等の分野では、
パソコン、ビデオカメラ、携帯電話等の小型化が進行し
ている。これらの機器に用いる電源としては、高エネル
ギー密度・高出力密度を有する二次電池が実用化され広
く普及するに至っている。また一方で、自動車の分野に
おいても、環境問題、資源問題から電気自動車・ハイブ
リッド自動車の開発が急がれており、この電気自動車等
に用いられる電源としても二次電池が検討されている。
2. Description of the Related Art In the fields of information-related equipment and communication equipment,
Personal computers, video cameras, mobile phones, etc. are becoming smaller. As a power source used for these devices, a secondary battery having high energy density and high output density has been put into practical use and has come into widespread use. On the other hand, also in the field of automobiles, development of electric vehicles / hybrid vehicles is urgently required due to environmental problems and resource problems, and secondary batteries are also being considered as a power source used for the electric vehicles and the like.

【0003】ところで電池は、放置することで起電力が
低下していく(自己放電)。電池効率の観点から、自己
放電量は小さいことが好ましい。同様の方法で電池を作
成しても各電池ごとに自己放電量の値が微妙に異なって
くる。自己放電の大きな要因として電池内部に形成され
た導電性のパスによる微小短絡の存在がある。
By the way, the electromotive force of a battery decreases as it is left (self-discharge). From the viewpoint of battery efficiency, the self-discharge amount is preferably small. Even if batteries are created by the same method, the value of the self-discharge amount varies slightly for each battery. A major cause of self-discharge is the presence of minute short circuits due to conductive paths formed inside the battery.

【0004】したがって、電池は、製造した電池の全数
について、製品に適用する前に、その自己放電量を測定
し、その製品に用いた場合に適正な特性を有するものか
否かについて評価されることが好ましい。特に、電気自
動車等のような電池に対する要求水準の高い製品に適用
する場合には尚更である。
Therefore, the batteries are evaluated for all the manufactured batteries by measuring the self-discharge amount before being applied to the products and whether they have proper characteristics when used in the products. It is preferable. This is especially true when applied to products with high requirements for batteries such as electric vehicles.

【0005】従来、自己放電量を測定する方法として
は、電池を満充電した後に一定期間室温雰囲気等で放置
した後に端子電圧を測定する方法、満充電した電池につ
いて高温雰囲気下で加速試験を行う方法、特開2000
−133319号公報で開示された充電した電池を低温
で保管した後の電圧低下の値から推測する方法があっ
た。
Conventionally, as a method of measuring the self-discharge amount, a method of measuring the terminal voltage after fully charging the battery and leaving it in a room temperature atmosphere for a certain period of time, and an acceleration test in a high temperature atmosphere of the fully charged battery are performed. Method, JP 2000
There is a method of estimating from the value of the voltage drop after the charged battery disclosed in Japanese Patent Laid-Open No. 133319 is stored at a low temperature.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
自己放電量を測定する方法には、以下の不都合があっ
た。すなわち、リチウムイオン二次電池等のように自己
放電量が僅かな電池では、室温放置で自己放電量を測定
するためには、少なくとも2週間から1ヶ月程度、電池
を放置する必要があり、測定に非常に時間がかかるもの
であって、製造した電池の全数検査には不向きであっ
た。また、加速試験では自己放電量の測定時間を短縮さ
せることができるものの、高温雰囲気下に電池を放置す
ることで、電池の劣化が進行してしまう。また、微小短
絡とそれ以外の原因による自己放電との区別ができな
い。つまり、微小短絡を検出するためには変化幅が少な
い電圧や、複数の要因により発現する保存特性を調べて
いては微小短絡の検出に長時間必要であったり、充分な
検出精度が得られない問題が生じる。
However, the conventional method for measuring the self-discharge amount has the following inconveniences. That is, for a battery having a small self-discharge amount such as a lithium-ion secondary battery, it is necessary to leave the battery for at least 2 weeks to 1 month in order to measure the self-discharge amount at room temperature. It took a very long time to complete, and it was not suitable for 100% inspection of the manufactured batteries. In addition, although the self-discharge amount measurement time can be shortened in the accelerated test, if the battery is left in a high temperature atmosphere, deterioration of the battery will progress. Further, it is impossible to distinguish between a micro short circuit and self-discharge due to other causes. In other words, in order to detect a micro short circuit, it is necessary to take a long time to detect a micro short circuit or sufficient detection accuracy cannot be obtained if the voltage with a small change width and the storage characteristics that are caused by multiple factors are investigated. The problem arises.

【0007】そこで本発明では、迅速・簡便に電池の自
己放電量を測定できる電池の特性評価方法を提供するこ
とを解決すべき課題とする。
Therefore, it is an object of the present invention to provide a battery characteristic evaluation method capable of measuring the self-discharge amount of a battery quickly and simply.

【0008】[0008]

【課題を解決するための手段及び発明の効果】上記課題
を解決する目的で本発明者は鋭意研究を行った結果、以
下の知見を得た。すなわち、電池の電極反応における物
質移動速度が電荷移動速度よりも充分に速い条件下で
は、電池の過電圧ηと電流Iとの関係として|η|=a
+b・logI:(a、bは定数)が成立する(ターフ
ェル(Tafel)式)。この式を電流値(I)で微分
すると、dη/dI=R=C/I;(Rは反応抵抗、C
は定数)となる。したがって、電荷移動速度が物質移動
速度よりも充分に遅い条件では、微小であっても電流が
流れると、反応抵抗が大きく低下する。
MEANS FOR SOLVING THE PROBLEMS AND EFFECTS OF THE INVENTION The inventors of the present invention have earnestly studied for the purpose of solving the above problems, and have obtained the following findings. That is, under the condition that the mass transfer rate in the electrode reaction of the battery is sufficiently higher than the charge transfer rate, the relationship between the battery overvoltage η and the current I is | η | = a
+ B · logI: (a and b are constants) is satisfied (Tafel equation). Differentiating this equation by the current value (I), dη / dI = R = C / I; (R is reaction resistance, C
Is a constant). Therefore, under the condition that the charge transfer rate is sufficiently slower than the mass transfer rate, the reaction resistance is greatly reduced when a current flows even though the flow rate is minute.

【0009】つまり、電池に対し外部から電流の出し入
れを行わない条件下での反応抵抗の測定により微小短絡
の有無が推測できる。すなわち、内部に微小短絡を有さ
ない電池の内部抵抗の値よりも、測定した反応抵抗の値
が小さい場合には、電池内部の微小短絡に由来するリー
ク電流が流れていることが推定できる。電池内部には反
応抵抗の値の低下量に比例した量の微小短絡が存在する
ことが推測できる。そこで、電池の反応抵抗の値を求め
ることで、電池内部の微小短絡の存在を迅速に推測し、
将来的な自己放電量を予測できることに想到し以下の発
明を行った。
That is, the presence or absence of a micro short circuit can be inferred by measuring the reaction resistance under conditions in which no current is externally input or output to or from the battery. That is, when the measured reaction resistance value is smaller than the internal resistance value of the battery having no internal micro short circuit, it can be estimated that the leak current resulting from the micro short circuit inside the battery is flowing. It can be inferred that there is an amount of minute short circuit proportional to the decrease amount of the reaction resistance value inside the battery. Therefore, by obtaining the value of the reaction resistance of the battery, it is possible to quickly infer the existence of a micro short circuit inside the battery,
The inventors have made the following inventions with the idea that the amount of self-discharge in the future can be predicted.

【0010】すなわち、本発明の電池の特性評価方法
は、電池の電極反応における物質移動速度が電荷移動速
度よりも充分に速い条件下で、該電池の内部インピーダ
ンスを複数の周波数において測定する内部インピーダン
ス測定工程と、それぞれの該内部インピーダンスの実部
をX軸に虚部をY軸にプロットして規定される二次元座
標におけるインピーダンス円から反応抵抗の値を算出す
る反応抵抗算出工程と、該反応抵抗の値から該電池の微
小短絡の存在を推測する微小短絡推測工程と、を有する
ことを特徴とする(請求項1)。
That is, the method for evaluating the characteristics of the battery of the present invention is to measure the internal impedance of the battery at a plurality of frequencies under the condition that the mass transfer rate in the electrode reaction of the battery is sufficiently higher than the charge transfer rate. A measurement step, a reaction resistance calculation step of calculating a value of reaction resistance from an impedance circle in a two-dimensional coordinate defined by plotting the real part of each internal impedance on the X axis and the imaginary part on the Y axis, and the reaction A step of estimating the presence of a micro short circuit in the battery from the value of the resistance, and a micro short circuit estimating step (claim 1).

【0011】内部インピーダンスの測定に基づく反応抵
抗の値の大きさは、主に微小短絡の大きさ(量)によっ
て大きく変化するので、反応抵抗の値を測定することで
微小短絡を高精度で検出することが可能となる。また、
内部インピーダンスは迅速に測定できるので、微小短絡
の検出も迅速に行うことができる。
Since the magnitude of the value of the reaction resistance based on the measurement of the internal impedance largely changes mainly depending on the size (quantity) of the minute short circuit, the minute short circuit can be detected with high accuracy by measuring the value of the reaction resistance. It becomes possible to do. Also,
Since the internal impedance can be measured quickly, a minute short circuit can be detected quickly.

【0012】[0012]

【発明の実施の形態】本発明の電池の特性評価方法は、
内部インピーダンス測定工程と反応抵抗算出工程と微小
短絡推測工程とを有する。本発明の電池の特性評価方法
が適用できる電池は特に限定しない。また、本発明方法
は、対象となる電池に一般的なコンディショニングを行
った後に行うことが結果のばらつき低減等のためには好
ましいが、特にコンディショニングは必須ではない。ま
た、本発明方法は電池の製造直後の品質管理の一手段と
して採用できるばかりか、使用中の電池に新たに発生し
た微小短絡を発見する手段としても適用可能である。つ
まり、使用中の電池に対して定期的に本発明方法を適用
することで電池の寿命等の情報を迅速に得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The battery characteristic evaluation method of the present invention comprises:
It has an internal impedance measuring step, a reaction resistance calculating step, and a micro short circuit estimating step. The battery to which the battery characteristic evaluation method of the present invention can be applied is not particularly limited. Further, the method of the present invention is preferably performed after general conditioning of the target battery in order to reduce variation in results, but the conditioning is not particularly required. Further, the method of the present invention can be adopted not only as a means for quality control immediately after the production of a battery but also as a means for finding a micro short circuit newly generated in a battery in use. That is, by periodically applying the method of the present invention to a battery in use, it is possible to quickly obtain information such as the life of the battery.

【0013】(内部インピーダンス測定工程)内部イン
ピーダンス測定工程は、電池の電極反応における物質移
動速度が電荷移動速度よりも充分に速い条件下で、電池
の内部インピーダンスを複数の周波数において測定する
工程である。電荷移動速度を物質移動速度よりも充分に
速くするには電池の温度を所定温度範囲に制御すること
で達成できる。物質移動速度が電荷移動速度よりも充分
に速い条件であるか否かは後述の反応抵抗算出工程の欄
で説明する。
(Internal Impedance Measuring Step) The internal impedance measuring step is a step of measuring the internal impedance of the battery at a plurality of frequencies under the condition that the mass transfer rate in the electrode reaction of the battery is sufficiently higher than the charge transfer rate. . The charge transfer rate can be made sufficiently higher than the mass transfer rate by controlling the temperature of the battery within a predetermined temperature range. Whether or not the mass transfer rate is sufficiently higher than the charge transfer rate will be described in the section of the reaction resistance calculation step described later.

【0014】好ましい所定温度範囲としては評価対象と
なる電池の種類により適正な値が異なる。測定対象であ
る電池がニッケル水素二次電池である場合には、−30
〜15℃とすると、電荷移動速度が物質移動速度よりの
充分に速い条件となる。同様に、電池がリチウム電池で
ある場合には、−35〜25℃の範囲内で、電池が燃料
電池である場合には、25〜1000℃の範囲内で測定
することで電荷移動速度が物質移動速度より充分に遅い
条件となる。
As a preferable predetermined temperature range, an appropriate value varies depending on the type of battery to be evaluated. If the battery to be measured is a nickel-hydrogen secondary battery, -30
When the temperature is -15 ° C, the condition is such that the charge transfer rate is sufficiently higher than the mass transfer rate. Similarly, when the battery is a lithium battery, the charge transfer rate is measured within a range of −35 to 25 ° C., and when the battery is a fuel cell, within a range of 25 to 1000 ° C. The condition is sufficiently slower than the moving speed.

【0015】電池の内部インピーダンスを測定する方法
としては特に限定しないが、一般的に交流インピーダン
ス法と称される方法が好ましい。交流インピーダンス法
における測定方法としては、リサージュ法、交流ブリッ
ジ法、位相弁別法等のアナログ方式や、デジタル・フー
リエ積分法、ノイズ印加による高速フーリエ変換法等の
デジタル方式が例示できる。
The method for measuring the internal impedance of the battery is not particularly limited, but the method generally called the AC impedance method is preferable. Examples of the measuring method in the AC impedance method include analog methods such as Lissajous method, AC bridge method, and phase discrimination method, and digital methods such as digital Fourier integration method and fast Fourier transform method by noise application.

【0016】リサージュ法は電池への入力信号の電圧及
び電流と応答信号の電圧及び電流とを直接2チャンネル
で記録し、直接的に振幅と位相差とを求める方法であ
る。交流ブリッジ法は電池を含むRC素子を各辺にもつ
ホイートストンブリッジの平衡点を求め、その平衡点か
らインピーダンスを算出する方法である。位相弁別法は
ロックインアンプを利用して入力信号に対する応答信号
の振幅と位相差とを検出する方法である。
The Lissajous method is a method in which the voltage and current of the input signal to the battery and the voltage and current of the response signal are directly recorded in two channels and the amplitude and phase difference are directly obtained. The AC bridge method is a method in which an equilibrium point of a Wheatstone bridge having an RC element including a battery on each side is obtained and the impedance is calculated from the equilibrium point. The phase discrimination method is a method of detecting the amplitude and phase difference of a response signal with respect to an input signal by using a lock-in amplifier.

【0017】デジタル・フーリエ積分法は各周波数のサ
イン波からなる入力信号を段階的に変えて印加し、応答
信号の電位及び電流のフーリエ積分によるデジタル処理
により複素量を求め、インピーダンスを算出する方法で
ある。すなわち、アナログ方式の位相弁別法をデジタル
化した方法といえる。ノイズ印加による高速フーリエ変
換法は複数の周波数を含むノイズ(入力信号)を電池に
印加して測定された応答信号の電圧及び電流からなる時
間領域データを周波数領域データにフーリエ変換してイ
ンピーダンスを伝達関数として求める方法である。
The digital Fourier integration method is a method in which an input signal consisting of a sine wave of each frequency is stepwise changed and applied, and a complex quantity is obtained by digital processing of the potential and current of the response signal by Fourier integration to calculate the impedance. Is. In other words, it can be said that the analog phase discrimination method is digitized. The fast Fourier transform method using noise application applies noise (input signal) containing multiple frequencies to a battery and Fourier transforms time domain data consisting of voltage and current of response signal measured to frequency domain data to transfer impedance. It is a method to obtain as a function.

【0018】内部インピーダンス測定工程において内部
インピーダンスを測定する複数の周波数としては1MH
z〜100mHzの範囲で決定することが好ましい。測
定周波数をこの範囲内とすると、簡便且つ高精度で内部
インピーダンスを測定できる。内部インピーダンスを測
定する周波数は少なくとも2つの周波数で測定する必要
があり、5〜10種類程度の周波数を選択して測定する
ことが好ましい。複数の周波数を選択する際には1kH
z〜100Hzの範囲で少なくとも1つと10Hz〜1
00mHzの範囲で少なくとも1つをそれぞれ選択する
ことで後述する反応抵抗算出工程でより高精度に反応抵
抗を算出することができる。また、電池に印加する交流
の振幅としては特に限定しないが1mV〜10mV程度
とすることが好ましい。
In the internal impedance measuring step, 1 MHz is used as a plurality of frequencies for measuring the internal impedance.
It is preferable to determine in the range of z to 100 mHz. When the measurement frequency is within this range, the internal impedance can be easily measured with high accuracy. It is necessary to measure at least two frequencies for measuring the internal impedance, and it is preferable to select and measure about 5 to 10 types of frequencies. 1 kHz when selecting multiple frequencies
at least one in the range of z to 100 Hz and 10 Hz to 1
By selecting at least one in the range of 00 mHz, the reaction resistance can be calculated with higher accuracy in the reaction resistance calculation step described below. The amplitude of the alternating current applied to the battery is not particularly limited, but is preferably about 1 mV to 10 mV.

【0019】(反応抵抗算出工程)反応抵抗算出工程は
内部インピーダンス測定工程で測定されたそれぞれの周
波数における内部インピーダンスについて、その実部を
X軸に虚部をY軸にプロットして規定される二次元座標
におけるインピーダンス円から反応抵抗の値を算出する
工程である。この実部をX軸に虚部をY軸にプロットす
る方法は一般的にコール・コールプロットと称される方
法である。インピーダンス円から反応抵抗の値を算出す
る方法としては、求められたインピーダンス円とX軸
(虚部が0)との交点間の距離から求める方法を採用す
る。つまり、内部インピーダンス測定工程で測定された
内部抵抗の値の組み合わせからインピーダンス円を推定
し、反応抵抗を算出する。
(Reaction Resistance Calculation Step) The reaction resistance calculation step is a two-dimensional process in which the real part of the internal impedance at each frequency measured in the internal impedance measurement step is plotted on the X axis and the imaginary part is plotted on the Y axis. It is a step of calculating the value of the reaction resistance from the impedance circle in the coordinates. The method of plotting the real part on the X axis and the imaginary part on the Y axis is generally called Cole-Cole plot. As a method of calculating the value of the reaction resistance from the impedance circle, a method of calculating from the distance between the intersection points of the obtained impedance circle and the X axis (imaginary part is 0) is adopted. That is, the impedance circle is estimated from the combination of the internal resistance values measured in the internal impedance measuring step, and the reaction resistance is calculated.

【0020】電池の電極反応において電荷移動速度が物
質移動速度よりも充分に速いか否かはコール・コールプ
ロットの二次元座標における形状で判断できる。具体的
には図1に示すようにコール・コールプロットがほぼ完
全な半円を描く場合に電荷移動速度が物質移動速度より
も充分に速いと判断できる。つまり、電池が図1に示す
ような等価回路で近似できることを意味する。なお、グ
ラフ中の矢印は高周波数側を表し、グラフ中及び等価回
路中のRsolnは溶液抵抗、Cdlは二重層容量、r
は反応抵抗を意味する。ここで、電荷移動速度が物質移
動速度よりも充分に速くない条件では電池は図2に示す
ように低周波数側に右肩上がりの直線が現れ、電池は図
2に示す等価回路で表される。この右肩上がりの直線は
電池の等価回路中のZw(Warburgインピーダン
ス:線型半無限拡散を仮定した物質移動系に対する拡散
インピーダンス)に由来する。電荷移動速度が物質移動
速度よりも充分に速くないと、Zwの成分が無視できな
くなる。
Whether or not the charge transfer rate is sufficiently faster than the mass transfer rate in the electrode reaction of the battery can be judged by the shape in the two-dimensional coordinates of the Cole-Cole plot. Specifically, when the Cole-Cole plot draws an almost perfect semicircle as shown in FIG. 1, it can be determined that the charge transfer rate is sufficiently higher than the mass transfer rate. That is, it means that the battery can be approximated by an equivalent circuit as shown in FIG. The arrow in the graph indicates the high frequency side, Rsoln in the graph and the equivalent circuit are solution resistances, Cdl is the double layer capacitance, and r.
Means reaction resistance. Here, under the condition that the charge transfer speed is not sufficiently higher than the mass transfer speed, the battery shows a straight line rising to the low frequency side as shown in FIG. 2, and the battery is represented by the equivalent circuit shown in FIG. . The straight line rising upward is derived from Zw (Warburg impedance: diffusion impedance for a mass transfer system assuming linear semi-infinite diffusion) in the equivalent circuit of the battery. If the charge transfer speed is not sufficiently higher than the mass transfer speed, the Zw component cannot be ignored.

【0021】(微小短絡推測工程)微小短絡推測工程は
反応抵抗算出工程で算出された反応抵抗の値から微小短
絡の存在を推測する工程である。反応抵抗の値が小さい
ほど大きな(多数の)微小短絡が存在するものと考えら
れる。ここで、反応抵抗の値が所定値以下であるときに
問題となる微小短絡が存在すると推測してその後の工程
(例えば、その電池は不良品であると判断する等)を行
うことができる。所定値としては実際の電池との関係で
決定できる。具体的には実際の電池について長時間にわ
たり自己放電の量を測定し、実際の使用条件において使
用できると推測される電池と使用に耐えないと推測され
る電池とを選別し、それら電池について本発明の評価方
法を適用することで、使用できる電池と、使用に耐えな
い電池との反応抵抗の境界値を所定値とすることができ
る。電池を選別する所定値は一度決定すれば、電池の構
成に特に大きな変更がない限りその後に再実験等行って
再検討する必要は少ないので、本発明方法は簡便に行う
ことができる。
(Micro-short circuit estimating step) The micro-short circuit estimating step is a step of estimating the existence of a micro short circuit from the value of the reaction resistance calculated in the reaction resistance calculating step. It is considered that the smaller the value of the reaction resistance is, the larger (the number of) micro short circuits are. Here, when the value of the reaction resistance is less than or equal to a predetermined value, it is possible to assume that a problematic micro short circuit exists, and perform the subsequent steps (for example, determine that the battery is defective). The predetermined value can be determined in relation to the actual battery. Specifically, the amount of self-discharge of actual batteries is measured over a long period of time, and batteries that are supposed to be usable under actual usage conditions and batteries that are not expected to be used under actual usage conditions are selected. By applying the evaluation method of the invention, the boundary value of the reaction resistance between a usable battery and a battery that cannot withstand use can be set to a predetermined value. Once the predetermined value for selecting the battery is determined, it is not necessary to re-examine by re-testing or the like unless there is a significant change in the battery configuration, so that the method of the present invention can be performed easily.

【0022】[0022]

【実施例】9個の市販のNi−MH電池(6.5Ah、
単1サイズ)を用いて試験を行った。9個の電池を3つ
ずつ3種類に分け、第1のグループはそのまま試験に供
し、第2のグループは65℃の雰囲気下で45日間放置
した後に試験に供し、第3のグループは65℃の雰囲気
下で90日間放置した後に試験に供した。試験は本発明
方法による特性評価と、従来の方法による保存特性(容
量変化)の測定とを行った。
EXAMPLE Nine commercially available Ni-MH batteries (6.5 Ah,
The test was carried out using a single size). The 9 batteries were divided into 3 types of 3 each, the first group was subjected to the test as it was, the second group was left to stand in the atmosphere of 65 ° C for 45 days and then subjected to the test, and the third group was subjected to the 65 ° C. The sample was left for 90 days in the above atmosphere and then subjected to the test. In the test, the characteristic evaluation by the method of the present invention and the storage characteristic (capacity change) by the conventional method were performed.

【0023】(本発明の特性評価方法)試験電池の充電
状態をSOC60%に調整した後に、−15℃の雰囲気
下で8時間保持して試験電池の温度を一定にした。その
後、周波数アナライザ(北斗電工製、FRA5080)
とポテンショ/ガルバノスタット(北斗電工製、HZ3
000(−10〜10A))を用いてそれぞれの電池の
内部インピーダンスを独立して測定した(内部インピー
ダンス測定工程)。測定条件は振幅を±5mV、周波数
を10kHz〜100mHzで測定した。
(Characteristic Evaluation Method of the Present Invention) After adjusting the state of charge of the test battery to SOC 60%, the temperature of the test battery was kept constant by holding it in an atmosphere of −15 ° C. for 8 hours. After that, frequency analyzer (FRA5080 manufactured by Hokuto Denko)
And potentio / galvanostat (Hokuto Denko, HZ3
000 (-10 to 10 A)) was used to measure the internal impedance of each battery independently (internal impedance measurement step). The measurement conditions were an amplitude of ± 5 mV and a frequency of 10 kHz to 100 mHz.

【0024】測定した内部インピーダンスの値の実部を
X軸に虚部をY軸にプロット(コール・コールプロッ
ト)したときのインピーダンス円とX軸との交点の距離
から反応抵抗を算出した(反応抵抗算出工程)。ここ
で、コール・コールプロットの形状は図1に示すグラフ
のような形状であり、本測定条件下で試験電池は電荷移
動速度が物質移動速度よりも充分に速いことが明らかと
なった。
The reaction resistance was calculated from the distance of the intersection of the impedance circle and the X axis when the real part of the measured internal impedance value was plotted on the X axis and the imaginary part was plotted on the Y axis (Cole-Cole plot). Resistance calculation process). Here, the shape of the Cole-Cole plot is as shown in the graph of FIG. 1, and it was revealed that the charge transfer rate of the test battery was sufficiently higher than the mass transfer rate under the measurement conditions.

【0025】(従来の保存特性の測定)試験電池をSO
C60%に調整した後に25℃で4週間放置した後の残
存容量から放電量を算出した。
(Measurement of conventional storage characteristics) A test battery is SO
The discharge amount was calculated from the remaining capacity after being left at 25 ° C. for 4 weeks after adjusting to C60%.

【0026】(結果)従来法による保存特性の測定で測
定された放電量をX軸に、本発明方法により測定された
反応抵抗の値をY軸にプロットした結果を図3に示す。
図3より明らかなように、従来法により測定した放電量
と本発明法により測定した反応抵抗の値との間には良い
相関が認められた。つまり、放電容量が大きくなると反
応抵抗の値が小さくなり、保存特性の悪化を反応抵抗の
値の測定という簡便な方法で推測できることが明らかと
なった。
(Results) FIG. 3 shows the results of plotting the discharge amount measured in the storage characteristic measurement by the conventional method on the X axis and the reaction resistance value measured by the method of the present invention on the Y axis.
As is clear from FIG. 3, a good correlation was observed between the discharge amount measured by the conventional method and the value of the reaction resistance measured by the method of the present invention. That is, it became clear that the value of the reaction resistance decreases as the discharge capacity increases, and the deterioration of the storage characteristics can be estimated by a simple method of measuring the value of the reaction resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】電荷移動速度が物質移動速度よりも充分に速い
電池のコール・コールプロット及び等価回路を示した図
である。
FIG. 1 is a diagram showing a Cole-Cole plot and an equivalent circuit of a battery in which a charge transfer rate is sufficiently higher than a mass transfer rate.

【図2】電荷移動速度が物質移動速度よりも充分に速く
ない電池のコール・コールプロット及び等価回路を示し
た図である。
FIG. 2 shows a Cole-Cole plot and an equivalent circuit of a battery in which the charge transfer rate is not significantly faster than the mass transfer rate.

【図3】実施例の結果を示したグラフである。FIG. 3 is a graph showing the results of the examples.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CA03 CA04 CB05 CB06 CC01 CC16 CF06 2G028 AA01 BE04 CG08 DH11 DH14 DH16 DH21 EJ07 FK01 FK02 5H027 KK51 5H030 AA10 AS08 AS11 AS14 FF41   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G016 CA03 CA04 CB05 CB06 CC01                       CC16 CF06                 2G028 AA01 BE04 CG08 DH11 DH14                       DH16 DH21 EJ07 FK01 FK02                 5H027 KK51                 5H030 AA10 AS08 AS11 AS14 FF41

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電池の電極反応における物質移動速度が
電荷移動速度よりも充分に速い条件下で、該電池の内部
インピーダンスを複数の周波数において測定する内部イ
ンピーダンス測定工程と、 それぞれの該内部インピーダンスの実部をX軸に虚部を
Y軸にプロットして規定される二次元座標におけるイン
ピーダンス円から反応抵抗の値を算出する反応抵抗算出
工程と、 該反応抵抗の値から該電池の微小短絡の存在を推測する
微小短絡推測工程と、を有することを特徴とする電池の
特性評価方法。
1. An internal impedance measuring step of measuring an internal impedance of the battery at a plurality of frequencies under a condition that a mass transfer rate in an electrode reaction of the battery is sufficiently higher than a charge transfer rate, and The reaction resistance calculation step of calculating the value of the reaction resistance from the impedance circle in the two-dimensional coordinates defined by plotting the real part on the X-axis and the imaginary part on the Y-axis, and a micro short circuit of the battery from the value of the reaction resistance. A method for evaluating characteristics of a battery, comprising:
【請求項2】 前記微小短絡推測工程は、前記反応抵抗
の値が所定値以下であるときに前記微小短絡が存在する
と推測する工程である請求項1に記載の電池の特性評価
方法。
2. The battery characteristic evaluation method according to claim 1, wherein the step of estimating the micro short circuit is a step of estimating that the micro short exists when the value of the reaction resistance is equal to or less than a predetermined value.
【請求項3】 前記内部インピーダンス測定工程におけ
る前記複数の周波数は1MHz〜10mHzの範囲であ
る請求項1又は2に記載の電池の特性評価方法。
3. The battery characteristic evaluation method according to claim 1, wherein the plurality of frequencies in the internal impedance measuring step are in the range of 1 MHz to 10 mHz.
【請求項4】 前記内部インピーダンス測定工程はター
フェル式が成り立つ条件で行われる請求項1〜3のいず
れかに記載の電池の特性評価方法。
4. The method for evaluating the characteristics of a battery according to claim 1, wherein the internal impedance measuring step is performed under the condition that the Tafel equation is satisfied.
【請求項5】 前記電池はニッケル水素二次電池であ
り、 前記内部インピーダンス測定工程は−30〜15℃で内
部インピーダンスが測定される請求項1〜4のいずれか
に記載の電池の特性評価方法。
5. The battery characteristic evaluation method according to claim 1, wherein the battery is a nickel-hydrogen secondary battery, and the internal impedance is measured at −30 to 15 ° C. in the internal impedance measuring step. .
【請求項6】 前記電池はリチウム電池であり、前記内
部インピーダンス測定工程は−35〜25℃で内部イン
ピーダンスが測定される請求項1〜4のいずれかに記載
の電池の特性評価方法。
6. The battery characteristic evaluation method according to claim 1, wherein the battery is a lithium battery, and the internal impedance is measured at −35 to 25 ° C. in the internal impedance measuring step.
【請求項7】 前記電池は燃料電池であり、 前記内部インピーダンス測定工程は25〜1000℃で
内部インピーダンスが測定される請求項1〜4のいずれ
かに記載の電池の特性評価方法。
7. The battery characteristic evaluation method according to claim 1, wherein the battery is a fuel cell, and the internal impedance is measured at 25 to 1000 ° C. in the internal impedance measuring step.
JP2002116705A 2002-04-18 2002-04-18 Battery characteristics estimation method Pending JP2003317810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116705A JP2003317810A (en) 2002-04-18 2002-04-18 Battery characteristics estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116705A JP2003317810A (en) 2002-04-18 2002-04-18 Battery characteristics estimation method

Publications (1)

Publication Number Publication Date
JP2003317810A true JP2003317810A (en) 2003-11-07

Family

ID=29534164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116705A Pending JP2003317810A (en) 2002-04-18 2002-04-18 Battery characteristics estimation method

Country Status (1)

Country Link
JP (1) JP2003317810A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285614A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Deterioration diagnostic method and device of fuel cell
WO2007110970A1 (en) * 2006-03-29 2007-10-04 The Tokyo Electric Power Company, Incorporated Method for calculating interface resistance
WO2009013898A1 (en) 2007-07-26 2009-01-29 Panasonic Corporation Battery internal short-circuit detecting device and method, battery pack, and electronic device system
WO2009013899A1 (en) 2007-07-26 2009-01-29 Panasonic Corporation Cell internal shortcircuit detection device, method, battery pack, and electronic device system
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
WO2010128555A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device and fuel cell system
JP2010267472A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Device and method for estimating internal state of fuel cell
JP2011003344A (en) * 2009-06-17 2011-01-06 Nissan Motor Co Ltd Internal state estimation device and internal state estimation method of fuel cell
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
US8129998B2 (en) 2005-08-09 2012-03-06 Toyota Jidosha Kabushiki Kaisha Performance degradation analyzer and method of the same
WO2012098316A1 (en) * 2011-01-20 2012-07-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for estimating the self-discharge of a lithium battery
US8334699B2 (en) 2007-06-11 2012-12-18 Panasonic Corporation Battery internal short-circuit detection apparatus and method, and battery pack
JP2013191362A (en) * 2012-03-13 2013-09-26 Nippon Soken Inc Fuel cell diagnosis device
WO2014167920A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー 株式会社 Battery state determination device
JP2015032572A (en) * 2013-08-07 2015-02-16 昭和電工株式会社 Method for analyzing deterioration in battery
US9128166B2 (en) 2011-01-13 2015-09-08 Yokogawa Electric Corporation Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
CN108107364A (en) * 2016-11-24 2018-06-01 华为技术有限公司 A kind of method and device for detecting battery
KR20180067140A (en) * 2016-12-12 2018-06-20 주식회사 엘지화학 Method and apparatus for detecting short of a battery cell
JP2019132849A (en) * 2013-03-14 2019-08-08 カリフォルニア インスティチュート オブ テクノロジー Abnormality detection in electrical and electrochemical energy unit
JP2020204616A (en) * 2015-06-26 2020-12-24 国立研究開発法人宇宙航空研究開発機構 Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
WO2021028707A1 (en) * 2019-08-12 2021-02-18 日産自動車株式会社 Secondary battery short-circuiting assessment device, short-circuiting assessment method, and short-circuiting assessment system
US10976374B2 (en) 2018-04-26 2021-04-13 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of evaluating characteristic of battery module, and method of manufacturing battery assembly
JP2021077569A (en) * 2019-11-12 2021-05-20 日産自動車株式会社 Short circuit estimation device of secondary battery, short circuit estimation method, and short circuit estimation system
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
US11143706B2 (en) 2018-12-20 2021-10-12 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation device
CN113533966A (en) * 2021-07-21 2021-10-22 欣旺达电动汽车电池有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium
CN113711070A (en) * 2020-12-15 2021-11-26 东莞新能德科技有限公司 Method for detecting short circuit in battery, electronic device and storage medium
US11215671B2 (en) 2018-04-26 2022-01-04 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of evaluating characteristic of battery module, and method of manufacturing battery assembly
US11221372B2 (en) 2018-12-26 2022-01-11 Toyota Jidosha Kabushiki Kaisha Battery performance evaluation device, and battery performance evaluation method
US11307257B2 (en) 2018-07-31 2022-04-19 Toyota Jidosha Kabushiki Kaisha Battery information processing system, method of estimating capacity of secondary battery, and battery assembly and method of manufacturing battery assembly
US11327118B2 (en) 2018-12-20 2022-05-10 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation device
US11380941B2 (en) 2018-04-26 2022-07-05 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of calculating capacity of battery module, and method of manufacturing battery assembly
US11480618B2 (en) 2018-12-26 2022-10-25 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation system
CN116047326A (en) * 2023-01-28 2023-05-02 宁德新能源科技有限公司 Battery state detection method and device, storage medium and electronic equipment
KR20230081430A (en) * 2021-11-30 2023-06-07 주식회사 민테크 Method and apparatus for detecting defects of rechargeable battery
US11841400B2 (en) 2019-11-05 2023-12-12 Toyota Jidosha Kabushiki Kaisha Battery management system, battery management method, and method of manufacturing battery assembly

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595367B2 (en) * 2004-03-30 2010-12-08 トヨタ自動車株式会社 Deterioration diagnosis method and apparatus for fuel cell
JP2005285614A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Deterioration diagnostic method and device of fuel cell
US8129998B2 (en) 2005-08-09 2012-03-06 Toyota Jidosha Kabushiki Kaisha Performance degradation analyzer and method of the same
JP5007963B2 (en) * 2006-03-29 2012-08-22 東京電力株式会社 Calculation method of interface resistance
WO2007110970A1 (en) * 2006-03-29 2007-10-04 The Tokyo Electric Power Company, Incorporated Method for calculating interface resistance
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
US8334699B2 (en) 2007-06-11 2012-12-18 Panasonic Corporation Battery internal short-circuit detection apparatus and method, and battery pack
WO2009013898A1 (en) 2007-07-26 2009-01-29 Panasonic Corporation Battery internal short-circuit detecting device and method, battery pack, and electronic device system
WO2009013899A1 (en) 2007-07-26 2009-01-29 Panasonic Corporation Cell internal shortcircuit detection device, method, battery pack, and electronic device system
JP5338903B2 (en) * 2009-05-08 2013-11-13 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device, fuel cell system
US8542026B2 (en) 2009-05-08 2013-09-24 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating fuel-cell hydrogen concentration and fuel cell system
WO2010128555A1 (en) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device and fuel cell system
JP2010267472A (en) * 2009-05-14 2010-11-25 Nissan Motor Co Ltd Device and method for estimating internal state of fuel cell
JP2011003344A (en) * 2009-06-17 2011-01-06 Nissan Motor Co Ltd Internal state estimation device and internal state estimation method of fuel cell
JP5541288B2 (en) * 2009-09-24 2014-07-09 トヨタ自動車株式会社 Manufacturing method of secondary battery
JPWO2011036705A1 (en) * 2009-09-24 2013-02-14 トヨタ自動車株式会社 Manufacturing method of secondary battery
US9157964B2 (en) 2009-09-24 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery
CN102576895A (en) * 2009-09-24 2012-07-11 丰田自动车株式会社 Process for producing secondary battery
EP2339361A3 (en) * 2009-12-25 2015-02-11 Kabushiki Kaisha Toshiba Battery diagnosis device and method
US9239363B2 (en) 2009-12-25 2016-01-19 Toshiba Corporation Battery diagnosis device and method
CN102183730A (en) * 2009-12-25 2011-09-14 株式会社东芝 Battery diagnosis device and method
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
US9128166B2 (en) 2011-01-13 2015-09-08 Yokogawa Electric Corporation Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
FR2970785A1 (en) * 2011-01-20 2012-07-27 Commissariat Energie Atomique METHOD FOR EVALUATING THE AUTODECHARGE OF A LITHIUM ACCUMULATOR
WO2012098316A1 (en) * 2011-01-20 2012-07-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for estimating the self-discharge of a lithium battery
US9608456B2 (en) 2011-01-20 2017-03-28 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for estimating the self-discharge of a lithium battery
JP2013191362A (en) * 2012-03-13 2013-09-26 Nippon Soken Inc Fuel cell diagnosis device
JP2019132849A (en) * 2013-03-14 2019-08-08 カリフォルニア インスティチュート オブ テクノロジー Abnormality detection in electrical and electrochemical energy unit
US11549993B2 (en) 2013-03-14 2023-01-10 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2021103176A (en) * 2013-03-14 2021-07-15 カリフォルニア インスティチュート オブ テクノロジー Abnormality detection in electrical and electrochemical energy units
US10955483B2 (en) 2013-03-14 2021-03-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
US11879946B2 (en) 2013-03-14 2024-01-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
US9995792B2 (en) 2013-04-12 2018-06-12 Primearth Ev Energy Co., Ltd. Battery state determination device determining a micro-short-circuiting tendency of a rechargeable battery
CN105122073A (en) * 2013-04-12 2015-12-02 朴力美电动车辆活力株式会社 Battery state determination device
JP2014206442A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Battery state determination device
WO2014167920A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー 株式会社 Battery state determination device
JP2015032572A (en) * 2013-08-07 2015-02-16 昭和電工株式会社 Method for analyzing deterioration in battery
JP7093934B2 (en) 2015-06-26 2022-07-01 国立研究開発法人宇宙航空研究開発機構 A method and system for estimating the state of charge or the depth of discharge of a battery, and a method and system for evaluating the soundness of a battery.
JP2020204616A (en) * 2015-06-26 2020-12-24 国立研究開発法人宇宙航空研究開発機構 Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
US11567134B2 (en) 2015-10-01 2023-01-31 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
CN108107364A (en) * 2016-11-24 2018-06-01 华为技术有限公司 A kind of method and device for detecting battery
CN108107364B (en) * 2016-11-24 2020-07-14 华为技术有限公司 Method and device for detecting battery
KR20180067140A (en) * 2016-12-12 2018-06-20 주식회사 엘지화학 Method and apparatus for detecting short of a battery cell
KR102196270B1 (en) 2016-12-12 2020-12-29 주식회사 엘지화학 Method and apparatus for detecting short of a battery cell
US11380941B2 (en) 2018-04-26 2022-07-05 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of calculating capacity of battery module, and method of manufacturing battery assembly
US11215671B2 (en) 2018-04-26 2022-01-04 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of evaluating characteristic of battery module, and method of manufacturing battery assembly
US10976374B2 (en) 2018-04-26 2021-04-13 Toyota Jidosha Kabushiki Kaisha Battery information processing system, battery assembly, method of evaluating characteristic of battery module, and method of manufacturing battery assembly
US11307257B2 (en) 2018-07-31 2022-04-19 Toyota Jidosha Kabushiki Kaisha Battery information processing system, method of estimating capacity of secondary battery, and battery assembly and method of manufacturing battery assembly
US11143706B2 (en) 2018-12-20 2021-10-12 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation device
US11327118B2 (en) 2018-12-20 2022-05-10 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation device
US11221372B2 (en) 2018-12-26 2022-01-11 Toyota Jidosha Kabushiki Kaisha Battery performance evaluation device, and battery performance evaluation method
US11480618B2 (en) 2018-12-26 2022-10-25 Toyota Jidosha Kabushiki Kaisha Battery capacity estimation method and battery capacity estimation system
US11614493B2 (en) 2019-08-12 2023-03-28 Nissan Motor Co., Ltd. Secondary battery short-circuiting assessment device, short-circuiting assessment method, and short-circuiting assessment system
CN114222927A (en) * 2019-08-12 2022-03-22 日产自动车株式会社 Short circuit estimation device, short circuit estimation method, and short circuit estimation system for secondary battery
WO2021028707A1 (en) * 2019-08-12 2021-02-18 日産自動車株式会社 Secondary battery short-circuiting assessment device, short-circuiting assessment method, and short-circuiting assessment system
US11841400B2 (en) 2019-11-05 2023-12-12 Toyota Jidosha Kabushiki Kaisha Battery management system, battery management method, and method of manufacturing battery assembly
JP2021077569A (en) * 2019-11-12 2021-05-20 日産自動車株式会社 Short circuit estimation device of secondary battery, short circuit estimation method, and short circuit estimation system
JP7391621B2 (en) 2019-11-12 2023-12-05 日産自動車株式会社 Secondary battery short circuit estimation device, short circuit estimation method, and short circuit estimation system
CN113711070A (en) * 2020-12-15 2021-11-26 东莞新能德科技有限公司 Method for detecting short circuit in battery, electronic device and storage medium
CN113533966A (en) * 2021-07-21 2021-10-22 欣旺达电动汽车电池有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium
CN113533966B (en) * 2021-07-21 2024-04-09 欣旺达动力科技股份有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium
KR20230081430A (en) * 2021-11-30 2023-06-07 주식회사 민테크 Method and apparatus for detecting defects of rechargeable battery
EP4187268A3 (en) * 2021-11-30 2023-11-22 Mintech Co., Ltd. Method and apparatus for detecting defects of rechargeable battery
KR102650095B1 (en) 2021-11-30 2024-03-21 주식회사 민테크 Method and apparatus for detecting defects of rechargeable battery
CN116047326A (en) * 2023-01-28 2023-05-02 宁德新能源科技有限公司 Battery state detection method and device, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
JP2003317810A (en) Battery characteristics estimation method
Kong et al. Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells
Vasebi et al. A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid electric vehicle applications
Zheng et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries
CN102645636B (en) Battery capacity detection method
Al Nazer et al. Broadband identification of battery electrical impedance for HEVs
Farmann et al. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
US8487628B2 (en) System for smart management of an electrochemical battery
CN102565710B (en) Method and apparatus for assessing battery state of health
CN102468521B (en) Method and apparatus for assessing battery state of health
Campestrini et al. Validation and benchmark methods for battery management system functionalities: State of charge estimation algorithms
US20160069963A1 (en) Electricity storage device state inference method
JP6668905B2 (en) Battery deterioration estimation device
EP1158306A2 (en) Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said detecting device
US20220190622A1 (en) Power storage system, power storage device, and charging method
CN112578298B (en) Battery temperature estimation method, device, electronic equipment and storage medium
JP4940889B2 (en) Battery characteristic detection method and battery characteristic detection apparatus
KR20160004077A (en) Method and apparatus for estimating state of battery
CN104577242A (en) Battery pack management system and method
Xie et al. Estimating the state-of-charge of lithium-ion batteries using an H-infinity observer with consideration of the hysteresis characteristic
Geng et al. Intermittent current interruption method for commercial lithium-ion batteries aging characterization
KR20190046410A (en) Method of measuring state of battery and apparatus thereof
Huang et al. An approach to measurements of electrical characteristics of lithium-ion battery with open-circuit voltage function
CN108693473A (en) The detection method and device of cell health state SOH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226