JPH0843215A - Instrument for measuring stress of vehicle - Google Patents

Instrument for measuring stress of vehicle

Info

Publication number
JPH0843215A
JPH0843215A JP21169694A JP21169694A JPH0843215A JP H0843215 A JPH0843215 A JP H0843215A JP 21169694 A JP21169694 A JP 21169694A JP 21169694 A JP21169694 A JP 21169694A JP H0843215 A JPH0843215 A JP H0843215A
Authority
JP
Japan
Prior art keywords
stress
axle
vehicle
electrode plate
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21169694A
Other languages
Japanese (ja)
Other versions
JP3603104B2 (en
Inventor
Osao Miyazaki
長生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP21169694A priority Critical patent/JP3603104B2/en
Publication of JPH0843215A publication Critical patent/JPH0843215A/en
Application granted granted Critical
Publication of JP3603104B2 publication Critical patent/JP3603104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable an instrument for measuring stress of vehicle to measure a stress generated in the axle of a vehicle or a structure near the axle with high accuracy by using a stress sensor having a differential capacitor function. CONSTITUTION:The stress sensor S having a differential capacitor function is composed of a male electrode plate A and female electrode plate B and the electrode plates A and B respectively have comb-shaped electrodes a1-a4 and b1-b5 protruded from substrates (a) and (b) and meshed with each other at same intervals. When this sensor S is fitted to the axle of a vehicle or a structure near the axle, the intervals between the comb-shaped electrodes a1-a4 and b1-b5 of the electrode plates A and B change in one direction only corresponding to the shearing stress generated in the axle of the vehicle or the structure near the axle and the capacitance of the sensor S changes when the vehicle is braked suddenly. Therefore, the instrument can measure the stress in only one direction corresponding to the capacitance variation of the instrument.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、航空機、鉄道
車両等の運送用車両の車軸又は車軸近傍の構造体に生じ
る剪断歪みなどの応力を計測する車両の応力測定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle stress measuring device for measuring stress such as shear strain generated on an axle or a structure near the axle of a transportation vehicle such as an automobile, an aircraft and a railroad vehicle.

【0002】[0002]

【従来の技術】自動車、航空機、鉄道車両等の運送用車
両等の運送車両の車軸又は車軸近傍の構造体に生じる剪
断歪みなどの応力を計測するための計測方法としては、
光弾性法、応力塗料膜法、コースティックス法、ホログ
ラフィ法、歪ゲージ法等があり、一般的には歪ゲージ法
が多用されている。歪ゲージは種類が豊富で扱い易いが
応力計測用として変換器にしなければならず、又歪ゲー
ジ法では歪ゲージに加わるあらゆる方向の応力を受けて
しまうため、解析が必要であり、必要によって複数個の
歪ゲージを車軸又は車軸近傍の構造体に取付け、必要な
応力を取り出す作業を必要とする。
2. Description of the Related Art As a measuring method for measuring a stress such as a shear strain generated on an axle of a transportation vehicle such as a transportation vehicle such as an automobile, an aircraft, a railroad vehicle or the like, or a structure near the axle,
There are a photoelastic method, a stress paint film method, a caustics method, a holography method, a strain gauge method, and the like, and the strain gauge method is generally widely used. There are a wide variety of strain gauges that are easy to handle, but a transducer must be used for stress measurement, and the strain gauge method receives stress in all directions applied to the strain gauge, so analysis is necessary. It is necessary to attach individual strain gauges to the axle or a structure near the axle to take out the necessary stress.

【0003】[0003]

【発明が解決しようとする課題】従来の歪ゲージからな
る応力センサは、歪ゲージに加わるあらゆる方向の応力
を感知してしまうため、例えば路面摩擦力を計測したく
ても他のクロストークを含んだ応力しか計測できず、或
は歪ゲージからなる応力センサを複数個取付けて、必要
でない応力を応力センサで計測して取り除く作業が必要
であった。かかる点に鑑み本発明は、半導体プロセスな
どにより構成された差動コンデンサ機能を有した応力セ
ンサを用いて、車両の車軸又は車軸近傍の構造体のX方
向、Y方向、Z方向などから伝わる応力に対して、その
一方向の応力のみを捕えてその他の応力を減少もしくは
関知しないことを利用して、車両の急制動時に車軸又は
車軸近傍の構造体に生じる応力を精度よく簡便に計測で
きる、車両の応力測定装置を提供することを目的として
いる。
A conventional stress sensor consisting of a strain gauge senses stress applied to the strain gauge in all directions, and therefore, for example, even if it is desired to measure a road surface frictional force, other crosstalk is included. Only stress can be measured, or it is necessary to attach a plurality of stress sensors consisting of strain gauges and measure unnecessary stress by stress sensors to remove them. In view of such a point, the present invention uses a stress sensor having a differential capacitor function configured by a semiconductor process or the like to apply stress transmitted from the X direction, the Y direction, the Z direction, or the like of a vehicle axle or a structure near the axle. On the other hand, by utilizing the fact that only the stress in one direction is captured and the other stress is not reduced or concerned, the stress generated in the axle or the structure in the vicinity of the axle during the sudden braking of the vehicle can be accurately and simply measured. An object is to provide a stress measuring device for a vehicle.

【0004】[0004]

【課題を解決するための手段】請求項1に記載の本発明
は、基板の少なくとも片面に櫛刃型電極を間隔を置いて
複数個設けた雄電極板と雌電極板とを、それぞれの櫛刃
電極が相手方の櫛刃電極間に配置されるよう対設させ、
雄・雌何れかの電極板を前後方向の移動以外の上・下及
び捻れ方向に対して、変化を減少する向きにそれぞれの
応力方向に対して雄・雌電極板を変化させ、前後方向の
み櫛刃電極間で差動コンデンサ機能が形成されるよにし
た応力センサを、車両の車軸又は車軸近傍の構造体に取
着し、車軸又は車軸近傍の構造体に生じる剪断歪みに対
応して、応力センサが櫛刃電極に直交する一方向のみに
センシングして応力が計測できる構成になっている。請
求項2に記載の本発明は、上記応力センサの基板に、雄
電極板及び雌電極板に接続した増幅回路などの信号処理
回路を一体に形成した構成になっている。請求項3に記
載の本発明は、請求項1及び2に記載の応力センサを、
車両の車願又は車軸近傍の構造体に設けた穴からなる応
力計測手段に装着し、車軸又は車軸近傍の構造体に生じ
る剪断歪みに相応して応力センサの櫛刃電極間のコンデ
ンサ容量を変化させ、その変化量を応力信号として直接
取出す構成になっている。請求項4に記載の本発明は、
上記車両の車軸又は車軸近傍の構造体に、垂直荷重を計
測する応力計測手段と路面摩擦力を計測する応力計測手
段とを設け、各応力計測手段に上記応力センサを夫々装
着して、一方の応力センサで車軸又は車軸近傍の構造体
に生じる剪断歪みに相応した垂直荷重を、他方の応力セ
ンサで車軸又は車軸近傍の構造体に生じる剪断歪みに相
応した路面摩擦力を夫々直接検出し、両検出信号を演算
処理して路面摩擦係数を取出す構成になっている。
According to a first aspect of the present invention, a male electrode plate and a female electrode plate having a plurality of comb-blade electrodes provided at intervals on at least one side of a substrate are provided in respective combs. The blade electrodes are placed opposite to each other so that they are arranged between the other comb blade electrodes,
Change the male / female electrode plate for each stress direction in a direction that reduces the change with respect to the upper / lower and twist directions other than the forward / backward movement of either the male / female electrode plate, and only in the forward / backward direction. A stress sensor configured to form a differential capacitor function between the comb blade electrodes is attached to a vehicle axle or a structure in the vicinity of the axle, corresponding to shear strain generated in the axle or the structure in the vicinity of the axle, The stress sensor is configured so that the stress can be measured by sensing only in one direction orthogonal to the comb blade electrode. According to a second aspect of the present invention, a signal processing circuit such as an amplifier circuit connected to the male electrode plate and the female electrode plate is integrally formed on the substrate of the stress sensor. The present invention according to claim 3 provides the stress sensor according to claim 1 or 2,
It is attached to a stress measuring means consisting of a hole in a vehicle body or a structure near the axle, and the capacitor capacitance between the comb blade electrodes of the stress sensor is changed according to the shear strain generated in the axle or the structure near the axle. The amount of change is directly extracted as a stress signal. The present invention according to claim 4 is
An axle or a structure near the axle of the vehicle is provided with a stress measuring means for measuring a vertical load and a stress measuring means for measuring a road surface frictional force, and the stress sensor is attached to each stress measuring means, respectively. The stress sensor directly detects the vertical load corresponding to the shear strain generated on the axle or the structure near the axle, and the other stress sensor directly detects the road friction force corresponding to the shear strain generated on the axle or the structure near the axle. The detection signal is arithmetically processed to obtain the road surface friction coefficient.

【0005】[0005]

【作用】請求項1に記載の本発明は、車両の車軸又は車
軸近傍の構造体に差動コンデンサ機能が形成された応力
センサを取着することにより、車両の急制動時に車軸又
は車軸近傍の構造体に生じる剪断歪みに相応して、応力
センサの雄・雌電極板の櫛刃電極の間隔が電極板の積層
方向即ち直交方向に働く一方向のみに変化して静電容量
を変化させ、その変化量に相応した一方向のみの応力を
計測することができる。請求項2に記載の本発明は、請
求項1に記載の応力センサの基板に、増幅回路などの信
号処理回路を一体形成することにより、静電容量変化を
応力の変化量として直接取り出すことができる。請求項
3に記載の本発明は、車両の車軸又は車軸近傍の構造体
に孔を設けて応力計測手段を形成し、この応力計測手段
に請求項1及び2に記載の応力センサを装着することに
より、一方向のみの応力をより精度よく計測することが
できる。請求項4に記載の本発明は、垂直荷重計測用の
孔からなる応力計測手段と路面摩擦力計測用の孔からな
る応力計測手段とを、車両の車軸又は車軸近傍の構造体
に各別に設け、各応力計測手段の孔に請求項1及び2に
記載の応力センサを各別に装着し、両応力センサの出力
信号を演算処理することにより、クロストークを排除し
た路面摩擦係数を取出すことができる。
According to the present invention as set forth in claim 1, the stress sensor having the differential capacitor function is attached to the axle of the vehicle or the structure near the axle, so that when the vehicle is suddenly braked, the stress is applied to the axle or the vicinity of the axle. In accordance with the shear strain generated in the structure, the spacing between the comb blade electrodes of the male and female electrode plates of the stress sensor changes only in one direction that works in the stacking direction of the electrode plates, that is, the orthogonal direction, to change the capacitance. It is possible to measure the stress in only one direction corresponding to the amount of change. According to a second aspect of the present invention, by integrally forming a signal processing circuit such as an amplifier circuit on the substrate of the stress sensor according to the first aspect, it is possible to directly take out a capacitance change as a change amount of stress. it can. According to a third aspect of the present invention, a stress measuring means is formed by providing a hole in a vehicle axle or a structure near the axle, and the stress sensor according to the first or second aspect is attached to the stress measuring means. Thereby, the stress in only one direction can be measured more accurately. According to a fourth aspect of the present invention, the stress measuring means including a hole for measuring a vertical load and the stress measuring means including a hole for measuring a road surface friction force are separately provided on an axle of a vehicle or a structure near the axle. By mounting the stress sensors according to claims 1 and 2 separately in the holes of each stress measuring means and processing the output signals of both stress sensors, the road surface friction coefficient without crosstalk can be obtained. .

【0006】[0006]

【実施例】ここに示すものは好ましい実施形態の一例で
あって、特許請求の範囲はここに示す実施例に限定され
るものではない。以下に車両の応力測定装置の例を図示
の実施例に基づいて本発明を説明する。図1は差動コン
デンサ機能を有する応力センサの基本構成例である。応
力センサSは雄型電極板Aと雌型電極板Bから構成さ
れ、雄型電極板Aは雌型電極板Bに対して厚み方向の大
きさは小さくする。又雄型電極板A及び雌型電極板Bは
夫々基板a及びbから突設した複数個の櫛刃電極a1〜
a4及びb1〜b6を有し、間隔を置いて互いに噛み合
っている。雄型電極板Aの櫛刃電極の数は雌型電極板B
の櫛型電極の数より一つ少なく、全体の数量は偶数個に
することが望ましく、雄型電極板Aは厚みの厚い雌型電
極板Bの厚み方向に対して中央に位置させ、且つ雄型電
極板Aの櫛刃電極は雌型電極板Bの櫛刃電極間の中央に
配置する。このように配置された雄型電極板Aと雌型電
極板Bは、その電極板が積層する方向に応力が伝わると
電極板が動き、雄型電極板Aの櫛刃電極a1〜a4と雌
型電極板Bの櫛刃電極b1〜b5の間の距離が変化する
構造になっている。
The present invention is an example of the preferred embodiment, and the scope of the claims is not limited to the embodiment shown here. The present invention will be described below with reference to an example of a vehicle stress measuring device based on the illustrated embodiment. FIG. 1 is a basic configuration example of a stress sensor having a differential capacitor function. The stress sensor S is composed of a male electrode plate A and a female electrode plate B, and the size of the male electrode plate A in the thickness direction is smaller than that of the female electrode plate B. Further, the male electrode plate A and the female electrode plate B respectively include a plurality of comb blade electrodes a1 to a
a4 and b1 to b6, which are meshed with each other at intervals. The number of comb blade electrodes of the male electrode plate A is the same as that of the female electrode plate B.
It is desirable that the number of the comb-shaped electrodes is one less than the comb-shaped electrodes and the total number is an even number. The male electrode plate A is positioned at the center in the thickness direction of the thick female electrode plate B, and The comb blade electrode of the mold electrode plate A is arranged in the center between the comb blade electrodes of the female electrode plate B. The male electrode plate A and the female electrode plate B arranged in this way move when stress is transmitted in the stacking direction of the electrode plates, and the comb blade electrodes a1 to a4 of the male electrode plate A and the female electrode plate B are moved. It has a structure in which the distance between the comb blade electrodes b1 to b5 of the mold electrode plate B changes.

【0007】図2に示す矢印はこの応力センサSに加え
られた剪断応力であり、このとき雄型電極板Aの櫛刃電
極と雌型電極板Bの櫛刃電極の両方が動く、両方の櫛刃
電極が矢印方向にそれぞれ動くと両櫛刃電極の距離が変
化し、この2つの櫛刃電極(導体)間の静電容量が変化
する。即ち雄型電極板Aと雌型電極板Bの櫛刃電極の間
の距離を変化させる応力が働くと、その応力(静電引
力)に対して2乗に反比例した電圧を計測することがで
きる、この静電引力はもちろん剪断応力である。剪断応
力は応力センサSの櫛刃電極(a1〜a4,b1〜b
5)で形成される差動コンデンサCに対して一方向から
かかるわけではなく、その他の方向からも加わる、即ち
差動コンデンサCに対して垂直な方向から加わる応力と
捻れる方向に加わる圧力である。図1に示す応力センサ
Sは、垂直に働く応力に対しては雌型電極板Bに対して
雄型電極板Bが、上あるいは下に移動した場合双方の櫛
刃電極(a1〜a4,b1〜b5)の間の距離は変化せ
ず、静電引力が働かない状態と同じになり電圧出力はな
い。雄型電極板Aに対して雌型電極板Bが動く場合も同
様である。応力センサS全体に垂直方向の応力が働く
と、雄型電極板Aと雌型電極板Bの双方の櫛刃電極がそ
れぞれ同じ方向に動くことになり、山形或は谷形のよう
に変化し、この場合でもそれぞれの櫛刃電極間の距離は
変化しないため電圧出力はない。又捻る方向に働く応力
に対しては、雌型電極板Bに対して雄型電極板Aは上下
に移動しなお且つお互いの櫛刃電極間の距離を変化させ
るような移動をする、このため静電引力が働いたように
なり電圧出力が得られる。上記したように応力センサS
は、常に雄型電極板Aと雌型電極板Bの積層方向即ち直
交方向に働く応力のみを検知するものである。
The arrow shown in FIG. 2 represents the shear stress applied to the stress sensor S, and at this time, both the comb blade electrode of the male electrode plate A and the comb blade electrode of the female electrode plate B move and both of them move. When the comb blade electrodes move in the directions of the arrows, the distance between the comb blade electrodes changes, and the capacitance between the two comb blade electrodes (conductors) changes. That is, when a stress that changes the distance between the comb blade electrodes of the male electrode plate A and the female electrode plate B acts, a voltage inversely proportional to the square of the stress (electrostatic attraction) can be measured. Of course, this electrostatic attraction is shear stress. The shear stress is the comb blade electrodes (a1 to a4, b1 to b1) of the stress sensor S.
The differential capacitor C formed in 5) is not applied from one direction, but is applied from other directions, that is, the stress applied from the direction perpendicular to the differential capacitor C and the pressure applied in the twisting direction. is there. In the stress sensor S shown in FIG. 1, when the male type electrode plate B moves upward or downward with respect to the female type electrode plate B with respect to the stress acting vertically, both of the comb blade electrodes (a1 to a4, b1) are moved. The distance between b5) to b5) does not change, which is the same as the state in which the electrostatic attraction does not work, and there is no voltage output. The same applies when the female electrode plate B moves with respect to the male electrode plate A. When the vertical stress acts on the entire stress sensor S, the comb-shaped electrodes of both the male electrode plate A and the female electrode plate B move in the same direction, which changes like a mountain shape or a valley shape. Even in this case, no voltage is output because the distance between the comb blade electrodes does not change. Further, with respect to the stress acting in the twisting direction, the male electrode plate A moves up and down with respect to the female electrode plate B, and also moves so as to change the distance between the comb blade electrodes. It seems that electrostatic attraction works and a voltage output is obtained. As described above, the stress sensor S
Always detects only the stress acting in the stacking direction of the male electrode plate A and the female electrode plate B, that is, in the orthogonal direction.

【0008】図3に示すように雄型電極板Aの櫛刃電極
(a1〜a4)の断面形状を角柱でなく円柱形状とし、
雌型電極板Bの櫛刃電極(b1〜b5)の断面形状を緩
かな曲率半径をもった凸型と凹型の2種類に形成し、雌
型電極板の櫛刃電極はこの凸型と凹型を交互に組合せ、
雄型電極板の櫛刃電極をこの凸型櫛刃電極と凹型櫛刃電
極との間に配置した構成とすることにより、雄型電極板
Aが雌型電極板Bに対して上方向或は下方向に変化し且
つ櫛刃電極間の距離が変化するように移動した場合、図
3の左側の関係では櫛刃電極間の距離が変化するが、右
側の関係では櫛刃電極間の距離の変化は小さいか又は変
化がない。従って櫛刃電極間の距離が変化する側の出力
をキャンセル又は出力しないようにすれば、このような
動きに容易に対処できる応力センサを作成できる。この
ような櫛刃電極をもつ差動コンデンサは、それと同じ材
料であるIV族元素或は鋼材などで作られたフレームに
接合して応力センサSとするか、又はフレームを差動コ
ンデンサと同じ半導体プロセスで同時に作ることが可能
である。
As shown in FIG. 3, the cross-sectional shape of the comb blade electrodes (a1 to a4) of the male electrode plate A is cylindrical rather than prismatic.
The cross-sectional shape of the comb blade electrodes (b1 to b5) of the female electrode plate B is formed into two types, a convex type and a concave type having a gentle radius of curvature, and the comb blade electrodes of the female electrode plate are the convex type and the concave type. Alternate combinations,
With the configuration in which the comb-shaped electrode of the male electrode plate is arranged between the convex-shaped comb-shaped electrode and the concave-shaped comb-shaped electrode, the male-shaped electrode plate A is directed upward with respect to the female-shaped electrode plate B. When the distance between the comb blade electrodes changes in the downward direction and the distance between the comb blade electrodes changes, the distance between the comb blade electrodes changes according to the relationship on the left side of FIG. The change is small or unchanged. Therefore, by canceling or not outputting the output on the side where the distance between the comb blade electrodes changes, it is possible to create a stress sensor that can easily cope with such movement. The differential capacitor having such comb-teeth electrodes is bonded to a frame made of the same material as the group IV element or steel to form the stress sensor S, or the frame is the same semiconductor as the differential capacitor. It is possible to make them simultaneously in the process.

【0009】図4は基板(フレーム)fに櫛刃電極(a
1〜a4)と(b1〜b5)とを有する差動コンデンサ
Cが接合もしくは積層され、且つ基板fの一部に櫛刃電
極と接続されたアルミ蒸着などによる配線を結ぶ端子台
tと温度補償回路や増幅回路などの信号処理回路eを一
体的に形成した応力センサSである。尚rは絶縁部を示
す。図5は基板(フレーム)fを櫛刃電極とは別に作り
それらを接合技術を使用して接合して応力センサSを製
作したもので、この場合雄型と雌型の櫛刃電極のアライ
メントを十分見ながら接合する必要がある。図6は半導
体プロセスにより製作した応力センサSを示すもので、
これは基板(フレーム)fを後から接合するのではな
く、櫛刃電極(a1〜a4)と(b1〜b5)を作るの
と同時に基板(フレーム)fも作るものである。この応
力センサSは、上記のものと異なる点は、基板fに底板
が付いていることである。応力伝達能力が著しく減退す
る場合は、この底板をエッチング等の処理により取り除
いてもかまわない。なお半導体プロセスによると精度の
よい小型の応力センサを製作できる利点がある。
In FIG. 4, a comb blade electrode (a) is formed on a substrate (frame) f.
1 to a4) and (b1 to b5) are connected or laminated to each other, and the temperature compensation is performed on the terminal block t for connecting the wiring by aluminum vapor deposition or the like connected to the comb blade electrode on a part of the substrate f. It is a stress sensor S in which a signal processing circuit e such as a circuit and an amplifier circuit is integrally formed. In addition, r shows an insulating part. FIG. 5 shows a stress sensor S manufactured by forming a substrate (frame) f separately from the comb blade electrodes and bonding them using a bonding technique. In this case, the alignment of the male and female comb blade electrodes is performed. It is necessary to join them while looking carefully. FIG. 6 shows a stress sensor S manufactured by a semiconductor process.
This does not join the substrate (frame) f afterwards, but makes the substrate (frame) f at the same time when the comb blade electrodes (a1 to a4) and (b1 to b5) are made. This stress sensor S differs from the above-mentioned one in that a bottom plate is attached to the substrate f. When the stress transmission capacity is significantly reduced, the bottom plate may be removed by a treatment such as etching. It should be noted that the semiconductor process has an advantage that a small stress sensor with high accuracy can be manufactured.

【0010】図7は応力センサSを車両の車軸又は車軸
近傍の構造体Kに取着した車両の応力測定装置を示した
もので、応力センサSは応力計測手段gである穴に装着
されるのであるが、その穴は、車軸或は、車軸近傍の構
造体Kに設けられる。応力計測手段gは、応力分布の解
析を行い、図8に示すように急制動力が印加されたとき
に発生する剪断応力が伝わる穴の周壁と応力センサ周縁
とを接触させて装着する。ストラットに開けられた応力
計測手段gの位置は、FEM解析などによる応力分布解
析において最適な位置に設けることが望ましい。注意す
ることは、応力を伝えない場所があり、この位置では、
応力センサは、剪断歪を関知することは出来ない。ただ
し、その他の応力が伝わる場所に応力センサを設置して
もそれらの応力は検知しないため、考慮する必要はな
い。
FIG. 7 shows a stress measuring device for a vehicle in which the stress sensor S is attached to a vehicle axle or a structure K in the vicinity of the axle. The stress sensor S is mounted in a hole which is a stress measuring means g. However, the hole is provided in the axle or the structure K near the axle. The stress measuring means g analyzes the stress distribution, and as shown in FIG. 8, the peripheral wall of the hole through which the shear stress generated when the sudden braking force is applied and the peripheral edge of the stress sensor are brought into contact with each other to be mounted. The position of the stress measuring means g opened on the strut is preferably provided at an optimum position in the stress distribution analysis by FEM analysis or the like. Please note that there are places where stress is not transmitted, and in this position,
The stress sensor cannot be aware of shear strain. However, even if a stress sensor is installed in a place where other stresses are transmitted, those stresses are not detected, so there is no need to consider it.

【0011】この応力計測手段gは、車両の進行方向に
対して同じ方向に作られたものである。これは、車両の
急制動力に対して発生する摩擦力を検知する為のもので
ある。又、路面摩擦係数μを求めるためには、垂直荷重
であるNと路面摩擦力Fを計測しなければならないが、
垂直荷重Nを求める応力計測手段は図の位置とは異なり
それと垂直な方向を持つ。応力計測手段gに装着される
応力センサSは、路面摩擦力Fを計測するために使用し
たものと同じものが使用できる。垂直荷重Nを計測する
応力計測手段gは、路面摩擦力Fと同様に車軸或は車軸
近傍の構造体Kに孔を設ける。又、応力センサSの位置
は、路面摩擦力Fを計測する応力センサSと同じ位置で
も良いし、別途応力解析し応力集中する位置に取り付け
ても良く路面摩擦力Fと垂直荷重Nをそれぞれ測定する
応力センサは、直交するように配置する。応力計測手段
である穴と応力センサの接合は、各種接着材の使用、拡
散接合、電子ビーム溶接、レーザー溶接等の接合方法に
より行う。これらは、応力計測手段である穴を伝わる剪
断応力を応力センサに伝えることが出来る方法である。
穴と応力センサSの接合部は、穴の内面とフレーム、穴
の内面とフレーム及び電極板、穴の内面と電極とを接触
接合する3通りがありどの方法を使用してもかまわな
い。又、応力センサ接合部の強度を考慮して耐熱ガラス
などを陽極接合して穴の内面と接合しても良い。応力計
測手段である穴と応力センサの接合後、両者の間に隙間
がある。この隙間を樹脂など応力を伝達しない材質で埋
める場合もある。応力計測手段でなる穴と応力センサの
接合後は、防水を考慮して穴を塞ぐことが望まれる。
The stress measuring means g is made in the same direction as the traveling direction of the vehicle. This is for detecting the frictional force generated against the sudden braking force of the vehicle. Further, in order to obtain the road surface friction coefficient μ, it is necessary to measure the vertical load N and the road surface friction force F.
The stress measuring means for obtaining the vertical load N has a direction perpendicular to the position shown in the figure, which is different from the position in the figure. As the stress sensor S attached to the stress measuring means g, the same one as that used for measuring the road surface frictional force F can be used. The stress measuring means g for measuring the vertical load N, like the road surface friction force F, provides a hole in the axle or the structure K near the axle. Further, the position of the stress sensor S may be the same position as the stress sensor S that measures the road surface friction force F, or may be attached separately at a position where stress analysis is performed and stress concentration is measured, and the road surface friction force F and the vertical load N are respectively measured. The stress sensors are arranged so as to be orthogonal to each other. The hole which is the stress measuring means and the stress sensor are joined by using various adhesives, diffusion joining, electron beam welding, laser welding and the like. These are methods that can transmit the shear stress transmitted through the hole, which is the stress measuring means, to the stress sensor.
There are three types of joints between the hole and the stress sensor S, and there are three methods of contact-joining the inner surface of the hole and the frame, the inner surface of the hole and the frame and the electrode plate, and the inner surface of the hole and the electrode, and any method may be used. Alternatively, heat-resistant glass or the like may be anodically bonded to the inner surface of the hole in consideration of the strength of the stress sensor bonding portion. After joining the hole which is the stress measuring means and the stress sensor, there is a gap between the two. The gap may be filled with a material such as resin that does not transmit stress. After joining the hole composed of the stress measuring means and the stress sensor, it is desired to close the hole in consideration of waterproofing.

【0012】[0012]

【効果】本発明によれば、差動コンデンサ機能を有する
応力センサに加わるあらゆる方向の荷重・応力に対し
て、純粋に一方向のみの荷重・応力を計測することがで
き、計測したい方向の荷重・応力は応力センサをその方
向に設置することで計測できるので、従来の歪ゲージか
らなる応力センサのように、クロストークの荷重・応力
を排除するため多点に応力センサを設置し、そのデータ
から一方向の荷重・応力を求めるような複雑な装置の必
要がなく、応力測定装置が簡素で小型であり、一方向の
みの荷重・応力を1個の応力センサで計測できるため車
両の構造体に容易に取り付けることができる。又、応力
センサを取り付ける応力計測手段は、とくに複雑な構成
を有することなく穴でよりため、応力センサの取付に特
別な技術力を必要とせず、車両の構造体に容易に装着で
きる。なお純粋に一方向のみの荷重・応力が計測できる
ため、路面摩擦力Fと垂直荷重Nを2個の応力センサで
計測して路面摩擦係数μも容易に取り出すことができ
る。
[Effects] According to the present invention, it is possible to measure loads / stresses in only one direction purely with respect to loads / stresses applied to a stress sensor having a differential capacitor function in all directions. -Since stress can be measured by installing a stress sensor in that direction, stress sensors are installed at multiple points in order to eliminate crosstalk loads and stress, as with conventional stress sensors consisting of strain gauges. There is no need for a complicated device to obtain the load / stress in one direction from the vehicle, the stress measuring device is simple and small, and the load / stress in only one direction can be measured with one stress sensor. Can be easily attached to. Further, the stress measuring means for mounting the stress sensor does not have a particularly complicated structure and is formed by a hole. Therefore, no special technical force is required for mounting the stress sensor, and the stress measuring means can be easily mounted on the vehicle structure. Since the load / stress can be measured purely in only one direction, the road surface frictional force F and the vertical load N can be measured by two stress sensors to easily obtain the road surface friction coefficient μ.

【図面の簡単な説明】[Brief description of drawings]

【図1】応力センサの基本構造を示す斜視図。FIG. 1 is a perspective view showing a basic structure of a stress sensor.

【図2】図1に示した応力センサの櫛刃電極の動作説明
図。
FIG. 2 is an operation explanatory view of a comb blade electrode of the stress sensor shown in FIG.

【図3】応力センサの櫛刃電極の変形例を示す断面図。FIG. 3 is a cross-sectional view showing a modified example of the comb blade electrode of the stress sensor.

【図4】応力センサの異なる実施例を示す平面図。FIG. 4 is a plan view showing another embodiment of the stress sensor.

【図5】応力センサの他の実施例を示す斜視図。FIG. 5 is a perspective view showing another embodiment of the stress sensor.

【図6】応力センサの更に異なる実施例を示す斜視図。FIG. 6 is a perspective view showing still another embodiment of the stress sensor.

【図7】応力測定装置の実施例を示す斜視図。FIG. 7 is a perspective view showing an embodiment of a stress measuring device.

【図8】図7に示す応力計測手段部分の拡大斜視図。8 is an enlarged perspective view of a stress measuring means portion shown in FIG.

【符号の説明】[Explanation of symbols]

S 応力センサ A 雄型電極板 B 雌型電極板 a,b,f 基板(フレーム) a1〜a4,b1〜b5 櫛刃電極 C 差動コンデンサ K 構造体 g 応力計測手段 S Stress sensor A Male electrode plate B Female electrode plate a, b, f Substrate (frame) a1 to a4, b1 to b5 Comb blade electrode C Differential capacitor K Structure g Stress measuring means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板の少なくとも片面に櫛刃型電極を間隔
を置いて複数個設けた雄電極板と雌電極板とを、それぞ
れの櫛刃電極が相手方の櫛刃電極間に配置されるよう対
設させ、雄・雌何れかの電極板を前後方向の移動以外の
上・下及び捻れ方向に対して、変化を減少する向きにそ
れぞれの応力方向に対して雄・雌電極板を変化させ、前
後方向のみ櫛刃電極間で差動コンデンサ機能が形成され
るようにした応力センサを、車両の車軸又は車軸近傍の
構造体に取着し、車軸・又は車軸近傍の構造体に生じる
剪断歪みに対応して、応力センサが櫛刃電極に直交する
一方向のみにセンシングして応力が計測されるようにし
たことを特徴とする車両の応力測定装置。
1. A male electrode plate and a female electrode plate, wherein a plurality of comb-blade electrodes are provided at intervals on at least one surface of a substrate, each comb-blade electrode being arranged between the other comb-blade electrodes. Align with each other and change the male / female electrode plate for each stress direction in a direction that reduces the change with respect to the upper / lower and twist directions other than the forward / backward movement. , A stress sensor that allows a differential capacitor function to be formed between the comb blade electrodes only in the front-rear direction is attached to a vehicle axle or a structure near the axle, and shear strain occurs in the axle or a structure near the axle. Corresponding to, the stress sensor senses the stress only in one direction orthogonal to the comb-teeth electrode to measure the stress.
【請求項2】上記応力センサの基板に、雄電極板及び雌
電極板に接続した増幅回路などの信号処理回路を一体に
形成したことを特徴とする請求項1に記載の車両の応力
測定装置。
2. The stress measuring device for a vehicle according to claim 1, wherein a signal processing circuit such as an amplifier circuit connected to the male electrode plate and the female electrode plate is integrally formed on the substrate of the stress sensor. .
【請求項3】請求項1及び2に記載の応力センサを、車
両の車軸又は車軸近傍の構造体に設けた穴からなる応力
計測手段に装着し、車軸又は車軸近傍の構造体に生じる
剪断歪みに相応して応力センサの櫛刃電極間のコンデン
サ容量を変化させ、その変化量を応力信号として直接取
出するようにしたことを特徴とする車両の応力測定装
置。
3. The stress sensor according to any one of claims 1 and 2 is mounted on a stress measuring means comprising a hole provided in an axle of a vehicle or a structure near the axle, and shear strain is generated in the axle or the structure near the axle. A stress measuring device for a vehicle, wherein the capacitor capacitance between the comb blade electrodes of the stress sensor is changed according to the above, and the amount of change is directly taken out as a stress signal.
【請求項4】上記車両の車軸又は車輪近傍の構造体に、
垂直荷重を計測する応力計測手段と路面摩擦力を計測す
る応力計測手段とを設け、各応力計測手段に上記応力セ
ンサを夫々装着して、一方の応力センサで車軸又は車軸
近傍の構造体に生じる剪断歪みに相応した垂直荷重を、
他方の応力センサで車軸又は車軸近傍の構造体に生じる
剪断歪みに相応した路面摩擦力を夫々直接検出し、両検
出信号を演算処理して路面摩擦係数を取出すようにした
ことを特徴とする請求項1乃至3に記載の車両の応力測
定装置。
4. A structure near an axle or wheels of the vehicle,
A stress measuring means for measuring a vertical load and a stress measuring means for measuring a road frictional force are provided, and each stress measuring means is equipped with the above-mentioned stress sensor respectively, and one stress sensor is generated on an axle or a structure near the axle. Vertical load corresponding to shear strain,
The other stress sensor directly detects the road surface friction force corresponding to the shear strain generated on the axle or a structure near the axle, and calculates the detection signals of both to extract the road surface friction coefficient. Item 5. The vehicle stress measurement device according to items 1 to 3.
JP21169694A 1994-08-01 1994-08-01 Vehicle stress measuring device Expired - Fee Related JP3603104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21169694A JP3603104B2 (en) 1994-08-01 1994-08-01 Vehicle stress measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21169694A JP3603104B2 (en) 1994-08-01 1994-08-01 Vehicle stress measuring device

Publications (2)

Publication Number Publication Date
JPH0843215A true JPH0843215A (en) 1996-02-16
JP3603104B2 JP3603104B2 (en) 2004-12-22

Family

ID=16610080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21169694A Expired - Fee Related JP3603104B2 (en) 1994-08-01 1994-08-01 Vehicle stress measuring device

Country Status (1)

Country Link
JP (1) JP3603104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085672A (en) * 2007-09-28 2009-04-23 Toyota Central R&D Labs Inc Shear force detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085672A (en) * 2007-09-28 2009-04-23 Toyota Central R&D Labs Inc Shear force detection device

Also Published As

Publication number Publication date
JP3603104B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US6904812B2 (en) Stress composite sensor and stress measuring device using the same for structure
EP0459723B1 (en) Semiconductor acceleration sensor and vehicle control system using the same
EP0480471B1 (en) Force detector and acceleration detector
US5616844A (en) Capacitance type acceleration sensor
JPH04315015A (en) Force sensor apparatus for dynamically determining especially shaft load, speed, wheel base and total weight of vehicle
JPH0670643B2 (en) Accelerometer
US10921176B2 (en) WIM sensor and method for producing the WIM sensor
US5760290A (en) Semiconductor acceleration sensor and testing method thereof
CN110319912B (en) Sensor assembly
CN110220621A (en) A kind of rail head of rail formula strain gauge for the detection of rail truck Super leaning load
JPH0329827A (en) Load cell
JPH0843215A (en) Instrument for measuring stress of vehicle
CN109374160A (en) A kind of rail stress sensor for the detection of rail truck Super leaning load
US5569857A (en) Vehicle stress detecting and measuring method and stress detecting device using said method
CN209069464U (en) A kind of rail stress sensor for the detection of rail truck Super leaning load
Manuvinakurake et al. Bossed diaphragm coupled fixed guided beam structure for MEMS based piezoresistive pressure sensor
US10527511B2 (en) Microelectromechanical transducer with thin-membrane for high pressures, method of manufacturing the same and system including the microelectromechanical transducer
JP2712537B2 (en) Road surface measurement method
JP3256709B2 (en) Wheel force measuring device
WO1997004289A1 (en) Strain measuring devices, and monitoring of vehicle container loads
CN213515951U (en) Narrow strip elastic plate type dynamic weighing system
JPH03214064A (en) Acceleration sensor
JPH03107712A (en) Road surface measuring method
JP3000338U (en) Load cell
JP3079214B2 (en) Accelerometer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040827

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees