JPH084076B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH084076B2
JPH084076B2 JP4730787A JP4730787A JPH084076B2 JP H084076 B2 JPH084076 B2 JP H084076B2 JP 4730787 A JP4730787 A JP 4730787A JP 4730787 A JP4730787 A JP 4730787A JP H084076 B2 JPH084076 B2 JP H084076B2
Authority
JP
Japan
Prior art keywords
plasma
windings
coil
magnetic field
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4730787A
Other languages
Japanese (ja)
Other versions
JPS63213931A (en
Inventor
利彦 南
幸一郎 仲西
廣樹 大寺
稔 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4730787A priority Critical patent/JPH084076B2/en
Priority to DE19873729347 priority patent/DE3729347A1/en
Priority to US07/092,590 priority patent/US4894510A/en
Publication of JPS63213931A publication Critical patent/JPS63213931A/en
Publication of JPH084076B2 publication Critical patent/JPH084076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体加工装置であるプラズマ処理装
置、特に電子サイクロトロン共鳴を用いてプラズマを発
生させ、広い領域にわたつて基板に均一なプラズマ処理
が行なえるプラズマ処理装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a plasma processing apparatus which is a semiconductor processing apparatus, and more particularly to plasma generation using electron cyclotron resonance to perform uniform plasma processing on a substrate over a wide area. The present invention relates to a plasma processing apparatus that can perform.

〔従来の技術〕[Conventional technology]

第5図は、例えば特願昭61−209836号明細書に記載さ
れた従来のプラズマ処理装置を一部ブロツク図で示す断
面構成図である。このプラズマ処理装置はプラズマ発生
部(1)を備える。このプラズマ発生部(1)は、プラ
ズマ発生用容器例えばガラス管(2)と、このプラズマ
発生用ガラス管(2)の周囲に配置されかつ直流電源
(3)に接続されて装置の軸方向に不均一な静磁場を発
生する第1ソレノイドコイル(4)と、プラズマ発生用
ガラス管(2)の周囲にかつ第1ソレノイドコイル
(4)の下方(図面において)に配置され、位相の異な
る電流を順次供給する電源(5)に接続されて回転する
磁場を発生する第2ソレノイドコイル(6)と、プラズ
マ発生用ガラス管の上方に設けられ、軸方向に垂直な高
周波電場を導入する高周波導波管(7)と、駆動電源
(8)に接続されて高周波導波管(7)へ高周波電力を
供給するマグネトロン(9)とを有する。なお、第2ソ
レノイドコイル(6)は複数個例えば4個のコイル(6
a)〜(6d)から成り、各コイルはその中心軸が第1ソ
レノイドコイル(4)の中心軸と異なるのみならずそれ
ぞれの中心軸とも互いに異なるように配置される。ま
た、プラズマ発生用ガラス管(2)へのガスの供給は、
ガス供給管(10)を通して行われる。
FIG. 5 is a partial block diagram of a conventional plasma processing apparatus described in, for example, Japanese Patent Application No. 61-209836. This plasma processing apparatus includes a plasma generation unit (1). The plasma generating part (1) is arranged around the plasma generating container, for example, a glass tube (2), and the glass tube for plasma generating (2) and is connected to a DC power source (3) in the axial direction of the apparatus. A first solenoid coil (4) for generating an inhomogeneous static magnetic field and currents having different phases are arranged around the glass tube (2) for plasma generation and below the first solenoid coil (4) (in the drawing). Second solenoid coil (6) for generating a rotating magnetic field connected to a power supply (5) for sequentially supplying a high-frequency magnetic field, which is provided above the glass tube for plasma generation and introduces a high-frequency electric field perpendicular to the axial direction. It has a wave tube (7) and a magnetron (9) which is connected to a driving power supply (8) and supplies high frequency power to the high frequency waveguide (7). The second solenoid coil (6) has a plurality of coils, for example, four coils (6
a) to (6d), and each coil is arranged such that its central axis is different from the central axis of the first solenoid coil (4) and also different from each other. Further, the gas supply to the glass tube (2) for plasma generation is
It is performed through the gas supply pipe (10).

プラズマ処理装置は更にプラズマ反応部(11)を備
え、このプラズマ反応部(11)内にステージ(12)が設
けられ、このステージ(12)の上にはプラズマ処理が行
なわれるべき基板(13)が乗せられている。なお、プラ
ズマ反応部(11)の上部には上述したガス供給管(10)
が連結され、またプラズマ反応部(11)の下部には要済
みのガスを排出する排気管(14)が連結されている。
The plasma processing apparatus further includes a plasma reaction part (11), a stage (12) is provided in the plasma reaction part (11), and a substrate (13) on which a plasma process is to be performed is provided on the stage (12). Is on board. In addition, above the plasma reaction part (11), the gas supply pipe (10) described above is provided.
, And an exhaust pipe (14) for discharging the required gas is connected to the lower part of the plasma reaction part (11).

従来のプラズマ処理装置は上述したように構成されて
おり、プラズマの形成は電子サイクロトロン共鳴によつ
て行なわれるが、電子サイクロトロン共鳴は高周波導波
管(7)の高周波電場Erf(z)と、第1ソレノイドコ
イル(4)および第2ソレノイドコイル(6)の合成磁
場Bz(Z)とによつて生じられる。
The conventional plasma processing apparatus is configured as described above, and the plasma is formed by electron cyclotron resonance, which is generated by the high frequency electric field Erf (z) of the high frequency waveguide (7), It is generated by the combined magnetic field Bz (Z) of the first solenoid coil (4) and the second solenoid coil (6).

また、合成磁場Bzが不均一な磁場であれば電子に作用
する軸方向の力Fzは下記の式で表わされる。
If the synthetic magnetic field Bz is an inhomogeneous magnetic field, the axial force Fz acting on the electron is expressed by the following formula.

ただし、μは磁気モーメント、Bは磁束密度、zは中
心軸方向の距離、ωoは電子の円運動のエネルギー、Bo
はプラズマ発生部(1)での磁束密度、mは電子の質
量、そしてMはイオンの質量である。従つて、第5図の
プラズマ発生部(1)内で発生したプラズマ中の電子が
プラズマ反応部(11)に向けて軸方向に加速され、この
ためにプラズマ中にはイオンを加速する電場Eo(z)が
軸方向に形成される。この電場Eo(z)によつてプラズ
マは全体として軸方向に加速されることになり、プラズ
マ反応部(11)に軸方向に沿うプラズマ流(15)が発生
する。第1ソレノイドコイル(4)と第2ソレノイドコ
イル(6)によつてつくられた磁界がプラズマ反応部
(11)ではγ方向成分をもつようになるので、プラズマ
流(13)は磁力線に沿つて発散し、拡がつてゆく。
Where μ is the magnetic moment, B is the magnetic flux density, z is the distance in the direction of the central axis, ωo is the energy of the electron's circular motion, and Bo is
Is the magnetic flux density in the plasma generating part (1), m is the mass of electrons, and M is the mass of ions. Therefore, the electrons in the plasma generated in the plasma generation part (1) in FIG. 5 are accelerated in the axial direction toward the plasma reaction part (11), and therefore the electric field Eo that accelerates the ions in the plasma is generated. (Z) is formed in the axial direction. The electric field Eo (z) accelerates the plasma as a whole in the axial direction, and a plasma flow (15) along the axial direction is generated in the plasma reaction part (11). Since the magnetic field created by the first solenoid coil (4) and the second solenoid coil (6) has a γ-direction component in the plasma reaction part (11), the plasma flow (13) follows the magnetic field lines. It diverges and spreads.

第6図は従来のプラズマ処理装置に使用された第2ソ
レノイドコイル(6)の4個のコイル(6a)〜(6d)の
配置を示す平面構成図であり、各コイル(6a)〜(6d)
はその中心軸が第1ソレノイドコイル(4)の中心軸と
はlだけ離れ、また各々90゜ずつ異なつて配置されてい
る。
FIG. 6 is a plan view showing the arrangement of four coils (6a) to (6d) of the second solenoid coil (6) used in the conventional plasma processing apparatus. The coils (6a) to (6d) are shown in FIG. )
Are arranged such that their central axes are apart from the central axis of the first solenoid coil (4) by 1 and are different from each other by 90 °.

4個のコイル(6a),(6b),(6c),(6d)に電源
(5)から第7図に示したそれぞれ波形(a),
(b),(c),(d)の電流を流すと、これらコイル
(6a)〜(6d)によつて生じらられる磁場は回転する。
そして第7図の波形の電流をコイル(6a),(6b),
(6c),(6d)に繰返して流すと、磁界は回転し続け
る。磁場の強さはコイル(6a)〜(6d)に流す電流iを
変えることによつて制御されるし、磁場の回転半径は距
離lによつて変えられる。
The four coils (6a), (6b), (6c) and (6d) are connected to the waveform (a) shown in FIG.
When the currents of (b), (c) and (d) are applied, the magnetic fields generated by these coils (6a) to (6d) rotate.
Then, the current of the waveform in FIG. 7 is applied to the coils (6a), (6b),
When it is repeatedly applied to (6c) and (6d), the magnetic field continues to rotate. The strength of the magnetic field is controlled by changing the current i flowing through the coils (6a) to (6d), and the radius of gyration of the magnetic field is changed by the distance l.

従つて、プラズマ発生部(1)内で発生したプラズマ
は、上述した電場Eo(z)によつてプラズマ反応部(1
1)に引き出されるが、プラズマ反応部(11)ではプラ
ズマ流(15)がコイル(6a)〜(6d)によつて形成され
る磁場の影響を受け、第5図に示したようにプラズマ流
(15)の中心は第1ソレノイドコイル(4)の中心軸か
ら逸脱する。しかしながら、第2ソレノイドコイル
(6)のコイル(6a)〜(6d)によつて形成された磁界
が回転するので、プラズマ流(15)も磁界の回転と同じ
直径,速度でZ軸を中心に回転する。この動作は、プラ
ズマ流(15)が広い範囲にわたつてプラズマ処理を行な
えることを可能にする。
Therefore, the plasma generated in the plasma generation part (1) is generated by the above-mentioned electric field Eo (z), and the plasma reaction part (1
1), the plasma flow (15) is influenced by the magnetic field formed by the coils (6a) to (6d) in the plasma reaction part (11), and the plasma flow (15) is generated as shown in FIG. The center of (15) deviates from the central axis of the first solenoid coil (4). However, since the magnetic field formed by the coils (6a) to (6d) of the second solenoid coil (6) rotates, the plasma flow (15) also has the same diameter and velocity as the rotation of the magnetic field about the Z axis. Rotate. This action allows the plasma stream (15) to be subjected to plasma treatment over a wide range.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来のプラズマ処理装置では第2ソレノイドコイル
(6)の複数個のコイル(6a),(6b),(6c),(6
d)と基板(13)との距離が第5図に示すようにコイル
毎に異なる。従つて、各コイル(6a)〜(6d)による基
板(13)の付近での磁束密度の大きさも第8図に示すよ
うに異なつてくるため、複数個のコイル(6a)〜(6d)
に位相の異なる電流を順次流すと基板面上である特定の
磁場強度の位置は回転半径を変化しながら運動する。従
つて、基板付近でのプラズマ流(15)が不均一になり、
プラズマ処理の均一性が得られにくいという問題点があ
つた。
In the conventional plasma processing apparatus, a plurality of coils (6a), (6b), (6c), (6) of the second solenoid coil (6) are used.
The distance between d) and the substrate (13) differs for each coil as shown in FIG. Therefore, the magnetic flux density in the vicinity of the substrate (13) due to the coils (6a) to (6d) is also different as shown in FIG. 8, so a plurality of coils (6a) to (6d)
When currents having different phases are sequentially applied to the position, the position of the specific magnetic field strength on the surface of the substrate moves while changing the radius of gyration. Therefore, the plasma flow (15) near the substrate becomes non-uniform,
There is a problem that it is difficult to obtain the uniformity of plasma processing.

この発明は上述したような問題点を解決するためにな
されたもので、大口径の基板にプラズマ処理が均一に行
なえるプラズマ処理装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a plasma processing apparatus capable of uniformly performing plasma processing on a large-diameter substrate.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るプラズマ処理装置は、プラズマ発生用
容器の周囲に配置され、形状と大きさが同一である複数
個の小コイルから成る電磁コイルを少なくとも備え、各
小コイルは複数個の巻線であつてそれぞれの中心軸が互
いに一致しない幾何学的形状に配置されたものを有し、
各小コイルの巻線はプラズマ発生用容器の中心軸に垂直
な面でその幾何学的位置が他の小コイルの巻線と一致す
るように配置され、幾何学的位置が一致する、各小コイ
ル中の巻線を一緒に接続した上で、これら巻線に位相の
異なる電流を順次流す電源を接続したものである。
A plasma processing apparatus according to the present invention is provided with at least an electromagnetic coil which is arranged around a plasma generating container and includes a plurality of small coils having the same shape and size, and each small coil includes a plurality of windings. It has a geometrical shape whose central axes do not match each other.
The windings of each small coil are arranged such that their geometrical positions coincide with the windings of other small coils on a plane perpendicular to the central axis of the plasma generation container. The windings in the coil are connected together, and then a power supply is connected to these windings to sequentially pass currents having different phases.

〔作 用〕[Work]

この発明における電磁コイルは、形状と大きさが同一
である複数個の小コイルから成り、各小コイルは複数個
の巻線であつてそれぞれ中心軸が互いに一致しない幾何
学的形状に配置されたものを有し、各小コイルの巻線は
プラズマ発生用容器の中心軸に垂直な面でその幾何学的
位置が他の小コイルの巻線と一致するように配置され、
幾何学的位置が一致する、各小コイル中の巻線を一緒に
接続した上で、これら巻線に位相の異なる電流を順次流
すことにより、軸方向の磁場が均一な大きさで運動し、
プラズマ流は運動磁場と共に直線運動または回転運動し
てプラズマを広い領域に均一に引き出すことができ、プ
ラズマ反応部では大口径でかつ均一なプラズマ処理が行
なえる。
The electromagnetic coil according to the present invention is composed of a plurality of small coils having the same shape and size, and each small coil is a plurality of windings and the respective central coils are arranged in a geometric shape whose central axes do not coincide with each other. The winding of each small coil is arranged so that its geometrical position coincides with the windings of other small coils in a plane perpendicular to the central axis of the plasma generating container,
By connecting the windings in each small coil that have the same geometrical position together and then sequentially passing currents with different phases in these windings, the axial magnetic field moves with a uniform magnitude,
The plasma flow can linearly or rotationally move together with the kinetic magnetic field to uniformly draw out plasma in a wide area, and the plasma reaction part can perform uniform plasma treatment with a large diameter.

〔実施例〕〔Example〕

以下、この発明の一実施例を添付図面について説明す
る。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明のプラズマ処理装置を一部ブロツク
図で示す断面構成図であり、このプラズマ処理装置はプ
ラズマ発生部(1A)並びに第5図に示したのと全く同じ
ガス供給管(10)、ステージ(12)、基板(13)および
排気管(14)を有するプラズマ反応部(11)を備える。
プラズマ発生部(1A)は、第5図に示したのと全く同じ
プラズマ発生用ガラス管(2)、直流電源(3)に接続
された第1ソレノイドコイル(以下、単にソレノイドコ
イルと云う。)(4)、高周波導波管(7)、および駆
動電源(8)に接続されたマグネトロン(9)の他に、
プラズマ発生用ガラス管(2)の周囲にかつソレノイド
コイル(4)の基板側に配置され、位相の異なる電流を
順次供給する電源(5A)に接続されて均一な大きさで回
転する磁場を発生する電磁コイル(17)を有する。
FIG. 1 is a sectional block diagram showing a partial block diagram of the plasma processing apparatus of the present invention. This plasma processing apparatus has a plasma generator (1A) and the same gas supply pipe (10) as shown in FIG. ), A stage (12), a substrate (13) and an exhaust pipe (14).
The plasma generating part (1A) is the same as the glass tube for plasma generation (2) and the first solenoid coil (hereinafter, simply referred to as solenoid coil) connected to the DC power source (3) as shown in FIG. (4), the high frequency waveguide (7), and the magnetron (9) connected to the driving power supply (8),
It is arranged around the glass tube for plasma generation (2) and on the substrate side of the solenoid coil (4), and is connected to a power source (5A) that sequentially supplies currents of different phases to generate a magnetic field that rotates with a uniform magnitude. It has an electromagnetic coil (17).

第2図はこの発明の一実施例に使用された電磁コイル
(17)の断面構成図であり、この電磁コイル(17)は形
状と大きさが同一である複数個例えば8個の小コイル
(18)〜(25)から成る。各小コイルは、複数個例えば
6個の巻線(18a)〜(18f),(19a)〜(19f),……
(25a)〜(25f)および絶縁物(26)がら成る。各小コ
イルの複数個の巻線は、それぞれ中心軸が互いに一致し
ない幾何学的形状に配置されている。更に、各小コイル
の巻線は、プラズマ発生用ガラス管(2)の中心軸に垂
直な面でその幾何学的位置が他の小コイルの巻線と一致
するように配置され、幾何学的位置が一致する。各小コ
イル中の巻線は一緒に接続された上で電源(5A)に接続
されている。
FIG. 2 is a cross-sectional view of an electromagnetic coil (17) used in an embodiment of the present invention. The electromagnetic coil (17) has a plurality of small coils (e.g., eight small coils) having the same shape and size ( 18) to (25). Each small coil has a plurality of, for example, six windings (18a) to (18f), (19a) to (19f), ...
(25a) to (25f) and an insulator (26). The plurality of windings of each small coil are arranged in a geometric shape whose central axes do not coincide with each other. Furthermore, the winding of each small coil is arranged such that its geometrical position matches the windings of the other small coils in a plane perpendicular to the central axis of the glass tube for plasma generation (2). The positions match. The windings in each small coil are connected together and then connected to the power supply (5A).

この発明のプラズマ処理装置では、直流電源(3)に
接続されたソレノイドコイル(4)が軸方向に不均一な
静磁場を発生し、電源(5A)に接続された電磁コイル
(17)が均一な大きさで回転する磁場を発生し、駆動電
源(8)に接続されたマグネトロン(9)によつて高周
波電力が供給されると高周波導波管(7)は軸方向に垂
直な高周波電尋を導入し、そしてガスはガス供給管(1
0)を通してプラズマ発生用ガラス管(2)へ供給され
る。
In the plasma processing apparatus of the present invention, the solenoid coil (4) connected to the DC power supply (3) generates a non-uniform static magnetic field in the axial direction, and the electromagnetic coil (17) connected to the power supply (5A) is uniform. When a high frequency power is generated by a magnetron (9) connected to a drive power source (8), a high frequency waveguide (7) generates a magnetic field rotating with a large magnitude, and the high frequency waveguide (7) is perpendicular to the axial direction. The gas supply pipe (1
It is supplied to the glass tube (2) for plasma generation through (0).

従来装置と同様に、プラズマの形成は電子サイクロト
ロン共鳴によつて行なわれるが、電子サイクロトロン共
鳴は高周波導波管(7)の高周波電場Erf(z)と、ソ
レノイドコイル(4)および電磁コイル(17)の合成磁
場Bz(Z)とによつて生じられる。
Similar to the conventional device, plasma is formed by electron cyclotron resonance, which is generated by the high frequency electric field Erf (z) of the high frequency waveguide (7), the solenoid coil (4) and the electromagnetic coil (17). ) Is generated by the combined magnetic field Bz (Z).

また、合成磁場Bzが不均一な磁場であれば、電子に作
用する軸方向の力Fzは、従来装置の場合と同様に、下記
の式で表わされる。
If the synthetic magnetic field Bz is an inhomogeneous magnetic field, the axial force Fz acting on the electrons is expressed by the following equation, as in the case of the conventional device.

たゞし、μは磁気モーメント、Bは磁束密度、zは中
心軸方向の距離、ωoは電子の円連動のエネルギー、Bo
はプラズマ発生部(1A)での磁束密度、mは電子の質
量、そしてMはイオンの質量である。従つて、第1図の
プラズマ発生部(1A)で発生したプラズマ中の電子がプ
ラズマ反応部(11)に向けて軸方向に加速され、このた
めにプラズマ中にはイオンを加速する電場Eo(z)が軸
方向に形成される。この電場Eo(z)によつてプラズマ
は全体として軸方向に加速されることになり、プラズマ
反応部(11)に軸方向に沿うプラズマ流(15)が発生す
る。
However, μ is the magnetic moment, B is the magnetic flux density, z is the distance in the direction of the central axis, ωo is the circle-linked energy of electrons, and Bo is
Is the magnetic flux density in the plasma generating part (1A), m is the mass of electrons, and M is the mass of ions. Therefore, the electrons in the plasma generated in the plasma generation section (1A) of FIG. 1 are accelerated in the axial direction toward the plasma reaction section (11), and for this reason electric field Eo ( z) is formed axially. The electric field Eo (z) accelerates the plasma as a whole in the axial direction, and a plasma flow (15) along the axial direction is generated in the plasma reaction part (11).

第3図は第2図中の6個の巻線(a),(b),
(c),(d),(e)および(f)の配置を示す平面
構成図であり、 ただし、 (a);巻線(18a),(19a)……(25a)の総称 (b);巻線(18b),(19b)……(25b)の総称 (c);巻線(18c),(19c)……(25c)の総称 (d);巻線(18d),(19d)……(25d)の総称 (e);巻線(18e),(19e)……(25e)の総称 (f);巻線(18f),(19f)……(25f)の総称 である。6個の巻線(a),(b),(c),(d),
(e)および(f)はその中心軸がソレノイドコイル
(7)の中心軸とはlだけ離れ、また各々60゜ずつ異な
つつて配置されている。
FIG. 3 shows the six windings (a), (b) in FIG.
It is a plane block diagram which shows arrangement | positioning of (c), (d), (e), and (f), However, (a); Generic name of winding (18a), (19a) ... (25a) (b) Windings (18b), (19b) ... (25b) generic (c); windings (18c), (19c) ... (25c) generics (d); windings (18d), (19d) ...... (25d) generic name (e); winding (18e), (19e) …… (25e) generic name (f); windings (18f), (19f) …… (25f) generic name. 6 windings (a), (b), (c), (d),
(E) and (f) are arranged such that their central axes are apart from the central axis of the solenoid coil (7) by 1 and are different from each other by 60 °.

6個の巻線(a),(b),(c),(d),
(e),(f)による基板(13)の付近での磁束密度の
大きさをそれぞれBa,Bb,Bc,Bd,Be,Bfとすると、各巻線
と基板(13)との平均距離はそれぞれほぼ等しいので、
近似的に Ba=Bb=Bc=Bd=Be=Bf となる。
6 windings (a), (b), (c), (d),
Assuming that the magnetic flux densities in the vicinity of the substrate (13) according to (e) and (f) are Ba, Bb, Bc, Bd, Be, and Bf, the average distance between each winding and the substrate (13) is respectively. Because they are almost equal,
Approximately Ba = Bb = Bc = Bd = Be = Bf.

6個の巻線(a),(b),(c),(d),
(e),(f)に電源(5A)から第4図に示したそれぞ
れ波形(ia),(ib),(ic),(id),(ie),(i
f)の電流を流すと、これら巻線(a),(b),
(c),(d),(e),(f)によつて生じられる磁
場は均一な大きさで回転する。そして第4図の波形の電
流を巻線(a),(b),(c),(d),(e),
(f)に繰返して流すと、磁界は回転し続ける。磁場の
強さは巻線(a),(b),(c),(d),(e),
(f)に流す電流iを変えることによつて制御される
し、磁場の回転半径は距離lによつて変えられる。
6 windings (a), (b), (c), (d),
Waveforms (ia), (ib), (ic), (id), (ie), (i) shown in FIG. 4 from the power supply (5A) to (e) and (f), respectively.
When the current of f) is passed, these windings (a), (b),
The magnetic fields generated by (c), (d), (e), and (f) rotate with a uniform magnitude. Then, the current having the waveform of FIG. 4 is applied to the windings (a), (b), (c), (d), (e),
When the magnetic field is repeatedly applied to (f), the magnetic field continues to rotate. The strength of the magnetic field depends on the windings (a), (b), (c), (d), (e),
It is controlled by changing the current i flowing in (f), and the radius of gyration of the magnetic field is changed by the distance l.

従つて、プラズマ発生部(1)内で発生したプラズマ
は、上述した電場Eo(z)によつてプラズマ反応部(1
1)に引き出されるが、プラズマ反応部(11)ではプラ
ズマ流(15)が巻線(a),(b),(c),(d),
(e),(f)によつて形成される磁場の影響を受け、
第1図に示したようにプラズマ流(13)の中心はソレノ
イドコイル(4)の中心軸から逸脱する。しかしなが
ら、巻線(a),(b),(c),(d),(e),
(f)によつて形成された磁界が均一な大きさで回転す
るので、プラズマ流(15)も磁界の回転と同じ直径,速
度でZ軸を中心に回転する。この動作は、プラズマ流
(15)が広い範囲にわたつてプラズマ処理を行なえるこ
とを可能にし、また均一なプラズマ処理を行なうことを
可能にする。
Therefore, the plasma generated in the plasma generation part (1) is generated by the above-mentioned electric field Eo (z), and the plasma reaction part (1
In the plasma reaction part (11), the plasma flow (15) is drawn to the coil 1 (a), (b), (c), (d),
Affected by the magnetic field formed by (e) and (f),
As shown in FIG. 1, the center of the plasma flow (13) deviates from the central axis of the solenoid coil (4). However, the windings (a), (b), (c), (d), (e),
Since the magnetic field formed by (f) rotates with a uniform magnitude, the plasma flow (15) also rotates about the Z axis at the same diameter and speed as the rotation of the magnetic field. This operation enables the plasma stream (15) to be subjected to plasma treatment over a wide range, and also enables uniform plasma treatment.

従つて、例えばガス供給管(10)に導入するガスをSi
H4とすると、電子サイクロトロン共鳴によりSi+,SiH+,S
iH2 +,SiH3 +などのイオンおよびSi,SiHX などのラジ
カルがプラズマ発生部(1)内に生じ、そのプラズマは
上述した電場Eo(Z)によつて軸方向に加速され、さら
に回転磁場によりプラズマ流(15)は回転するので、プ
ラズマ反応部(11)では大口径の基板(13)の上に均一
な膨厚分布をもつたアモルフアス・シリコン膜が形成さ
れる。
Therefore, for example, the gas to be introduced into the gas supply pipe (10) should be Si
H 4 is Si + , SiH + , S due to electron cyclotron resonance.
Ions such as iH 2 + and SiH 3 + and radicals such as Si * and SiH X * are generated in the plasma generation part (1), and the plasma is accelerated in the axial direction by the electric field Eo (Z) described above, Further, since the plasma flow (15) is rotated by the rotating magnetic field, an amorphous silicon film having a uniform thickness distribution is formed on the large-diameter substrate (13) in the plasma reaction part (11).

第1図に示したプラズマ処理装置は、プラズマエツチ
ング,プラズマCVD,プラズマ酸化をはじめとする各種表
面処理に応用でき、広範囲に均一な処理を行なうことが
できる。
The plasma processing apparatus shown in FIG. 1 can be applied to various surface treatments such as plasma etching, plasma CVD, and plasma oxidation, and can perform uniform treatment over a wide range.

なお、上述した実施例では電磁コイル(17)を8個の
小コイル(18)〜(25)で構成したが小コイルの個数は
複数個であればよい。また、回転磁場を発生させるのに
6個の巻線(a),(b),(c),(d),(e),
(f)に第4図に示した電流iを流した例を示したが、
巻線の個数も複数個であればよい。たゞし、2個の場合
は軸方向の磁場は直線運動し、3個以上の場合は磁場が
回転運動する。
Although the electromagnetic coil (17) is composed of eight small coils (18) to (25) in the above-described embodiment, the number of small coils may be plural. Also, six windings (a), (b), (c), (d), (e), to generate a rotating magnetic field.
An example in which the current i shown in FIG.
The number of windings may be plural. However, in the case of two, the axial magnetic field moves linearly, and in the case of three or more, the magnetic field rotates.

電流の波形も第4図に示した波形以外に、台形波、三
角波またはパルス波にしても、上述した実施例と同様の
効果を奏する。
In addition to the waveform shown in FIG. 4, a trapezoidal wave, a triangular wave, or a pulse wave can be used as the current waveform, and the same effect as that of the above-described embodiment can be obtained.

また、上記実施例では、ソレノイドコイル(4)の基
板側に電磁コイル(17)を設けたことにより、ソレノイ
ドコイル(4)には大きな電流を流し、電磁コイル(1
7)に小さな電流を流してプラズマ流(15)を制御しや
すくしていたが、ソレノイドコイル(4)を設け、電磁
コイル(17)のみで、プラズマの発生,制御を行なうよ
うにしてもよい。
Further, in the above-described embodiment, since the electromagnetic coil (17) is provided on the substrate side of the solenoid coil (4), a large current is caused to flow through the solenoid coil (4) and the electromagnetic coil (1
Although a small current was passed through 7) to facilitate control of the plasma flow (15), a solenoid coil (4) may be provided so that plasma generation and control can be performed only by the electromagnetic coil (17). .

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、プラズマ発生用容
器の周囲に配置され、形状と大きさが同一である複数個
の小コイルから成る電磁コイルを少なくとも備え、各小
コイルは複数個の巻線であつてそれぞれの中心軸が互い
に一致しない幾何学的形状に配置されたものを有し、各
小コイルの巻線はプラズマ発生用容器の中心軸に垂直な
面でその幾何学的位置が他の小コイルの巻線と一致する
ように配置され、幾何学的位置が一致する、各小コイル
中の巻線を一緒に持続した上で、これら巻線に位相の異
なる電流を順次流す電源を接続したので、プラズマ流を
均一に直線運動または回転運動させることができ、大口
径の基板にも均一なプラズマ処理が行なえる効果があ
る。
As described above, according to the present invention, there is provided at least an electromagnetic coil, which is arranged around the plasma generating container and has a plurality of small coils having the same shape and size, and each small coil has a plurality of windings. The windings of each small coil have a geometrical position in a plane perpendicular to the central axis of the plasma generating vessel. A power supply that is arranged so as to match the windings of other small coils and that has the same geometrical position and that holds the windings in each small coil together and then sequentially supplies currents of different phases to these windings. Since it is connected, the plasma flow can be uniformly moved linearly or rotationally, and there is an effect that uniform plasma treatment can be performed even on a large-diameter substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を一部ブロツク図で示す断
面構成図、第2図はこの発明の一実施例に使用された電
磁コイルの断面構成図、第3図は電磁コイルの巻線の配
置を示す平面構成図、第4図は電磁コイルに流す電流を
示す波形図、第5図は従来のプラズマ処理装置を一部ブ
ロツク図で示す断面構成図、第6図は従来のプラズマ処
理装置に使用された第2ソレノイドコイルの配置を示す
平面構成図、第7図は第2ソレノイドコイルに流す電流
を示す波形図、第8図は従来のプラズマ処理装置による
基板付近での磁束密度の分布を示す分布図である。 (1A)……プラズマ発生部、(2)……プラズマ発生用
ガラス管、(3)……直流電源、(4)……ソレノイド
コイル、(5A)……電源、(13)……基板、(15)……
プラズマ流、(17)……電磁コイル、(18)〜(25)…
…複数個の小コイル、(18a)〜(18f),(19a)〜(1
9f),……(25a)〜(25f)……複数個の巻線である。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional block diagram showing a partial block diagram of an embodiment of the present invention, FIG. 2 is a sectional block diagram of an electromagnetic coil used in an embodiment of the present invention, and FIG. 3 is a winding of the electromagnetic coil. Fig. 4 is a plan view showing the arrangement of lines, Fig. 4 is a waveform diagram showing the current flowing through the electromagnetic coil, Fig. 5 is a cross-sectional view showing a conventional plasma processing apparatus in a partial block diagram, and Fig. 6 is a conventional plasma FIG. 7 is a plan view showing the arrangement of the second solenoid coil used in the processing apparatus, FIG. 7 is a waveform diagram showing the current flowing in the second solenoid coil, and FIG. 8 is the magnetic flux density near the substrate by the conventional plasma processing apparatus. It is a distribution diagram showing the distribution of. (1A) …… plasma generator, (2) …… plasma generating glass tube, (3) …… DC power supply, (4) …… solenoid coil, (5A) …… power supply, (13) …… substrate, (15) ……
Plasma flow, (17) ... electromagnetic coil, (18)-(25) ...
… Multiple small coils, (18a) to (18f), (19a) to (1
9f), ... (25a) to (25f) ... Multiple windings. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子サイクロトロン共鳴を用いてプラズマ
を発生させ、これにより基板をプラズマ処理するプラズ
マ処理装置であつて、上記プラズマを発生させるプラズ
マ発生用容器の周囲に配置され、形状と大きさが同一で
ある複数個の小コイルから成る電磁コイルを少なくとも
備え、各小コイルは複数個の巻線であつてそれぞれの中
心軸が互いに一致しない幾何学的形状に配置されたもの
を有し、各小コイルの巻線は上記プラズマ発生用容器の
中心軸に垂直な面でその幾何学的位置が他の小コイルの
巻線と一致するように配置され、幾何学的位置が一致す
る、各小コイル中の巻線を一緒に接続した上で、これら
巻線に位相の異なる電流を順次流す電源を接続したプラ
ズマ処理装置。
1. A plasma processing apparatus for generating plasma by using electron cyclotron resonance, thereby plasma-treating a substrate. The plasma processing apparatus is arranged around a plasma generating container for generating the plasma and has a shape and size. At least an electromagnetic coil composed of a plurality of identical small coils is provided, each small coil having a plurality of windings arranged such that their central axes do not coincide with each other in a geometric shape. The windings of the small coils are arranged in a plane perpendicular to the central axis of the plasma generation container so that their geometrical positions match the windings of other small coils. A plasma processing system in which windings in a coil are connected together, and then a power supply is connected to these windings to sequentially pass currents of different phases.
【請求項2】プラズマ発生用容器の周囲にはソレノイド
コイルも配置されており、しかもこのソレノイドコイル
は電磁コイルに対して基板とは反対側に配置されている
特許請求の範囲第1項記載のプラズマ処理装置。
2. A solenoid coil is also arranged around the plasma generating container, and the solenoid coil is arranged on the opposite side of the electromagnetic coil from the substrate. Plasma processing equipment.
JP4730787A 1986-09-05 1987-03-02 Plasma processing device Expired - Fee Related JPH084076B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4730787A JPH084076B2 (en) 1987-03-02 1987-03-02 Plasma processing device
DE19873729347 DE3729347A1 (en) 1986-09-05 1987-09-02 PLASMA PROCESSOR
US07/092,590 US4894510A (en) 1986-09-05 1987-09-03 Apparatus for uniformly distributing plasma over a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4730787A JPH084076B2 (en) 1987-03-02 1987-03-02 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS63213931A JPS63213931A (en) 1988-09-06
JPH084076B2 true JPH084076B2 (en) 1996-01-17

Family

ID=12771632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4730787A Expired - Fee Related JPH084076B2 (en) 1986-09-05 1987-03-02 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH084076B2 (en)

Also Published As

Publication number Publication date
JPS63213931A (en) 1988-09-06

Similar Documents

Publication Publication Date Title
US4894510A (en) Apparatus for uniformly distributing plasma over a substrate
US4947085A (en) Plasma processor
CN107636793B (en) Ion pair ion plasma atomic layer etch technique and reactor
US5019117A (en) Plasma apparatus
JP2005503648A (en) Plasma reactor, coil magnet system
CN103247511B (en) Substrate board treatment
JP2618001B2 (en) Plasma reactor
JPH09283300A (en) Plasma treatment device
JPH084076B2 (en) Plasma processing device
US9426875B2 (en) Method for producing plasma flow, method for plasma processing, apparatus for producing plasma, and apparatus for plasma processing
JPH0626195B2 (en) Plasma processing device
JPH0346172B2 (en)
JPS63240022A (en) Plasma processor
JP4355157B2 (en) Plasma processing method, plasma processing apparatus, and magnetic field generator
JPS63250126A (en) Plasma treatment apparatus
JPH01304724A (en) Plasma processing apparatus
JPS63244615A (en) Plasma treatment system
JPS6365624A (en) Plasma processor
JPH03229859A (en) Plasma treating device
JP2812477B2 (en) Semiconductor processing equipment
JPS6377119A (en) Plasma processor
JPH05106051A (en) Plasma treating apparatus
JPH07105383B2 (en) Plasma processing device
JPS6365623A (en) Plasma processor
JPS6377121A (en) Plasma processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees