JPH084007B2 - Electrode for non-aqueous battery - Google Patents
Electrode for non-aqueous batteryInfo
- Publication number
- JPH084007B2 JPH084007B2 JP61266304A JP26630486A JPH084007B2 JP H084007 B2 JPH084007 B2 JP H084007B2 JP 61266304 A JP61266304 A JP 61266304A JP 26630486 A JP26630486 A JP 26630486A JP H084007 B2 JPH084007 B2 JP H084007B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- binder
- battery
- active material
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な非水系電池電極に関する。TECHNICAL FIELD The present invention relates to a novel non-aqueous battery electrode.
[従来の技術] 近年、電子機器の小型化、軽量化は目覚ましく、それ
に伴い電源となる電池に対しても小型軽量化の要望が非
常に大きい。かかる要求を満足するには従来の一般的な
水系電解液を用いた電池では不可能なことから、非水系
電池が注目されている。かかる非水系電池は小型、軽量
化という点で優れた性能を有しており、リチウム電池に
代表される一次電池、更にはリチウム/二硫化チタン二
次電池等が提案されており、その一部については既に実
用化されている。[Prior Art] In recent years, electronic devices have been remarkably reduced in size and weight, and accordingly, there has been a great demand for reduction in size and weight of batteries serving as power sources. Non-aqueous batteries have been attracting attention because it is impossible to meet the above requirements with conventional batteries using general aqueous electrolytes. Such non-aqueous batteries have excellent performance in terms of size and weight reduction, and primary batteries typified by lithium batteries and further lithium / titanium disulfide secondary batteries have been proposed, some of which have been proposed. Has already been put to practical use.
しかしながら、かかる非水系電池は高エネルギー密
度、小型軽量といった性能面では優れているものの、水
系電池に比べ出力特性に難点があり、広く一般に用いら
れるまでに至っていない。特に出力特性が要求される二
次電池の分野ではこの欠点が実用化を妨げている一つの
要因となっている。非水系電池が出力特性に劣る原因は
水系電解液の場合イオン電導度が高く、通常10-1Ω-1cm
-1オーダーの値を有するのに対し、非水系の場合通常10
-2〜10-4Ω-1cm-1と低いイオン電導度しか有していない
ことに起因する。However, although such a non-aqueous battery is excellent in terms of performance such as high energy density and small size and light weight, it has a difficulty in output characteristics as compared with an aqueous battery and has not been widely used in general. In particular, in the field of secondary batteries where output characteristics are required, this defect is one of the factors hindering practical use. The reason why non-aqueous batteries are inferior in output characteristics is high ionic conductivity, usually 10 -1 Ω -1 cm in the case of aqueous electrolytes.
It has a value of -1 order, whereas it is usually 10 for non-aqueous systems.
This is due to its low ionic conductivity of -2 to 10 -4 Ω -1 cm -1 .
かかる問題点を解決する一つの方法として電極面積を
大きくすること、即ち薄膜、大面積電極を用いることが
考えられる。One method of solving such a problem is to increase the electrode area, that is, to use a thin film or a large-area electrode.
従来、電極の成形方法としては、電極活物質をテフロ
ン粉末、ポリエチレン粉末等の粉末状バインダーと共に
混合し圧縮成形する方法が一般的である。かかる方法の
場合、絶縁性物質であるバインダーの電極活物質に対す
る影響が比較的少ないという利点がある反面、薄膜、大
面積の電極を製造することは極めて困難であり、本発明
の意図とする高出力型非水系電池を得ることはできな
い。Conventionally, as a method for molding an electrode, a method in which an electrode active material is mixed with a powdery binder such as Teflon powder or polyethylene powder and compression molding is generally performed. In the case of such a method, there is an advantage that the binder, which is an insulating material, has a relatively small influence on the electrode active material, but on the other hand, it is extremely difficult to manufacture a thin film and a large area electrode, and the high temperature as intended by the present invention It is not possible to obtain an output type non-aqueous battery.
一方、ブタジエンゴム等の有機溶剤溶液やスチレン/
ブタジエンゴム等の水乳化分散液等に電極活物質を分散
した後、塗工乾燥することにより電極を成形する方法も
知られている。この方法によれば薄膜、大面積の電極が
容易に得られ非常に好都合である反面、絶縁性物質であ
るバインダーの電極活物質に対する影響が著しく大き
く、該電極を電池に組立てた場合、例えば著しい過電圧
の上昇が見られ実用的な方法ではなかった。On the other hand, organic solvent solutions such as butadiene rubber and styrene /
A method is also known in which an electrode active material is dispersed in a water emulsion dispersion of butadiene rubber or the like and then the coating is dried to form an electrode. According to this method, a thin film and a large-area electrode can be easily obtained, which is very convenient, but on the other hand, the influence of the binder, which is an insulating material, on the electrode active material is extremely large, and when the electrode is assembled into a battery, for example, it is remarkable. An increase in overvoltage was observed and it was not a practical method.
かかる問題点を解決する提案として、特開昭61−7568
において、フッ化ビニル,フッ化ビニリデン等のフッ素
系高分子は陽イオンをドーパントとし得る活物質に対し
て優れたバインダーとなることが開示されている。特
に、活物質としてポリフェニレン,ポリアセチレンまた
はフタロシアニン類を用いた場合、該バインダーは優れ
た性能を示し、放電容量の向上という好ましい結果をも
たらしている。As a proposal for solving such a problem, Japanese Patent Application Laid-Open No. 61-7568
Discloses that a fluorine-based polymer such as vinyl fluoride and vinylidene fluoride is an excellent binder for an active material that can use a cation as a dopant. In particular, when polyphenylene, polyacetylene, or phthalocyanine is used as the active material, the binder exhibits excellent performance and brings about a preferable result of improving discharge capacity.
前述の如く、該フッ素系高分子であるフッ化ビニル,
フッ化ビニリデン等はバインダーとして優れた性能を示
すがその反面、N−メチルピロリドン,ジメチルアセト
アミド,ヘキサメチルホスホアミド,ジメチルスルホキ
シド,テトラメチル尿素等の特殊な溶剤にしか溶けない
という問題点を有している。該溶剤は沸点が高く、極性
の強い溶剤であって中には毒性のあるものも含まれてい
る。故に工業的観点より、該溶剤を用いて活物質を塗布
成形し電極を製造する場合、以下に示す問題が発生す
る。1)沸点が高いため塗布後の乾燥工程が大変であ
る。2)毒性があるので、密閉設備、排気設備等を整備
する必要がある。3)コストが高いので溶剤の回収設備
の必要性が生じる。4)極性が強いので塗工設備の耐薬
品性に留意しなければならない。As described above, the fluoropolymer vinyl fluoride,
Vinylidene fluoride and the like have excellent performance as a binder, but on the other hand, they have the problem that they are soluble only in special solvents such as N-methylpyrrolidone, dimethylacetamide, hexamethylphosphoamide, dimethylsulfoxide, and tetramethylurea. ing. The solvent has a high boiling point and is highly polar, and some of them are toxic. Therefore, from an industrial point of view, when an active material is applied and molded using the solvent to manufacture an electrode, the following problems occur. 1) Since the boiling point is high, the drying process after coating is difficult. 2) Since it is toxic, it is necessary to install closed equipment and exhaust equipment. 3) Since the cost is high, the need for a solvent recovery facility arises. 4) Since the polarity is strong, it is necessary to pay attention to the chemical resistance of coating equipment.
[発明が解決しようとする問題点] 前述の如く、フッ化ビニル,フッ化ビニリデン等のフ
ッ素重合体をバインダーとして用いた電極の塗布成形法
は、実用的な製造プロセスと言う観点からは未だ問題が
解決されていないのが現状である。[Problems to be Solved by the Invention] As described above, the method of coating and molding an electrode using a fluoropolymer such as vinyl fluoride or vinylidene fluoride as a binder is still a problem from the viewpoint of a practical manufacturing process. The current situation is that has not been resolved.
[問題点を解決するための手段及び作用] 本発明は前述の問題点を解決し、工業的塗工プロセス
において容易に電極が製造され、その結果として優れた
電池性能を有する排水系電池用電極が提供されるために
なされるものである。[Means and Actions for Solving Problems] The present invention solves the above-mentioned problems, an electrode is easily manufactured in an industrial coating process, and as a result, an electrode for drainage battery having excellent battery performance Is to be provided.
本発明によれば、バインダーと電極活物質からなる非
水系電池電極であって、該バインダーが下記に示すモノ
マーユニットA,B,Cより主として構成されるフッ素系高
分子共重合体であって、各モノマーユニットのモル分率
がXA,XB,XCが0.3≦XA0.9,0.03≦XB≦0.5,0≦XC≦0.5,0.
80≦XA+XB+XC≦1の範囲にあることを特徴とする非水
系電池用電極が提供される。According to the present invention, a non-aqueous battery electrode comprising a binder and an electrode active material, the binder is a fluoropolymer copolymer mainly composed of the following monomer units A, B, C, The mole fraction of each monomer unit is X A , X B , X C is 0.3 ≦ X A 0.9,0.03 ≦ X B ≦ 0.5,0 ≦ X C ≦ 0.5,0.
Provided is an electrode for a non-aqueous battery, which is in the range of 80 ≦ X A + X B + X C ≦ 1.
前述の如く、溶媒に溶解及び/又は分散した有機重合
体をバインダーとして電極活物質を成形した場合、電池
特性として好ましくない現象が見出される。その理由は
定かではないが、恐らく電極活物質の表面が絶縁性のバ
インダー有機重合体により覆われ、円滑なイオンの拡散
が妨げられる為だと思われる。 As described above, when an electrode active material is formed by using an organic polymer dissolved and / or dispersed in a solvent as a binder, an unfavorable phenomenon is found in battery characteristics. The reason for this is not clear, but it is probably because the surface of the electrode active material is covered with the insulating organic binder polymer, which prevents smooth diffusion of ions.
かかる問題点を解決するため、フッ化ビニル,フッ化
ビニリデン等のフッ素系高分子をバインダーとして用い
ることが提案され、該フッ素系高分子が優れたバインダ
ーであることが示されたが、該フッ素系高分子は特殊な
溶剤にしか溶けないため、実用上例えば設備,毒性,コ
ストの面で多くの問題点を有していることが判明した。In order to solve such a problem, it has been proposed to use a fluorine-based polymer such as vinyl fluoride or vinylidene fluoride as a binder, and it has been shown that the fluorine-based polymer is an excellent binder. It was found that the system polymer has many problems in practical use, for example, in terms of equipment, toxicity, and cost, because it is soluble only in a special solvent.
本発明者らは、特定のバインダー即ち前述のモノマー
ユニットA,B,Cより主として構成されるフッ素系高分子
共重合体をバインダーとして用いた場合、この様な実用
上の問題点が全く生じないことを見出した。本発明で言
う該フッ素系高分子共重合体とは、前述のモノマーユニ
ットA,B,Cの割合XA,XB,XCが0.3≦XA≦0.9,0.03≦XB≦0.
5,0≦XC≦0.5,0.80≦XA+XB+XC≦1である。好ましく
は、0.4≦XA≦0.8,0.1≦XB≦0.3,0.1≦XC≦0.4である高
分子共重合体のことを言い、通常の塗工溶剤に容易に溶
けて安定なバインダー溶液を与え、ことバインダー溶液
を用いて製膜した電極は優れた性能を示した。XAが0.3
より小さい場合は、フッ素系高分子独特の特性に基づく
と思われる電気的特性が損われ、電極性能が低下した。
XAが0.9より大きい場合、XBが0.5より大きい場合、XCが
0.5より大きい場合においては通常の溶剤に対する溶解
性が著しく乏しくなり、バインダー溶液を調整すること
ができなかった。XBが0.03より小さい場合は、製膜体が
脆く、電極性能においてあまり好ましい結果を与えなか
った。該フッ素系高分子共重合体においてモノマーユニ
ットA,B,C以外の成分、例えばプロピレン等が組込まれ
ても良いが、その範囲は0.80≦XA+XB+XC≦1が好まし
い。The present inventors do not have such practical problems at all when a specific binder, that is, a fluoropolymer copolymer mainly composed of the above-mentioned monomer units A, B and C is used as a binder. I found that. The fluorine-based polymer copolymer referred to in the present invention, the ratio of the monomer units A, B, C X A , X B , X C is 0.3 ≤ X A ≤ 0.9, 0.03 ≤ X B ≤ 0.
5,0 ≦ X C ≦ 0.5, 0.80 ≦ X A + X B + X C ≦ 1. Preferably, it means a polymer copolymer of 0.4 ≤ X A ≤ 0.8, 0.1 ≤ X B ≤ 0.3, 0.1 ≤ X C ≤ 0.4, and a stable binder solution that is easily dissolved in an ordinary coating solvent. The electrodes formed by using the given binder solution showed excellent performance. X A is 0.3
When it is smaller than the above range, the electrical characteristics, which are considered to be based on the characteristics peculiar to the fluoropolymer, are impaired and the electrode performance is deteriorated.
If X A is greater than 0.9, X B is greater than 0.5, then X C is
When it is more than 0.5, the solubility in a usual solvent is remarkably poor and the binder solution cannot be prepared. When X B was less than 0.03, the film-forming body was brittle, and the electrode performance was not so favorable. Components other than the monomer units A, B and C, such as propylene, may be incorporated in the fluoropolymer copolymer, but the range is preferably 0.80 ≦ X A + X B + X C ≦ 1.
本発明範囲のフッ素系高分子は、通常の塗工溶剤に容
易に溶けて安定なバインダー溶液を与える。バインダー
溶液溶剤としては、例えば、メチルエチルケトン、メチ
ルイソブチルケトン等のケトン系溶剤、エチルアセテー
ト、ブチルアセテート等のエステル系樹脂、ジオキサ
ン、シクロヘキサノン等のエーテル系溶剤さらにはそれ
らの混合溶剤をあげることができる。The fluoropolymer within the scope of the present invention easily dissolves in an ordinary coating solvent to give a stable binder solution. Examples of the binder solution solvent include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester resins such as ethyl acetate and butyl acetate, ether solvents such as dioxane and cyclohexanone, and mixed solvents thereof.
かかるフッ素系高分子をバインダーとして用いるに際
しては、該フッ素系高分子を溶媒に溶解せしめたバイン
ダー溶液に電極活物質を分散せしめたものを塗工液とし
て用いる方法、予め予備成形された電極活物質に該フッ
素系高分子の溶液及び/又は分散液を塗布する方法等が
一例として挙げられる。用いるバインダー量は特に限定
するものではないが、通常、電極活物質100重量部に対
して0.1〜20重量%、好ましくは0.5〜10重量部の範囲で
ある。When using such a fluorine-based polymer as a binder, a method in which an electrode active material is dispersed as a binder solution in which the fluorine-based polymer is dissolved in a solvent is used as a coating liquid, and a preformed electrode active material is preliminarily formed. An example is a method of applying a solution and / or dispersion of the fluorine-containing polymer to The amount of binder used is not particularly limited, but is usually 0.1 to 20% by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the electrode active material.
本発明のフッ素系高分子をバインダーとして用いれ
ば、前述の如く従来問題とされていた製造プロセス上の
問題、例えば1)乾燥が大変である。2)溶剤の毒性
3)溶剤の回収4)塗工整備の耐薬品性等にかかわる問
題を解決することができ、優れた性能を有する電極を安
価に提供することが可能である。If the fluorine-based polymer of the present invention is used as a binder, the problems in the manufacturing process, which have been the conventional problems as described above, such as 1) drying are difficult. 2) Toxicity of solvent 3) Recovery of solvent 4) Problems related to chemical resistance of coating maintenance can be solved, and electrodes having excellent performance can be provided at low cost.
本発明で用いられる電極活物質は特に限定されるもの
ではないが、一例を示せば、MnO2,MoO3,V2O5,V6O13,Fe2
O3,Fe3O4,Li(1-x)CoO2,Li(1-x)・NiO2,TiS2,TiS3,MoS3,
FeS2,CuF2,NiF2等の無機化合物、フッ化カーボン,グラ
ファイト,気相成長炭素組織及び/又はその粉砕物、PA
N系炭素繊維及び/又はその粉砕物、ピッチ系炭素繊維
及び/又はその粉砕物等の炭素材料、ポリアセチレン,
ポリ−p−フェニレン等の導電性高分子等が挙げられ
る。Although the electrode active material used in the present invention is not particularly limited, for example, MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2
O 3 , Fe 3 O 4 , Li (1-x) CoO 2 , Li (1-x)・ NiO 2 , TiS 2 , TiS 3 , MoS 3 ,
Inorganic compounds such as FeS 2 , CuF 2 and NiF 2 , carbon fluoride, graphite, vapor-grown carbon texture and / or its pulverized product, PA
Carbon materials such as N-based carbon fibers and / or pulverized products thereof, pitch-based carbon fibers and / or pulverized products thereof, polyacetylene,
Examples thereof include conductive polymers such as poly-p-phenylene.
該電極活物質が粉末状の場合には、バインダー液と混
合した後、基材上に塗布乾燥することにより成形され
る。この時要すれば集電体材料と共に成形しても良い
し、又、別法としてアルミ箔、銅箔等の集電体を基材と
して用いることもできる。When the electrode active material is in the form of powder, it is formed by mixing it with a binder solution and then coating and drying it on a substrate. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as an aluminum foil or a copper foil may be used as the base material.
又、電極活物質が繊維状の場合には予めシート状、リ
ボン状等の形状に整えた後、バインダー液を塗布乾燥す
ることにより成形する方法も考えられる。Further, when the electrode active material is fibrous, it is also possible to prepare it into a sheet shape, a ribbon shape or the like in advance, and then apply a binder solution and dry it to form it.
本発明の非水系電池電極は用いる電極活物質により、
正極として用いても良いし、負極として用いても良い。
本発明の非水系電池電極を用い電池を組立てる場合、非
水電解液の電解質としては特に限定されないが、一例を
示せば、LiClO4,LiBF4,LiAsF6,CF3SO3Li,LiPF6,LiI,LiA
lCl4,NaClO4,NaBF4,NaI,(n−Bu)4N ClO4,(n−B
u)4N BF4,KPF6等が挙げられる。又、用いられる電解
液の有機溶媒としては、例えばエーテル類、ケトン類、
ラクトン類、ニトリル類、アミン類、アミド利、硫黄化
合物、塩素化炭化水素類、エステル類、カーボネート
類、ニトロ化合物、リン酸エステル系化合物、スルホラ
ン系化合物等を用いることができるが、これらのうちで
もエーテル類、ケトン類、ニトリル類、塩素化炭化水素
類、カーボネート類、スルホラン系化合物が好ましい。 The non-aqueous battery electrode of the present invention, depending on the electrode active material used,
It may be used as a positive electrode or a negative electrode.
When assembling a battery using the non-aqueous battery electrode of the present invention,
The electrolyte of the water electrolyte is not particularly limited, but an example
If you show, LiClOFour, LiBFFour, LiAsF6, CF3SO3Li, LiPF6, LiI, LiA
lClFour, NaClOFour, NaBFFour, NaI, (n-Bu)FourN ClOFour, (N-B
u)FourN BFFour, KPF6Etc. Also used electrolysis
Examples of the organic solvent of the liquid include ethers, ketones,
Lactones, nitriles, amines, amide compounds, sulfurization
Compounds, chlorinated hydrocarbons, esters, carbonates
Class, nitro compounds, phosphate compounds, sulfora
Compounds can be used, but among these
Also ethers, ketones, nitriles, chlorinated hydrocarbons
Preferred are compounds, carbonates, and sulfolane compounds.
これらの代表例としては、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1,2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
オルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ジメチルホルムアミド、ジメチルスルホキシ
ド、ジメチルチオホルムアミド、スルホラン、3−メチ
ル−スルホラン、リン酸トリメチル、リン酸トリエチル
およびこれらの混合溶媒等をあげることができるが、必
ずしもこれらに限定されるものではない。Representative examples of these include tetrahydrofuran, 2-
Methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyrolactone, dimethoxyethane, methylphenyl Ormate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate and a mixed solvent thereof may be mentioned, but these are not always required. It is not limited.
更に、要すればセパレーター、集電体、端子、絶縁板
等の部品を用いて電池が構成される。又、電池の構造と
しては、特に限定されるものではないが、正極、負極、
更に要すればセパレーターを単層又は複層としたペーパ
ー型電池、又は正極、負極、更に要すればセパレーター
をロール状に巻いた円筒状電池等の形態が一例として挙
げられる。Furthermore, if necessary, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. The structure of the battery is not particularly limited, but includes a positive electrode, a negative electrode,
Further examples include a paper-type battery having a single-layer or multiple-layer separator, a positive electrode, a negative electrode, and, if necessary, a cylindrical battery in which the separator is wound in a roll.
[実施例] 以下、実施例、比較例により本発明を更に詳しく説明
する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
実施例1 平均粒径2μmのLi1.03Co0.95Sn0.042O2粉末1重量
部に対し、平均粒径5μmのグラファイト0.075重量部
と平均粒径0.03μmのアセチレンブラックを0.025重量
部を混ぜ、さらに各ユニットの割合がXA=0.58,XB=0.2
4,XC=0.18であるフッ素系共重合体のメチルイソブチル
ケトン溶液(濃度4wt%)を0.5重量部加え、混合撹拌し
塗工液とした。市販アルミ箔(厚さ15μ)を基材として
この塗工液を片面に塗布乾燥し、100μmの膜厚を有す
る電極を得た。この電極製膜体から1cm×5cmを切り出し
正極とした。Example 1 1 part by weight of Li 1.03 Co 0.95 Sn 0.042 O 2 powder having an average particle size of 2 μm was mixed with 0.075 part by weight of graphite having an average particle size of 5 μm and 0.025 part by weight of acetylene black having an average particle size of 0.03 μm. The ratio of units is X A = 0.58, X B = 0.2
0.5 parts by weight of a methyl isobutyl ketone solution (concentration: 4 wt%) of a fluorine-based copolymer having 4, X C = 0.18 was added and mixed and stirred to obtain a coating liquid. This coating solution was applied to one surface of a commercially available aluminum foil (thickness 15 μm) as a base material and dried to obtain an electrode having a film thickness of 100 μm. 1 cm × 5 cm was cut out from this electrode film to obtain a positive electrode.
市販の石油系ニードルコークス(興亜石油社製KOA−S
J Coke)をボールミルで平均粒系10μmに粉砕し、この
粉砕物1重量部に対し、上記のフッ素系共重合体のメチ
ルイソブチルケトン溶液(濃度5wt%)を1.0重量部加
え、混合撹拌し塗工液とした。市販銅箔(厚さ10μm)
を基材としてこの塗工液を塗布乾燥し、60μmの膜厚を
有する電極を得た。この電極製膜体から1cm×5cmを切り
出し負極とした。電解液として0.6 M LiClO4プロピレン
カーボネートを用い第1図に示す電池を組立てた。この
電池の10mA(電流密度2mA/cm2)での充電放電における
過電圧は第1表に示す通りであった。Commercially available petroleum-based needle coke (KOA-S manufactured by Koa Oil Co., Ltd.
J Coke) was crushed with a ball mill to an average particle size of 10 μm, and 1.0 part by weight of a solution of the above fluorocopolymer in methyl isobutyl ketone (concentration: 5 wt%) was added to 1 part by weight of the pulverized product, followed by mixing and stirring. Used as a working fluid. Commercially available copper foil (thickness 10 μm)
This coating solution was applied and dried using as a base material to obtain an electrode having a film thickness of 60 μm. A 1 cm × 5 cm piece was cut out from this electrode film to form a negative electrode. The battery shown in FIG. 1 was assembled using 0.6 M LiClO 4 propylene carbonate as an electrolytic solution. The overvoltage of this battery during charging and discharging at 10 mA (current density 2 mA / cm 2 ) was as shown in Table 1.
実施例2〜5 比較例1〜4 バインダーを第1表に示すものに代えた以外は実施例
1と同様な操作を行い、得られた電極については同様の
評価を行なった。その結果を第1表に示す。Examples 2 to 5 Comparative Examples 1 to 4 The same operation as in Example 1 was carried out except that the binder shown in Table 1 was used, and the obtained electrodes were evaluated in the same manner. The results are shown in Table 1.
但し、3,4に関しては、メチルエチルケトン、メチル
イソブチルケトン、アセトン、ブチルアセテート、DMF,
N−メチルピロリドン、ジメチルアセトアミド等の溶剤
に不溶なためバインダー溶液を調製することができな
い。However, for 3, 4, methyl ethyl ketone, methyl isobutyl ketone, acetone, butyl acetate, DMF,
A binder solution cannot be prepared because it is insoluble in solvents such as N-methylpyrrolidone and dimethylacetamide.
第1図は本発明の実施例、比較例で用いた電池の断面図
を示す。 1……正極及び電解液、2……負極及び電解液、 3……アルミ箔、4……銅箔、 5,5a……集電棒、 6……セパレーター及び電解液、 7……電池ケース。FIG. 1 shows a cross-sectional view of batteries used in Examples and Comparative Examples of the present invention. 1 ... Positive electrode and electrolytic solution, 2 ... Negative electrode and electrolytic solution, 3 ... Aluminum foil, 4 ... Copper foil, 5,5a ... Current collector rod, 6 ... Separator and electrolytic solution, 7 ... Battery case.
Claims (1)
池電極であって、該バインダーが下記に示すモノマーユ
ニットA,B,Cより主として構成されるフッ素系高分子共
重合体であって、各モノマーユニットのモル分率がXA,X
B,XCが0.3≦XA≦0.9,0.03≦XB≦0.5,0≦XC≦0.5,0.80≦
XA+XB+XC≦1の範囲にあることを特徴とする非水系電
池用電極。 1. A non-aqueous battery electrode comprising a binder and an electrode active material, wherein the binder is a fluoropolymer copolymer mainly composed of monomer units A, B and C shown below, The mole fraction of the monomer unit is X A , X
B , X C is 0.3 ≤ X A ≤ 0.9, 0.03 ≤ X B ≤ 0.5, 0 ≤ X C ≤ 0.5, 0.80 ≤
An electrode for a non-aqueous battery, which is in the range of X A + X B + X C ≦ 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61266304A JPH084007B2 (en) | 1986-11-08 | 1986-11-08 | Electrode for non-aqueous battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61266304A JPH084007B2 (en) | 1986-11-08 | 1986-11-08 | Electrode for non-aqueous battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63121262A JPS63121262A (en) | 1988-05-25 |
JPH084007B2 true JPH084007B2 (en) | 1996-01-17 |
Family
ID=17429071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61266304A Expired - Lifetime JPH084007B2 (en) | 1986-11-08 | 1986-11-08 | Electrode for non-aqueous battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH084007B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998027605A1 (en) * | 1996-12-16 | 1998-06-25 | Daikin Industries, Ltd. | Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same |
WO2010092976A1 (en) | 2009-02-12 | 2010-08-19 | ダイキン工業株式会社 | Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry |
WO2013176092A1 (en) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | Electrode mixture |
US20160028108A1 (en) * | 2014-07-23 | 2016-01-28 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing negative electrode for solid-state battery, method of manufacturing solid-state battery, and negative electrode slurry |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028500A (en) * | 1989-05-11 | 1991-07-02 | Moli Energy Limited | Carbonaceous electrodes for lithium cells |
EP0603397B2 (en) * | 1991-09-13 | 2002-12-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary cell |
JPH0831408A (en) * | 1994-05-13 | 1996-02-02 | Matsushita Electric Ind Co Ltd | Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof |
JP3700736B2 (en) * | 1996-11-27 | 2005-09-28 | 株式会社ユアサコーポレーション | Manufacturing method of thin lithium battery |
CN102473916A (en) * | 2009-07-03 | 2012-05-23 | 大金工业株式会社 | Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell |
WO2012115180A1 (en) * | 2011-02-25 | 2012-08-30 | クロリンエンジニアズ株式会社 | Anode catalyst and manufacturing method therefor |
CN104285320A (en) * | 2012-05-21 | 2015-01-14 | 大金工业株式会社 | Electrode mixture |
-
1986
- 1986-11-08 JP JP61266304A patent/JPH084007B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998027605A1 (en) * | 1996-12-16 | 1998-06-25 | Daikin Industries, Ltd. | Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same |
WO2010092976A1 (en) | 2009-02-12 | 2010-08-19 | ダイキン工業株式会社 | Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry |
WO2013176092A1 (en) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | Electrode mixture |
US20160028108A1 (en) * | 2014-07-23 | 2016-01-28 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing negative electrode for solid-state battery, method of manufacturing solid-state battery, and negative electrode slurry |
US9799921B2 (en) * | 2014-07-23 | 2017-10-24 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing negative electrode for solid-state battery, method of manufacturing solid-state battery, and negative electrode slurry |
Also Published As
Publication number | Publication date |
---|---|
JPS63121262A (en) | 1988-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100714135B1 (en) | Material for electrolytic solutions and use thereof | |
RU2621310C2 (en) | Anode for accumulator of lithium-ion battery, method of its manufacturing and battery containing it | |
EP0953998B1 (en) | Electrode for an electric double layer capacitor and electric double layer capacitor employing the electrode | |
JP5079523B2 (en) | Two-layer electrolyte for lithium batteries | |
DE69922827T2 (en) | IONOMERS AND POLYMERS FOR ELECTROCHEMICAL APPLICATIONS | |
KR100263735B1 (en) | Binder solution and electrode-forming composition for non-aqueous-type battery | |
DE102012022976A1 (en) | Use of conductive polymers in battery electrodes | |
JPH084007B2 (en) | Electrode for non-aqueous battery | |
KR20170068492A (en) | Binder, use thereof and method for producing electrode | |
US5714282A (en) | Coating paste and a nonaqueous electrode for a secondary battery | |
JPH08195199A (en) | Electrode for battery and secondary battery using it | |
JP3540097B2 (en) | Electrode mixture for non-aqueous battery and non-aqueous battery | |
JP2547992B2 (en) | Non-aqueous secondary battery | |
JPH08306354A (en) | Electrode and nonaqueous solvent type secondary battery using the electrode | |
JP4086939B2 (en) | Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same | |
JP3587982B2 (en) | Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same | |
JP2872354B2 (en) | Method for producing non-aqueous battery electrode | |
JPH1154113A (en) | Manufacture of mix for electrode of nonaqueous secondary battery | |
JP2001110403A (en) | Electrode for electrochemical device | |
JPH11135121A (en) | Manufacture of mix for electrode | |
JP4670258B2 (en) | Electrode material for electrochemical device and electrochemical device provided with the same | |
Maxfield et al. | Alloy/conducting-polymer composite electrodes: electrolytes, cathodes, and morphology | |
JP3232128B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4104293B2 (en) | Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries | |
JPH0770319B2 (en) | Electrode for non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |