JPH0838166A - 培養方法及び培養装置 - Google Patents

培養方法及び培養装置

Info

Publication number
JPH0838166A
JPH0838166A JP6200070A JP20007094A JPH0838166A JP H0838166 A JPH0838166 A JP H0838166A JP 6200070 A JP6200070 A JP 6200070A JP 20007094 A JP20007094 A JP 20007094A JP H0838166 A JPH0838166 A JP H0838166A
Authority
JP
Japan
Prior art keywords
amount
dissolved oxygen
culture
culture solution
specific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200070A
Other languages
English (en)
Inventor
Shinji Tonoshita
信二 殿下
Hidetaka Shimoizu
英貴 下伊豆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP6200070A priority Critical patent/JPH0838166A/ja
Publication of JPH0838166A publication Critical patent/JPH0838166A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【構成】培養器内又は培養液の排出経路に培養液の溶存
酸素量検出手段を設置し、検出された溶存酸素量に基づ
いて新たな培養液の供給量を制御しつつ培養を行う培養
方法において、検出した溶存酸素量が予め設定した特定
値未満になると、その特定値以上になるまで新たな培養
液の供給量を増加させ、該特定値まで回復した後は新た
な培養液の供給量を一定に保つかさらに供給量を増加さ
せ続けることにより、溶存酸素量を特定値以上に保つこ
とを特徴とする培養方法、並びにその培養装置。 【効果】本発明によれば、培養液中の溶存酸素量の最適
化を図りつつも、栄養分の供給も十分に行え、かつ装置
のコンパクト化・低コスト化が可能な培養方法及び培養
装置を提供することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、動物・植物由来の細胞
または組織等、微生物を培養するための培養方法及び培
養装置に関するものであり、更に詳しくは、溶存酸素量
を制御しつつ培養を行う培養方法及び培養装置に関する
ものである。
【0002】
【従来の技術・発明が解決しようとする課題】各種培養
器を用いた動物・植物由来の細胞または組織等、微生物
の培養において、培養液中の溶存酸素量の調節は重要な
因子である。これは酸素が細胞や組織のみならず、好気
的な生物にとってエネルギー生産のために必須の成分で
あるからであり、当該技術分野において培養液中の溶存
酸素量の最適化は、きわめて重要な外部要因である。
【0003】すなわち、培養液中の溶存酸素濃度が低す
ぎる場合、生命活動を営む上で不可欠な酸素が不足する
ために、細胞や組織が死滅に到るのはもちろんである
が、これとは逆に溶存酸素濃度が高すぎる場合、細胞や
組織に障害を与えることも知られており、いずれの場合
も培養条件として好ましいものとは言いがたい。
【0004】培養液中の溶存酸素量の調節を行う一般的
な方法としては、培養液中に酸素、空気等のガスを供給
するに際し、その供給量を流量計で計測して適度な量の
ガスを供給する機構が利用されてきた。しかし、溶存酸
素量を精度良く一定に保つには、それを検出して電気的
にその供給量を制御しなければならず、複雑な機構が必
要となり、省コスト、小型化の点で不利であった。
【0005】一方、細胞、微生物等の生育状態に合わせ
た培養液の供給と溶存酸素量の制御を同時に行う等の理
由から、培養装置内に設置したDOセンサーの値を一定
に保つように培養液の循環量(供給量)を制御する方法
等も知られている。その方法においては、例えばDOセ
ンサー値が低い時には、ポンプの回転数を増やすなどし
て培養液の循環量を増加させ、逆にDOセンサー値が高
い時には、ポンプの回転数を減すなどして培養液の供給
量を減少させ、新たな培養液の供給量を制御してDOセ
ンサーの値を一定に保つようにしている。
【0006】しかしながら、このような方法による制御
は、酸素供給と栄養分供給という2つの制御要素がある
にもかかわらず酸素量のみを検出して制御するため、次
のような問題が生じた。すなわち、この制御は細胞の生
育状態に合わせて行うものであり、細胞の生育状態が劣
化した時に、細胞の酸素消費量の低下に合わせて培養液
の循環流量が低下するというものであるため、細胞への
栄養分の供給が不足になり、細胞の生育状態をより劣化
等させるという問題が生じた。
【0007】従って、このような栄養分の供給面での問
題が生じることなく、簡易な方法で培養液中の溶存酸素
量の最適化を図りつつ培養できる培養方法及び培養装置
の開発が当業者の間で強く望まれていた。
【0008】本発明の目的は、かかる課題を解決すべ
く、培養液中の溶存酸素量の最適化を図りつつも、栄養
分の供給も十分に行え、かつ装置のコンパクト化・低コ
スト化が可能な培養方法及び培養装置を提供することに
ある。
【0009】
【課題を解決するための手段】本発明者等は、前記課題
を解決するために鋭意検討した結果、従来より行われて
いる溶存酸素量検出手段による検出量に基づいて新たな
培養液の供給量を制御しつつ培養を行う培養方法におい
て、培養液の供給量を低下させるという制御操作を積極
的に行わないことにより、意外にも栄養分の供給面での
問題を生じさせることなく溶存酸素量の制御が好適に行
なえることを見出し、本発明を完成するに至った。
【0010】すなわち、本発明の要旨は、(1)培養器
内又は培養液の排出経路に培養液の溶存酸素量検出手段
を設置し、検出された溶存酸素量に基づいて新たな培養
液の供給量を制御しつつ培養を行う培養方法において、
検出した溶存酸素量が予め設定した特定値未満になる
と、その特定値以上になるまで新たな培養液の供給量を
増加させ、該特定値まで回復した後は新たな培養液の供
給量を一定に保つかさらに供給量を増加させ続けること
により、溶存酸素量を特定値以上に保つことを特徴とす
る培養方法、(2)培養器内又は培養液の排出経路に培
養液の溶存酸素量検出手段を設け、該検出手段によって
検出された溶存酸素量に基づいて新たな培養液の供給量
を制御する制御装置を有する培養装置において、該制御
装置が、該検出手段によって検出された溶存酸素量が予
め設定した特定値未満の場合は新たな培養液の供給量を
増加させ、該特定値またはそれを超える場合は、新たな
培養液の供給量を増加又は一定とすることを特徴とする
培養装置、に関する。
【0011】まず、本発明の培養方法について説明す
る。本発明の培養方法は、培養器内又は培養液の排出経
路に培養液の溶存酸素量検出手段を設置し、検出された
溶存酸素量に基づいて新たな培養液の供給量を制御しつ
つ培養を行う培養方法において、検出した溶存酸素量が
予め設定した特定値未満になると、その特定値以上にな
るまで新たな培養液の供給量を増加させ、該特定値まで
回復した後は新たな培養液の供給量を一定に保つかさら
に供給量を増加させ続けることにより、溶存酸素量を特
定値以上に保つことを特徴とするものである。
【0012】従って、本発明の培養方法を従来法と比較
すると、従来法では溶存酸素量の値が高い時には培養液
の供給量を減少させるのに対して、本発明では、そのよ
うな制御操作により培養液の供給量を減少させることは
一切行わない。即ち、本発明の培養方法は、検出した溶
存酸素量が特定値未満になると、その特定値以上になる
まで新たな培養液の供給量を増加させると共に、該培養
液の溶存酸素量が特定値未満にならない限り新たな培養
液の供給量を一定に保つかさらに増加させることを特徴
とし、培養液の供給量は増加することはあっても、減少
することは決してない。
【0013】この点を除けは、本発明の培養方法は従来
法と共通しており、以下に説明するように、培養器の種
類、溶存酸素量検出手段、培養の対象(培養物)、培養
液の種類等は、従来と同様のものが用いられる。
【0014】用いられる培養器としては、培養系が半閉
鎖系となるものが、開放系となるものに比べて、本発明
の効果が得られやすいため好ましく、その形状等は、通
常の動物・植物由来の細胞または組織等、微生物の培養
において用いるものであればよい。具体的には、例えば
培養液の供給経路と排出経路を有し、排出経路からは微
生物等が排出されない構造(例えば分離膜を使用)とな
っているバイオリアクタータイプの培養器、ホローファ
イバー培養器、セラミック型培養器、マイクロキャリア
ー充填型培養器等が挙げられる。特に動物細胞による有
用物の生産等を行う場合、培養器としては、ホローファ
イバー培養器が好ましい。
【0015】培養液中の溶存酸素濃度を検知する手段と
しては、溶存酸素濃度を検知して電気的な信号として制
御に供することができるものであれば特に限定されない
が、例えば溶存酸素電極(DOセンサー)等を用いるこ
とができる。溶存酸素電極として用いる電極は特に制限
されるものではなく、例えばガルバニ式、クラーク式等
の電極が挙げられ、電極部分の材質も特に制限されるも
のではない。このような溶存酸素量検出手段は、培養器
内又は培養液の排出経路に設置される。
【0016】培養の対象としては、動物・植物由来の細
胞または組織等が挙げられ、具体的には動物細胞ではハ
イブリドーマ細胞、CHO組換え細胞、正常肝細胞、微
生物としてはAspergillus niger, Streptomyces phaeoc
hromogenes, 植物細胞では、Morinda citrofolia, Cath
aranthus roseus, Digitalis lanata 等が挙げられる。
【0017】培養液の種類としては、上記の培養物の培
養に用いられるものであれば、特に限定されることな
く、例えば動物細胞では、DMEM、RPMI1640、e
RDFなど、微生物ではスクロース、硝酸アンモニウ
ム、リン酸2水素ナトリウム、硫酸マグネシウムの水溶
液など、植物ではMS培地等が挙げられる。新たな培養
液の供給については、全く新たな培養液を供給してもよ
いが、循環式である場合には、既に培養器内から排出さ
れて培養液貯槽に貯められたものをガス交換器を介して
培養器内へ再度供給するなどの方法で、既に使用された
培養液を酸素富化して新たな培養液としてもよく、その
方式が効率的である。
【0018】次に、本発明の特徴部分である制御操作に
ついて説明する。まず、培養物の種類、濃度、増殖速度
等に基づき、制御の基準となる溶存酸素量の特定値を予
め決定し、マイクロコンピュータ制御器、計測制御器等
にプログラム・設定・入力等しておく。このとき、培養
液の初期供給量も決定して入力等しておく。
【0019】培養液の供給を開始した後、溶存酸素量検
出手段により通常断続的に溶存酸素量を検出し、検出さ
れた溶存酸素量の値を接続されたマイクロコンピュータ
制御器に通信するとともに、その値が特定値未満である
か否かを判断させる。その値が特定値以上であれば、培
養液の供給量を通常そのまま一定に保つが、特定値未満
であれば次のようにして培養液の供給量を増加させる。
即ち、検出時間の間隔と、検出した溶存酸素の値と、特
定値との差により、予め制御器に書き込んである増加量
を加算して、培養液の供給ポンプの回転数を制御するな
どすれば良い。
【0020】例えば、1秒間隔で溶存酸素の検出を行
い、1分間ごとの移動平均値と特定値との比較を行い、
特定値未満であれば、予め制御器に書き込んである増加
量を加算し、培養液の供給量を増加させるべく、ポンプ
の回転数を増加させるといった制御操作が挙げられる
(図1参照)。また、培養液の中に泡が発生し、溶存酸
素検出手段の検出部分に付着した時に溶存酸素量が著し
く上昇する事がある。これを防止するために、一時的に
前回測定した測定値より予め制御器に書き込んである値
より大きい場合は泡が付着したと判断し、この値が連続
して検出された時にはじめて溶存酸素量が上昇したとい
う判断を行う手法も挙げられる。
【0021】ここで、マイクロコンピュータ制御器の代
わりに、通常用いられるシーケンサーや市販されている
コントローラー(例えば、タバイエスペック社製のEX
−101、PMS−B等)を改良等して用いることも可
能である。
【0022】本発明では、このようにして溶存酸素量検
出手段で検出した溶存酸素量に基づき新たな培養液の供
給量を一定又は増加させることにより、溶存酸素量を特
定値以上に保つことができる。すなわち、溶存酸素量以
外の培養上の要件によって培養液の供給量を一定又は増
加、増加の程度等を選択することができるようにしてお
けば、所期の目的の培養を達成することができる。その
結果、培養物の酸素消費量の経時的な変化によって、溶
存酸素量はほぼ一定に保たれたり、一時的または連続的
に上昇したりする。しかし、溶存酸素量は過多となって
も、微小範囲内での値のドリフトが生ずるだけであり、
培養操作において特に問題とならない。特に本発明で
は、培養物の酸素消費量が単調に増加する場合に溶存酸
素量を一定に保つことができる。
【0023】本発明では、溶存酸素量だけでなく、分解
物や栄養物の濃度によって培養液の循環量を増加させれ
ば、より一層培養の促進を図ることができる。即ち、例
えば図2に示すフローチャートに従い、溶存酸素量が設
定値を越える場合でも、分解物や栄養物の濃度から算定
した必要ポンプ回転数と実際のポンプ回転数を比較し
て、ポンプ回転数の上昇が必要か否かを判断しつつ、ポ
ンプ回転数を制御する方法が挙げられる。図3にはその
場合の制御器の構成を示す。
【0024】本発明では、このようにして培養液の溶存
酸素量を調整することにより、簡易な方法で培養液中の
溶存酸素量の最適化を図りつつも、栄養分の供給も十分
に行うことができる。
【0025】次に、本発明の培養装置について説明す
る。本発明の培養装置は、培養器内又は培養液の排出経
路に培養液の溶存酸素量検出手段を設け、該検出手段に
よって検出された溶存酸素量に基づいて新たな培養液の
供給量を制御する制御装置を有する培養装置において、
該制御装置が、該検出手段によって検出された溶存酸素
量が予め設定した特定値未満の場合は新たな培養液の供
給量を増加させ、該特定値またはそれを超える場合は、
新たな培養液の供給量を増加又は一定とすることを特徴
とするものである。
【0026】図4に、本発明の培養装置の一例の構成概
略図を示す。この装置は、循環式のものであり、培養液
が培養液貯槽からガス交換器を介して培養器内へ供給さ
れた後、細胞は培養器に何らかの手法で固定又は隔離さ
れており、培養器から培養液成分のみが排出され、培養
液貯槽に回収されるよう構成されている。以下、図4に
基づきより具体的に説明する。
【0027】それぞれ、1は培養器、2は溶存酸素量検
出手段、3は制御器、4は培養液貯槽、5は循環用ポン
プ、6はガス交換器である。最初、培養器1には培養
物、培養液が導入されており、培養液は培養液貯槽4の
ものと同一である。循環用ポンプ5の作動を開始する
と、ガス交換器6により酸素富化された培養液が培養器
1に供給される。培養器1はバイオリアクターのように
培養物等を透過させない分離膜で仕切られており、その
排出経路からは培養液や、細胞生成物等のみが排出され
る。ガス交換器6はシリコン中空糸型のものが効率的だ
が、他のガス透過性膜でもよく、平板のシリコンでもよ
い。排出された培養液は、溶存酸素量検出手段2を通過
した後、培養液貯槽4に回収される。
【0028】循環用ポンプ5と溶存酸素量検出手段2
は、それぞれ制御器3に電気的に接続されており、前述
のような制御操作により、溶存酸素量検出手段2で検出
された溶存酸素量の値に基づき、循環用ポンプ5の回転
数が制御器3により制御される。
【0029】
【実施例】以下、実施例及び比較例により本発明をさら
に詳しく説明するが、本発明はこれらの実施例等により
なんら限定されるものではない。
【0030】実施例1 培養装置として、前述のような図4に示す培養装置を用
いて、ハイブリドーマ細胞HP6017の培養を行っ
た。培養器、培養液貯槽の容積はそれぞれ55ml、1
000mlであった。培養液の供給は循環方法を採用
し、培地栄養分枯渇と老廃物増加により培地交換を行っ
た。培養の条件としては、培養液としてDMEM+10
%FBSを用い、培養温度37.0℃、ガス交換器を通
過した直後の培養液の初期酸素濃度約159mmHg、
培地流量30ml/min.とした。初期の細胞播種数
は3.50×108個細胞とし、このとき初期の溶存酸
素電極の値は、130mmHgであった。これら値に基
づいた制御条件を決定した。
【0031】また、制御の条件としては、制御の基準と
なる溶存酸素量の特定値は125mmHgとした。この
ときの培養液の初期供給量は、28.3ml/min.
であった。その後、培養開始290時間後に培養液の供
給量が341.5ml/minと上昇したため、細胞が
培養器全体に増殖したことを観察により確かめてから、
生産物の回収を開始した。それにより、細胞のサンプリ
ングも同時に行い、生存率の確認により、87.5%と
良い結果であったため、この実施例においては、ポンプ
の最大供給量は480ml/minとしていたが、溶存
酸素量の特定値を100mmHgで制御することによ
り、その後30日目の供給量は468ml/minであ
り、余力を残して培養できたことを示しており、培養方
法として優れた制御方式であることが判明した。
【0032】培養開始後30日間の溶存酸素量と培養時
間の関係を示すグラフを図5に示した。
【0033】この結果から、本発明の方法および装置を
用いることにより、培養液中の溶存酸素濃度を一定値以
上に保持することが可能であることが判明した。また、
本実施例において培養中の最大の細胞密度は2.05×
108 個細胞/mlであり、後述の比較例(本発明の方
法による制御を行なわない場合)における最大の細胞密
度(1.89×108 個細胞/ml)に比べて細胞密度
においては大きな有意差は見られなかったが、30日間
の培養での培地使用量が前者では72リットル、後者は
87リットルであり、約17%の培地量が節約できた。
また、ハイブリドーマ細胞による物質生産量は酵素免疫
測定法で測定した結果、それぞれ前者では30日間トー
タルで1925mg、後者では1776mgであった。
細胞あたりの生産量は殆どかわらなかった。この結果か
ら、本発明により培養液中の溶存酸素量の最適化を図り
つつ、栄養分の供給も十分に行うことができ、かつ装置
のコンパクト化が可能であることがわかった。
【0034】比較例1 実施例1において、培養液の供給量を単純にPIDコン
トローラ(タバイエスペック社製,EX−101)で制
御する以外は実施例1と同様にして、従来方法による培
養を行なった。その結果、培養開始後20日目に細胞生
育状態が悪化してきた。それは、溶存酵素電極の値と培
地の循環流量から細胞の酸素消費速度が低下しているこ
とから判った。また培地の循環(供給)量も徐々に低下
の傾向を示していた。従来方法の制御では、細胞の酸素
消費速度が低下してくるとともに、流量も同じように低
下してきたため、20日目以降では、手動で培養せざる
をえなかった。そのため、培地の使用量も多くなったと
考えている。すなわち、手動で行う場合、適当な時間ご
とにグルコースの定量を行えば、培地使用量も節約可能
だが、手間な作業であり、それを行わない場合には、D
O値PH値などを目安にするため、安全策として早めに
培地交換を行ってしまうからである。
【0035】本発明の培養装置の態様をさらに挙げれば
次のようになる。培養液が培養液貯槽からガス交換器を
介して培養器内へ供給された後、培養器から培養物を保
持しつつ培養液が排出され、培養液貯槽に回収されるよ
う構成されていると共に、該培養器内又は培養液の排出
経路に培養液の溶存酸素量検出手段を設け、該検出手段
によって検出された溶存酸素量に基づいて新たな培養液
の供給量を制御する制御装置を有する培養装置におい
て、該制御装置が、該検出手段によって検出された溶存
酸素量が予め設定した特定値未満の場合は新たな培養液
の供給量を増加させ、該特定値またはそれを超える場合
は、新たな培養液の供給量を増加又は一定とすることを
特徴とする培養装置。
【0036】
【発明の効果】本発明によれば、培養液中の溶存酸素量
の最適化を図りつつも、栄養分の供給も十分に行え、か
つ装置のコンパクト化・低コスト化が可能な培養方法及
び培養装置を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の培養装置における制御フロチ
ャートと制御器の構成の一例を示す概略図である。
【図2】図2は、本発明の培養装置における制御フロチ
ャートの一例を示す図である。
【図3】図3は、本発明の培養装置における制御器の構
成の一例を示す概略図である。
【図4】図4は、本発明の培養装置の一例を示す概略構
成図である。
【図5】図5は、実施例1における溶存酸素量と培養時
間の関係を示すグラフである。
【符号の説明】
1 培養器 2 溶存酸素量検出手段 3 制御器 4 培養液貯槽 5 循環用ポンプ 6 ガス交換器
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 5/00

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 培養器内又は培養液の排出経路に培養液
    の溶存酸素量検出手段を設置し、検出された溶存酸素量
    に基づいて新たな培養液の供給量を制御しつつ培養を行
    う培養方法において、検出した溶存酸素量が予め設定し
    た特定値未満になると、その特定値以上になるまで新た
    な培養液の供給量を増加させ、該特定値まで回復した後
    は新たな培養液の供給量を一定に保つかさらに供給量を
    増加させ続けることにより、溶存酸素量を特定値以上に
    保つことを特徴とする培養方法。
  2. 【請求項2】 培養器内又は培養液の排出経路に培養液
    の溶存酸素量検出手段を設け、該検出手段によって検出
    された溶存酸素量に基づいて新たな培養液の供給量を制
    御する制御装置を有する培養装置において、該制御装置
    が、該検出手段によって検出された溶存酸素量が予め設
    定した特定値未満の場合は新たな培養液の供給量を増加
    させ、該特定値またはそれを超える場合は、新たな培養
    液の供給量を増加又は一定とすることを特徴とする培養
    装置。
JP6200070A 1994-08-01 1994-08-01 培養方法及び培養装置 Pending JPH0838166A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200070A JPH0838166A (ja) 1994-08-01 1994-08-01 培養方法及び培養装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200070A JPH0838166A (ja) 1994-08-01 1994-08-01 培養方法及び培養装置

Publications (1)

Publication Number Publication Date
JPH0838166A true JPH0838166A (ja) 1996-02-13

Family

ID=16418350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200070A Pending JPH0838166A (ja) 1994-08-01 1994-08-01 培養方法及び培養装置

Country Status (1)

Country Link
JP (1) JPH0838166A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521080A (ja) * 2014-07-25 2017-08-03 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 懸濁培養の方法及びシステム
WO2020090799A1 (ja) * 2018-11-02 2020-05-07 株式会社アステック 細胞培養装置、および細胞培養方法
WO2022196710A1 (ja) * 2021-03-17 2022-09-22 富士フイルム株式会社 細胞培養方法、及び有用物質の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104782A (ja) * 1984-10-26 1986-05-23 Hitachi Ltd 微生物の培養制御方法
JPH06261741A (ja) * 1993-03-11 1994-09-20 Nippon Sharyo Seizo Kaisha Ltd 微生物増殖方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104782A (ja) * 1984-10-26 1986-05-23 Hitachi Ltd 微生物の培養制御方法
JPH06261741A (ja) * 1993-03-11 1994-09-20 Nippon Sharyo Seizo Kaisha Ltd 微生物増殖方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521080A (ja) * 2014-07-25 2017-08-03 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 懸濁培養の方法及びシステム
US11254903B2 (en) 2014-07-25 2022-02-22 Cytiva Sweden Ab Method and system for suspension culture
WO2020090799A1 (ja) * 2018-11-02 2020-05-07 株式会社アステック 細胞培養装置、および細胞培養方法
JP2020068741A (ja) * 2018-11-02 2020-05-07 株式会社アステック 細胞培養装置、および細胞培養方法
WO2022196710A1 (ja) * 2021-03-17 2022-09-22 富士フイルム株式会社 細胞培養方法、及び有用物質の製造方法

Similar Documents

Publication Publication Date Title
US20230242857A1 (en) Cell-controlled perfusion in continuous culture
Riesenberg et al. High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1
Sokol Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida)
US7521203B2 (en) Feeding processes for fermentation
KR19990087465A (ko) 발효조절방법
Brown et al. The effect of acid pH on the growth kinetics of Trichoderma viride
KR20100056017A (ko) 세포 배양용 인큐베이터
Radlett et al. The supply of oxygen to submerged cultures of BHK 21 cells
Sokół Uptake rate of phenol by Pseudomonas putida grown in unsteady state
US5304483A (en) Controlling cultivation conditions for animal cells
JPH0838166A (ja) 培養方法及び培養装置
JP2008029272A (ja) 5−アミノレブリン酸の製造方法
JPS63233780A (ja) 酢酸を指標とした培養方法及びその装置
CN111004761A (zh) 一种l-酪氨酸基因工程菌及其生产l-酪氨酸的方法和应用
JP2000504215A (ja) 液体中の生物学的活性をモニタリングする方法
JPH10201467A (ja) 被培養体の生長判定方法および培養装置
JPH0347074A (ja) 乳酸を指標とした動物細胞の培養方法及び装置
JPH06261741A (ja) 微生物増殖方法
JP2932791B2 (ja) 微生物好気培養における炭素源濃度の制御方法及び装置
JP2933941B2 (ja) 動物細胞の培養環境条件の制御方法、制御装置、培養方法、及び、培養装置
JPS5942884A (ja) 通気撹拌培養方法及びそれに用いる装置
SU619511A1 (ru) Способ автоматического управлени процессом непрерывного выращивани микроорганизмов
Xu et al. Continuous glucose monitoring and control in a rotating wall perfused bioreactor
RU2811437C1 (ru) Способ культивирования метанокисляющих микроорганизмов
SU1390243A1 (ru) Способ контрол и регулировани аэробных ферментационных процессов