JPH0837024A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH0837024A
JPH0837024A JP6174180A JP17418094A JPH0837024A JP H0837024 A JPH0837024 A JP H0837024A JP 6174180 A JP6174180 A JP 6174180A JP 17418094 A JP17418094 A JP 17418094A JP H0837024 A JPH0837024 A JP H0837024A
Authority
JP
Japan
Prior art keywords
fluorine
ether
battery
secondary battery
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6174180A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mori
吉彦 森
Makoto Takizawa
誠 瀧澤
Masanori Ikeda
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6174180A priority Critical patent/JPH0837024A/en
Publication of JPH0837024A publication Critical patent/JPH0837024A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolytic secondary battery having a high capacity and excellent in the cyclic characteristics by allowing the electrolytic solution to contain a fluorine-containing ether. CONSTITUTION:A separator 5 consisting of a fine porous film is interposed between a positive electrode 1 and negative electrode 2, and these are laminated to form a spiral electrode. which is accommodated in a SUS battery vessel 6. In the vessel 6, propylene carbonate, ethylene carbonate, and gamma-butyrolactone are mixed together in a proportion by volume as 1:1:2 to provide a mixture solvent, to which a fluorine-containing ether is included. An electrolyte in which lithium tetrafluoro-borate is dissolved, is poured in, and the vessel 6 and a battery seal plate 7 are sealed through a packing 8, and thus a circular nonaqueous electrolyte battery is accomplished. The ratio of the number of fluorine atoms to the total number of fluorine atoms and hydrogen atoms in one molecule should preferably be 0.2-0.8-exceeding 0.9 lowers the solubility while a ratio below 0.2 does not ensure enhancement of the cyclic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高容量でサイクル性に優
れた新規な二次電池に関するものであり、特に電解液の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel secondary battery having high capacity and excellent cycleability, and more particularly to improvement of an electrolytic solution.

【0002】[0002]

【従来の技術】近年、有機電解液を用いた二次電池、特
にリチウムを用いた二次電池は高いエネルギー密度を有
することから注目を集めている。二次電池における重要
な特性として充電、放電を繰り返したときの容量変化が
少ないこと(サイクル安定性)が要求されるが、現状で
は十分なものではない。この原因として、負極表面にリ
チウムが樹枝状に成長して内部短絡を起こす、充放電の
繰り返しにより正極材料が徐々に分解、変質していく、
有機電解液の溶媒や電解質が分解や変質し、初期の特性
を維持できなくなる、などが指摘されている。これらの
うち有機電解液の溶媒に関しては、より安定性の高い溶
媒として環状炭酸エステルと環状エステルの混合溶媒を
用いる(特開平2−215059号公報)、炭酸エステ
ルとエーテルの混合溶媒を用いる(USP527202
2)、溶媒の安定性を高めるためテトラヒドロフルフリ
ルクロライドなどの、少なくとも1種類のハロゲン元素
を含む有機溶媒を用いる(特開平5−198316号公
報)ことなどが提案されている。さらに、樹枝状リチウ
ムの析出を防止するため例えば環状エーテルを添加する
(特開昭57−152684号公報)ことなどが提案さ
れている。しかしながら、これらの方法を用いても、用
いる溶媒の安定性が十分ではなく、従ってサイクル安定
性は十分ではないという問題点があった。
2. Description of the Related Art In recent years, a secondary battery using an organic electrolytic solution, particularly a secondary battery using lithium has attracted attention because it has a high energy density. An important characteristic of a secondary battery is that it is required to have a small capacity change (cycle stability) when it is repeatedly charged and discharged, but it is not sufficient at present. The cause of this is that lithium grows in a dendritic manner on the surface of the negative electrode to cause an internal short circuit, and the positive electrode material gradually decomposes and deteriorates due to repeated charging and discharging,
It has been pointed out that the solvent and the electrolyte of the organic electrolytic solution are decomposed or deteriorated and the initial characteristics cannot be maintained. Regarding the solvent of the organic electrolytic solution, a mixed solvent of cyclic carbonic acid ester and cyclic ester is used as a solvent having higher stability (JP-A-2-215059), or a mixed solvent of carbonic acid ester and ether is used (USP527202).
2) It has been proposed to use an organic solvent containing at least one kind of halogen element such as tetrahydrofurfuryl chloride in order to enhance the stability of the solvent (Japanese Patent Laid-Open No. 5-198316). Furthermore, in order to prevent the deposition of dendritic lithium, it has been proposed to add, for example, a cyclic ether (JP-A-57-152684). However, even if these methods are used, there is a problem that the stability of the solvent used is not sufficient and therefore the cycle stability is not sufficient.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これらの問
題を解決してサイクル安定性に優れた新規な二次電池を
提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves these problems and provides a novel secondary battery having excellent cycle stability.

【0004】[0004]

【課題を解決するための手段】本発明者らは、有機電解
液二次電池のサイクル性を向上させるため鋭意検討を重
ねた結果、有機電解液に含フッ素エーテルを添加するこ
とにより、著しくサイクル安定性が向上することを見い
だし本発明を完成するに至った。すなわち本発明は、正
極、負極及び有機電解液を基本構成とする二次電池であ
って、該有機電解液が、含フッ素エーテルを含有するこ
とを特徴とする非水電解液二次電池を提供するものであ
る。
Means for Solving the Problems As a result of intensive studies for improving the cycleability of an organic electrolyte secondary battery, the present inventors have found that the addition of a fluorine-containing ether to an organic electrolyte results in a marked cycle. The inventors have found that the stability is improved and have completed the present invention. That is, the present invention provides a secondary battery having a positive electrode, a negative electrode and an organic electrolytic solution as a basic configuration, wherein the organic electrolytic solution contains a fluorinated ether secondary battery. To do.

【0005】以下本発明につき詳細に説明する。本発明
は、有機電解液として含フッ素エーテルを含有すること
を特徴とする。本発明に使用される含フッ素エーテルと
しては、広範な種類の含フッ素エーテルが使用される
が、通常は以下の要件を満たす構造の含フッ素エーテル
を使用するのが望ましい。
The present invention will be described in detail below. The present invention is characterized by containing a fluorine-containing ether as an organic electrolytic solution. As the fluorinated ether used in the present invention, a wide variety of fluorinated ethers are used, but normally it is desirable to use a fluorinated ether having a structure satisfying the following requirements.

【0006】<1>分子内に少なくとも1個のフッ素原
子を含有するエーテル化合物であり、分子中の(フッ素
原子の数)/(フッ素原子の数+水素原子の数)の比
は、通常は0.01〜0.95の範囲、好ましくは0.
1〜0.9の範囲、特に好ましくは0.2〜0.8の範
囲である。前記の比が0.95を超えると、電解液への
溶解性が低くなるので好ましくない。また、0.01未
満であると、サイクル性能を向上させることは難しくな
る。
<1> An ether compound containing at least one fluorine atom in the molecule, and the ratio of (number of fluorine atoms) / (number of fluorine atoms + number of hydrogen atoms) in the molecule is usually The range is 0.01 to 0.95, preferably 0.
The range is 1 to 0.9, and particularly preferably the range is 0.2 to 0.8. If the above ratio exceeds 0.95, the solubility in the electrolytic solution becomes low, which is not preferable. If it is less than 0.01, it becomes difficult to improve the cycle performance.

【0007】<2>分子中の炭素原子と酸素原子の数の
合計は、通常は3〜40個の範囲であり、、好ましくは
4〜30個の範囲である。分子中の酸素原子は、通常は
1〜8個の範囲であり、好ましくは1〜4個の範囲であ
る。<2>、<3>に関して、各々の範囲を超えると電
解液の粘度が高くなりすぎ、また、この範囲より低いと
サイクル性能の向上に寄与しえず好ましくない。
<2> The total number of carbon atoms and oxygen atoms in the molecule is usually in the range of 3 to 40, preferably 4 to 30. The number of oxygen atoms in the molecule is usually in the range of 1 to 8, preferably 1 to 4. Regarding <2> and <3>, if the respective ranges are exceeded, the viscosity of the electrolytic solution becomes too high, and if it is lower than this range, the cycle performance cannot be improved, which is not preferable.

【0008】本発明に使用される含フッ素エーテルとし
ては、鎖状エーテルと環状エーテルがある。本発明に使
用される含フッ素鎖状エーテルの例としては、例えば一
般式(1)で表される化合物が挙げられる。
The fluorine-containing ether used in the present invention includes chain ether and cyclic ether. Examples of the fluorine-containing chain ether used in the present invention include compounds represented by the general formula (1).

【0009】[0009]

【化1】 Embedded image

【0010】(式中nは0〜8の整数をあらわす。
1 、R2 、R3 は、C1 〜C6 の直鎖あるいは分岐の
1価または2価の炭化水素基、あるいは1個以上のフッ
素原子を含む直鎖あるいは分岐の1価または2価のフッ
素置換炭化水素基をあらわすが、それぞれは、同一ある
いは異なっていてもよい。R1 、R2 、R3 のうちの少
なくとも1つに、1個以上のフッ素原子を含む。) 含フッ素鎖状エーテルの具体例として CF3 CF2 CH2 OCH3 、 (L1) (CF3 2 CHCF2 OCH3 、 (L2) CF3 CFHCF2 OCH3 、 (L3) CF3 CF2 CH2 OCF2 CF2 H、 (L4) HCF2 CF2 OCH3 、 (L5) HCF2 CF2 OC2 5 、 (L6) CF3 CH2 OCH2 CF3 、 (L7) C2 5 OCF2 CHBrF、 (L8) C4 9 OCF2 CF2 H、 (L9) CF3 CHClOCHF2 、 (L10) CHClFCF2 OCHF2 、 (L11) CHClFCF2 OCH2 CH3 、 (L12) CHClFCF2 OCH3 、 (L13) CHCl2 CF2 OCH3 、 (L14) CF3 CH2 OCHF2 、 (L15) C3 7 OCHFCF3 、 (L16) (CF3 2 CHOCH2 F、 (L17) CF3 CFIOCF3 、 (L18) (CF3 2 CFOCH2 CH2 CF2 CF2 I、 (L19) F[CF(CF3 )CF2 O]2 CHFCF3 、 (L20) (CF3 2 CFOCH2 CH=CH2 、 (L21) CF3 (CF2 2 CH2 OCH2 CH=CH2 、 (L22) CF3 (CF2 6 CH2 OCH2 CH=CH2 、 (L23) CF3 CHFCF2 OCH2 CH=CH2 、 (L24) CHF2 CF2 OCH2 CH=CH2 、 (L25) CF3 CH2 OCF=CF2 、 (L26) CF3 CH2 OCH=CH2 、 (L27) CF3 OCF=CF2 、 (L28) CH3 O−[CH(CF3 )CH2 O]n −CH3 (n=1〜7)(L29) が挙げられる。
(In the formula, n represents an integer of 0-8.
R 1 , R 2 and R 3 are each a C 1 to C 6 linear or branched monovalent or divalent hydrocarbon group, or a linear or branched monovalent or divalent hydrocarbon group containing at least one fluorine atom. Represents a fluorine-substituted hydrocarbon group of, but each may be the same or different. At least one of R 1 , R 2 and R 3 contains at least one fluorine atom. ) Specific examples of the fluorine-containing chain ether include CF 3 CF 2 CH 2 OCH 3 , (L1) (CF 3 ) 2 CHCF 2 OCH 3 , (L2) CF 3 CFHCF 2 OCH 3 , and (L3) CF 3 CF 2 CH 2 OCF 2 CF 2 H, (L4) HCF 2 CF 2 OCH 3 , (L 5) HCF 2 CF 2 OC 2 H 5 , (L 6) CF 3 CH 2 OCH 2 CF 3 , (L 7) C 2 H 5 OCF 2 CHBrF, (L8) C 4 H 9 OCF 2 CF 2 H, (L 9) CF 3 CHClOCHF 2 , (L 10) CHClFCF 2 OCHF 2 , (L 11) CHClFCF 2 OCH 2 CH 3 , (L 12) CHClFCF 2 OCH 3 , ( L13) CHCl 2 CF 2 OCH 3 , (L 14) CF 3 CH 2 OCHF 2 , (L 15) C 3 F 7 OCHFCF 3 , (L 16) (CF 3 ) 2 CHOCH 2 F, (L17) CF 3 CFIOCF 3 , (L18) (CF 3 ) 2 CFOCH 2 CH 2 CF 2 CF 2 I, (L19) F [CF (CF 3 ) CF 2 O] 2 CHFCF 3 , (L20) ( CF 3) 2 CFOCH 2 CH = CH 2, (L21) CF 3 (CF 2) 2 CH 2 OCH 2 CH = CH 2, (L22) CF 3 (CF 2) 6 CH 2 OCH 2 CH = CH 2, ( L23) CF 3 CHFCF 2 OCH 2 CH = CH 2, (L24) CHF 2 CF 2 OCH 2 CH = CH 2, (L25) CF 3 CH 2 OCF = CF 2, (L26) CF 3 CH 2 OCH = CH 2 , (L27) CF 3 OCF = CF 2, include (L28) CH 3 O- [CH (CF 3) CH 2 O] n -CH 3 (n = 1~7) (L29).

【0011】本発明に使用される含フッ素環状エーテル
の例としては、例えば一般式(2)、(3)、(4)、
(5)、(6)で表される化合物が挙げられる。
Examples of the fluorine-containing cyclic ether used in the present invention include, for example, general formulas (2), (3), (4),
Examples thereof include the compounds represented by (5) and (6).

【0012】[0012]

【化2】 Embedded image

【0013】(式中R1 〜R8 は、水素、フッ素、C1
〜C6 の直鎖又は分岐の1価または2価の炭化水素基、
又はC1 〜C6 の直鎖又は分岐の1価または2価のフッ
素置換炭化水素基のいずれかであり、該炭化水素基及び
フッ素置換炭化水素基中にはエーテル基を含んでもよ
い。また、R1 〜R8 は各々同一でも異なっていてもよ
い。ただし、R1 〜R8 のうち少なくとも一つはフッ素
原子を含む。)
(Wherein R 1 to R 8 are hydrogen, fluorine, C 1
To C 6 linear or branched monovalent or divalent hydrocarbon group,
Alternatively, it is either a C 1 to C 6 linear or branched monovalent or divalent fluorine-substituted hydrocarbon group, and the hydrocarbon group and the fluorine-substituted hydrocarbon group may contain an ether group. R 1 to R 8 may be the same or different. However, at least one of R 1 to R 8 contains a fluorine atom. )

【0014】[0014]

【化3】 Embedded image

【0015】(式中R1 〜R6 は、水素、フッ素、C1
〜C6 の直鎖又は分岐の1価または2価の炭化水素基、
又はC1 〜C6 の直鎖又は分岐の1価または2価のフッ
素置換炭化水素基のいずれかであり、該炭化水素基及び
フッ素置換炭化水素基中にはエーテル基を含んでもよ
い。また、R1 〜R6 は各々同一でも異なっていてもよ
い。ただし、R1 〜R6 のうち少なくとも一つはフッ素
原子を含む。)
(In the formula, R 1 to R 6 are hydrogen, fluorine, C 1
To C 6 linear or branched monovalent or divalent hydrocarbon group,
Alternatively, it is either a C 1 to C 6 linear or branched monovalent or divalent fluorine-substituted hydrocarbon group, and the hydrocarbon group and the fluorine-substituted hydrocarbon group may contain an ether group. In addition, R 1 to R 6 may be the same or different. However, at least one of R 1 to R 6 contains a fluorine atom. )

【0016】[0016]

【化4】 [Chemical 4]

【0017】(式中R1 〜R8 は、水素、フッ素、C1
〜C6 の直鎖又は分岐の1価または2価の炭化水素基、
又はC1 〜C6 の直鎖又は分岐の1価または2価のフッ
素置換炭化水素基のいずれかであり、該炭化水素基及び
フッ素置換炭化水素基中にはエーテル基を含んでもよ
い。また、R1 〜R8 は各々同一でも異なっていてもよ
い。ただし、R1 〜R8 のうち少なくとも一つはフッ素
原子を含む。)
(Wherein R 1 to R 8 are hydrogen, fluorine, C 1
To C 6 linear or branched monovalent or divalent hydrocarbon group,
Alternatively, it is either a C 1 to C 6 linear or branched monovalent or divalent fluorine-substituted hydrocarbon group, and the hydrocarbon group and the fluorine-substituted hydrocarbon group may contain an ether group. R 1 to R 8 may be the same or different. However, at least one of R 1 to R 8 contains a fluorine atom. )

【0018】[0018]

【化5】 Embedded image

【0019】(式中R1 〜R6 は、水素、フッ素、C1
〜C6 の直鎖又は分岐の1価または2価の炭化水素基、
又はC1 〜C6 の直鎖又は分岐の1価または2価のフッ
素置換炭化水素基のいずれかであり、該炭化水素基及び
フッ素置換炭化水素基中にはエーテル基を含んでもよ
い。また、R1 〜R8 は各々同一でも異なっていてもよ
い。ただし、R1 〜R6 のうち少なくとも一つはフッ素
原子を含む。)
(In the formula, R 1 to R 6 are hydrogen, fluorine, C 1
To C 6 linear or branched monovalent or divalent hydrocarbon group,
Alternatively, it is either a C 1 to C 6 linear or branched monovalent or divalent fluorine-substituted hydrocarbon group, and the hydrocarbon group and the fluorine-substituted hydrocarbon group may contain an ether group. R 1 to R 8 may be the same or different. However, at least one of R 1 to R 6 contains a fluorine atom. )

【0020】[0020]

【化6】 [Chemical 6]

【0021】(式中R1 〜R16は、水素、フッ素、C1
〜C6 の直鎖又は分岐の1価または2価の炭化水素基、
又はC1 〜C16の直鎖又は分岐の1価または2価のフッ
素置換炭化水素基のいずれかであり、該炭化水素基及び
フッ素置換炭化水素基中にはエーテル基を含んでもよ
い。また、R1 〜R8 は各々同一でも異なっていてもよ
い。ただし、R1 〜R16のうち少なくとも一つはフッ素
原子を含む。) 含フッ素環状エーテルの具体例として
(Wherein R 1 to R 16 are hydrogen, fluorine, C 1
To C 6 linear or branched monovalent or divalent hydrocarbon group,
Or, it is either a C 1 to C 16 linear or branched monovalent or divalent fluorine-substituted hydrocarbon group, and the hydrocarbon group and the fluorine-substituted hydrocarbon group may contain an ether group. R 1 to R 8 may be the same or different. However, at least one of R 1 to R 16 contains a fluorine atom. ) Specific examples of the fluorine-containing cyclic ether

【0022】[0022]

【化7】 [Chemical 7]

【0023】[0023]

【化8】 Embedded image

【0024】[0024]

【化9】 [Chemical 9]

【0025】[0025]

【化10】 [Chemical 10]

【0026】が挙げられる。本発明の含フッ素エーテル
を添加することによりサイクル安定性が向上する理由は
明かではないが、充放電により添加した含フッ素エーテ
ルが反応あるいは分解し負極上に堆積して負極表面を変
性し、負極と電解液や電解質との反応を抑制する為では
ないかと推定している。このときフッ素原子を含むエー
テル化合物はより効果的に負極との反応を抑制すると推
定している。
And the like. The reason why the cycle stability is improved by adding the fluorinated ether of the present invention is not clear, but the fluorinated ether added by charge / discharge reacts or decomposes and is deposited on the negative electrode to modify the negative electrode surface, It is presumed that this is to suppress the reaction between the electrolyte solution and the electrolyte. At this time, it is presumed that the ether compound containing a fluorine atom more effectively suppresses the reaction with the negative electrode.

【0027】本発明の含フッ素エーテルを添加する効果
は、広範な種類の電解液に対して用いることができる
が、特に環状炭酸エステル、非環状炭酸エステル、環状
エステル、鎖状エステル、環状エーテル、鎖状エーテル
を電解液として用いたとき、後述の効果に関して、良好
な結果が得られ、さらにこれらから選ばれる複数の混合
溶媒を溶媒として用いたとき特に良好な結果が得られ
る。
The effect of adding the fluorine-containing ether of the present invention can be applied to a wide variety of electrolytic solutions, and in particular, cyclic carbonic acid ester, acyclic carbonic acid ester, cyclic ester, chain ester, cyclic ether, When chain ether is used as the electrolytic solution, good results are obtained with respect to the effects described below, and particularly when a plurality of mixed solvents selected from these are used as the solvent, particularly good results are obtained.

【0028】ここでいう環状炭酸エステルとしては、具
体的にはエチレンカーボネート、プロピレンカーボネー
ト、1,2−ブチレンカーボネート、2,3−ブチレン
カーボネート、1,2−ペンテンカーボネート、2,3
−ペンテンカーボネート、1,3−ジオキサ−2−シク
ロヘキサノン、4−メチル−1,3−ジオキサ−2−シ
クロヘキサノン、4−イソプロピル−5,5−ジメチル
−1,3−ジオキサ−2−シクロヘキサノン、シクロヘ
キシルカーボネート(化11)
Specific examples of the cyclic carbonic acid ester mentioned here include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentene carbonate and 2,3.
-Pentene carbonate, 1,3-dioxa-2-cyclohexanone, 4-methyl-1,3-dioxa-2-cyclohexanone, 4-isopropyl-5,5-dimethyl-1,3-dioxa-2-cyclohexanone, cyclohexyl carbonate (Chemical formula 11)

【0029】[0029]

【化11】 [Chemical 11]

【0030】が挙げられる。非環状炭酸エステルとして
は、具体的には例えばジメチルカーボネート、ジエチル
カーボネート、メチルエチルカーボネート、ブチルメチ
ルカーボネートなどが挙げられる。環状エステルとして
は、具体的には例えばβ−ブチロラクトン、γ−ブチロ
ラクトン、γ−バレロラクトン、δ−バレロラクトンな
どが挙げられる。
And the like. Specific examples of the acyclic carbonic acid ester include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and butyl methyl carbonate. Specific examples of the cyclic ester include β-butyrolactone, γ-butyrolactone, γ-valerolactone, and δ-valerolactone.

【0031】鎖状エステルとしては、具体的には例えば
蟻酸メチル、蟻酸エチル、蟻酸プロピル、酢酸メチル、
酢酸エチル、酢酸プロピル、酢酸ペンチル、プロピオン
酸メチル、プロピオン酸エチル、プロピオン酸ブチル、
酪酸メチル、酪酸エチルなどが挙げられる。環状エーテ
ルとしては例えばテトラヒドロフラン、2−メチルテト
ラヒドロフランなどの環状エーテル類、1,3−ジオキ
ソラン、1,4−ジオキサンなどの環状ジエーテル類、
12−クラウン−4、15−クラウン−5、18−クラ
ウン−6などのクラウンエーテル類が挙げられる。
Specific examples of the chain ester include methyl formate, ethyl formate, propyl formate, methyl acetate,
Ethyl acetate, propyl acetate, pentyl acetate, methyl propionate, ethyl propionate, butyl propionate,
Examples include methyl butyrate and ethyl butyrate. Examples of cyclic ethers include cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, cyclic diethers such as 1,3-dioxolane and 1,4-dioxane,
Crown ethers such as 12-crown-4, 15-crown-5, 18-crown-6 and the like can be mentioned.

【0032】鎖状エーテルとしては例えばエチルエーテ
ル、プロピルエーテル、ブチルエーテル、ペンチルエー
テル、ヘキシルエーテル、フェニルエーテルなどのエー
テル類、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、1,2−ジメトキシプロパン、1,2−ジエ
トキシプロパン、ジエチレングリコールジメチルエーテ
ル、ジエチレングリコールジエチルエーテル、ジエチレ
ングリコールジブチルエーテルなどのジエーテル類が挙
げられる。
Examples of the chain ether include ethers such as ethyl ether, propyl ether, butyl ether, pentyl ether, hexyl ether and phenyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dimethoxy. Diethers such as propane, 1,2-diethoxypropane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether may be mentioned.

【0033】電解質としては、LiClO4 、LiAs
6 、LiCF3 SO3 、LiCF 3 CHFCF2 SO
3 、LiCF2 HCF2 SO3 、LiCF2 HSO3
LiBF4 、LiPF6 、Li(CF3 S02 2 Nな
どを単独で、あるいは複数を混合して上記溶媒に溶解し
て用いることができる。本発明の含フッ素エーテルは、
上記の電解液に対して0.1体積%ないし30体積%の
範囲で添加したとき効果が大きく、0.5体積%以上2
0体積%の範囲の添加が更に好ましく、0.5体積%な
いし15体積%の範囲の添加が特に好ましい。0.1体
積%以下ではサイクル安定性改善の効果が小さく、30
体積%以上ではサイクル安定性は向上するものの、容量
が小さくなる。また、用いる含フッ素エーテルは1種類
でもよいし、複数を混合して用いてもよい。
As the electrolyte, LiClOFour, LiAs
F6, LiCF3SO3, LiCF 3CHFCF2SO
3, LiCF2HCF2SO3, LiCF2HSO3,
LiBFFour, LiPF6, Li (CF3S02)2N
Dissolve in the above solvent either alone or as a mixture of multiple
Can be used. The fluorine-containing ether of the present invention is
0.1% to 30% by volume of the above electrolyte
When added in the range, the effect is large, 0.5 volume% or more 2
Addition in the range of 0% by volume is more preferable, and 0.5% by volume is preferable.
Addition in the range of 15% by volume is particularly preferable. 0.1 body
If it is less than product%, the effect of improving cycle stability is small,
Cycle stability improves at volume% or more, but capacity
Becomes smaller. Also, one type of fluorine-containing ether is used
However, a plurality of them may be mixed and used.

【0034】本発明における正極、負極は特に限定され
るものではないが、正極としては例えばTiS2 、Ti
3 、MoS3 、FeS2 などの金属硫化物、Li
(1ーx)CoO2 、Li(1-x) NiO2 、Li(1-x) Mn
2 、Li(1-x) Coy Snz2 、Li(1-x) Coy
Niz 2 、Li(1-x) Coy Fez 2 などのアルカ
リ金属含有複合酸化物、V2 5 、V6 13、MoO3
などの金属酸化物が挙げられる。また、負極の一例を示
すとリチウム金属、リチウム合金、炭素質材料、導電性
高分子などが挙げられる。負極として炭素質材料を用い
た場合、特に顕著な効果が見いだされる。
Although the positive electrode and the negative electrode in the present invention are not particularly limited, examples of the positive electrode include TiS 2 and Ti.
Metal sulfides such as S 3 , MoS 3 and FeS 2 , Li
(1-x) CoO 2 , Li (1-x) NiO 2 , Li (1-x) Mn
O 2 , Li (1-x) Co y Sn z O 2 , Li (1-x) Co y
Ni z O 2 , Li (1-x) Co y Fe z O 2, and other alkali metal-containing composite oxides, V 2 O 5 , V 6 O 13 , MoO 3
Metal oxides such as Further, examples of the negative electrode include lithium metal, lithium alloy, carbonaceous material, and conductive polymer. A particularly remarkable effect is found when a carbonaceous material is used as the negative electrode.

【0035】[0035]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0036】[0036]

【実施例1〜7及び比較例1】図1に示す円筒型非水電
解液電池を下記のようにして作製した。まず、LiCo
2 をボールミルで平均粒径3μmに粉砕した後、この
粉末1重量部に対しグラファイト0.025重量部、ア
セチレンブラック0.025重量部、結合剤としてポリ
フッ化ビニリデン0.02重量部を加え、ジメチルホル
ムアミドを用いてペースト状にしたものを、厚さ15μ
mのアルミ箔の片面に乾燥膜厚が100μmになるように
塗布して正極1を作製した。
Examples 1 to 7 and Comparative Example 1 The cylindrical non-aqueous electrolyte battery shown in FIG. 1 was produced as follows. First, LiCo
O 2 was crushed with a ball mill to an average particle size of 3 μm, and then 0.025 part by weight of graphite, 0.025 part by weight of acetylene black, and 0.02 part by weight of polyvinylidene fluoride as a binder were added to 1 part by weight of this powder. The paste made with dimethylformamide has a thickness of 15μ
A positive electrode 1 was produced by applying a dry film thickness of 100 μm on one surface of an aluminum foil of m.

【0037】一方、市販の石油系ニードルコークス(興
亜石油社製、KOA−SJ Coke)をボールミルで
平均粒径10μmに粉砕した。このニードルコークスの
BET表面積、真密度、X線回折より得られる面間隔d
002 、Lc(002) はそれぞれ、11m2 /g、2.13
g/cm3 、3.44Å、52Åであった。この粉末1
重量部に対して結合剤としてポリフッ化ビニリデン0.
05重量部を加え、ジメチルホルムアミドを用いてペー
スト状にし、厚さ10μmの銅箔の片面に乾燥膜厚が1
30μmになるように塗布して負極2を作製した。な
お、正極1及び負極2には、集電を行うためのアルミニ
ウム製の正極リード端子3、銅製の負極リード端子4を
それぞれ溶接した。
On the other hand, a commercially available petroleum needle coke (KOA-SJ Coke, manufactured by Koa Oil Co., Ltd.) was pulverized with a ball mill to an average particle size of 10 μm. BET surface area of this needle coke, true density, surface spacing d obtained from X-ray diffraction
002 and Lc (002) are 11 m 2 / g and 2.13, respectively.
It was g / cm 3 , 3.44Å, 52Å. This powder 1
Polyvinylidene fluoride as a binder for 0.1 part by weight.
Add 05 parts by weight, and use dimethylformamide to make a paste, and a dry film thickness of 1 μm on one side of a copper foil with a thickness of 10 μm.
The negative electrode 2 was manufactured by applying the coating solution so as to have a thickness of 30 μm. A positive electrode lead terminal 3 made of aluminum and a negative electrode lead terminal 4 made of copper for collecting current were welded to the positive electrode 1 and the negative electrode 2, respectively.

【0038】そして、正極1と負極2の間に、ポリエチ
レン製の微多孔膜からなるセパレータ5を介在させて互
いに積層し、多数回捲回して、渦巻型の電極体を作製し
た。そして、この渦巻型の電極体をSUS製電池容器6
中に収納した。負極リード端子4を電池容器6の内底部
にスポット溶接により接続し、正極リード端子3は電池
封口板7に同様にして接続した。
Then, a separator 5 made of a polyethylene microporous film was interposed between the positive electrode 1 and the negative electrode 2, and the layers were laminated and wound many times to prepare a spirally wound electrode body. Then, this spiral-shaped electrode body is used for the SUS battery container 6
Stored inside. The negative electrode lead terminal 4 was connected to the inner bottom portion of the battery container 6 by spot welding, and the positive electrode lead terminal 3 was similarly connected to the battery sealing plate 7.

【0039】次に、この電極体が収納された電池缶容器
6中に、プロピレンカーボネートとエチレンカーボネー
トとγ−ブチロラクトンを体積比1対1対2で混合した
混合溶媒に、含フッ素エーテルとして、(CF3 2
HCF2 OCH3 (L2)(ダイキン化成品販売(株)
製T−7311)を表1に示す割合で混合し、電解質と
してテトラフルオロほう酸リチウム(LiBF4 )を
1.0モル/リットルになるように溶解させて調整した
電解液を注液し、該電池容器6と前記電池封口板7とを
ポリプロピレン製パッキング8を介し、嵌合してかしめ
ることで密封し、外径20mm、50mmの円筒型非水
電解液電池を作製した。
Next, in a battery can container 6 accommodating this electrode assembly, a mixed solvent of propylene carbonate, ethylene carbonate and γ-butyrolactone was mixed at a volume ratio of 1: 1, 2: CF 3 ) 2 C
HCF 2 OCH 3 (L2) (Daikin Chemical Products Sales Co., Ltd.)
T7311) produced in Table 1 was mixed, and an electrolyte prepared by dissolving lithium tetrafluoroborate (LiBF 4 ) as an electrolyte in an amount of 1.0 mol / liter was poured into the battery. The container 6 and the battery sealing plate 7 were sealed by fitting and caulking via a polypropylene packing 8 to prepare a cylindrical non-aqueous electrolyte battery having an outer diameter of 20 mm and 50 mm.

【0040】このようにして作製した各電池についてサ
イクル性能特性を評価した。試験条件は、充放電電流1
A、充電終始電圧4.2V、放電終始電圧2.7Vと
し、20℃で充放電を100サイクル繰り返し、100
サイクル目の放電容量の1サイクル目の放電容量に対す
る比を放電容量保持率として算出した。電池A〜Hの1
サイクル目の放電容量と100サイクル目の放電容量保
持率を表1に示す。表1より、1サイクル目の放電容量
は20%以上の添加で小さくなるが、容量保持率は添加
量が多いほど良くなることが明らかである。
The cycle performance characteristics of each battery thus manufactured were evaluated. Test condition is charge / discharge current 1
A, charge start-and-stop voltage 4.2V, discharge start-and-stop voltage 2.7V, charge and discharge is repeated 100 cycles at 20 ℃, 100
The ratio of the discharge capacity at the first cycle to the discharge capacity at the first cycle was calculated as the discharge capacity retention rate. Battery A-H 1
Table 1 shows the discharge capacity at the cycle and the discharge capacity retention rate at the 100th cycle. From Table 1, it is clear that the discharge capacity in the first cycle decreases with the addition of 20% or more, but the capacity retention rate improves as the addition amount increases.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【実施例8〜14】電解液にエチレンカーボネートとγ
−ブチロラクトンを体積比1対3で混合した溶媒に、表
2に示す各種含フッ素エーテルを1体積%添加して溶媒
とし、電解質としてテトラフルオロほう酸リチウム(L
iBF4 )を1.5モル/リットルの濃度で溶解させて
調整した電解液を注液した以外は実施例1と同様の電池
を作製した。このようにして作製した各電池について、
実施例1と同様の条件で1サイクル目の放電容量、10
0サイクル目の容量保持率を調べた結果を表2に示す。
いずれの含フッ素エーテルでも、添加することによりサ
イクル性能が向上する。
[Examples 8 to 14] Ethylene carbonate and γ were added to the electrolytic solution.
1 volume% of various fluorine-containing ethers shown in Table 2 was added to a solvent in which butyrolactone was mixed at a volume ratio of 1: 3 to prepare a solvent, and lithium tetrafluoroborate (L
A battery was produced in the same manner as in Example 1 except that the electrolyte solution prepared by dissolving iBF 4 ) at a concentration of 1.5 mol / liter was injected. For each battery produced in this way,
Under the same conditions as in Example 1, the discharge capacity at the first cycle was 10
Table 2 shows the results of examining the capacity retention ratio at the 0th cycle.
Addition of any fluorine-containing ether improves cycle performance.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【実施例15〜21】電解液にプロピレンカーボネート
とジエチルカーボネートを体積比1対1で混合した溶媒
に、表3に示す各種含フッ素エーテルを1体積%添加し
て溶媒とし、電解質としてヘキサフルオロ燐酸リチウム
(LiPF6 )を1.0モル/リットルの濃度で溶解さ
せて調整した電解液を注液した以外は実施例1と同様の
電池を作製した。このようにして作製した各電池につい
て、実施例1と同様の条件で1サイクル目の放電容量、
100サイクル目の容量保持率を調べた結果を表3に示
す。いずれの含フッ素エーテルでも、添加することによ
りサイクル性能が向上する。
Examples 15 to 21 To a solvent prepared by mixing propylene carbonate and diethyl carbonate at a volume ratio of 1: 1 to an electrolytic solution, 1% by volume of various fluorinated ethers shown in Table 3 was added as a solvent, and hexafluorophosphoric acid was used as an electrolyte. A battery was produced in the same manner as in Example 1 except that lithium (LiPF 6 ) was dissolved at a concentration of 1.0 mol / liter and an adjusted electrolytic solution was injected. For each of the batteries thus manufactured, the discharge capacity at the first cycle under the same conditions as in Example 1,
Table 3 shows the results of examining the capacity retention rate at the 100th cycle. Addition of any fluorine-containing ether improves cycle performance.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【比較例2】エーテルとしてL2のかわりに含塩素エー
テルであるテトラヒドロフルフリルクロライドを1体積
%加える以外は実施例15と同様の方法で電池を作成
し、評価した。その結果1サイクル目の放電容量は10
60mAhと良好であったが、100サイクル目の容量
保持率は62.0%と、未添加に比べ悪くなった。
Comparative Example 2 A battery was prepared and evaluated in the same manner as in Example 15, except that 1% by volume of tetrahydrofurfuryl chloride, which is a chlorine-containing ether, was added in place of L2 as the ether. As a result, the discharge capacity in the first cycle is 10
Although it was as good as 60 mAh, the capacity retention ratio at the 100th cycle was 62.0%, which was worse than that without addition.

【0047】[0047]

【比較例3】エーテルとしてC2のかわりにフッ素を含
まない12−クラウン−4を用いる以外は実施例14と
同様の方法で電池を作成し、評価した。その結果1サイ
クル目の放電容量は1061mAhと良好であったが、
100サイクル目の容量保持率は58.3%と、未添加
に比べ悪くなった。
Comparative Example 3 A battery was prepared and evaluated in the same manner as in Example 14 except that 12-crown-4 containing no fluorine was used as the ether instead of C2. As a result, the discharge capacity at the first cycle was as good as 1061 mAh,
The capacity retention rate at the 100th cycle was 58.3%, which was worse than that without addition.

【0048】[0048]

【実施例22、23】電解液に、表4に示すようなエチ
レンカーボネート(EC)、ジエチルカーボネート(D
EC)、プロピオン酸メチル(MP)を体積比2対3対
1で混合した組成の混合溶媒と、プロピレンカーボネー
ト(PC)、1,2−ジメトキシエタン(DME)を体
積比1対1で混合した組成の混合溶媒それぞれに、1,
1,2,2−テトラフルオロエチルエチルエーテル(L
6)を1体積%添加し溶媒とし、電解質としてヘキサフ
ルオロ燐酸リチウム(LiPF6 )を1.0モル/リッ
トルの濃度で溶解させて調整した電解液を注液した以外
は実施例1と同様の電池を作製した。このようにして作
製した各電池について、実施例1と同様の条件で1サイ
クル目の放電容量、100サイクル目の容量保持率を調
べた結果を表5に示す。いずれの含フッ素エーテルで
も、添加することによりサイクル性能が向上する。
[Embodiments 22 and 23] In the electrolytic solution, ethylene carbonate (EC) and diethyl carbonate (D
EC) and methyl propionate (MP) were mixed at a volume ratio of 2 to 3 to 1, and propylene carbonate (PC) and 1,2-dimethoxyethane (DME) were mixed at a volume ratio of 1 to 1. For each mixed solvent of composition,
1,2,2-tetrafluoroethyl ethyl ether (L
6) 1% by volume was added as a solvent, and lithium hexafluorophosphate (LiPF 6 ) as an electrolyte was dissolved at a concentration of 1.0 mol / liter to prepare an electrolytic solution, which was prepared in the same manner as in Example 1. A battery was made. Table 5 shows the results of examining the discharge capacity at the first cycle and the capacity retention rate at the 100th cycle for each of the batteries thus manufactured under the same conditions as in Example 1. Addition of any fluorine-containing ether improves cycle performance.

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【発明の効果】以上の説明から明らかなように、非水電
解液二次電池の電解液に含フッ素エーテルを含有させる
ことにより、高容量でサイクル性に優れた新規な二次電
池を得ることができる。
As is apparent from the above description, by incorporating a fluorine-containing ether in the electrolytic solution of a non-aqueous electrolyte secondary battery, it is possible to obtain a new secondary battery with high capacity and excellent cycleability. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例、比較例で用いた非水電解液電
池の縦断面図である。
FIG. 1 is a vertical cross-sectional view of non-aqueous electrolyte batteries used in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 帯状正極 2 帯状負極 3 正極リード端子 4 負極リード端子 5 セパレーター 6 電池容器 7 電池封口板 8 パッキング 9 絶縁板 10 絶縁板 1 band-shaped positive electrode 2 band-shaped negative electrode 3 positive electrode lead terminal 4 negative electrode lead terminal 5 separator 6 battery container 7 battery sealing plate 8 packing 9 insulating plate 10 insulating plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極、負極及び有機電解液を基本構成とす
る二次電池であって、該有機電解液が、含フッ素エーテ
ルを含有することを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an organic electrolytic solution as a basic component, wherein the organic electrolytic solution contains a fluorine-containing ether.
JP6174180A 1994-07-26 1994-07-26 Nonaqueous electrolytic secondary battery Withdrawn JPH0837024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6174180A JPH0837024A (en) 1994-07-26 1994-07-26 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6174180A JPH0837024A (en) 1994-07-26 1994-07-26 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH0837024A true JPH0837024A (en) 1996-02-06

Family

ID=15974118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6174180A Withdrawn JPH0837024A (en) 1994-07-26 1994-07-26 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH0837024A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938151A2 (en) * 1998-02-20 1999-08-25 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
EP1085591A1 (en) * 1999-09-20 2001-03-21 Hitachi, Ltd. Electrolyte, lithium battery and electrochemical capacitor
US6849194B2 (en) 2000-11-17 2005-02-01 Pcbu Services, Inc. Methods for preparing ethers, ether compositions, fluoroether fire extinguishing systems, mixtures and methods
US6908712B2 (en) 2000-12-27 2005-06-21 Mitsubishi Chemical Corporation Lithium secondary cell
WO2006017533A2 (en) * 2004-08-03 2006-02-16 3M Innovative Properties Company Nonaqueous electrolytic solution for electrochemical energy devices
WO2007020876A1 (en) * 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2009133899A1 (en) * 2008-04-28 2009-11-05 旭硝子株式会社 Secondary cell nonaqueous electrolyte and secondary cell
WO2010001850A1 (en) 2008-06-30 2010-01-07 ダイキン工業株式会社 Lithium secondary cell
WO2010004952A1 (en) 2008-07-09 2010-01-14 ダイキン工業株式会社 Nonaqueous electrolyte solution
WO2010013739A1 (en) 2008-07-30 2010-02-04 ダイキン工業株式会社 Solvent for dissolution of electrolytic salt of lithium secondary battery
JP2010146740A (en) * 2008-12-16 2010-07-01 Daikin Ind Ltd Electrolytic solution
WO2010110290A1 (en) * 2009-03-26 2010-09-30 ダイキン工業株式会社 Nonaqueous electrolyte solution for lithium secondary battery
WO2010143658A1 (en) 2009-06-10 2010-12-16 旭化成イーマテリアルズ株式会社 Electrolytic solution and lithium ion secondary battery utilizing same
US8007679B2 (en) 2005-03-30 2011-08-30 Daikin Industries, Ltd. Electrolytic solution
WO2011149072A1 (en) * 2010-05-28 2011-12-01 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and secondary battery
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012011508A1 (en) * 2010-07-21 2012-01-26 旭硝子株式会社 Non-aqueous electrolyte for use in secondary batteries, and secondary battery
WO2012011507A1 (en) 2010-07-21 2012-01-26 旭硝子株式会社 Non-aqueous electrolyte for secondary batteries, and secondary battery
WO2012029625A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US8343374B2 (en) 2005-03-30 2013-01-01 Daikin Industries, Ltd. Electrolytic solution
US8399136B2 (en) 2009-02-18 2013-03-19 Asahi Kasei E-Materials Corporation Electrolyte solution for lithium ion secondary battery, lithium ion secondary battery, fluoroalkane derivative and gelling agent
WO2013129428A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Lithium secondary cell
JPWO2012014818A1 (en) * 2010-07-30 2013-09-12 日本ゼオン株式会社 Ether compound, non-aqueous battery electrolyte composition, non-aqueous battery electrode binder composition, non-aqueous battery electrode slurry composition, non-aqueous battery electrode and non-aqueous battery
WO2013146359A1 (en) 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
CN103928709A (en) * 2014-04-23 2014-07-16 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte and lithium ion battery
EP2757626A1 (en) * 2013-01-16 2014-07-23 Samsung SDI Co., Ltd. Lithium battery
US8871384B2 (en) 2007-02-06 2014-10-28 Daikin Industries, Ltd. Non-aqueous electrolytic solution
WO2015020074A1 (en) * 2013-08-08 2015-02-12 Jnc株式会社 Non-aqueous electrolyte, and electrochemical device provided with said electrolyte
JP2018116906A (en) * 2017-01-20 2018-07-26 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and manufacturing method of the power storage element
JP2019512490A (en) * 2016-03-11 2019-05-16 スリーエム イノベイティブ プロパティズ カンパニー Amine-containing cyclic hydrofluoroether and method of using the same
EP3579325A1 (en) 2018-06-07 2019-12-11 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
US10756384B2 (en) * 2015-10-22 2020-08-25 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2022123255A1 (en) * 2020-12-11 2022-06-16 Mexichem Fluor S.A. De C.V. Composition
WO2024019393A1 (en) * 2022-07-19 2024-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938151A2 (en) * 1998-02-20 1999-08-25 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
US6210835B1 (en) 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
EP0938151A3 (en) * 1998-02-20 2003-08-20 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
JP4780833B2 (en) * 1998-09-11 2011-09-28 三井化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
EP1085591A1 (en) * 1999-09-20 2001-03-21 Hitachi, Ltd. Electrolyte, lithium battery and electrochemical capacitor
US6495293B1 (en) * 1999-09-20 2002-12-17 Hitachi, Ltd. Non-aqueous electrolyte comprising a fluorinated solvent
KR100469586B1 (en) * 1999-09-20 2005-01-31 가부시끼가이샤 히다치 세이사꾸쇼 Non-aqueous electrolyte, lithium primary battery, lithium secondary battery, and electrochemical capacitor using same, polymer electrolyte using same, and polymer lithium secondary battery using same
US6849194B2 (en) 2000-11-17 2005-02-01 Pcbu Services, Inc. Methods for preparing ethers, ether compositions, fluoroether fire extinguishing systems, mixtures and methods
US6908712B2 (en) 2000-12-27 2005-06-21 Mitsubishi Chemical Corporation Lithium secondary cell
US7312002B2 (en) 2000-12-27 2007-12-25 Mitsubishi Chemical Corporation Lithium secondary cell
WO2006017533A3 (en) * 2004-08-03 2006-06-08 3M Innovative Properties Co Nonaqueous electrolytic solution for electrochemical energy devices
EP2068387A1 (en) * 2004-08-03 2009-06-10 3M Innovative Properties Company Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices
WO2006017533A2 (en) * 2004-08-03 2006-02-16 3M Innovative Properties Company Nonaqueous electrolytic solution for electrochemical energy devices
US8343374B2 (en) 2005-03-30 2013-01-01 Daikin Industries, Ltd. Electrolytic solution
US8007679B2 (en) 2005-03-30 2011-08-30 Daikin Industries, Ltd. Electrolytic solution
WO2007020876A1 (en) * 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US8568932B2 (en) 2005-08-18 2013-10-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US8871384B2 (en) 2007-02-06 2014-10-28 Daikin Industries, Ltd. Non-aqueous electrolytic solution
WO2009133899A1 (en) * 2008-04-28 2009-11-05 旭硝子株式会社 Secondary cell nonaqueous electrolyte and secondary cell
US8956768B2 (en) 2008-04-28 2015-02-17 Asahi Glass Company, Limited Nonaqueous electrolyte comprising one or more hydrofluoroethers and one or more non-fluoroethers, and a secondary cell containing the nonaqueous electrolyte
CN102017273A (en) * 2008-04-28 2011-04-13 旭硝子株式会社 Secondary cell nonaqueous electrolyte and secondary cell
JPWO2009133899A1 (en) * 2008-04-28 2011-09-01 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and secondary battery
JP5605221B2 (en) * 2008-04-28 2014-10-15 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and secondary battery
WO2010001850A1 (en) 2008-06-30 2010-01-07 ダイキン工業株式会社 Lithium secondary cell
WO2010004952A1 (en) 2008-07-09 2010-01-14 ダイキン工業株式会社 Nonaqueous electrolyte solution
WO2010013739A1 (en) 2008-07-30 2010-02-04 ダイキン工業株式会社 Solvent for dissolution of electrolytic salt of lithium secondary battery
JP2010146740A (en) * 2008-12-16 2010-07-01 Daikin Ind Ltd Electrolytic solution
US8399136B2 (en) 2009-02-18 2013-03-19 Asahi Kasei E-Materials Corporation Electrolyte solution for lithium ion secondary battery, lithium ion secondary battery, fluoroalkane derivative and gelling agent
JPWO2010110290A1 (en) * 2009-03-26 2012-09-27 ダイキン工業株式会社 Non-aqueous electrolyte for lithium secondary battery
JP5545291B2 (en) * 2009-03-26 2014-07-09 ダイキン工業株式会社 Non-aqueous electrolyte for lithium secondary battery
WO2010110290A1 (en) * 2009-03-26 2010-09-30 ダイキン工業株式会社 Nonaqueous electrolyte solution for lithium secondary battery
US9118088B2 (en) 2009-06-10 2015-08-25 Asahi Kasei E-Materials Corporation Electrolyte solution and lithium ion secondary battery using the same
WO2010143658A1 (en) 2009-06-10 2010-12-16 旭化成イーマテリアルズ株式会社 Electrolytic solution and lithium ion secondary battery utilizing same
JP5786856B2 (en) * 2010-05-28 2015-09-30 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and secondary battery
WO2011149072A1 (en) * 2010-05-28 2011-12-01 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and secondary battery
JPWO2011149072A1 (en) * 2010-05-28 2013-07-25 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and secondary battery
US20130101904A1 (en) * 2010-05-28 2013-04-25 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and secondary battery
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012011508A1 (en) * 2010-07-21 2012-01-26 旭硝子株式会社 Non-aqueous electrolyte for use in secondary batteries, and secondary battery
WO2012011507A1 (en) 2010-07-21 2012-01-26 旭硝子株式会社 Non-aqueous electrolyte for secondary batteries, and secondary battery
JPWO2012014818A1 (en) * 2010-07-30 2013-09-12 日本ゼオン株式会社 Ether compound, non-aqueous battery electrolyte composition, non-aqueous battery electrode binder composition, non-aqueous battery electrode slurry composition, non-aqueous battery electrode and non-aqueous battery
JPWO2012029625A1 (en) * 2010-09-02 2013-10-28 日本電気株式会社 Secondary battery
WO2012029625A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
JP5811093B2 (en) * 2010-09-02 2015-11-11 日本電気株式会社 Secondary battery
US9461335B2 (en) 2012-03-02 2016-10-04 Nec Corporation Lithium secondary battery
WO2013129428A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Lithium secondary cell
US9236636B2 (en) 2012-03-27 2016-01-12 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
WO2013146359A1 (en) 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
US9601279B2 (en) 2012-09-04 2017-03-21 Daikin Industries, Ltd. Electrolyte solution and electrochemical device
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
US9040203B2 (en) 2013-01-16 2015-05-26 Samsung Sdi Co., Ltd. Lithium battery
EP2757626A1 (en) * 2013-01-16 2014-07-23 Samsung SDI Co., Ltd. Lithium battery
WO2015020074A1 (en) * 2013-08-08 2015-02-12 Jnc株式会社 Non-aqueous electrolyte, and electrochemical device provided with said electrolyte
CN103928709A (en) * 2014-04-23 2014-07-16 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte and lithium ion battery
US10756384B2 (en) * 2015-10-22 2020-08-25 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JP2019512490A (en) * 2016-03-11 2019-05-16 スリーエム イノベイティブ プロパティズ カンパニー Amine-containing cyclic hydrofluoroether and method of using the same
JP2018116906A (en) * 2017-01-20 2018-07-26 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and manufacturing method of the power storage element
EP3579325A1 (en) 2018-06-07 2019-12-11 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN110581306A (en) * 2018-06-07 2019-12-17 松下知识产权经营株式会社 Lithium secondary battery
JP2019216094A (en) * 2018-06-07 2019-12-19 パナソニックIpマネジメント株式会社 Lithium secondary battery
US11362322B2 (en) 2018-06-07 2022-06-14 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
WO2022123255A1 (en) * 2020-12-11 2022-06-16 Mexichem Fluor S.A. De C.V. Composition
WO2024019393A1 (en) * 2022-07-19 2024-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JPH0837024A (en) Nonaqueous electrolytic secondary battery
JP6332033B2 (en) Lithium ion secondary battery
US8097368B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3617447B2 (en) Lithium secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
JP3807459B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5474785B2 (en) Non-aqueous electrolyte and secondary battery equipped with the same
JP6913159B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP4386666B2 (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPWO2018173476A1 (en) Non-aqueous electrolyte secondary battery
JP2021511640A (en) Mixtures of potassium and lithium salts and their use in batteries
JPH09161845A (en) Nonaqueous electrolyte secondary battery
JP2022510186A (en) Electrolyte composition and secondary battery using it
JP5124170B2 (en) Lithium ion secondary battery
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JPH087922A (en) Organic electrolytic secondary cell
JP2006127933A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2001023691A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
CN110383563B (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP5080101B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JPWO2020090922A1 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002