JP4386666B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4386666B2
JP4386666B2 JP2003112723A JP2003112723A JP4386666B2 JP 4386666 B2 JP4386666 B2 JP 4386666B2 JP 2003112723 A JP2003112723 A JP 2003112723A JP 2003112723 A JP2003112723 A JP 2003112723A JP 4386666 B2 JP4386666 B2 JP 4386666B2
Authority
JP
Japan
Prior art keywords
dioxolan
difluoro
secondary battery
chemical formula
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003112723A
Other languages
Japanese (ja)
Other versions
JP2004319317A (en
Inventor
春樹 上剃
東  彪
秀一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2003112723A priority Critical patent/JP4386666B2/en
Publication of JP2004319317A publication Critical patent/JP2004319317A/en
Application granted granted Critical
Publication of JP4386666B2 publication Critical patent/JP4386666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に関し、さらに詳しくは高容量で、かつサイクル特性が優れたリチウム二次電池に関するものである。
【0002】
【従来の技術】
最近の携帯電話、ノート型パソコン、デジタルカメラなどのポータブル電子機器の発達や、環境への配慮や省資源の面などから、繰り返し充放電が可能な高容量の二次電池が必要とされるようになってきた。
【0003】
現在、この要求に応える二次電池としては、高エネルギー密度で、軽量、かつ小型で、しかも充放電サイクル特性が優れたリチウム二次電池がある。このリチウム二次電池では、正極活物質としてLiCoO2 、LiNiO2 、LiMn2 4 などのリチウム含有複合酸化物が用いられ、負極活物質としてリチウムのインターカレートやディインターカレートができる炭素材料が用いられているが、このリチウム二次電池に対しても、前記電子機器の高性能化に伴い、さらなる高容量化と長寿命化が求められている。
【0004】
現在、この要求に応えるリチウム二次電池用添加剤として、ビニレンカーボネート、フェニルエチレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、トリフルオロプロピレンカーボネート、クロロエチレンカーボネート、メトキシプロピレンカーボネート、ビニルエチレンカーボネート、カテコールカーボネート、テトラヒドロフランカーボネート、ジフェニルカーボネート、ジエチルカーボネートなどのカーボネート類を用いることが提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2001−297790号公報(第2頁)
【0006】
また、前記と同様の目的を有するリチウム二次電池用添加剤として、エチレンサルファイト、エチレントリチオカーボネート、ビニレントリチオカーボネート、カテコールサルファイト、テトラヒドロフランサルファイト、スルホラン、3−メチルスルホラン、スルホレン、プロパンスルトン、1,4−ブタンスルトンなどの硫黄系化合物を用いることも提案されている(例えば、特許文献2参照)。
【0007】
【特許文献2】
特開平11−307121号公報(第2頁)
【0008】
前記カーボネート類や硫黄系化合物は、初期充電時に負極の表面に保護膜を形成し、充放電時における負極表面での電解液の分解を抑制するが、それらは、上記作用を充分に発揮できる程度に添加すると、負極表面の抵抗を増大させるという問題があり、また、それらの中には、非常に合成が困難でかつ化学的に不安定で取り扱いが非常に難しいものもある。特に化学反応性が高いために通常の充放電時に分解し、電池特性に悪影響を与えることがあり、中でも、カーボネート系化合物は二重結合を有するため酸化に弱く、電池特性を低下させやすいという問題がある。
【0009】
前記のカーボネート類や硫黄系化合物以外にも、サイクル特性を向上させて長寿命化を図るための様々な添加剤が検討されているが、どれも一長一短があり、場合によっては電池特性に悪影響を与えることがある。
【0010】
現在、高容量化が進むリチウム二次電池では、負極活物質として放電容量が350mAh/gと大きい天然黒鉛、人造黒鉛などが用いられているが、それらの高容量系炭素材料を用いた場合、前記の添加剤を用いたとしても、200サイクルで初期容量の80%以下にまで低下、また、添加剤を用いない場合には100サイクルで初期容量の80%以下に低下してしまうという問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、前記のような従来のリチウム二次電池における問題点を解決し、負極活物質として高容量の炭素材料を用いた場合でも、サイクル特性の低下を抑制し、高容量で、かつサイクル特性が優れたリチウム二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、正極、負極および非水系の電解液を有するリチウム二次電池において、正極活物質として金属酸化物を用い、負極活物質として002面の面間隔(d002 )がd002≦0.3365nmで、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度比と1580cm−1付近のラマン強度との比)〕が0.01≦R≦0.3である炭素材料を用い、電解液中に下記の化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンおよび化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートよりなる群から選ばれる少なくとも1種を0.1〜5質量%含有させることによって、高容量で、かつサイクル特性の優れたリチウム二次電池を提供し、前記課題を解決したものである。
【化4】

Figure 0004386666
【化5】
Figure 0004386666
【化6】
Figure 0004386666
(式中、RはFまたはCFで、R はCH、FまたはCFであり、RはH、CH、FまたはCFであって、RはH、CH 、FまたはCFである)
【0013】
【発明の実施の形態】
本発明において、電解液中に化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンおよび化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートよりなる群から選ばれる少なくとも1種を0.1〜5質量%含有させることによって、高容量で、かつサイクル特性の優れたリチウム二次電池が得られる理由を、以下に本発明の実施の形態とともに説明する。
【0014】
まず、本発明において、上記化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートは、いずれもフッ素置換された環状カーボネートに属するので、以下、これらの化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートを総称して「フッ素置換された環状カーボネート」という。
【0015】
本発明において、電解液中に含有させるフッ素置換された環状カーボネートは、負極の炭素材料表面で還元分解されフッ素を含む被膜を形成し、その被膜が電解液と負極活物質の炭素材料との反応を抑制する。特に長期サイクルにおいては電解液の分解や劣化がサイクル特性を低下させる要因になるため、長期サイクル中でも分解しない安定な被膜が必要であるが、上記フッ素置換された環状カーボネートから形成される被膜はフッ素基による電子吸収作用により酸化されにくいので、長期サイクルにおいても高い安定性を有している。
【0016】
これに対して、従来用いられていたカーボネート類や硫黄系化合物からなる添加剤は、本発明で用いるフッ素置換された環状カーボネートと同様に負極の炭素材料表面で還元分解され重合して炭素材料表面で被膜を形成し、その被膜がサイクル特性の向上に寄与するが、サイクル特性の向上に寄与できるほどに添加量を増やしていくと副作用として電池の貯蔵中にガスを発生させ電池を膨れさせてしまい、その副作用を抑えるためにさらに別の添加剤が必要となる。また、負極の炭素材料表面に形成された被膜が抵抗を増加させたり、容量を低下させる原因にもなる。さらに、これらの添加剤は非常に合成が難しく、重合する性質を有するものもあるため取り扱いに注意を要するし、カーボネート系の化合物は二重結合を有するために酸化に弱く、正極上で分解されて電池特性を低下させる可能性がある。
【0017】
しかるに、本発明において、電解液中に含有させるフッ素置換された環状カーボネートは、前記のように、負極の炭素材料表面で非常に還元されやすく、形成された被膜はフッ素基による電子吸引作用により酸化されにくく、また分解還元された際に、負極上の炭素材料表面に強固で化学反応性の低い被膜を形成すると推定される。従って、形成された被膜は長期サイクルにおいても安定性が高く、サイクル特性を向上させる。
【0018】
本発明において、前記化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンと化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートは、それぞれ単独で用いてもよいし、また、それらを併用してもよい。ただし、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートおよび4−フルオロ−1,3−ジオキソラン−2−オンは、通常、前記化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンのいずれかまたは両方を含む混合物の状態で存在する。
【0019】
電解液中に含有させる化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンおよび化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートよりなる群から選ばれる少なくとも1種は、電解液中において0.1〜5質量%含有させることが必要であり、特に1〜3質量%含有させることが好ましく、電解液中の含有量が0.1質量%より少ない場合は効果が充分に発現せず、5質量%より多い場合は負極の分極を増大し、ガス発生量を増加させることになる。
【0020】
本発明において、正極活物質として用いる金属酸化物としては、例えば、LiCoO2 、LiNiO2 、LiMn2 4 などのリチウム含有複合酸化物が用いられる。
【0021】
炭素材料としては、例えば、コークス、特に純度99%以上の精製コークス、セルロースなどを焼成してなる有機物焼成体、黒鉛、グラッシーカーボン(ガラス状カーボン)などがある。本発明において用いる炭素材料は、その002面の面間隔(d002 )がd002 ≦0.3365nmで、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度比と1580cm-1付近のラマン強度との比)〕が0.01≦R≦0.3であれば、その性状、形状などに関して限定されることはない。炭素材料の002面の面間隔(d002 )が0.3365nmより大きく、c軸方向の結晶子サイズ(Lc)が70nmより小さくなると、炭素材料のバルク結晶性が落ちるため放電容量350mAh/g以上が得られない。そして、前記002面の面間隔(d002 )は小さければ小さいほどよく、また、c軸方向の結晶子サイズ(Lc)は大きければ大きいほどよい。また、ラマンスペクトルのR値が0.3より大きくなると、バルクと表面の結晶性が大きく異なるため、サイクルを繰り返すことにより粒子にひび割れが生じてサイクル特性が低下する。ラマンスペクトルのR値が0.01より小さくなると、電解液溶媒の分解が激しくなるため、発生したガスが電極間に存在し、電池のサイクル特性が低下する。
【0022】
電解液は、有機溶媒などの非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製されるが、その非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,2−ジメトキシエタンなどを用いることができる。これらの溶媒は、1種または2種以上の混合物で用いることができ、特にサイクル特性を向上させる観点からは、プロピレンカーボネートと1,2−ジメトキシエタンとの混合溶媒、エチレンカーボネートと2−メチルテトラヒドロフランとの混合溶媒、エチレンカーボネートと1,2−ジメトキシエタンとの混合溶媒、プロピレンカーボネートとエチレンカーボネートとの混合溶媒などが好ましい。
【0023】
そして、上記非水溶媒に溶解させる電解質塩としては、例えば、LiPF6 、LiClO4 、LiBF4 、LiCF3 SO3 、(Cn 2n+1SO2 )(Cm 2m+1+SO2 )NLi(m、n≧1)などが挙げられ、これらはそれぞれ単独で用いることができるし、また、2種以上を併用することもできる。そして、これらの電解質塩の電解液中の濃度としては0.3〜1.7mol/l程度が好ましい。
【0024】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0025】
実施例1
この実施例1で用いる負極および正極の作製、非水系の電解液の調製を順次説明し、その後にリチウム二次電池の組立てについて説明する。
【0026】
負極の作製:
負極活物質としてX線回折法によって測定される002面の面間隔(d002 )が0.3356nmで、c軸方向の結晶子サイズ(Lc)が100nmであり、波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度と1580cm-1付近のラマン強度との比)〕が0.2の天然黒鉛を用い、この天然黒鉛98質量部とカルボキシメチルセルロース(固形分)1質量部とスチレンブタジエンゴム(固形分)1質量部と水とを混合して負極用塗料を調製した。得られた負極用塗料を負極集電体としての銅箔(厚さ:10μm)の両面に塗布し、乾燥した後、プレスローラーで圧延し、その後、所定の幅および長さになるように切断して、負極を得た。
【0027】
正極の作製:
正極活物質としてのLiCoO2 を92質量部と、導電剤としてのカーボンブラックを5質量部と、バインダーとしてのポリフッ化ビニリデンを3質量部と、溶剤としてのN−メチル−2−ピロリドン溶液とを混合して正極用塗料を調製した。得られた正極用塗料を正極集電体としてのアルミニウム箔(厚さ:15μm)の両面に塗布し、乾燥した後、プレスローラーで圧延した後、所定の幅および長さになるように切断して、正極を得た。
【0028】
非水系の電解液の調製:
エチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒にLiPF6 を1.0mol/l溶解させて得られた溶液に化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンを3質量%となるように添加して、化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンを含有した状態で電解液を調製した。
【0029】
リチウム二次電池の組立て:
前記正極と負極とを厚さ25μmで開孔率42%の微孔性ポリエチレンフィルムからなるセパレータを介して渦巻状に巻回し、渦巻状巻回構造の電極体とした後、角形の電池ケース内に挿入するのに適するように押圧して扁平状巻回構造の電極体にし、それをアルミニウム合金製で角形の電池ケース内に挿入し、リード体の溶接と封口用蓋板の電池ケースの開口端部へのレーザー溶接を行い、封口用蓋板に設けた注入口から前記のビニレンカーボネートを含有する電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、前記注入口を封止して密閉状態にした。その後、予備充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有し、幅が34.0mmで、厚みが4.0mmで、高さが50.0mmの角形のリチウム二次電池を作製した。
【0030】
ここで図1〜2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に前記電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。
【0031】
電池ケース4はアルミニウム合金製で電池の外装材の主要部分を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる扁平状巻回構造の電極積層体6からは正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
【0032】
そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。
【0033】
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
【0034】
図2は上記図1に示す電池の外観を模式的に示す斜視図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のもののみを示している。
【0035】
実施例2
電解液中の化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンの含有量が2質量%になるようにした以外は、実施例1と同様にリチウム二次電池を作製した。
【0036】
実施例3
電解液中の化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンの含有量が1質量%になるようにした以外は、実施例1と同様にリチウム二次電池を作製した。
【0037】
実施例4
化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンに代えて、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンを電解液中に含有させた以外は、実施例1と同様にリチウム二次電池を作製した。
【0038】
実施例5
電解液中の化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンの含有量が2質量%になるようにした以外は、実施例4と同様にリチウム二次電池を作製した。
【0039】
実施例6
電解液中の化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンの含有量が1質量%になるようにした以外は、実施例4と同様にリチウム二次電池を作製した。
【0040】
化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンに代えて、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネート〔成分:化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン40質量%、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン30質量%、R =F、R =F、R =H、R =Hのもの15質量%、4−フルオロ−1,3−ジオキソラン−2−オン15質量%の混合物〕を電解液中に含有させた以外は、実施例1と同様にリチウム二次電池を作製した。
【0041】
実施例8
負極活物質としてラマンスペクトルのR値が0.3の天然黒鉛を用いた以外は、実施例1と同様にリチウム二次電池を作製した。
【0042】
実施例9
負極活物質としてラマンスペクトルのR値が0.01の天然黒鉛を用いた以外は、実施例1と同様にリチウム二次電池を作製した。
【0043】
実施例10
負極に用いる炭素材料を以下に示すようにして作製した。まず、石油系コークスから、002面の面間隔(d002 )が0.3365nm、c軸方向の結晶子サイズ(Lc)が70nm、平均粒子径が19μmの炭素材料を得た。この石油系コークス由来炭素材料を3000℃で20分間以上焼成し、002面の面間隔(d002 )が0.3356nm、c軸方向の結晶子サイズ(Lc)が70nmの炭素材料を得た。このように得られた炭素材料を負極活物質として用いた以外は実施例4と同様にリチウム二次電池を作製した。
【0044】
比較例1
化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンに代えて、ビニレンカーボネートを電解液中に含有させた以外は、実施例1と同様にリチウム二次電池を作製した。
【0045】
比較例2
化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンに代えて、4−フルオロ−1,3−ジオキソラン−2−オンを電解液中に含有させた以外は、実施例1と同様にリチウム二次電池を作製した。
【0046】
比較例3
化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンを電解液中に含有させなかった以外は、実施例1と同様にリチウム二次電池を作製した。
【0047】
比較例4
負極活物質としてラマンスペクトルのR値が0.35の天然黒鉛を用いた以外は、実施例1と同様にリチウム二次電池を作製した。
【0048】
比較例5
負極活物質としてラマンスペクトルのR値が0.008の天然黒鉛を用いた以外は、実施例1と同様にリチウム二次電池を作製した。
【0049】
比較例6
負極に用いる炭素材料を以下に示すようにして作製した。まず、石油系コークスから、002面の面間隔(d002 )が0.3365nm、c軸方向の結晶子サイズ(Lc)が60nm、平均粒子径が19μmの炭素材料を得た。この石油系コークス由来炭素材料を3000℃で20分間以上焼成し、002面の面間隔(d002 )が0.3356nm、c軸方向の結晶子サイズ(Lc)が60nmの炭素材料を得た。このように得られた炭素材料を負極活物質として用いた以外は実施例4と同様にリチウム二次電池を作製した。
【0050】
比較例7
負極活物質として用いる炭素材料として、架橋石油ピッチから作られた002面の面間隔(d002 )が0.3652nm、c軸方向の結晶子サイズ(Lc)が1.9nmの炭素材料を得て、その炭素材料を用いた以外は、実施例1と同様にリチウム二次電池を作製した。
【0051】
前記実施例1〜10の電池および比較例1〜7の電池について、放電容量および500サイクル後の容量保持率を調べた。その結果を表4に示す。なお、表1には前記実施例1〜10の電池および比較例1〜7の電池の負極活物質として用いた炭素材料のd002 〔002面の面間隔(d002 )〕、Lc〔c軸方向の結晶子サイズ(Lc)〕およびR(ラマンスペクトルのR値)を示す。また、表2には実施例1〜10の電池の電解液中に含有させた物質名とその電解液中の含有量を示し、表3には比較例1〜7の電池の電解液中に含有させた物質名とその電解液中の含有量を示す。そして、これらの表2および表3ではスペース上の関係で電解液中に含有させた物質名を化学式(1)〜(3)のいずれであるかを表示することなく示している。なお、放電容量、500サイクル後の容量保持率の測定方法は、次に示す通りである。
【0052】
放電容量:
各電池を25℃、電流密度750mAで3.0Vまで連続放電させて放電容量を測定する。
【0053】
500サイクル後の容量保持率:
各電池に対して、25℃、750mAで4.2Vまで充電した後、4.2Vの定電圧で充電開始から2.5時間充電を行い、その充電後、750mAで3.0Vまで放電する充放電を500サイクル繰り返し、500サイクル後の放電容量の初回(第1サイクル時)放電容量に対する比率を下記の式により求め、それを500サイクル後の容量保持率とする。
【0054】
Figure 0004386666
【0055】
【表1】
Figure 0004386666
【0056】
【表2】
Figure 0004386666
【0057】
【表3】
Figure 0004386666
【0058】
【表4】
Figure 0004386666
【0059】
表4に示すように、負極活物質として002面の面間隔(d002 )がd002 ≦0.3365nmで、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度比と1580cm-1付近のラマン強度との比)〕が0.01≦R≦0.3の炭素材料を用い、電解液中に化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートを0.1〜5質量%の範囲内で含有させた実施例1〜10の電池は、放電容量が大きく、高容量で、かつ500サイクル後の容量保持率が大きく、サイクル特性が優れていた。
【0060】
【発明の効果】
以上説明したように、本発明によれば、高容量で、かつサイクル特性が優れたリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウム二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。
【図2】図1に示すリチウム二次電池の斜視図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 電極積層体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having a high capacity and excellent cycle characteristics.
[0002]
[Prior art]
Due to recent developments in portable electronic devices such as mobile phones, notebook computers, and digital cameras, environmental considerations, and resource saving, high-capacity secondary batteries that can be charged and discharged repeatedly are required. It has become.
[0003]
At present, as a secondary battery that meets this requirement, there is a lithium secondary battery that has a high energy density, a light weight, a small size, and excellent charge / discharge cycle characteristics. In this lithium secondary battery, a lithium-containing composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode active material, and a carbon material capable of intercalating or deintercalating lithium as a negative electrode active material However, the lithium secondary battery is also required to have a higher capacity and a longer life as the electronic device has higher performance.
[0004]
Currently, as additives for lithium secondary batteries that meet this requirement, vinylene carbonate, phenylethylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, trifluoropropylene carbonate, chloroethylene carbonate, methoxypropylene carbonate, vinyl ethylene carbonate, catechol carbonate, It has been proposed to use carbonates such as tetrahydrofuran carbonate, diphenyl carbonate, and diethyl carbonate (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP 2001-297790 A (second page)
[0006]
Moreover, as an additive for lithium secondary batteries having the same purpose as described above, ethylene sulfite, ethylene trithiocarbonate, vinylene trithiocarbonate, catechol sulfite, tetrahydrofuran sulfite, sulfolane, 3-methylsulfolane, sulfolene, propane The use of sulfur compounds such as sultone and 1,4-butane sultone has also been proposed (see, for example, Patent Document 2).
[0007]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-307121 (page 2)
[0008]
The carbonates and sulfur-based compounds form a protective film on the surface of the negative electrode during initial charging, and suppress the decomposition of the electrolyte solution on the negative electrode surface during charge / discharge, but they can sufficiently exhibit the above-described effects. When added to, there is a problem of increasing the resistance of the negative electrode surface, and some of them are very difficult to synthesize, chemically unstable and very difficult to handle. Especially because of its high chemical reactivity, it decomposes during normal charge and discharge, and may adversely affect battery characteristics. Among them, the carbonate compound has a double bond, so it is vulnerable to oxidation and easily deteriorates battery characteristics. There is.
[0009]
In addition to the carbonates and sulfur compounds described above, various additives for improving the cycle characteristics and extending the life have been studied, but all have advantages and disadvantages, and in some cases, the battery characteristics are adversely affected. May give.
[0010]
Currently, in lithium secondary batteries whose capacity is increasing, natural graphite, artificial graphite and the like having a large discharge capacity of 350 mAh / g are used as the negative electrode active material. When these high-capacity carbon materials are used, Even if the additive is used, there is a problem that it is reduced to 80% or less of the initial capacity in 200 cycles, and when the additive is not used, it is reduced to 80% or less of the initial capacity in 100 cycles. is there.
[0011]
[Problems to be solved by the invention]
The present invention solves the problems in the conventional lithium secondary battery as described above, and even when a high-capacity carbon material is used as the negative electrode active material, the deterioration in cycle characteristics is suppressed, the capacity is high, and the cycle An object of the present invention is to provide a lithium secondary battery having excellent characteristics.
[0012]
[Means for Solving the Problems]
The present invention relates to a lithium secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte, using a metal oxide as the positive electrode active material and a surface spacing (d 002 ) of 002 as the negative electrode active material. ) Is d 002 ≦ 0.3365 nm, the crystallite size (Lc) in the c-axis direction is Lc ≧ 70 nm, and the R value of the Raman spectrum when excited by an argon laser having a wavelength of 514.5 nm [R = I 1350 / I 1580 (1350cm -1 around the ratio of the Raman intensity ratio and 1580 cm -1 Raman intensity near the)] is 0.01 ≦ R ≦ 0.3 using a carbon material is, the following chemical formula in the electrolyte Cis-4,5-difluoro-1,3-dioxolan-2-one represented by (1), trans-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (2) And by containing at least one selected from the group consisting of alkylene carbonates containing 1 to 12 fluorine groups represented by chemical formula (3) at a high capacity, Provides excellent lithium secondary battery cycle characteristics, is obtained by solving the above problems.
[Formula 4]
Figure 0004386666
[Chemical formula 5]
Figure 0004386666
[Chemical 6]
Figure 0004386666
Wherein R 1 is F or CF 3 and R 2 Is CH 3 , F or CF 3 , R 3 is H, CH 3 , F or CF 3 , and R 4 is H, CH 3 , F or CF 3 )
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) and trans-4,5-difluoro- represented by the chemical formula (2) are contained in the electrolytic solution. By containing 0.1 to 5% by mass of at least one selected from the group consisting of 1,3-dioxolan-2-one and an alkylene carbonate containing 1 to 12 fluorine groups represented by chemical formula (3), The reason why a lithium secondary battery having a high capacity and excellent cycle characteristics can be obtained will be described below together with embodiments of the present invention.
[0014]
First, in the present invention, cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1), trans-4,5-difluoro-1 represented by the chemical formula (2) , 3-dioxolan-2-one, and alkylene carbonates containing 1 to 12 fluorine groups represented by chemical formula (3) all belong to fluorine-substituted cyclic carbonates. Cis-4,5-difluoro-1,3-dioxolan-2-one represented by formula, trans-4,5-difluoro-1,3-dioxolan-2-one represented by formula (2), chemical formula (3 The alkylene carbonates containing 1 to 12 fluorine groups represented by) are collectively referred to as “fluorine-substituted cyclic carbonates”.
[0015]
In the present invention, the fluorine-substituted cyclic carbonate contained in the electrolytic solution is reduced and decomposed on the surface of the carbon material of the negative electrode to form a film containing fluorine, and the film reacts with the electrolytic solution and the carbon material of the negative electrode active material. Suppress. In particular, in the long-term cycle, decomposition and deterioration of the electrolyte solution cause a decrease in cycle characteristics. Therefore, a stable film that does not decompose even in the long-term cycle is necessary. However, the film formed from the above-mentioned fluorine-substituted cyclic carbonate is fluorine. Since it is difficult to be oxidized by the electron absorption action by the group, it has high stability even in a long-term cycle.
[0016]
On the other hand, conventional additives such as carbonates and sulfur compounds are reduced and decomposed and polymerized on the surface of the carbon material of the negative electrode in the same manner as the fluorine-substituted cyclic carbonate used in the present invention. A film is formed in the film, and the film contributes to the improvement of the cycle characteristics. However, if the amount added is increased to the extent that it can contribute to the improvement of the cycle characteristics, gas is generated during storage of the battery as a side effect, causing the battery to swell. Therefore, another additive is required to suppress the side effects. In addition, the film formed on the surface of the carbon material of the negative electrode increases the resistance and decreases the capacity. In addition, these additives are very difficult to synthesize, and some of them have the property of polymerizing, so care must be taken in handling, and carbonate-based compounds are susceptible to oxidation because they have double bonds and decompose on the positive electrode. Battery characteristics may be degraded.
[0017]
However, in the present invention, the fluorine-substituted cyclic carbonate contained in the electrolytic solution is very easily reduced on the surface of the carbon material of the negative electrode as described above, and the formed film is oxidized by the electron withdrawing action by the fluorine group. It is presumed that, when decomposed and reduced, a strong and low chemical reactivity film is formed on the surface of the carbon material on the negative electrode. Therefore, the formed film has high stability even in a long-term cycle and improves cycle characteristics.
[0018]
In the present invention, cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) and trans-4,5-difluoro-1,3 represented by the chemical formula (2) are used. -Dioxolan-2-one and the alkylene carbonate containing 1 to 12 fluorine groups represented by the chemical formula (3) may be used alone or in combination. However, alkylene carbonates containing 1 to 12 fluorine groups represented by chemical formula (3) and 4-fluoro-1,3-dioxolan-2-one are usually cis-4 represented by chemical formula (1). , 5-difluoro-1,3-dioxolan-2-one, and a mixture containing either or both of trans-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (2) Exists.
[0019]
Cis-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (1) to be contained in the electrolytic solution, trans-4,5-difluoro-1, represented by chemical formula (2), At least one selected from the group consisting of 3-dioxolan-2-one and an alkylene carbonate containing 1 to 12 fluorine groups represented by chemical formula (3) is contained in an amount of 0.1 to 5% by mass in the electrolytic solution. In particular, it is preferable to contain 1 to 3% by mass. When the content in the electrolytic solution is less than 0.1% by mass, the effect is not sufficiently exhibited. Will increase the amount of gas generated.
[0020]
In the present invention, examples of the metal oxide used as the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
[0021]
Examples of the carbon material include coke, particularly purified coke having a purity of 99% or more, an organic fired body obtained by firing cellulose, graphite, glassy carbon (glassy carbon), and the like. The carbon material used in the present invention has a 002 plane spacing (d 002 ) of d 002 ≦ 0.3365 nm, a c-axis direction crystallite size (Lc) of Lc ≧ 70 nm, and a wavelength of 514.5 nm. R value of Raman spectrum when excited by an argon laser [R = I 1350 / I 1580 (ratio of the Raman intensity ratio and 1580cm Raman intensity at around -1 around 1350 cm -1)] is 0.01 ≦ R ≦ If it is 0.3, there is no limitation regarding the property, shape, and the like. When the interplanar spacing (d 002 ) of the 002 plane of the carbon material is larger than 0.3365 nm and the crystallite size (Lc) in the c-axis direction is smaller than 70 nm, the bulk crystallinity of the carbon material is lowered, so that the discharge capacity is 350 mAh / g or more Cannot be obtained. The smaller the spacing (d 002 ) between the 002 planes, the better the crystallite size (Lc) in the c-axis direction. Further, when the R value of the Raman spectrum is larger than 0.3, the crystallinity of the bulk and the surface is greatly different. Therefore, by repeating the cycle, the particles are cracked to deteriorate the cycle characteristics. When the R value of the Raman spectrum is smaller than 0.01, the electrolyte solution solvent is severely decomposed, so that the generated gas exists between the electrodes, and the cycle characteristics of the battery deteriorate.
[0022]
The electrolytic solution is prepared by dissolving an electrolyte salt such as a lithium salt in a nonaqueous solvent such as an organic solvent. Examples of the nonaqueous solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,2-dimethoxyethane and the like can be used. These solvents can be used in one kind or a mixture of two or more kinds. Particularly, from the viewpoint of improving cycle characteristics, a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, ethylene carbonate and 2-methyltetrahydrofuran. And a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, a mixed solvent of propylene carbonate and ethylene carbonate, and the like are preferable.
[0023]
Examples of the electrolyte salt dissolved in the non-aqueous solvent include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , (C n F 2n + 1 SO 2 ) (C m F 2m + 1 + SO 2 ). NLi (m, n ≧ 1) and the like can be mentioned, and these can be used alone or in combination of two or more. And as a density | concentration in electrolyte solution of these electrolyte salts, about 0.3-1.7 mol / l is preferable.
[0024]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
[0025]
Example 1
The production of the negative electrode and the positive electrode used in Example 1 and the preparation of the non-aqueous electrolyte solution will be sequentially described, and then the assembly of the lithium secondary battery will be described.
[0026]
Production of negative electrode:
As an anode active material, an 002 plane spacing (d 002 ) measured by X-ray diffractometry is 0.3356 nm, c-axis direction crystallite size (Lc) is 100 nm, and an argon laser with a wavelength of 514.5 nm is used. R value of Raman spectrum [R = I 1350 / I 1580 (ratio of the Raman intensity in the vicinity of the Raman intensity and 1580 cm -1 in the vicinity of 1350 cm -1)] is used 0.2 natural graphite when excite, this A negative electrode coating material was prepared by mixing 98 parts by mass of natural graphite, 1 part by mass of carboxymethylcellulose (solid content), 1 part by mass of styrene butadiene rubber (solid content) and water. The obtained negative electrode coating material is applied to both sides of a copper foil (thickness: 10 μm) as a negative electrode current collector, dried, rolled with a press roller, and then cut to a predetermined width and length. Thus, a negative electrode was obtained.
[0027]
Production of positive electrode:
92 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of carbon black as a conductive agent, 3 parts by mass of polyvinylidene fluoride as a binder, and an N-methyl-2-pyrrolidone solution as a solvent A positive electrode paint was prepared by mixing. The obtained positive electrode paint is applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector, dried, rolled with a press roller, and then cut to a predetermined width and length. Thus, a positive electrode was obtained.
[0028]
Preparation of non-aqueous electrolyte:
A solution obtained by dissolving 1.0 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2 is represented by cis-4,5-difluoro-1 represented by the chemical formula (1). , 3-dioxolan-2-one was added to 3% by mass, and cis-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (1) was contained. An electrolyte solution was prepared.
[0029]
Assembly of lithium secondary battery:
The positive electrode and the negative electrode are spirally wound through a separator made of a microporous polyethylene film having a thickness of 25 μm and a porosity of 42% to form an electrode body having a spirally wound structure, and then inside a rectangular battery case It is pressed to be suitable for insertion into a flat wound electrode body, which is inserted into a rectangular battery case made of aluminum alloy, welded to the lead body, and the opening of the battery cover of the sealing lid plate Laser welding is performed on the end, and the electrolyte solution containing vinylene carbonate is injected into the battery case from the injection port provided in the sealing lid plate, and the electrolyte solution sufficiently permeates the separator and the like. The inlet was sealed and sealed. Thereafter, precharging and aging are performed, the structure shown in FIG. 1 has the appearance shown in FIG. 2, the width is 34.0 mm, the thickness is 4.0 mm, and the height is 50.0 mm. A lithium secondary battery was prepared.
[0030]
The battery shown in FIGS. 1 and 2 will now be described. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed so as to be flattened, thereby forming a flat winding structure. The electrode laminate 6 is accommodated in a rectangular battery case 4 together with the electrolytic solution. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
[0031]
The battery case 4 is made of an aluminum alloy and constitutes the main part of the battery exterior material. The battery case 4 also serves as a positive electrode terminal. An insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode are formed from the flat electrode structure 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. A positive electrode lead body 7 and a negative electrode lead body 8 connected to one end of each of the two are drawn out. A stainless steel terminal 11 is attached to the aluminum lid plate 9 that seals the opening of the battery case 4 via an insulating packing 10 made of polypropylene, and the terminal 11 is made of stainless steel via an insulator 12. A steel lead plate 13 is attached.
[0032]
And this cover plate 9 is inserted in the opening part of the said battery case 4, and the opening part of the battery case 4 is sealed by welding the junction part of both, and the inside of a battery is sealed.
[0033]
In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
[0034]
FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery constituent members are shown.
[0035]
Example 2
The same as in Example 1 except that the content of cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) in the electrolytic solution was 2% by mass. A lithium secondary battery was produced.
[0036]
Example 3
The same as in Example 1 except that the content of cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) in the electrolytic solution was 1% by mass. A lithium secondary battery was produced.
[0037]
Example 4
Instead of cis-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (1), trans-4,5-difluoro-1,3-dioxolane represented by chemical formula (2) A lithium secondary battery was produced in the same manner as in Example 1 except that 2-one was contained in the electrolytic solution.
[0038]
Example 5
The same as in Example 4 except that the content of trans-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (2) in the electrolytic solution was 2% by mass. A lithium secondary battery was produced.
[0039]
Example 6
The same as in Example 4 except that the content of trans-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (2) in the electrolytic solution was 1% by mass. A lithium secondary battery was produced.
[0040]
Instead of cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1), an alkylene carbonate containing 1 to 12 fluorine groups represented by the chemical formula (3) [component: 40% by mass of cis-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (1), trans-4,5-difluoro-1,3-dioxolane represented by chemical formula (2) -2-one 30% by mass, R 1 = F, R 2 = F, R 3 = H, R 4 = 15% by mass of H and a mixture of 15% by mass of 4-fluoro-1,3-dioxolan-2-one] A lithium secondary battery was produced in the same manner as in Example 1 except that the electrolyte solution contained did.
[0041]
Example 8
A lithium secondary battery was produced in the same manner as in Example 1 except that natural graphite having an R value of Raman spectrum of 0.3 was used as the negative electrode active material.
[0042]
Example 9
A lithium secondary battery was produced in the same manner as in Example 1 except that natural graphite having an R value of Raman spectrum of 0.01 was used as the negative electrode active material.
[0043]
Example 10
A carbon material used for the negative electrode was produced as follows. First, a carbon material having a 002 plane spacing (d 002 ) of 0.3365 nm, a c-axis direction crystallite size (Lc) of 70 nm, and an average particle diameter of 19 μm was obtained from petroleum coke. This petroleum coke-derived carbon material was baked at 3000 ° C. for 20 minutes or more to obtain a carbon material having a 002 plane spacing (d 002 ) of 0.3356 nm and a c-axis direction crystallite size (Lc) of 70 nm. A lithium secondary battery was produced in the same manner as in Example 4 except that the carbon material thus obtained was used as the negative electrode active material.
[0044]
Comparative Example 1
In place of cis-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (1), vinylene carbonate was added in the same manner as in Example 1 except that vinylene carbonate was contained in the electrolytic solution. A secondary battery was produced.
[0045]
Comparative Example 2
Instead of cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1), 4-fluoro-1,3-dioxolan-2-one was contained in the electrolytic solution. A lithium secondary battery was produced in the same manner as in Example 1 except for the above.
[0046]
Comparative Example 3
A lithium secondary battery was produced in the same manner as in Example 1 except that cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) was not contained in the electrolytic solution. .
[0047]
Comparative Example 4
A lithium secondary battery was produced in the same manner as in Example 1 except that natural graphite having an R value of Raman spectrum of 0.35 was used as the negative electrode active material.
[0048]
Comparative Example 5
A lithium secondary battery was produced in the same manner as in Example 1 except that natural graphite having an R value of Raman spectrum of 0.008 was used as the negative electrode active material.
[0049]
Comparative Example 6
A carbon material used for the negative electrode was produced as follows. First, a carbon material having a 002 plane spacing (d 002 ) of 0.3365 nm, a c-axis direction crystallite size (Lc) of 60 nm, and an average particle diameter of 19 μm was obtained from petroleum coke. This petroleum coke-derived carbon material was baked at 3000 ° C. for 20 minutes or more to obtain a carbon material having a 002 plane spacing (d 002 ) of 0.3356 nm and a c-axis direction crystallite size (Lc) of 60 nm. A lithium secondary battery was produced in the same manner as in Example 4 except that the carbon material thus obtained was used as the negative electrode active material.
[0050]
Comparative Example 7
As a carbon material used as the negative electrode active material, a carbon material having a 002 plane spacing (d 002 ) of 0.3652 nm and a c-axis direction crystallite size (Lc) of 1.9 nm made from a crosslinked petroleum pitch is obtained. A lithium secondary battery was produced in the same manner as in Example 1 except that the carbon material was used.
[0051]
The batteries of Examples 1 to 10 and Comparative Examples 1 to 7 were examined for discharge capacity and capacity retention after 500 cycles. The results are shown in Table 4. Table 1 shows d 002 [face spacing of 002 plane (d 002 )], Lc [c axis] of carbon materials used as negative electrode active materials of the batteries of Examples 1 to 10 and Comparative Examples 1 to 7. Direction crystallite size (Lc)] and R (R value of Raman spectrum). Table 2 shows the names of substances contained in the electrolytes of the batteries of Examples 1 to 10 and the contents in the electrolytes. Table 3 shows the contents of the electrolytes of the batteries of Comparative Examples 1 to 7. The name of the contained substance and its content in the electrolyte are shown. In Tables 2 and 3, the names of the substances contained in the electrolytic solution are shown without indicating which of the chemical formulas (1) to (3) because of the space. The method for measuring the discharge capacity and the capacity retention after 500 cycles is as follows.
[0052]
Discharge capacity:
Each battery is continuously discharged to 3.0 V at 25 ° C. and a current density of 750 mA, and the discharge capacity is measured.
[0053]
Capacity retention after 500 cycles:
Each battery was charged to 4.2 V at 25 ° C. and 750 mA, charged for 2.5 hours from the start of charging at a constant voltage of 4.2 V, and then charged to 3.0 V at 750 mA. The discharge is repeated 500 cycles, and the ratio of the discharge capacity after 500 cycles to the initial (first cycle) discharge capacity is determined by the following formula, and this is defined as the capacity retention after 500 cycles.
[0054]
Figure 0004386666
[0055]
[Table 1]
Figure 0004386666
[0056]
[Table 2]
Figure 0004386666
[0057]
[Table 3]
Figure 0004386666
[0058]
[Table 4]
Figure 0004386666
[0059]
As shown in Table 4, the negative electrode active material has a 002 plane spacing (d 002 ) of d 002 ≦ 0.3365 nm, a c-axis direction crystallite size (Lc) of Lc ≧ 70 nm, and a wavelength of 514. R value of Raman spectrum when excited by an argon laser of 5nm [R = I 1350 / I 1580 (ratio of the Raman intensity ratio and 1580cm Raman intensity at around -1 around 1350 cm -1)] is 0.01 ≦ Using a carbon material of R ≦ 0.3, cis-4,5-difluoro-1,3-dioxolan-2-one represented by the chemical formula (1) in the electrolytic solution, and a trans represented by the chemical formula (2) -4,5-difluoro-1,3-dioxolan-2-one, alkylene carbonate containing 1 to 12 fluorine groups represented by chemical formula (3) was contained within a range of 0.1 to 5% by mass. The batteries of Examples 1 to 10 have a discharge capacity. The amount was large, the capacity was high, the capacity retention after 500 cycles was large, and the cycle characteristics were excellent.
[0060]
【The invention's effect】
As described above, according to the present invention, a lithium secondary battery having a high capacity and excellent cycle characteristics can be provided.
[Brief description of the drawings]
1A and 1B are diagrams schematically showing an example of a lithium secondary battery according to the present invention, in which FIG. 1A is a plan view thereof and FIG. 1B is a partial longitudinal sectional view thereof.
2 is a perspective view of the lithium secondary battery shown in FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Insulator 6 Electrode laminated body 7 Positive electrode lead body 8 Negative electrode lead body 9 Cover plate 10 Insulation packing 11 Terminal 12 Insulator 13 Lead plate

Claims (3)

正極、負極および非水系の電解液を有するリチウム二次電池であって、正極活物質として金属酸化物を用い、負極活物質として002面の面間隔(d002 )がd002≦0.3365nmで、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度比と1580cm−1付近のラマン強度との比)〕が0.01≦R≦0.3である炭素材料を用い、電解液中に下記の化学式(1)で表されるシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、化学式(2)で表されるトランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンおよび化学式(3)で表されるフッ素基を1〜12個含むアルキレンカーボネートよりなる群から選ばれる少なくとも1種を0.1〜5質量%含むことを特徴とするリチウム二次電池。
Figure 0004386666
Figure 0004386666
Figure 0004386666
(式中、RはFまたはCFで、R、FまたはCFであり、RはH、CH、FまたはCFであって、RはH、CH、FまたはCFである)
A lithium secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein a metal oxide is used as a positive electrode active material, and a 002 plane spacing (d 002 is used as a negative electrode active material. ) Is d 002 ≦ 0.3365 nm, the crystallite size (Lc) in the c-axis direction is Lc ≧ 70 nm, and the R value of the Raman spectrum when excited by an argon laser having a wavelength of 514.5 nm [R = I 1350 / I 1580 (1350cm -1 around the ratio of the Raman intensity ratio and 1580 cm -1 Raman intensity near the)] is 0.01 ≦ R ≦ 0.3 using a carbon material is, the following chemical formula in the electrolyte Cis-4,5-difluoro-1,3-dioxolan-2-one represented by (1), trans-4,5-difluoro-1,3-dioxolan-2-one represented by chemical formula (2) And 0.1 to 5% by mass of at least one selected from the group consisting of alkylene carbonates containing 1 to 12 fluorine groups represented by chemical formula (3).
Figure 0004386666
Figure 0004386666
Figure 0004386666
(Wherein R 1 is F or CF 3 , R 2 is C H 3 , F or CF 3 , R 3 is H, CH 3 , F or CF 3 , and R 4 is H, CH 3 , F or CF 3 )
前記電解液中に、前記シス−4,5−ジフルオロ−1.3−ジオキソラン−2−オンと、前記トランス−4,5−ジフルオロ−1,3−ジオキソラン−2−オンとを含む請求項1に記載のリチウムイオン二次電池。The electrolyte solution contains the cis-4,5-difluoro-1.3-dioxolan-2-one and the trans-4,5-difluoro-1,3-dioxolan-2-one. The lithium ion secondary battery described in 1. 前記電解液中に、4−フルオロ−1,3−ジオキソラン−2−オンを含む請求項1または2に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the electrolyte contains 4-fluoro-1,3-dioxolan-2-one.
JP2003112723A 2003-04-17 2003-04-17 Lithium secondary battery Expired - Lifetime JP4386666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112723A JP4386666B2 (en) 2003-04-17 2003-04-17 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112723A JP4386666B2 (en) 2003-04-17 2003-04-17 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004319317A JP2004319317A (en) 2004-11-11
JP4386666B2 true JP4386666B2 (en) 2009-12-16

Family

ID=33472849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112723A Expired - Lifetime JP4386666B2 (en) 2003-04-17 2003-04-17 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4386666B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283180B1 (en) 2004-09-22 2013-07-05 소니 주식회사 Electrolyte solution and battery
JP4479728B2 (en) * 2005-01-20 2010-06-09 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP2006216361A (en) * 2005-02-03 2006-08-17 Three M Innovative Properties Co Electrolytic solution for lithium battery
JP4951933B2 (en) * 2005-02-18 2012-06-13 ソニー株式会社 Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2007128842A (en) * 2005-05-19 2007-05-24 Sony Corp Anode active substance and battery
JP2007042387A (en) * 2005-08-02 2007-02-15 Sony Corp Electrolyte, electrode, and battery
JP4899841B2 (en) * 2005-12-13 2012-03-21 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2007250191A (en) * 2006-03-13 2007-09-27 Sony Corp Electrolyte and battery
EP2790258A1 (en) 2006-06-02 2014-10-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP5369391B2 (en) * 2006-06-02 2013-12-18 三菱化学株式会社 Non-aqueous electrolyte, non-aqueous electrolyte battery, and non-aqueous electrolyte secondary battery
JP4605133B2 (en) * 2006-06-05 2011-01-05 ソニー株式会社 Nonaqueous electrolyte, nonaqueous electrolyte battery using the same, and method for producing nonaqueous electrolyte
JP5211446B2 (en) * 2006-06-07 2013-06-12 ソニー株式会社 Non-aqueous electrolyte battery electrolyte and battery using the same
JP5045882B2 (en) * 2006-07-25 2012-10-10 ソニー株式会社 Electrolyte and battery
JP2008103311A (en) 2006-09-22 2008-05-01 Sony Corp Battery
KR100816208B1 (en) * 2007-03-27 2008-03-28 삼성에스디아이 주식회사 Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
JP5401836B2 (en) 2008-01-29 2014-01-29 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
JP5309704B2 (en) * 2008-01-29 2013-10-09 ダイキン工業株式会社 Solvent for non-aqueous electrolyte of lithium secondary battery
CN105047993A (en) * 2015-07-28 2015-11-11 东莞市凯欣电池材料有限公司 Electrolyte for promoting film formation of graphite cathode and battery using electrolyte

Also Published As

Publication number Publication date
JP2004319317A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4386666B2 (en) Lithium secondary battery
JP5046352B2 (en) Method for producing lithium ion secondary battery
JP6396153B2 (en) Lithium secondary battery
JP4319536B2 (en) Lithium secondary battery
US20070141471A1 (en) Lithium ion secondary cell
JP2003151623A (en) Nonaqueous secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP6208560B2 (en) Lithium secondary battery
JP5012767B2 (en) Secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2016048624A (en) Lithium secondary battery
JP2006260864A (en) Manufacturing method of lithium secondary battery
JP2005267857A (en) Organic electrolyte, and organic electrolyte battery using the same
JP2008140683A (en) Battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP4578933B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2007134245A (en) Electrolyte solution and battery
JP2002203608A (en) Nonaqueous secondary battery for car use
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2011040333A (en) Nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2007123156A (en) Lithium ion cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Ref document number: 4386666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term