JPH083475B2 - Sample holder for X-ray fluorescence analyzer - Google Patents

Sample holder for X-ray fluorescence analyzer

Info

Publication number
JPH083475B2
JPH083475B2 JP63044210A JP4421088A JPH083475B2 JP H083475 B2 JPH083475 B2 JP H083475B2 JP 63044210 A JP63044210 A JP 63044210A JP 4421088 A JP4421088 A JP 4421088A JP H083475 B2 JPH083475 B2 JP H083475B2
Authority
JP
Japan
Prior art keywords
ray
sample
thin film
rays
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63044210A
Other languages
Japanese (ja)
Other versions
JPH01219549A (en
Inventor
久貴 竹中
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63044210A priority Critical patent/JPH083475B2/en
Publication of JPH01219549A publication Critical patent/JPH01219549A/en
Publication of JPH083475B2 publication Critical patent/JPH083475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、X線やシンクロトロン放射光を用いて、試
料極表面に付着した微量の元素または厚みが数10Å〜数
100Åの極薄膜中の微量の元素を、非破壊分析する蛍光
X線分析装置に用いられる試料ホルダに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention uses X-rays or synchrotron radiation to detect trace elements or thicknesses on the surface of a sample electrode from several tens to several tens.
The present invention relates to a sample holder used in a fluorescent X-ray analyzer for nondestructive analysis of a trace amount of elements in a 100 Å ultrathin film.

(従来の技術) 従来の蛍光X線分析装置は、X線を試料面に対し60゜
程度で入射させて、入射したX線により、試料中の元素
固有の蛍光X線を発生させて、これを検出することによ
り、試料の構成元素を明らかにしていた。しかし、この
場合、X線は試料中へ2〜3μmも浸入するので、数10
〜数100ÅとX線浸入深さに比べて2桁〜3桁少ない厚
みの極薄膜中の微量元素を検出することは、注目してい
る極薄膜以外からの蛍光X線が大部分となって、バック
グラウンドが高すぎるので、極めて困難であって、検出
量は数10ppm〜数1000ppmが限度となる。試料極表面に付
着するか、または厚みが数10Åの極薄膜中の微量元素を
分析するには、試料中にX線が数10Åしか浸入しないX
線全反射を利用するのが、通常の蛍光X線分析よりも効
果的であった。しかし、X線全反射は用いるX線入射角
度が通常0.05〜0.1度程度であるので、X線ビームの照
射面積が広がり単位面積当たりの強度が弱くなる。しか
も、X線ビームが広がりすぎるので、試料にはX線ビー
ムの一部しか入射しない。
(Prior Art) In a conventional X-ray fluorescence analyzer, X-rays are incident on a sample surface at about 60 °, and the incident X-rays generate fluorescent X-rays peculiar to the elements in the sample. The constituent elements of the sample were clarified by detecting. However, in this case, the X-ray penetrates into the sample by 2-3 μm, so several tens of
~ Detecting trace elements in ultra-thin films with a thickness of several hundred Å, which is two to three orders of magnitude less than the X-ray penetration depth, fluorescent X-rays from other than the ultra-thin film of interest are the major part. However, since the background is too high, it is extremely difficult, and the detection amount is limited to several 10 ppm to several 1000 ppm. To analyze trace elements in the ultra-thin film that adheres to the sample electrode surface or has a thickness of several tens of liters, X-rays can penetrate only several tens of liters into the sample.
Utilizing total internal reflection was more effective than conventional X-ray fluorescence analysis. However, since the X-ray incident angle used for X-ray total reflection is usually about 0.05 to 0.1 degrees, the irradiation area of the X-ray beam is widened and the intensity per unit area is weakened. Moreover, since the X-ray beam spreads too much, only a part of the X-ray beam is incident on the sample.

また、試料からの蛍光X線は照射面全体から出射する
ので、数10mm角の表面形状を有する試料の場合、通常の
1インチ径程度の検出窓口をもつ検出器を用いて、発生
する蛍光X線をすべて検出器で受光することは、検出器
の窓が試料形状より小さくなる場合に不可能である。た
とえばX線ビーム形状が縦1mm×横10mmで試料に0.05゜
の角度で照射される場合、照射面の形状は1146mm×10mm
となる。通常、試料は数mm〜数10mmの長さであるので、
大部分のX線は試料面以外に照射される。すなわち試料
からの蛍光X線発生量が少なく、しかも検出器の検出窓
の大きさの制限のため検出効率も悪い。
Further, since the fluorescent X-rays from the sample are emitted from the entire irradiation surface, in the case of a sample having a surface shape of several tens of mm square, the fluorescent X-rays generated by using a detector having a normal detection window of about 1 inch diameter. Receiving all lines at the detector is not possible if the detector window is smaller than the sample geometry. For example, if the X-ray beam shape is 1 mm in length × 10 mm in width and the sample is irradiated at an angle of 0.05 °, the shape of the irradiation surface is 1146 mm × 10 mm.
Becomes Since the sample is usually several mm to several tens of mm long,
Most of the X-rays are applied to the area other than the sample surface. That is, the amount of fluorescent X-rays generated from the sample is small, and the detection efficiency is poor because the size of the detection window of the detector is limited.

さらに全反射X線を利用する場合、X線は50Å程度し
か浸入しないので、50Å程度以上の厚みをもつ試料の元
素分析は精度が落ちる。現状では、実験室レベルのX線
装置では、重元素で数1000ppb程度の検出感度でしかな
い。他の微量元素の分析に関しては2次イオン質量分析
法があり、最大検出感度は試料によっては数10ppbに達
するものもあるが、この方法では試料は破壊されるとい
う欠点があった。
Furthermore, when total reflection X-rays are used, the X-rays penetrate only about 50Å, so the accuracy of elemental analysis of samples having a thickness of about 50Å or more decreases. At present, a laboratory-level X-ray apparatus has a detection sensitivity of several thousand ppb for heavy elements. There is a secondary ion mass spectrometry method for the analysis of other trace elements, and the maximum detection sensitivity reaches several tens ppb depending on the sample, but this method has a drawback that the sample is destroyed.

(発明が解決しようとする課題) 本発明は入射X線を蛍光X線の発生に対して効率的に
利用し、かつ散乱X線が蛍光X線検出器に混入する量を
減少させることにより、蛍光X線検出感度の増大を可能
にした蛍光X線分析装置用試料ホルダを提供することに
ある。
(Problems to be Solved by the Invention) The present invention efficiently utilizes incident X-rays for the generation of fluorescent X-rays and reduces the amount of scattered X-rays mixed in the fluorescent X-ray detector. It is an object of the present invention to provide a sample holder for a fluorescent X-ray analyzer capable of increasing the fluorescent X-ray detection sensitivity.

(課題を解決するための手段) 本発明の蛍光X線分析装置用試料ホルダは、保持台上
に軽元素薄膜と重元素薄膜とを交互に積層してなること
を特徴とする。
(Means for Solving the Problem) The sample holder for an X-ray fluorescence analyzer of the present invention is characterized in that a light element thin film and a heavy element thin film are alternately laminated on a holding table.

従来の試料ホルダは単金属などの単体物質や合金、ガ
ラスなどが使用されており、異種材料を積層したものは
使われていない。
Conventional sample holders use simple substances such as single metals, alloys, glass, etc., and do not use laminated materials of different materials.

第2図に多層薄膜の構造の模式図を示す。第2図にお
いて、1は重元素層、2は軽元素層である。この多層薄
膜にX線を照射すると、X線は軽元素層を殆ど透過し各
重元素層面で一部反射しながら更に深部へ進むが、この
各重元素層面での反射によりブラッグの式(2dsinθ=
λただし、dは重元素層と軽元素層をそれぞれ一層ずつ
加えた厚さ、θは入射角、λはX線の波長を表わす)に
従ってX線が回折される。この回折の原理を第3図に示
す。第3図において、3は入射X線、4は回折X線、5
はX線入射角度、6はX線回折角度を示す。また第4図
に多層薄膜からのX線回折プロファイルの例を示す。縦
軸は回折X線強度Iと入射X線強度IOとの比で表わした
X線強度、横軸は回折角度である。この例はW(タング
ステン)を重元素、C(カーボン)を軽元素とし、W層
を約16Å、C層を約24Åの厚みで交互に40回積層した多
層薄膜からの回折プロファイルである。点線は計算値、
実線は実測値を示す。この例での膜厚は、使用X線の波
長λを1.54Åとした場合に、X線の入射角度θが約1.1
度のときに前記ブラッグの式を満足する。この例の場合
は約1.1度で入射すると、反射率を70%程度に高めるこ
とが可能である。また第5図は多層薄膜のX線の反射強
度と対層数との関係を示す図である。この例は、波長λ
が1.54ÅのX線を用い、W層を約33Å、C層を約54Åの
厚みで交互に積層した多層薄膜からの反射強度を実測し
た結果を示す。この図によれば、20層付近で反射率が約
80%に達している。反射率が飽和状態になるこの層数は
X線の透過能力に依存するが、波長λが1.54ÅのX線の
場合は、X線を主に反射するW層の合計厚みが約700Å
(20×33Å)の場合に相当している。この例の場合は、
入射角度θが約0.6度のときに前記ブラッグの式を満足
する。
FIG. 2 shows a schematic diagram of the structure of the multilayer thin film. In FIG. 2, 1 is a heavy element layer and 2 is a light element layer. When this multi-layered thin film is irradiated with X-rays, most of the X-rays pass through the light element layer and are partially reflected on the surface of each heavy element layer, and then proceed to the deeper part. =
λ, where d is the thickness obtained by adding one heavy element layer and one light element layer, θ is the incident angle, and λ is the wavelength of the X-ray. The principle of this diffraction is shown in FIG. In FIG. 3, 3 is an incident X-ray, 4 is a diffracted X-ray, 5
Indicates an X-ray incident angle, and 6 indicates an X-ray diffraction angle. Further, FIG. 4 shows an example of the X-ray diffraction profile from the multilayer thin film. The vertical axis represents the X-ray intensity represented by the ratio of the diffracted X-ray intensity I and the incident X-ray intensity I O, and the horizontal axis represents the diffraction angle. This example is a diffraction profile from a multi-layer thin film in which W (tungsten) is a heavy element and C (carbon) is a light element, and W layers are alternately stacked 40 times with a thickness of about 16Å and a thickness of about 24Å. The dotted line is the calculated value,
The solid line shows the measured value. The film thickness in this example is such that when the wavelength λ of the X-ray used is 1.54Å, the incident angle θ of the X-ray is about 1.1.
The above-mentioned Bragg equation is satisfied when In the case of this example, when the incident angle is about 1.1 degrees, the reflectance can be increased to about 70%. FIG. 5 is a diagram showing the relationship between the X-ray reflection intensity of the multilayer thin film and the number of layers. This example shows the wavelength λ
Shows the result of actually measuring the reflection intensity from a multilayer thin film in which W layers are alternately laminated with a thickness of about 33 Å and C layers with a thickness of about 54 Å using 1.54Å X-rays. According to this figure, the reflectance is about 20 layers.
It has reached 80%. The number of layers in which the reflectance is saturated depends on the X-ray transmission capacity, but in the case of X-rays with a wavelength λ of 1.54Å, the total thickness of the W layer that mainly reflects X-rays is approximately 700Å
This corresponds to the case of (20 × 33Å). In this case,
The Bragg equation is satisfied when the incident angle θ is about 0.6 degrees.

このように多層薄膜では入射X線を、ある特定の角度
にすると、反射率を80%程度以上にすることも可能であ
る。すなわち多層薄膜を試料ホルダにすると入射X線は
試料を通過した後、多層薄膜で80%程度も反射し、この
反射X線が再び試料に入射する。すなわちこの試料に反
射する前のX線量をIOとすると、実際に試料に入射する
X線は、1.8IO程度にも達する。しかも入射角度は全反
射角度(0.05゜〜0.1゜程度)の数倍〜数10倍あるの
で、入射X線の密度は全反射の場合より数倍〜数10倍大
きくなるという利点がある。
As described above, in the multilayer thin film, when the incident X-ray is set at a certain specific angle, the reflectance can be about 80% or more. That is, when the multilayer thin film is used as the sample holder, incident X-rays pass through the sample and are then reflected by the multilayer thin film by about 80%, and the reflected X-rays are incident on the sample again. That is, assuming that the X-ray dose before reflection on this sample is I O , the X-ray that actually enters the sample reaches as high as about 1.8 I O. In addition, since the incident angle is several times to several tens times the total reflection angle (about 0.05 ° to 0.1 °), there is an advantage that the density of incident X-rays is several times to several tens times larger than that in the case of total reflection.

また入射X線の8割程度は入射角と同一の回折角度で
出射していくので、検出器に混入するX線量、すなわち
散乱X線量が通常の試料ホルダを用いる蛍光X線分析法
に比べて70〜80%減少し、検出感度が向上する。このよ
うに本発明の試料ホルダは、X線の入射角度即ち試料面
でのX線の密度と多層膜の各層の厚みとの間に最適の条
件を適用すれば、極めて感度良く微量物質を検出するこ
とが可能となる。
In addition, about 80% of the incident X-rays are emitted at the same diffraction angle as the incident angle, so the X-ray dose mixed in the detector, that is, the scattered X-ray dose, is greater than that of the fluorescent X-ray analysis method using a normal sample holder. 70-80% reduction, detection sensitivity is improved. As described above, the sample holder of the present invention can detect a trace substance with extremely high sensitivity by applying an optimum condition between the incident angle of X-rays, that is, the density of X-rays on the sample surface and the thickness of each layer of the multilayer film. It becomes possible to do.

第1図は本発明の試料ホルダを用いる蛍光X線分析装
置の構成図であって、3は入射X線、4は回折X線、5
はX線入射角度、6はX線回折角度を示す。7はX線
源、8は試料、9は多層薄膜ホルダであり、10は多層薄
膜、11は多層薄膜保持台、12は発生した蛍光X線、13は
半導体検出器、14は計測回路である。
FIG. 1 is a block diagram of a fluorescent X-ray analyzer using the sample holder of the present invention, where 3 is an incident X-ray, 4 is a diffracted X-ray, and 5 is.
Indicates an X-ray incident angle, and 6 indicates an X-ray diffraction angle. Reference numeral 7 is an X-ray source, 8 is a sample, 9 is a multilayer thin film holder, 10 is a multilayer thin film, 11 is a multilayer thin film holder, 12 is fluorescent X-rays generated, 13 is a semiconductor detector, and 14 is a measuring circuit. .

(実施例) 第1図に示した構成の蛍光X線分析装置を用いた。X
線発生電圧と電流は、それぞれ50Kvと300mAである。使
用した多層薄膜ホルダは第4図に示したX線反射特性を
持つ。この多層薄膜ホルダはSi上にW層を約16Å、C層
を約24Åの厚みで交互に40回積層させて作製したもので
ある。
(Example) The fluorescent X-ray analyzer having the configuration shown in FIG. 1 was used. X
The line generation voltage and current are 50 Kv and 300 mA, respectively. The multilayer thin film holder used has the X-ray reflection characteristics shown in FIG. This multilayer thin film holder is produced by alternately stacking W layers of about 16Å and C layers of about 24Å on Si 40 times.

1次の回折ピークの強度は、入射X線IOの73%であっ
た。このため、このピークの現われる角度2θ=2.2度
にすると、試料には入射X線量IOの約1.7倍のX線が照
射されることになる。50mm×20mmの表面形状を有する厚
み約100ÅのNb薄膜試料を、その多層薄膜ホルダ上にス
パッタ法により形成し、X線入射角度2θ=2.2度にし
て分析した。このときX線照射面積は、全反射利用の場
合の約1/22であるので、照射密度は約22倍となった。し
かも試料に入射するX線量IOSと照射X線IOとの比IOS/I
Oは、全反射法に対して本発明の方法は約19倍となっ
た。入射X線量の30%程度がバックグラウンドに影響を
及ぼすが、IOS/IOの著しい増大により、検出感度は1桁
程度向上した。この分析により、試料にはZnが約650ppb
混入していることが検出された。この値は同一試料を2
次イオン質量分析装置を用いて破壊分析した値の約570p
pbと同程度であった。
The intensity of the first-order diffraction peak was 73% of the incident X-ray IO . Therefore, when the angle 2θ = 2.2 degrees at which this peak appears is set, the sample is irradiated with X-rays of about 1.7 times the incident X-ray dose I O. A Nb thin film sample having a surface shape of 50 mm × 20 mm and a thickness of about 100 Å was formed on the multilayer thin film holder by the sputtering method and analyzed at an X-ray incident angle of 2θ = 2.2 degrees. At this time, the X-ray irradiation area was about 1/22 as compared with the case of using total reflection, so the irradiation density was about 22 times. Moreover, the ratio of the X-ray dose I OS incident on the sample and the irradiated X-ray I O I OS / I
O was about 19 times higher in the method of the present invention than in the total reflection method. About 30% of the incident X-ray dose affects the background, but the detection sensitivity improved by about one digit due to the significant increase in I OS / I O. This analysis showed that the sample contained approximately 650 ppb Zn.
Contaminant was detected. This value is 2 for the same sample
About 570p of the value obtained by destructive analysis using a secondary ion mass spectrometer
It was about the same as pb.

なお、この実施例では、重元素と軽元素とを交互に積
層した多層薄膜を持つ本発明の試料ホルダ上に試料を薄
膜として形成した例を説明したが、X線を透過する従来
のホルダー上に試料薄膜を形成し、これを本発明の試料
ホルダ上に載置しても、同様の効果が得られる。
In addition, in this embodiment, an example in which the sample is formed as a thin film on the sample holder of the present invention having a multilayer thin film in which heavy elements and light elements are alternately laminated is described. The same effect can be obtained by forming a sample thin film on the sample holder and mounting it on the sample holder of the present invention.

(発明の効果) 以上説明したように、本発明の蛍光X線分析装置は、
全反射利用の蛍光X線分析装置に比べて試料への入射X
線量を増加させることができるので、試料中の原子から
の蛍光X線の増大が可能であること、また通常の蛍光X
線分析装置に比べてバックグラウンドが大幅に減少する
ことから、非破壊で高感度の微量物質分析が可能にな
る。
(Effects of the Invention) As described above, the X-ray fluorescence analyzer of the present invention is
Incident X on the sample compared to X-ray fluorescence analyzer using total internal reflection
Since the dose can be increased, it is possible to increase the fluorescent X-rays from the atoms in the sample.
Since the background is greatly reduced as compared with the line analyzer, nondestructive and highly sensitive trace substance analysis becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例で用いた蛍光X線分析装置の構
成図、 第2図は多層薄膜の構造の模式図、 第3図は多層薄膜によるX線回折の原理図、 第4図は多層薄膜によるX線回折プロファイルの例を示
す図、 第5図は多層薄膜の対層数と回折X線の強度との関係を
示す図である。 1……重元素層、2……軽元素層 3……入射X線、4……回折X線 5……X線入射角度、6……X線回折角度 7……X線源、8……試料薄膜 9……多層薄膜ホルダ、10……多層薄膜 11……多層薄膜保持台、12……発生した蛍光X線 13……半導体検出器、14……計測回路
FIG. 1 is a configuration diagram of an X-ray fluorescence analyzer used in an embodiment of the present invention, FIG. 2 is a schematic diagram of a structure of a multilayer thin film, FIG. 3 is a principle diagram of X-ray diffraction by the multilayer thin film, and FIG. Is a diagram showing an example of an X-ray diffraction profile by a multilayer thin film, and FIG. 5 is a diagram showing a relationship between the number of pairs of layers of the multilayer thin film and the intensity of diffracted X-rays. 1 ... Heavy element layer, 2 ... Light element layer 3 ... Incident X-ray, 4 ... Diffracted X-ray 5 ... X-ray incident angle, 6 ... X-ray diffraction angle, 7 ... X-ray source, 8 ... … Sample thin film 9 …… Multilayer thin film holder, 10 …… Multilayer thin film 11 …… Multilayer thin film holder, 12 …… Generated fluorescent X-ray 13 …… Semiconductor detector, 14 …… Measuring circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】保持台上に軽元素薄膜と重元素薄膜とを交
互に積層してなることを特徴とする蛍光X線分析装置用
試料ホルダ。
1. A sample holder for an X-ray fluorescence analyzer, wherein light element thin films and heavy element thin films are alternately laminated on a holding table.
JP63044210A 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer Expired - Lifetime JPH083475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044210A JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044210A JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH01219549A JPH01219549A (en) 1989-09-01
JPH083475B2 true JPH083475B2 (en) 1996-01-17

Family

ID=12685191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044210A Expired - Lifetime JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JPH083475B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421724B2 (en) * 2015-08-27 2018-11-14 住友金属鉱山株式会社 Method for quantitative analysis of sample solution using fluorescent X-ray analyzer
DE102016101842A1 (en) * 2016-02-03 2017-08-03 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Vacuum clamping device for clamping workpieces, measuring devices and methods for testing workpieces, in particular wafers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226710A (en) * 1975-08-25 1977-02-28 Tadayasu Higuchi Prefabricated type sound insulation wall

Also Published As

Publication number Publication date
JPH01219549A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US7929667B1 (en) High brightness X-ray metrology
US7023955B2 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
Fitton X-ray fluorescence spectrometry
JP4796254B2 (en) X-ray array detector
US6885727B2 (en) Apparatus and method for measuring thickness and composition of multi-layered sample
US5390229A (en) Lead-paint detector
US5113421A (en) Method and apparatus for measuring the thickness of a coating on a substrate
Kunimura et al. A portable total reflection X-ray fluorescence spectrometer with a diamond-like carbon coated X-ray reflector
JPH083475B2 (en) Sample holder for X-ray fluorescence analyzer
Jaklevic et al. Quantitative X-ray fluorescence analysis using monochromatic synchrotron radiation
Mantler Recent methods and applications of X-ray fluorescence analysis
JP2000055842A (en) X-ray image pick-up analysis method and device
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
JP2906606B2 (en) Qualitative analysis of thin film samples
Johnson et al. Simple method of obtaining Si (Li) detector efficiency
JP2592931B2 (en) X-ray fluorescence analyzer
JP2880381B2 (en) X-ray fluorescence analyzer
JPH02107952A (en) X-ray diffraction measurement for powder
Kwiatek Synchrotron radiation induced X-ray emission-SRIXE
JPS62226048A (en) Spectrochemical analysis of crystal solid
Jenkins et al. Dispersion
Variankaval X-Ray Methods
JP3095446B2 (en) Laser plasma soft X-ray spectroscopic diffractometer
JPS63177047A (en) Apparatus for analyzing depth direction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13