JPH01219549A - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer

Info

Publication number
JPH01219549A
JPH01219549A JP63044210A JP4421088A JPH01219549A JP H01219549 A JPH01219549 A JP H01219549A JP 63044210 A JP63044210 A JP 63044210A JP 4421088 A JP4421088 A JP 4421088A JP H01219549 A JPH01219549 A JP H01219549A
Authority
JP
Japan
Prior art keywords
rays
sample
ray
fluorescent
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63044210A
Other languages
Japanese (ja)
Other versions
JPH083475B2 (en
Inventor
Hisataka Takenaka
久貴 竹中
Yoshiichi Ishii
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63044210A priority Critical patent/JPH083475B2/en
Publication of JPH01219549A publication Critical patent/JPH01219549A/en
Publication of JPH083475B2 publication Critical patent/JPH083475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To increase the fluorescent X-rays from the atoms. in a sample thin film and to increase a fluorescent X-ray detection sensitivity by using a holder which utilizes multilayered thin films alternately laminated with heavy element layers and light element layers as a sample holder on which the sample thin film is installed or formed. CONSTITUTION:The multilayered thin films 10 formed by using, for example, W as a heavy element and C as a light element and alternately laminating 20 times the W layers to about 33A thickness and the C layers to about 54A are formed. The reflectivity can be made to about >=80% with such thin films 10 if the incident X-rays are set at a specific angle. Namely, the X-rays 3 passes the sample 8 and thereafter, about 80% thereof is reflected by the thin films 10 when the thin films 10 are used as the sample holder 9. This reflected X-rays again enter the sample 8. In addition, the incident angle 5 is several times - several tens times the total reflection angle (about 0.05-0.1) and, therefore, the density of the X-rays are several times - several 10 times larger than in the case of the total reflection. Since about 80% of the X-rays 3 emit at the same diffraction angle 6 as the incident angle 5, the quantity of the scattered X-rays intruding into a detector 13 decrease by 70-80% as compared to the case of using the ordinary sample holder. The detection sensitivity is thus improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、X線やシンクロトロン放射光を用いて、試料
極表面に付着した微量の元素または厚みが数lOλ〜数
100人の極薄膜中の微量の元素を、非破壊分析する蛍
光X線分析装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses X-rays or synchrotron radiation to detect trace amounts of elements or ultrathin films with a thickness of several 1Oλ to several 100s, using X-rays or synchrotron radiation. The present invention relates to a fluorescent X-ray analyzer that non-destructively analyzes trace amounts of elements inside.

(従来の技術) 従来の蛍光X線分析装置は、X線を試料面に対し60″
程度で入射させて、入射したX線により、試料中の元素
固有の蛍光X線を発生させて、これを検出することによ
り、試料の構成元素を明らかにしていた。しかし、この
場合、X線は試料中へ2〜3μmも浸入するので、数1
0〜数 100人とX線浸入深さに比べて2桁〜3桁少
ない厚みの極薄膜中の微量元素を検出することは、注目
している極薄膜以外からの蛍光X線が大部分となって、
バックグラウンドが高すぎるので、極めて困難であって
、検出量は数10ppI11〜数11000ppが限度
となる。試料極表面に付着するか、または厚みが数10
人の極薄膜中の微量元素を分析するには、試料中にX線
が数10人しか浸入しないX線全反射を利用するのが、
通常の蛍光X線分析よりも効果的であった。しかし、X
線全反射は用いるX線入射角度が通常0.05〜0.1
度程度であるので、X線ビームの照射面積が広がり単位
面積当たりの強度が弱くなる。しかも、X線ビームが広
がりすぎるので、試料にはX線ビームの一部しか入射し
ない。
(Prior art) Conventional fluorescent X-ray analyzers emit X-rays at a distance of 60" from the sample surface.
The incident X-rays generate fluorescent X-rays unique to the elements in the sample, and by detecting these, the constituent elements of the sample are revealed. However, in this case, the X-rays penetrate 2 to 3 μm into the sample, so the number of
Detecting trace elements in an ultra-thin film with a thickness two to three orders of magnitude smaller than the X-ray penetration depth for 0 to several 100 people means that most of the fluorescent X-rays come from sources other than the ultra-thin film of interest. Become,
Since the background is too high, it is extremely difficult to detect, and the detection amount is limited to several tens of ppI11 to several 11,000 pp. Adheres to the sample pole surface or has a thickness of several tens of
To analyze trace elements in ultra-thin human membranes, the best way to analyze them is to use total internal reflection of X-rays, in which only a few dozen X-rays penetrate into the sample.
It was more effective than ordinary fluorescent X-ray analysis. However, X
For linear total internal reflection, the X-ray incident angle used is usually 0.05 to 0.1.
Since the area of the X-ray beam is on the order of degrees, the irradiation area of the X-ray beam expands and the intensity per unit area becomes weaker. Furthermore, since the X-ray beam spreads too much, only a portion of the X-ray beam is incident on the sample.

また、試料からの蛍光X線は照射面全体から出射するの
で、数10m5+角の表面形°状を有する試料の場合、
通常の1インチ径程度の検出窓口をもつ検出器を用いて
、発生する蛍光X線をすべて検出器で受光することは、
検出器の窓が試料形状より小さくなる場合に不可能であ
る。たとえばX線ビーム形状が縦1mmX横10mmで
試料に0,05°の角度で照射される場合、照射面の形
状は1146mm X 10+11111となる。通常
、試料は数mm〜数10mmの長さであるので、大部分
のX線は試料面以外に照射される。
In addition, since fluorescent X-rays from a sample are emitted from the entire irradiation surface, in the case of a sample with a surface shape of several tens of square meters,
Using a detector with a detection window of about 1 inch in diameter, it is possible to receive all of the generated fluorescent X-rays with the detector.
This is not possible if the detector window becomes smaller than the sample geometry. For example, when the X-ray beam shape is 1 mm long x 10 mm wide and the sample is irradiated at an angle of 0.05°, the shape of the irradiated surface is 1146 mm x 10+11111. Usually, the sample has a length of several mm to several tens of mm, so most of the X-rays are irradiated to areas other than the sample surface.

すなわち試料からの蛍光X線発生量が少なく、しかも検
出器の検出窓の大きさの制限のため検出効率も悪い。
That is, the amount of fluorescent X-rays generated from the sample is small, and the detection efficiency is also poor due to the limited size of the detection window of the detector.

さらに全反射X線を利用する場合、X線は50人程度し
か浸入しないので、50人程度以上の厚みをもつ試料の
元素分析は精度が落ちる。現状では、実験室レベルのX
線装置では、重元素で数1000ppb程度の検出感度
でしかない。他に微量元素の分析に関しては2次イオン
質量分析法があり、最大検出感度は試料によっては数t
oppbに達するものもあるが、この方法では試料は破
壊されるという欠点があった。
Furthermore, when total internal reflection X-rays are used, the X-rays penetrate only about 50 people, so elemental analysis of samples with a thickness of about 50 people or more will be less accurate. Currently, X at the laboratory level
The detection sensitivity for heavy elements is only about several thousand ppb with the radiograph. Another method for analyzing trace elements is secondary ion mass spectrometry, which has a maximum detection sensitivity of several tons depending on the sample.
Although some samples reach oppb, this method has the disadvantage that the sample is destroyed.

(発明が解決しようとする課題) 本発明は入射X線を蛍光X線の発生に対して効率的に利
用し、かつ散乱X線が蛍光X線検出器に混入する量を減
少させることにより、蛍光X線検出感度の増大を可能に
した蛍光X線分析装置を提供することにある。
(Problems to be Solved by the Invention) The present invention efficiently utilizes incident X-rays to generate fluorescent X-rays, and reduces the amount of scattered X-rays that enter the fluorescent X-ray detector. An object of the present invention is to provide a fluorescent X-ray analyzer that enables increased fluorescent X-ray detection sensitivity.

(課題を解決するための手段) 本発明の蛍光X線分析装置は、試料薄膜を設置または形
成する試料ホルダに、重元素層と軽元素層が交互に積層
した多層薄膜を利用したホルダを用いる。
(Means for Solving the Problems) The X-ray fluorescence analyzer of the present invention uses a holder that utilizes a multilayer thin film in which heavy element layers and light element layers are alternately laminated as a sample holder on which a sample thin film is installed or formed. .

従来の試料ホルダは単金属などの単体物質や合金、ガラ
スなどが使用されており、異種材料を積層したものは使
われていない。
Conventional sample holders use single materials such as single metals, alloys, glass, etc., and do not use laminated layers of different materials.

第2図に多層薄膜の構造の模式図を示す。第2図におい
て、■は重元素層、2は軽元素層である。
FIG. 2 shows a schematic diagram of the structure of the multilayer thin film. In FIG. 2, ■ is a heavy element layer, and 2 is a light element layer.

この多層薄膜にX線が照射されると、ブラングの式(2
dsinθ−λただし、dは重元素層と軽元素層をそれ
ぞれ一層ずつ加えた厚さ、θは入射角、λはX線の波長
を表わす)に従ってX線が回折される。この回折の原理
を第3図に示す。第3図において、3は入射X線、4は
回折X線、5はX線入射角度、6はX線回折角度を示す
。また第4図に多層薄膜からのX線回折プロファイルの
例を示す。縦軸は回折X線強度Iと入射X線強度I。と
の比で表わしたX線強度、横軸は回折角度である。
When this multilayer thin film is irradiated with X-rays, Brang's equation (2
X-rays are diffracted according to d sin θ-λ (where d is the thickness of each of the heavy element layer and light element layer, θ is the incident angle, and λ is the wavelength of the X-ray). The principle of this diffraction is shown in FIG. In FIG. 3, 3 indicates the incident X-ray, 4 indicates the diffracted X-ray, 5 indicates the X-ray incident angle, and 6 indicates the X-ray diffraction angle. Further, FIG. 4 shows an example of an X-ray diffraction profile from a multilayer thin film. The vertical axis is the diffracted X-ray intensity I and the incident X-ray intensity I. The X-ray intensity is expressed as a ratio of , and the horizontal axis is the diffraction angle.

これはW(タングステン)を重元素、C(カーボン)を
軽元素としてW層を約33人、0層を約54人の厚みで
交互に20回積層した多層薄膜からの回折プロファイル
である。
This is a diffraction profile from a multilayer thin film in which W (tungsten) is a heavy element and C (carbon) is a light element, and the W layer is approximately 33 thick and the 0 layer is alternately laminated 20 times with a thickness of approximately 54 thick.

このように多層薄膜では入射X線を、ある特定の角度に
すると、反射率を80%程度以上にすることも可能であ
る。すなわち多層薄膜を試料ホルダにすると入射X線は
試料を通過した後、多層薄膜で80%程度も反射し、こ
の反射X線が再び試料に入射する。すなわちこの試料に
反射する前のX線量をI。とすると、実際に試料に入射
するX線は、1.81o程度にも達する。しかも入射角
度は全反射角度(0,05°〜0.1層程度)の数倍〜
数10倍あるので、入射X線の密度は全反射の場合より
数倍〜数10倍大きくなるという利点がある。
In this way, in a multilayer thin film, if the incident X-ray is set at a certain specific angle, it is possible to increase the reflectance to about 80% or more. That is, when a multilayer thin film is used as a sample holder, incident X-rays pass through the sample and are reflected by the multilayer thin film by about 80%, and the reflected X-rays enter the sample again. In other words, the amount of X-rays before being reflected on this sample is I. If so, the actual X-ray incident on the sample reaches about 1.81o. Moreover, the incident angle is several times the total reflection angle (about 0.05° to 0.1 layer)
Since the density of the incident X-ray is several tens of times higher, there is an advantage that the density of incident X-rays is several times to several tens of times higher than that in the case of total internal reflection.

また入射X線の8割程度は入射角と同一の回折角度で出
射していくので、検出器に混入するX線量、すなわち散
乱X線量が通常の試料ホルダを用いる蛍光X線分析法に
比べて70〜80%減少し、検出感度が向上する。この
ため感度良く微量物質を検出することが可能となる。
In addition, approximately 80% of incident X-rays exit at the same diffraction angle as the incident angle, so the amount of X-rays that enter the detector, that is, the amount of scattered It is reduced by 70-80% and the detection sensitivity is improved. Therefore, it becomes possible to detect trace substances with high sensitivity.

第1図は本発明の蛍光X線分析装置の構成図であって、
3は入射X線、4は回折X線、5はX線入射角度、6は
X線回折角度を示す。7はX線源、8は試料、9は多層
薄膜ホルダであり、10は多層薄膜、11は多層薄膜保
持台、12は発生した蛍光X線、13は半導体検出器、
14は計測回路である。
FIG. 1 is a configuration diagram of the fluorescent X-ray analyzer of the present invention,
3 represents the incident X-ray, 4 represents the diffracted X-ray, 5 represents the X-ray incident angle, and 6 represents the X-ray diffraction angle. 7 is an X-ray source, 8 is a sample, 9 is a multilayer thin film holder, 10 is a multilayer thin film, 11 is a multilayer thin film holder, 12 is a generated fluorescent X-ray, 13 is a semiconductor detector,
14 is a measurement circuit.

(実施例) 第1図に示した構成の蛍光X線分析装置を用いた。X線
発生電圧と電流は、それぞれ50にνと300mAであ
る。使用した多層″a膜ホルダは第4図に示したX線反
射特性を持つ。この多層薄膜ホルダはSi上にW層を約
16人、0層を約24人の厚みで交互に40回積層させ
て作製したものである。
(Example) A fluorescent X-ray analyzer having the configuration shown in FIG. 1 was used. The X-ray generation voltage and current are 50 V and 300 mA, respectively. The multilayer "A" film holder used has the X-ray reflection characteristics shown in Figure 4.This multilayer thin film holder is made by laminating 40 layers of W and 0 layers alternately on Si with a thickness of about 16 and 24, respectively. It was made by

1次の回折ピークの強度は、入射X線I。の73%であ
った。このため、このピークの現われる角度2θ=2.
2度にすると、試料には入射X線II Oの約1.7倍
のX線が照射されることになる。50mmX 20mm
の表面形状を有する厚み約100人のNbl膜試料を、
この多層薄膜ホルダ上にスパッタ法により形成し、X線
入射角度2θ=2.2度にして分析した。このときX線
照射面積は、全反射利用の場合の約1722であるので
、照射密度は約22倍となった。しかも試料に入射する
X線量I。3と照射X線I0との比1os/Ioは、全
反射法に対して本発明の方法は約19倍となった。入射
X線量の30%程度がバックグラウンドに影響を及ぼす
が、1 os/I0の著しい増大により、検出感度は1
桁程度向上した。この分析により、試料にはZnが約6
50ppb混入していることが検出された。この値は同
一試料を2次イオ、ン質量分析装置を用いて破壊分析し
た値の約570ppbと同程度であった。
The intensity of the first-order diffraction peak is the intensity of the incident X-ray I. It was 73% of the total. Therefore, the angle at which this peak appears 2θ=2.
At 2 degrees, the sample will be irradiated with X-rays approximately 1.7 times as large as the incident X-rays II O. 50mmX 20mm
A Nbl film sample with a thickness of about 100 people with a surface shape of
It was formed on this multilayer thin film holder by sputtering and analyzed at an X-ray incident angle of 2θ=2.2 degrees. At this time, since the X-ray irradiation area was approximately 1722 in the case of using total internal reflection, the irradiation density was approximately 22 times higher. Moreover, the amount of X-rays incident on the sample is I. The ratio 1os/Io of 3 to the irradiated X-ray I0 was about 19 times that of the total internal reflection method in the method of the present invention. Approximately 30% of the incident X-ray dose affects the background, but due to a significant increase in 1 os/I0, the detection sensitivity is
Improved by orders of magnitude. This analysis revealed that the sample contained approximately 6 Zn.
50 ppb was detected. This value was comparable to the value of about 570 ppb obtained by destructive analysis of the same sample using a secondary ion mass spectrometer.

(発明の効果) 以上説明したように、本発明の蛍光X線分析装置は、全
反射利用の蛍光X線分析装置に比べて試料への入射X線
量を増加させることができるので、試料中の原子からの
蛍光X線の増大が可能であること、また通常の蛍光X線
分析装置に比べてバックグラウンドが大幅に減少するこ
とから、非破壊で高感度の微量物質分析が可能になる。
(Effects of the Invention) As explained above, the X-ray fluorescence analyzer of the present invention can increase the amount of X-rays incident on the sample compared to the X-ray fluorescence analyzer that uses total internal reflection. Since it is possible to increase the amount of fluorescent X-rays from atoms, and the background is significantly reduced compared to ordinary fluorescent X-ray analyzers, non-destructive and highly sensitive trace substance analysis becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた蛍光X線分析装置の構
成図、 第2図は多層薄膜の構造の模式図、 第3図は多層薄膜によるX線回折の原理図、第4図は多
層薄膜によるX線回折プロファイルの例を示す図である
。 1・・・重元素層      2・・・軽元素層3・・
・入射X線      4・・・回折X線5・・・X線
入射角度    6・・・X線回折角度7・・・X線源
       8・・・試料薄膜9・・・多層薄膜ホル
ダ   10・・・多層薄膜11・・・多層薄膜保持台
   12・・・発生した蛍光X線13・・・半導体検
出器    14・・・計測回路第1図 f4−計測回路 第2図 第3図 第4図 回↑斤角贋θ(A) 手  続  補  正  書 昭和63年 3月29日 特許庁長官   小  川   邦  夫  殿1、事
件の表示 昭和63年特許願第44210号 2、発明の名称 蛍光X線分析装置 3、補正をする者 事件との関係  特許出願人 (422)日本電信電話株式会社 4、代理人 (1)明細書筒1真第行〜第1O行の特許請求の範囲を
、次の通り訂正する。 「2、特許請求の範囲 1、  X線源から発生したX線を照射し、その結果、
試料から発生する蛍光X線を検出器で検出して試料中の
微量元素を分析する蛍光X線分析装置において、試料薄
膜を設置または形成する試料ホルダとして、多層薄膜と
多層薄膜保持台とからなるホルダを用いたことを特徴と
する蛍光X線分折装置。
Figure 1 is a configuration diagram of the fluorescent X-ray analyzer used in the examples of the present invention, Figure 2 is a schematic diagram of the structure of a multilayer thin film, Figure 3 is a diagram of the principle of X-ray diffraction using a multilayer thin film, and Figure 4 FIG. 2 is a diagram showing an example of an X-ray diffraction profile by a multilayer thin film. 1...Heavy element layer 2...Light element layer 3...
- Incident X-ray 4... Diffraction X-ray 5... X-ray incident angle 6... X-ray diffraction angle 7... X-ray source 8... Sample thin film 9... Multilayer thin film holder 10...・Multilayer thin film 11... Multilayer thin film holding stand 12... Fluorescent X-rays generated 13... Semiconductor detector 14... Measurement circuit Figure 1 f4 - Measurement circuit Figure 2 Figure 3 Figure 4 ↑Angle forgery θ(A) Procedure amendment Written March 29, 1988 Kunio Ogawa, Director General of the Patent Office 1, Indication of the case Patent Application No. 44210 of 1988 2, Name of the invention Fluorescent X-ray analysis Apparatus 3, Relationship with the case of the person making the amendment Patent applicant (422) Nippon Telegraph and Telephone Corporation 4, agent (1) The scope of claims in line 1 to line 1O of the specification tube is as follows: correct. "2. Claim 1: Irradiation with X-rays generated from an X-ray source, and as a result,
In a fluorescent X-ray analyzer that analyzes trace elements in a sample by detecting fluorescent X-rays generated from the sample with a detector, a sample holder for installing or forming a sample thin film is composed of a multilayer thin film and a multilayer thin film holder. A fluorescent X-ray spectrometer characterized by using a holder.

Claims (1)

【特許請求の範囲】[Claims] 1、X線源から発生したX線を試料に照射し、その結果
、試料から発生する蛍光X線を検出器で検出して試料中
の微量元素を分析する蛍光X線分析装置において、試料
薄膜を設置または形成する試料ホルダとして、多層薄膜
と多層薄膜保持台とからなるホルダを用いたことを特徴
とする蛍光X線装置。
1. In an X-ray fluorescence analyzer that irradiates a sample with X-rays generated from an X-ray source and then detects the fluorescent X-rays generated from the sample with a detector to analyze trace elements in the sample, A fluorescent X-ray apparatus characterized in that a holder consisting of a multilayer thin film and a multilayer thin film holder is used as a sample holder for installing or forming a holder.
JP63044210A 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer Expired - Lifetime JPH083475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044210A JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044210A JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH01219549A true JPH01219549A (en) 1989-09-01
JPH083475B2 JPH083475B2 (en) 1996-01-17

Family

ID=12685191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044210A Expired - Lifetime JPH083475B2 (en) 1988-02-29 1988-02-29 Sample holder for X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JPH083475B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
JP2017139465A (en) * 2016-02-03 2017-08-10 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Vacuum chuck for fixing workpiece, measuring apparatus and method for inspecting the workpiece, particularly wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226710A (en) * 1975-08-25 1977-02-28 Tadayasu Higuchi Prefabricated type sound insulation wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226710A (en) * 1975-08-25 1977-02-28 Tadayasu Higuchi Prefabricated type sound insulation wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
JP2017139465A (en) * 2016-02-03 2017-08-10 ヘルムート・フィッシャー・ゲーエムベーハー・インスティテュート・フューア・エレクトロニク・ウント・メステクニク Vacuum chuck for fixing workpiece, measuring apparatus and method for inspecting the workpiece, particularly wafer

Also Published As

Publication number Publication date
JPH083475B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
Frantz et al. Analysis of fluid inclusions by X-ray fluorescence using synchrotron radiation
US5390229A (en) Lead-paint detector
JPH11502025A (en) Apparatus for simultaneous X-ray diffraction and X-ray fluorescence measurement
US5113421A (en) Method and apparatus for measuring the thickness of a coating on a substrate
Trojek et al. X-ray fluorescence analysis of archaeological finds and art objects: Recognizing gold and gilding
Claes et al. Comparison of Grazing Emission XRF with Total Reflection XRF and Other X‐Ray Emission Techniques
US11262320B2 (en) Monitor for measuring mercury emissions
Pietropaolo et al. A neutron resonance capture analysis experimental station at the ISIS spallation source
JP2005140777A (en) Sample inspection method, its device, cluster tool for manufacturing microelectronics device, and device for manufacturing microelectronics device
Somogyi et al. Application of solid-state track detectors for measuring angular distributions of alpha-particle groups from nuclear reactions
JPH01219549A (en) Fluorescent x-ray analyzer
JPH0668473B2 (en) Method and apparatus for fluorescent X-ray analysis of laminated body
KR101127863B1 (en) Method for measuring thickness of the organic thin layer and Apparatus for measuring the organic thin layer
US5396529A (en) X-ray fluorescence detector
JP2000055842A (en) X-ray image pick-up analysis method and device
Bigler et al. Quantitative mapping of atomic species by X-ray absorption spectroscopy and contact microradiography
JP2007078616A (en) Method and device for measuring thickness of each component layer of thin film comprising a plurality of layers
JP2906606B2 (en) Qualitative analysis of thin film samples
JPS61132847A (en) Method and instrument for fluorescent x-ray analysis of two-layered plating film
JPH02107952A (en) X-ray diffraction measurement for powder
Tomov et al. Ultrafast Time‐Resolved Transient Structures of Solids and Liquids by Means of Extended X‐ray Absorption Fine Structure
Rosner et al. Thickness gauging through the ratio of X-ray fluorescence lines
USH922H (en) Method for analyzing materials using x-ray fluorescence
RU2258202C2 (en) NON-DESTRUCTIVE METHOD OF INSPECTION OF LATERAL CHARACTERISTICS OF CELLULAR STRUCTURE HAVING α-RADIOACTIVE LAYER MATERIAL LAYER
JPS6353457A (en) 2-d scan type state analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13