JPS62226048A - Spectrochemical analysis of crystal solid - Google Patents

Spectrochemical analysis of crystal solid

Info

Publication number
JPS62226048A
JPS62226048A JP61068713A JP6871386A JPS62226048A JP S62226048 A JPS62226048 A JP S62226048A JP 61068713 A JP61068713 A JP 61068713A JP 6871386 A JP6871386 A JP 6871386A JP S62226048 A JPS62226048 A JP S62226048A
Authority
JP
Japan
Prior art keywords
sample
ray
fluorescent
crystalline solid
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61068713A
Other languages
Japanese (ja)
Inventor
Seizo Doi
清三 土井
Shigeru Yasuami
安阿弥 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61068713A priority Critical patent/JPS62226048A/en
Publication of JPS62226048A publication Critical patent/JPS62226048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve spectral sensitivity by analyzing a crystal solid sample under the conditions under which an incident X-ray forms a standing wave in said sample. CONSTITUTION:The Bragg's condition expressed by the prescribed equation can be satisfied which the continuous X-ray generated from an X-ray light source 1 is made chromatic by a mechanism 2 for forming monochromatic light and is made incident at an incident angle theta on the crystal solid sample disposed in a sample vessel 3 and held to a rotatable holding member. The incident angle theta is fixed near the Bragg conditions and the wavelength lambda of the incident light is continuously changed by the mechanism 2. The quantity I of secondary electrons such as fluorescent X-ray generated from the sample 5 is monitored by an electron amplifier 6 or electron energy analyzer 7 and is recorded by a recorder 9a via a counter circuit 8a. An I-lambda curve is measured and the max. wavelength lambda of the electron quantity of the fluorescent X-ray quantity appearing in the I-lambda curve is determined. The photon energy of the fluorescent X-ray generated under such conditions and the number thereof are detected 10. The fluorescent X-ray spectra is determined by a recorder 9b via a counter circuit 8b, by which the kind and quantity of the element consisting the sample 5 are analyzed from the spectra obtd. in such a manner.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、結晶固体の分光分析方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for spectroscopic analysis of crystalline solids.

(従来の技術) 結晶固体試料から発生するX線を利用した分光分析方法
としては、従来より例えば蛍光X線分光分析法が知られ
ており、主として結晶固体試料の定性・定量分析に使用
されている。この分光分析方法は、結晶固体試料表面に
X線を照射し、X線と試料構成原子の電子との相互作用
の結果、該試料から放出されるX線(蛍光X線)のエネ
ルギとその光子数の分布(スペクトル)を測定し、その
スペクトルから構成元素の種類や量、場合によっては化
学結合状態等の分析を行なうものである。
(Prior Art) Fluorescence X-ray spectroscopy, for example, has been known as a spectroscopic analysis method using X-rays generated from a crystalline solid sample, and is mainly used for qualitative and quantitative analysis of crystalline solid samples. There is. This spectroscopic analysis method involves irradiating the surface of a crystalline solid sample with X-rays, and as a result of the interaction between the X-rays and the electrons of the sample's constituent atoms, the energy of the X-rays (fluorescent X-rays) emitted from the sample and its photons are determined. The number distribution (spectrum) is measured, and the types and amounts of the constituent elements, and in some cases, the state of chemical bonds, etc., are analyzed from the spectrum.

特に、かかる分光分析方法は入射量子としてX線を用い
ているため、電子線やイオンを使用する分析方法に比べ
て結晶固体試料に与える損傷が極めて弱く、いわゆる非
破壊分析が可能で汎用性の高い分析方法である。
In particular, since this spectroscopic analysis method uses X-rays as incident quanta, it causes much less damage to crystalline solid samples than analysis methods that use electron beams or ions, and allows so-called non-destructive analysis, making it highly versatile. It is a sophisticated analytical method.

しかしながら、蛍光X線分光分析方法は例えば半導体材
料中の極微量元素の分析等において、感度の点で二次イ
オン質量分析方法などの他の方法に比べて劣り、その高
感度化が望まれている。
However, X-ray fluorescence spectroscopy is inferior to other methods such as secondary ion mass spectrometry in terms of sensitivity, for example in the analysis of trace elements in semiconductor materials, and higher sensitivity is desired. There is.

このようなことから、入射X線の強度を上げたり、X線
検出器の感度を高めるといった努力がなされている。特
に、前者においては最近、強力なX線であるシンクロト
ロン放射光の出現で、これを蛍光X線分光分析の光源と
して利用する試みも始まっている。しかしながら、かか
る光源を利用してX線強度を上げて分析の高感度化を図
ろうとすると、装置が大形になったり、又は高価になっ
たりする問題があった。
For this reason, efforts are being made to increase the intensity of incident X-rays and the sensitivity of X-ray detectors. In particular, with the recent appearance of synchrotron radiation, which is a powerful X-ray, attempts have begun to utilize synchrotron radiation as a light source for fluorescence X-ray spectroscopy. However, if such a light source is used to increase the X-ray intensity and increase the sensitivity of analysis, there is a problem that the apparatus becomes large or expensive.

一方、X線を利用して固体試料構成元素の種類及び量を
分析するイオン脱離分光分析方法や同X線を利用して固
体試料構成元素の種類、量及び化学結合状態を分析する
光電子分光分析方法が知られている。しかしながら、こ
れらの方法は前記蛍光X線分光分析方法と同様、絶対検
出感度が低いという問題があった。
On the other hand, ion desorption spectroscopy uses X-rays to analyze the types and amounts of elements constituting a solid sample, and photoelectron spectroscopy uses X-rays to analyze the types, amounts, and chemical bonding states of elements constituting a solid sample. Analytical methods are known. However, like the fluorescent X-ray spectroscopy method, these methods have a problem of low absolute detection sensitivity.

(発明が解決しまうとする問題点) 本発明は、上記問題点を解決するためになされたもので
、入射X線強度や検出器の感度を上げることなく、分光
感度の向上を達成することが可能な結晶固体の分光分析
方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention was made to solve the above problems, and it is possible to improve the spectral sensitivity without increasing the incident X-ray intensity or the sensitivity of the detector. The present invention aims to provide a possible method for spectroscopic analysis of crystalline solids.

[発明の構成] (問題点を解決するための手段) 本発明は、結晶固体試料の表面にX線発生装置よりX線
を照射し、このX線と試料構成原子との相互作用により
試料から真空中に放出される電磁波もしくは荷電粒子の
もつ物理量を計測し、これにより少なくとも試料構成元
素の種類及び量を分析する方法において、前記入射X線
が前記結晶固体試料内で定在波を形成する条件にて分析
を行なうことを特徴とする結晶固体の分光分析方法であ
る。
[Structure of the Invention] (Means for Solving the Problems) The present invention irradiates the surface of a crystalline solid sample with X-rays from an X-ray generator, and the interaction between the X-rays and the atoms constituting the sample causes light to be removed from the sample. In a method of measuring physical quantities of electromagnetic waves or charged particles emitted into a vacuum and thereby analyzing at least the type and amount of elements constituting the sample, the incident X-rays form a standing wave within the crystalline solid sample. This is a method for spectroscopic analysis of crystalline solids, characterized in that analysis is performed under certain conditions.

本発明の分光分析方法は、結晶固体試料から放出される
電磁波や荷電粒子の種類及び計測されるべきそれらがも
つ物理量の違いにより以下に説明する3つの分析方法を
包含するものである。
The spectroscopic analysis method of the present invention includes three analysis methods described below depending on the types of electromagnetic waves and charged particles emitted from a crystalline solid sample and the physical quantities they have to be measured.

■、X線の照射により結晶固体試料から放出される電磁
波が蛍光X線であり、かつ該蛍光X線のもつ物理量が光
子エネルギ及び光子数であり、これらの光子エネルギ及
び光子数の分布(スペクトル)から試料構成元素の種類
及び量を測定する蛍光X線分光分析方法。この蛍光X線
分光分析方法では、結晶固体試料から放出される蛍光X
線の雰囲気が必ずしも真空でなくもよい。
(2) The electromagnetic waves emitted from a crystalline solid sample by X-ray irradiation are fluorescent X-rays, and the physical quantities of the fluorescent X-rays are photon energy and photon number. ) is a fluorescent X-ray spectroscopic analysis method that measures the types and amounts of sample constituent elements. In this fluorescent X-ray spectroscopy method, fluorescent X-rays emitted from a crystalline solid sample are
The atmosphere of the line does not necessarily have to be a vacuum.

■、X線の照射により結晶固体試料から放出される電磁
波が電子線であり、かつ該電子線のもつ物理量が運動エ
ネルギ及びその量であり、これらの運動エネルギ及びそ
の量から試料構成元素の種類、瓜及び化学結合状態を測
定する電子分光分析方法。
(2) The electromagnetic waves emitted from a crystalline solid sample by X-ray irradiation are electron beams, and the physical quantities of the electron beams are kinetic energy and its amount, and from these kinetic energy and its amount, the types of sample constituent elements can be determined. , Melon and an electron spectroscopy method for measuring chemical bonding states.

■、X線の照射により結晶固体試料から放出される荷電
粒子がイオンであり、かつ該イオンのもつ物理量が質量
及びその量であり、これらの質量及びその瓜から試料構
成元素の種類及び量を測定するイオン脱離分光分析方法
。ここで、イオン脱離とは光(X線)を照射することに
より結晶固体試料からイオンが脱離することを言う。こ
れを光脱離(PI+oton S timlated 
 Desovptlon ; P S D)ということ
もある。PSDのメカニズムは、(a)表面原子が入射
光により内殻イオン化を受け、(b)原子間又は原子内
のオージョ遷移でエネルギ緩和し、(c)その結果、表
面陰イオン原子から1Sl数個の電子が失われ、(d)
これによって生じたクーロン反発力でイオンが脱離する
ものである。従って、イオン脱離分光分析方法の感度向
上を達成するには例えば前記(a)の内殻イオン化効率
を高めればよいことになる。
(2) Charged particles emitted from a crystalline solid sample by X-ray irradiation are ions, and the physical quantities of the ions are mass and its amount, and from these masses and mass, the type and amount of the constituent elements of the sample can be determined. Ion desorption spectroscopy method to measure. Here, ion desorption refers to the desorption of ions from a crystalline solid sample by irradiation with light (X-rays). This is photodetachment (PI+oton S stimulated
It is also called Desovptlon; PSD). The mechanism of PSD is that (a) surface atoms undergo inner shell ionization by incident light, (b) energy is relaxed by interatomic or intraatomic Ojo transitions, and (c) as a result, several 1Sl atoms are removed from surface anion atoms. electrons are lost, (d)
Ions are desorbed by the Coulomb repulsion generated by this. Therefore, in order to improve the sensitivity of the ion desorption spectroscopy method, for example, it is sufficient to increase the inner shell ionization efficiency described in (a) above.

(作用) 次に、本発明の分光分析方法の作用を説明する。但し、
ここでは蛍光X線分光分析方法を例にして説明する。
(Function) Next, the function of the spectroscopic analysis method of the present invention will be explained. however,
Here, a fluorescent X-ray spectroscopy method will be explained as an example.

結晶固体試料にX線をブラッグ条件近傍で入射すると、
試料内に入射波と回折波の干渉によりX線の定在波が発
生する。定在波の節や腹の面は、回折に関与している結
晶の格子面に平行で、かつその間隔は格子面のそれと一
致する。この時、定在波の腹が試料構成原子上にくれば
、原子中の電子は強い波動場を定在波から受け、光電効
果などにより試料から放出され、更にこれ″に伴って蛍
光X線も発生する。
When X-rays are incident on a crystalline solid sample near the Bragg condition,
A standing wave of X-rays is generated within the sample due to interference between the incident wave and the diffracted wave. The nodes and antinodes of the standing wave are parallel to the lattice planes of the crystal involved in diffraction, and their spacing matches that of the lattice planes. At this time, when the antinode of the standing wave is on the sample constituent atoms, the electrons in the atoms receive a strong wave field from the standing wave and are emitted from the sample due to the photoelectric effect. also occurs.

従って、定在波が発生し、かつその腹が結晶固体試料構
成原子上にくるような条件を作り出し、その条件のもと
で放出される蛍光X線Rネルギと光子数を検出器で測定
し、蛍光X線スペクトルを得れば、そのスペクトル強度
は増加し、数倍以上の分析感度向上が図られる。
Therefore, we create conditions in which a standing wave is generated and its antinode is on the atoms constituting the crystalline solid sample, and measure the fluorescent X-ray R energy and the number of photons emitted under these conditions with a detector. If a fluorescent X-ray spectrum is obtained, the spectral intensity will increase, and the analytical sensitivity will be improved several times or more.

なお、電子分光分析方法では前記結晶固体試料にX線を
ブラッグ条件近傍で入射させて定在波を発生させ、その
定在波の腹が試料構成原子上に一致させる条件とするこ
とにより放出される電子やオージニ電子の運動エネルギ
とその量を検出器で測定し、光電子スペクトルを得れば
、そのスペクトル強度は増加し、数倍以上の分析感度向
上が図られる。
In addition, in the electron spectroscopy method, X-rays are incident on the crystalline solid sample near the Bragg condition to generate a standing wave, and the conditions are such that the antinode of the standing wave coincides with the atoms constituting the sample. If the kinetic energy and amount of the original electrons and original electrons are measured with a detector and a photoelectron spectrum is obtained, the intensity of the spectrum will increase and the analytical sensitivity will be improved several times over.

また、イオン脱離分光分析方法では前記結晶固体試料に
X線をブラッグ条件近傍で入射させて定在波を発生させ
、その定在波の腹が試料構成原子上に一致させる条件と
することより放出される内殻イオンの質量とその量を検
出器で測定してスペクトルを得れば、数倍以上の分析感
度向上が図られる。
In addition, in the ion desorption spectroscopy method, X-rays are incident on the crystalline solid sample near the Bragg condition to generate a standing wave, and the condition is such that the antinode of the standing wave coincides with the sample constituent atoms. If the mass and amount of emitted core ions are measured with a detector and a spectrum is obtained, the analytical sensitivity can be improved several times or more.

(発明の実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1 本実施例1は、蛍光X線分光分析に関する例であり、こ
れを第1図及び第2図を参照して説明する。
Example 1 Example 1 is an example related to fluorescent X-ray spectroscopy, and will be described with reference to FIGS. 1 and 2.

まず、X線光源1から発生させた連続X線光(例えばシ
ンクロトロン放射光)を単色化機構2により単色化し、
このX線(波長λ)を試料容器3内に配置され、回転可
能な保持部材4により一定の角度で保持された例えば格
子面間隔dの結晶固体試料5へ入射角eで入射させると
、下記(1)式のブラッグ条件を満たす、いわゆるブラ
ッグ反射の全反射領域の極近傍でX線の定在波を形成さ
せることができた。
First, continuous X-ray light (for example, synchrotron radiation light) generated from an X-ray light source 1 is made monochromatic by a monochromating mechanism 2,
When this X-ray (wavelength λ) is made incident at an incident angle e into a crystalline solid sample 5 with, for example, a lattice spacing d, which is placed in a sample container 3 and held at a fixed angle by a rotatable holding member 4, the following results. It was possible to form an X-ray standing wave very close to the total reflection region of so-called Bragg reflection, which satisfies the Bragg condition of equation (1).

2dsine−λ  ・(1) 上記(1)式のブラッグ条件の近傍で、例えば入射角e
を固定(θf)L、前記単色化機構2より入射光波長λ
を連続的に変化させ、その時に試料5から発生する蛍光
X線や光電子などの二次電子の息(I )を電子増幅管
6又は電子エネルギ分析器7でモニタし、計数回路8a
を介して記録計9aで記録してI−2曲線を測定する。
2dsine-λ ・(1) Near the Bragg condition of equation (1) above, for example, the incident angle e
is fixed (θf)L, and the wavelength of the incident light from the monochromating mechanism 2 is λ
is continuously changed, and the breath (I) of secondary electrons such as fluorescent X-rays and photoelectrons generated from the sample 5 at that time is monitored by the electron amplifier tube 6 or the electron energy analyzer 7, and the counting circuit 8a
The I-2 curve is measured by recording with the recorder 9a.

こうして求めたI−2曲線に現われる電子量最大成いは
蛍光Xg H最大の波長λ(λM)を決定する。そして
、かかる条件下(ef−λM)で発生する蛍光X線Rオ
フ、ギお光イ数や工線検、1o7検出0、計数回路8b
を介して記録計9bで蛍光X線スペクトルを求めること
によって、該スペクトルから結晶固体試料の構成元素の
種類及び量の分析を行なうことができた。この場合、X
線検出器10によりef−λ、の条件下で発生する蛍光
X線Rネルギと光子数を検出し、計数回路8bを介して
記録計9bで求めた蛍光X線スペクトルの強度は前記条
件に設定せずに単に計測した蛍光X線スペクトルに比べ
て著しく増加しているため、数倍以上の分析感度の向上
を図ることができた。
The maximum amount of electrons appearing on the I-2 curve thus obtained determines the wavelength λ (λM) of the maximum fluorescence XgH. Then, under such conditions (ef-λM), fluorescent
By obtaining a fluorescent X-ray spectrum using the recorder 9b through the 100-degree recording device, it was possible to analyze the types and amounts of the constituent elements of the crystalline solid sample from the spectrum. In this case,
The fluorescent X-ray R energy and the number of photons generated under the condition of ef-λ are detected by the ray detector 10, and the intensity of the fluorescent X-ray spectrum determined by the recorder 9b via the counting circuit 8b is set to the above conditions. The increase was markedly greater than that of the fluorescent X-ray spectrum simply measured without the use of fluorescent X-rays, so we were able to improve the analytical sensitivity by several times.

また、上記(1)式のブラッグ条件の近傍で、入射光波
長λを固定(λf)し、前記保持部材4により結晶固体
試料5を間歇的に回動させて入射角θ2を連続的に変化
させ、その時に試料5から発生する蛍光X線や光電子な
どの二次電子のffl (1)を電子増幅管6又は電子
エネルギー分析器7でモニタし、計数回路8aを介して
記録計9aで記録してI−9曲線を測定する。こうして
求めたI−0曲線に現われる電子量最大成いは蛍光X線
量最大の入射角e(0M)を決定する。そして、かかる
条件下(λf−θM)で発生する蛍光X線Aζルギと光
子数をX線検出器10で検出し、計数回路8bを介して
記録計9bで蛍光X線スペクトルを求めることによって
、該スペクトルから結晶固体試料の構成元素の種類及び
量の分析を行なうことができた。この場合でも、X線検
出器10によ0.−0.0イ。工、え生す、蛍光、ゆ&
オルギと光子数を検出し、前記と同様に求めた蛍光X線
スペクトルの強度は前記条件に設定せずに単に計測した
蛍光X線スペクトルに比べて著しく増加しているため、
数倍以上の分析感度の向上を図ることができた。
In addition, near the Bragg condition of equation (1) above, the incident light wavelength λ is fixed (λf), and the crystal solid sample 5 is intermittently rotated by the holding member 4 to continuously change the incident angle θ2. At that time, ffl (1) of secondary electrons such as fluorescent X-rays and photoelectrons generated from the sample 5 is monitored by an electron amplifier tube 6 or an electron energy analyzer 7, and recorded by a recorder 9a via a counting circuit 8a. and measure the I-9 curve. The maximum amount of electrons appearing on the I-0 curve thus obtained determines the incident angle e(0M) of the maximum amount of fluorescent X-rays. Then, by detecting the fluorescent X-ray Aζ and the number of photons generated under such conditions (λf-θM) with the X-ray detector 10, and obtaining the fluorescent X-ray spectrum with the recorder 9b via the counting circuit 8b, From this spectrum, it was possible to analyze the types and amounts of the constituent elements of the crystalline solid sample. Even in this case, the X-ray detector 10 detects 0. -0.0i. Engineering, reproduction, fluorescence, Yu&
The intensity of the fluorescent X-ray spectrum obtained in the same manner as above by detecting the number of photons and photons is significantly increased compared to the fluorescent X-ray spectrum simply measured without setting the above conditions.
We were able to improve the analytical sensitivity by several times.

実施例2 本実施例2は、電子分光分析に関する例であり、これを
第3図及び第4図を参照して説明する。
Example 2 Example 2 is an example related to electron spectroscopy, and will be described with reference to FIGS. 3 and 4.

まず、X線光源1から発生させた連続X線光を単色化機
構2により単色化し、このX線(波長λ)を真空ポンプ
11により真空雰囲気にした試料容器3内に配置され、
回転可能な保持部材4により一定の角度で保持された例
えば格子面間隔dの結晶固体試料5へ入射角eで入射さ
せると、前述した(1)式のブラッグ条件を満たす、い
わゆるブラッグ反射の全反射領域の極近傍でX線の定在
波を形成させることができた。
First, continuous X-ray light generated from an X-ray light source 1 is monochromated by a monochromating mechanism 2, and this X-ray (wavelength λ) is placed in a sample container 3 in which a vacuum atmosphere is created by a vacuum pump 11.
When the light is incident at an incident angle e onto a crystalline solid sample 5 with a lattice spacing d, which is held at a fixed angle by a rotatable holding member 4, all of the so-called Bragg reflections that satisfy the Bragg condition of equation (1) mentioned above are generated. We were able to form a standing wave of X-rays very close to the reflection area.

上記(1)式のブラッグ条件の近傍で、例えば入射角e
を固定(Of)L、前記単色化機構2より入4J光波長
λを連続的に変化させ、その時に試料5から発生する光
電子などの二次電子のin (1)を電子増幅管6でモ
ニタし、計数回路8aを介して記録計9aで記録してI
−λ曲線を測定する。こうして求めたI−λ曲線に現わ
れる電子量最大の波長λ(λM)を決定する。そして、
応・がる〜条件下(ef−λM)で発生する電子の運動
エネルギとその量を電子エネルギ分析器12で検出し、
計数回路8bを介して記録計9bで光電子スペクトルを
求めることによって、該スペクトルから結晶固体試料の
構成元素の種類、量及び化学結合状態の分析を行なうこ
とができた。この場合、電子エネルギ分析器12により
Of−λMの条件下で発生する電子の運動エネルギとそ
の量を検出し、計数回路8bを介して記録計9bで求め
た光電子スペクトルの強度は前記条件に設定せずに単に
計測した光電子スペクトルに比べて著しく増加している
ため、数倍以上の分析感度の向上を図ることができた。
Near the Bragg condition of equation (1) above, for example, the incident angle e
(Of) L, the wavelength λ of the 4J light input from the monochromating mechanism 2 is continuously changed, and the in (1) of secondary electrons such as photoelectrons generated from the sample 5 at that time is monitored by the electron amplifier tube 6. is recorded by the recorder 9a via the counting circuit 8a, and the I
-Measure the λ curve. The wavelength λ (λM) of the maximum amount of electrons appearing on the I-λ curve thus obtained is determined. and,
The kinetic energy and the amount of electrons generated under the condition (ef-λM) are detected by the electron energy analyzer 12,
By obtaining a photoelectron spectrum using a recorder 9b via a counting circuit 8b, it was possible to analyze the types, amounts, and chemical bonding states of the constituent elements of the crystalline solid sample from the spectrum. In this case, the electron energy analyzer 12 detects the kinetic energy and its amount of electrons generated under the condition of Of-λM, and the intensity of the photoelectron spectrum determined by the recorder 9b via the counting circuit 8b is set to the above conditions. The increase was markedly greater than that of the photoelectron spectrum simply measured without the use of a photoelectron, so we were able to improve the analytical sensitivity by several times.

また、上記(1)式のブラッグ条件の近傍で、入射光波
長λを固定(λf)し、前記保持部材4により容器3の
真空雰囲気中で結晶固体試料5を間歇的に回動させて入
射角θ2を連続的に変化させ、その時に試料5から発生
する光電子などの二次電子のm (1)を電子増幅管6
でモニタし、計数回路8aを介して記録計9aで記録し
てI−9曲線を測定する。こうして求めたI−9曲線に
現われる電子量最大の入射角e(eM)を決定する。そ
して、かかる条件下(λf−eM)で発生する電子の運
動エネルギとその量を電子エネルギ分析器12で検出し
、計数回路8bを介して記録計9bで光電子スペクトル
を求めることによって、該スペクトルから結晶固体試料
の構成元素の種類、量及び化学結合状態の分析を行なう
ことができた。
In addition, near the Bragg condition of equation (1) above, the incident light wavelength λ is fixed (λf), and the crystalline solid sample 5 is intermittently rotated in the vacuum atmosphere of the container 3 by the holding member 4, and the incident light is The angle θ2 is continuously changed, and m (1) of secondary electrons such as photoelectrons generated from the sample 5 are transferred to the electron amplifier tube 6.
The I-9 curve is measured by monitoring with a recorder 9a via a counting circuit 8a. The incident angle e (eM) of the maximum amount of electrons appearing on the I-9 curve thus obtained is determined. Then, the kinetic energy and the amount of electrons generated under such conditions (λf-eM) are detected by the electron energy analyzer 12, and the photoelectron spectrum is obtained by the recorder 9b via the counting circuit 8b. We were able to analyze the types, amounts, and chemical bonding states of the constituent elements of crystalline solid samples.

この場合でも、電子エネルギ分析器12によりλf−e
Mの条件下で発生する電子の運動エネルギとその量を検
出し、前記と同様に求めた光電子スペクトルの強度は前
記条件に設定せずに単に計測した光電子スペクトルに比
べて著しく増加しているため、数倍以上の分析感度の向
上を図ることができた。
Even in this case, the electron energy analyzer 12 calculates λfe
The intensity of the photoelectron spectrum obtained in the same manner as above by detecting the kinetic energy and its amount of electrons generated under the conditions of M is significantly increased compared to the photoelectron spectrum simply measured without setting the above conditions. , we were able to improve the analytical sensitivity by several times.

実施例3 本実施例3は、イオン脱離分光分析に関する例であり、
これを第3図及び第4図を参照して説明する。但し、こ
のイオン脱離分光分析では第3図及び第4図中の電子エ
ネルギ分析器12の代わりに四重極型質量分析計を使用
した。
Example 3 Example 3 is an example related to ion desorption spectrometry,
This will be explained with reference to FIGS. 3 and 4. However, in this ion desorption spectrometry, a quadrupole mass spectrometer was used in place of the electron energy analyzer 12 in FIGS. 3 and 4.

まず、X線光源1がら発生させた連続X線光を単色化機
構2により単色化し、このX線(波長λ)を真空ポンプ
11により真空雰囲気にした試料容器3内に配置され、
回転可能な保持部材4により一定の角度で保持された例
えば格子面間隔dの結晶固体試料5へ入射角θで入射さ
せると、前述した(1)式のブラッグ条件を満たす、い
わゆるブラッグ反射の全反射領域の極近傍でX線の定在
波を形成させることができた。
First, continuous X-ray light generated from an X-ray light source 1 is monochromated by a monochromating mechanism 2, and this X-ray (wavelength λ) is placed in a sample container 3 in which a vacuum atmosphere is created by a vacuum pump 11.
When the light is incident at an incident angle θ onto a crystalline solid sample 5 with, for example, a lattice spacing d held at a constant angle by a rotatable holding member 4, all of the so-called Bragg reflections that satisfy the Bragg condition of equation (1) mentioned above are generated. We were able to form a standing wave of X-rays very close to the reflection area.

上記(1)式のブラッグ条件の近傍で、例えば入射角e
を固定(ef)L、前記単色化機構2より入射光波長λ
を連続的に変化させ、その時に試料5から発生する光電
子などの二次電子の量(I)を電子増幅管6でモニタし
、計数回路8aを介して記録計9aで記録してI−2曲
線を測定する。この際、試料5から蛍光X線が発生する
場合には電子増幅管の代わりに半導体検出器を用いて該
蛍光X線の! (1)を検出する。こうして求めたl−
2曲線に現われる電子量最大成いは蛍光X線最大の波長
λ(λM)を決定する。そして、かかる条件下(ef−
λM)で発生するイオンの質量とその量を質量分析計1
2で検出し、計数回路8bを介して記録計9bでイオン
脱離分光分析スペクトルを求めることによって、該スペ
クトルから結晶固体試料の構成元素の種類及び量の分析
を行なうことができた。この場合、質量分析計12によ
りθf−λMの条件下で発生するイオンの質量とその量
を検出し、計数回路8bを介して記録計9bで求めたイ
オン脱離分光分析スペクトルの強度は前記条件に設定せ
ずに単に計測したイオン脱離分光分析スペクトルに比べ
て著しく増加しているため、数倍以上の分析感度の向上
を図ることができた。
Near the Bragg condition of equation (1) above, for example, the incident angle e
is fixed (ef) L, and the wavelength λ of the incident light from the monochromating mechanism 2 is
is continuously changed, and the amount (I) of secondary electrons such as photoelectrons generated from the sample 5 at that time is monitored by the electron amplifier tube 6, and recorded by the recorder 9a via the counting circuit 8a. Measure the curve. At this time, if fluorescent X-rays are generated from the sample 5, a semiconductor detector is used instead of an electron amplifier tube to detect the fluorescent X-rays. (1) is detected. Thus obtained l-
The maximum amount of electrons appearing in the two curves determines the maximum wavelength λ (λM) of fluorescent X-rays. And under such conditions (ef-
The mass and amount of ions generated at λM) are measured using mass spectrometer 1.
2, and by obtaining an ion desorption spectroscopic analysis spectrum using a recorder 9b via a counting circuit 8b, it was possible to analyze the types and amounts of the constituent elements of the crystalline solid sample from the spectrum. In this case, the mass and amount of ions generated under the conditions of θf-λM are detected by the mass spectrometer 12, and the intensity of the ion desorption spectrometry spectrum determined by the recorder 9b via the counting circuit 8b is determined under the conditions described above. This is a significant increase compared to the ion desorption spectrometry spectrum that was simply measured without any settings, so we were able to improve the analytical sensitivity by several times.

また、上記(1)式のブラッグ条件の近傍で、入射光波
長λを固定(λf)L、前記保持部材4により容器3の
真空雰囲気中で結晶固体試料5を間歇的に回動させて入
射角elを連続的に変化させ、その時に試料5から発生
する光電子などの二次電子のIS (I)を電子増幅管
6で、又蛍光X線の量(1)を半導体検出器でモニタし
、計数回路8aを介して記録計9aで記録してI−8曲
線を測定する。こうして求めたI−8曲線に現われる電
子量最大成いは蛍光X線最大の入射角θ(eM)を決定
する。そして、かかる条件下(λf −eu )で発生
するイオンの質量とその量を質量分析計12で検出し、
計数回路8bを介して記録計9bでイオン脱離分光分析
スペクトルを求めることによって、該スペクトルから結
晶固体試料の構成元素の種類及び量の分析を行なうこと
ができた。この場合でも、質量分析計12によりλf−
θMの条件下で発生するイオンの質量とその量を検出し
・前記と同様に求めたイオン脱離分光分析スペクトルの
強度は前記条件に設定せずに単に計測したイオン脱離分
光分析スペクトルに比べて著しく増加しているため、数
倍以上の分析感度の向上を図ることができた。
In addition, near the Bragg condition of equation (1) above, the incident light wavelength λ is fixed (λf) L, and the crystalline solid sample 5 is intermittently rotated in the vacuum atmosphere of the container 3 by the holding member 4, and the incident light is While the angle el is continuously changed, the IS (I) of secondary electrons such as photoelectrons generated from the sample 5 is monitored with an electron amplifier tube 6, and the amount of fluorescent X-rays (1) is monitored with a semiconductor detector. , the I-8 curve is measured by recording with the recorder 9a via the counting circuit 8a. The maximum amount of electrons appearing on the I-8 curve thus obtained determines the maximum incident angle θ (eM) of the fluorescent X-ray. Then, the mass and amount of ions generated under such conditions (λf −eu ) are detected by the mass spectrometer 12,
By obtaining the ion desorption spectroscopic analysis spectrum with the recorder 9b via the counting circuit 8b, it was possible to analyze the types and amounts of constituent elements of the crystalline solid sample from the spectrum. Even in this case, the mass spectrometer 12
The mass and amount of ions generated under the conditions of θM are detected, and the intensity of the ion desorption spectrometry spectrum obtained in the same manner as above is compared to the ion desorption spectrometry spectrum simply measured without setting the above conditions. As a result, we were able to improve the analytical sensitivity by several times.

[発明の効果] 以上詳述した如く、本発明によれば高出力のX線発生装
置や高感度の検出器を用いることなく、既存の装置によ
り分光感度の向上を達成して結晶固体を高精度で定性・
定量を行なうことが可能な分光分析方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to improve the spectral sensitivity of a crystalline solid using existing equipment without using a high-output X-ray generator or a high-sensitivity detector. Qualitative with precision
A spectroscopic analysis method capable of quantitative determination can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例1に使用した蛍光X線分光分析装置を
示す概略斜視図、第2図は第1図の横断面図、第3図は
実施例2又は3に使用した電子分光分析装置(又はイオ
ン脱離分光分析装置)を示す概略斜視図、第4図は第3
図の横断面図である。 1・・・X線光源、2・・・単色化機構、4・・・回転
可能な保持部材、5・・・結晶固体試料、6・・・電子
増幅管、7・・・電子エネルギ分析器、8a、8b・・
・計数回路、10・・・X線検出器、11・・・真空ポ
ンプ、12・・・電子エネルギ分析器(又は質量分析計
)。 出願人代理人 弁理士 鈴江武彦 第2図 第4図
Figure 1 is a schematic perspective view showing the fluorescence X-ray spectrometer used in Example 1, Figure 2 is a cross-sectional view of Figure 1, and Figure 3 is the electron spectrometer used in Example 2 or 3. A schematic perspective view showing the device (or ion desorption spectrometer), FIG.
FIG. DESCRIPTION OF SYMBOLS 1... X-ray light source, 2... Monochromating mechanism, 4... Rotatable holding member, 5... Crystal solid sample, 6... Electron amplifier tube, 7... Electron energy analyzer , 8a, 8b...
- Counting circuit, 10... X-ray detector, 11... Vacuum pump, 12... Electronic energy analyzer (or mass spectrometer). Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)、結晶固体試料の表面にX線発生装置よりX線を
照射し、このX線と試料構成原子との相互作用により試
料から真空中に放出される電磁波もしくは荷電粒子のも
つ物理量を計測し、これにより少なくとも試料構成元素
の種類及び量を分析する方法において、前記入射X線が
前記結晶固体試料内で定在波を形成する条件にて分析を
行なうことを特徴とする結晶固体の分光分析方法。
(1) The surface of a crystalline solid sample is irradiated with X-rays from an X-ray generator, and the physical quantities of electromagnetic waves or charged particles emitted from the sample into a vacuum due to the interaction of the X-rays and the sample constituent atoms are measured. and a method for analyzing at least the types and amounts of elements constituting a sample, characterized in that the analysis is performed under conditions in which the incident X-rays form a standing wave within the crystalline solid sample. Analysis method.
(2)、結晶固体試料から放出される電磁波が、蛍光X
線であり、かつ該蛍光X線のもつ物理量が光子エネルギ
及びその光子数であることを特徴とする特許請求の範囲
第1項記載の結晶固体の分光分析方法。
(2) Electromagnetic waves emitted from a crystalline solid sample cause fluorescence
2. The method for spectroscopic analysis of a crystalline solid according to claim 1, wherein the fluorescent X-rays are fluorescent X-rays and the physical quantities thereof are photon energy and the number of photons.
(3)、結晶固体試料から放出される荷電粒子が、電子
線であり、かつ該電子線のもつ物理量が運動エネルギ及
びその量であることを特徴とする特許請求の範囲第1項
記載の結晶固体の分光分析方法。
(3) The crystal according to claim 1, wherein the charged particles emitted from the crystalline solid sample are electron beams, and the physical quantities of the electron beams are kinetic energy and its amount. Methods for spectroscopic analysis of solids.
(4)、結晶固体試料から放出される荷電粒子が、イオ
ンであり、かつ該イオンのもつ物理量が質量及びその量
であることを特徴とする特許請求の範囲第1項記載の結
晶固体の分光分析方法。
(4) Spectroscopy of a crystalline solid according to claim 1, wherein the charged particles emitted from the crystalline solid sample are ions, and the physical quantities of the ions are mass and its amount. Analysis method.
JP61068713A 1986-03-28 1986-03-28 Spectrochemical analysis of crystal solid Pending JPS62226048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068713A JPS62226048A (en) 1986-03-28 1986-03-28 Spectrochemical analysis of crystal solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068713A JPS62226048A (en) 1986-03-28 1986-03-28 Spectrochemical analysis of crystal solid

Publications (1)

Publication Number Publication Date
JPS62226048A true JPS62226048A (en) 1987-10-05

Family

ID=13381699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068713A Pending JPS62226048A (en) 1986-03-28 1986-03-28 Spectrochemical analysis of crystal solid

Country Status (1)

Country Link
JP (1) JPS62226048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259248A (en) * 1988-04-09 1989-10-16 Hitachi Ltd Fluorescent x-ray structure analysis apparatus and fluorescent x-ray structure analysis
JPH0233350U (en) * 1988-08-29 1990-03-02
KR100506083B1 (en) * 2001-10-16 2005-08-04 삼성전자주식회사 Electron spectroscopic analyzer for X-ray fluorescence
US7440542B2 (en) 2006-02-01 2008-10-21 Siemens Aktiengesellschaft Method and measuring arrangement for nondestructive analysis of an examination object by means of x-radiation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259248A (en) * 1988-04-09 1989-10-16 Hitachi Ltd Fluorescent x-ray structure analysis apparatus and fluorescent x-ray structure analysis
JPH0233350U (en) * 1988-08-29 1990-03-02
KR100506083B1 (en) * 2001-10-16 2005-08-04 삼성전자주식회사 Electron spectroscopic analyzer for X-ray fluorescence
US7440542B2 (en) 2006-02-01 2008-10-21 Siemens Aktiengesellschaft Method and measuring arrangement for nondestructive analysis of an examination object by means of x-radiation
DE102006037257B4 (en) * 2006-02-01 2017-06-01 Siemens Healthcare Gmbh Method and measuring arrangement for the non-destructive analysis of an examination object with X-radiation

Similar Documents

Publication Publication Date Title
Wagner Sensitivity of detection of the elements by photoelectron spectrometry
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
FI125488B (en) Wavelength crystal dispersion spectrometer, X-ray fluorescence device and method for this
Ding et al. Monolithic polycapillary X-ray optics engineered to meet a wide range of applications
JPS62226048A (en) Spectrochemical analysis of crystal solid
Wobrauschek et al. Energy dispersive, X-ray fluorescence analysis
JP2002214165A (en) Fluorescent x-ray spectroscopic method and device
Wobrauschek Total reflection X-ray fluorescencespectrometric determination of trace elementsin the femtogram region: a survey
Liendo et al. Comparison between proton‐induced x‐ray emission (PIXE) and total reflection x‐ray fluorescence (TXRF) spectrometry for the elemental analysis of human amniotic fluid
Jaklevic et al. Quantitative X-ray fluorescence analysis using monochromatic synchrotron radiation
James Photoelectron spectroscopy
Sánchez Total reflection X-ray fluorescence analysis using plate beam-guides
RU2614318C1 (en) X-ray analyzer of gold and heavy elements
Siegbahn X-ray Spectroscopy
Jaklevic et al. APPLICATION OP X-RAY FLUORESCENCE TECHNIQUES TO MEASURE ELEMENTAL COMPOSITION OF PARTICLES IN THE ATMOSPHERE
Brown X-ray fluorescence analysis. A review
Jonnard X-ray spectroscopy of lithium
Jaiyen et al. Development of a Compact XRF System for Elemental Analyses of Archaeological Objects
JP5846469B2 (en) Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method
Dose et al. Comment on" k-resolved inverse photoelectron spectroscopy and its application to Cu (001), Ni (001), and Ni (110)"
Wobrauschek et al. Txrf-Sources-Samples and Detectors
Gilfrich X-ray fluorescence analysis
WO2003081222A1 (en) Screening of combinatorial library using x-ray analysis
KR100485389B1 (en) Secondary ion mass spectroscopy and method of measuring secondary ion yield using the same